
2510 – Spring 2016 - Lab 9 – LCD & Keyboard
Instructor: Prof. Mauro Pereira - Teaching Assistant: Ayaz Akram – Authors:Mauro/Ayaz

1 | P a g e `

Lab 9 - LCD and Keyboard interfacing

Objectives:

 Practicing HCS12 Assembly.

 Learning the use of different hardware capabilities of the Dragon

EVB.

Additional reference: HCS12 Microcontroller and Embedded Systems,

Mazidi & Causey, chapter 12, PrenticeHall, 2008.

1. LCD

 A liquid crystal display (LCD) can be a much better man-machine interface that seven segment

displays. To make it easier to interface to it, Hitachi developed a module (HD44780) which comes

with a local controller, allowing us to just send instructions and data to be displayed in a similar

manner that we access memory chips, which became a de facto standard followed by other

manufacturers. LCD became widely used in equipments with embedded controllers, like microwave

ovens, for example. The datasheet for the Hitachi module can be found at:

https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

Interfacing

 The module can be found in several configurations of 1, 2 or 4 lines, with variable length each

line, but the most commonly used is the 2x16 (2 lines of 16 characters). You can buy different version,

European, Japanese or custom font version, with different sets of characters, but even the European

has some configurable characters that you can program yourself, like your company logo. Figure 1

shows the ROM code A00 (Japanese) and ROM code A02 (European) character sets.

 To display characters you have to send an instruction to configure it and later send the

corresponding ASCII code of the character to be displayed.

Fig.1 Japanese and European character sets

https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

2510 – Spring 2016 - Lab 9 – LCD & Keyboard
Instructor: Prof. Mauro Pereira - Teaching Assistant: Ayaz Akram – Authors:Mauro/Ayaz

2 | P a g e `

Table 7.4 Pin assignment for displays with more than 80 characters

Pin No. symbol I/O Function

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

E1

R/W

RS

VEE

VSS

VCC

E2

N.C

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I

I

I

-

-

-

I

-

Data bus line 7

Data bus line 6

Data bus line 5

Data bus line 4

Data bus line 3

Data bus line 2

Data bus line 1

Data bus line 0

Enable signal row 0 and 1

0 = write to LCD, 1 = read from LCD

0 = instruction input, 1 = data input

Contrast adjust

Power supply (GND)

Power supply (+5 V)

Enable signal row 2 and 3

Table 7.3 Pin assignment for displays with less than 80 characters

Pin No. symbol I/O Function

1

2

3

4

5

6

7

8

9

10

11

12

13

14

VSS

VCC

VEE

RS

R/W

E

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

-

-

-

I

I

I

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Power supply (GND)

Power supply (+5 V)

Contrast adjust

0 = instruction input, 1 = data input

0 = write to LCD, 1 = read from LCD

Enable signal

Data bus line 0

Data bus line 1

Data bus line 2

Data bus line 3

Data bus line 4

Data bus line 5

Data bus line 6

Data bus line 7

The LCD pinout is in the Tables 7.3 and 7.4 from Hwang’s book, the first is more common. The

VEE pin is used to adjust the contrast of the display, Vss and Vcc are power supply, RS selects if we

will send a character or an instruction (for example, clear the display or position the cursor).

The enable signal has to receive a falling edge after a few ms in order to the LCD accept the

data sent. This time can be set larger than the minimum needed, or we can monitor the bit 7 the

R/W=1 (read from the LCD), but normally the first approach is used, and this pin is grounded to avoid

using another microcontroller pin.

Note that it can be interfaced in two main ways using 8 bits or 4 bits, in which case you have to

send the character in 2 steps:

 The 8 bit interface is used normally when you access the LCD using memory mapped IO, i.e., by

reserving a space in the memory address for the peripheral. It is preferred when we have external

memory and already use 2 ports for the address and data lines to acess the memory.

 The 4-bit approach is used when we don’t need external memory, in smaller applications, and we

use a separate port for the interface, so it uses 4 pins for the data, and pins for RS, E and R/W,

although R/W is normally grounded, as mentioned before. Dragon12 board used in the lab uses

the second approach using pins or port K for it:

o PK0 (output) Pin 8 RS of LCD module

o PK1 (output) Pin 7 EN of LCD module

o PK2 Pin 6 DB4 of LCD module (bi-directional)

o PK3 Pin 5 DB5 of LCD module (bi-directional)

o PK4 Pin 20 DB6 of LCD module (bi-directional)

o PK5 Pin 19 DB7 of LCD module (bi-directional)

o PK7 (output) Pin 108 R/W of LCD module

PK0

PK1

PK5...PK2 DB7..DB4

RS

E

R/W

HD44780U-based LCD

ModuleHCS12 MCU

Figure 7.28 LCD interface example (4-bit bus, used in Dragon12)

5 V

VCC

VEE

GND

5 V

You can get the board manual at

http://www.evbplus.com/download_hcs12/dragon12_plus_usb_9s12_manual.pdf

http://www.evbplus.com/download_hcs12/dragon12_plus_usb_9s12_manual.pdf

2510 – Spring 2016 - Lab 9 – LCD & Keyboard
Instructor: Prof. Mauro Pereira - Teaching Assistant: Ayaz Akram – Authors:Mauro/Ayaz

3 | P a g e `

Other important facts:

 The HD44780 has a display data RAM (DDRAM) to store data to be displayed on the LCD.

 The usual way to set the display is blink the cursor, and every time you send a character, it

moves to the next address.

 The address range of DDRAM for 1-line, 2-line, and 4-line LCDs are shown in

 Table 7.7a, 7.7b, and 7.7c.

 The HD44780 has a character generator ROM that can generates 5 8 or 5 10

 character patterns from a 8-bit code.

 The user can rewrite character patterns into the character generator RAM (CGRAM).

 Up to eight 5 8 patterns or four 5 10 patterns can be programmed.

Table 7.7a DDRAM address usage for a 1-line LCD

Display Size
Visible

Character Positions DDRAM Addresses

1 * 8

1 * 16

1 * 20

1 * 24

1 * 32

1 * 40

00..07

00..15

00..19

00..23

00..31

00..39

0x00..0x07

0x00..0x0F

0x00..0x13

0x00..0x17

0x00..0x1F

0x00..0x27

Table 7.7b DDRAM address usage for a 2-line LCD

Display Size
Visible

Character Positions DDRAM Addresses

2 * 16

2 * 20

2 * 24

2 * 32

2 * 40

00..15

00..19

00..23

00..31

00..39

0x00..0x0F + 0x40..0x4F

0x00..0x13 + 0x40..0x53

0x00..0x17 + 0x40..0x57

0x00..0x1F + 0x40..0x5F

0x00..0x27 + 0x40..0x67

Table 7.7c DDRAM address usage for a 4-line LCD

Display Size
Visible

Character Positions DDRAM Addresses

4 * 16

4 * 20

4 * 40

00..15

00..19

00..39 on 1st controller

and 00..39 on 2nd

controller

0x00..0x0F + 0x40..0x4F + 0x14..0x23 + 0x54..0x63

0x00..0x13 + 0x40..0x53 + 0x14..0x27 + 0x54..0x67

0x00..0x27 + 0x40..0x67 on 1st controller and

0x00..0x27 + 0x40..0x67 on 2nd controller

Registers of HD44780

 The HD44780 has two 8-bit user accessible registers: instruction register (IR) and data

 register (DR).

 To write data into display data RAM or character generator RAM, the MCU (microcontroller

unit) writes into the DR register.

 The address of the data RAM should be set up with an previous instruction.

 The DR register is also used for data storage when reading data from DDRAM or CGRAM.

 The register selection is shown in Table 7.8.

 The HD44780 has a busy flag that is output from the DB7 pin (only when R/W=1, as

mentioned).

 The HD44780 uses a 7-bit address counter to keep track of the address of the next DDRAM

or CGRAM location to be accessed.

Table 7.8 Register selection

RS R/W Operation

0

0

1

1

0

1

0

1

IR write as an internal operation (display clear, etc.).

Read busy flag (DB7) and address counter (DB0 to DB6).

DR write as an internal operation (DR to DDRAM or CGRAM).

DR read as an internal operation (DDRAM or CGRAM to DR).

Timing diagrams for interfacing the LCD

 Similar to memory interfacing, there are strict timing requirements to acess the LCD, shown inf

Figures 7.29 and 7.30 from Hwang’s book.

tAS

R/W

RS

E

DB0-DB7 Valid data

tEr

PWEH

tAH

tDDR

tCYCLE

tDHR

tEf

Figure 7.29 HD44780U LCD controller read timing diagram

tAS

R/W

RS

E

DB0-DB7 Valid data

tEr

PWEH

tAH

tDSW

tCYCLE

tH

tEf

Figure 7.30 HD44780U LCD controller write timing diagram

2510 – Spring 2016 - Lab 9 – LCD & Keyboard
Instructor: Prof. Mauro Pereira - Teaching Assistant: Ayaz Akram – Authors:Mauro/Ayaz

4 | P a g e `

SENDING an instruction to the LCD

1. Pull the RS and the E signals to low.

2. Pull the R/W signal to low.

3. Pull the E signal to high

4. Output data to the output port attached to the LCD data bus.

5. Pull the E signal to low and make sure that the internal operation is complete.

SENDING a character to the LCD

1. Pull the RS and the E signals to low.

2. Pull the R/W signal to low.

3. Pull the E signal to high

4. Output data to the output port attached to the LCD data bus.

5. Pull the E signal to low and make sure that the internal operation is complete.

-- Repeated once more for an LCD kit with 4-bit interface.

Main commands to the LCD

The datasheet form Hitachi shows several different commands, but the main ones are summarized

below. The best way of imaging the data buffer is a sliding window running over the 2-line data buffer

(for the 2x16 LCD).

Table 7.11 HD44780U bus timing parameters (2 MHz operation)

MeaningSymbol

Enable cycle time

Enable pulse width (high level)

Enable rise and decay time

Address setup time, RS, R/W, E

Data delay time

Data setup time

Data hold time (write)

Data hold time (read)

Address hold time

tCYCLE

PWEH

tEr, tEf

tAS

tDDR

tDSW

tH

tDHR

tAH

Min Typ Max. Unit

500

230

-

40

-

80

10

5

10

-

-

-

-

-

-

-

-

-

-

-

20

-

160

-

-

-

-

ns

ns

ns

ns

ns

ns

ns

ns

ns

2510 – Spring 2016 - Lab 9 – LCD & Keyboard
Instructor: Prof. Mauro Pereira - Teaching Assistant: Ayaz Akram – Authors:Mauro/Ayaz

5 | P a g e `

Remember that:

 a 2 ms delay allows the LCD to recover is needed before issuing a command or data character,

we normally use a delay subroutine (does not need to be precise);

 otherwise, the busy flag can be used to see if the LCD is ready to receive information, accessed

via bit D7:

o the busy flag can be read when R/W = 1 and RS = 0

o when D7 = 1 (busy flag = 1), the LCD is busy will not accept any new information

o When D7 = 0, the LCD is ready

2. KEYBOARD

Figure 2: Examples of membrane keyboard, phone keypad, buttons arranged as keypad

 Keyboards are made by grouping several switches, which can be constructed in several ways,

using membrane, capacitors, hall-effect or mechanical buttons. This last one is more usual, but it

generates a series of pulses because the switch contacts do not come to rest immediately. This

“noise” is known as bouncing and can be interpreted as pressing the button several times. Early

Coca-Cola vending machines had this problem, sometimes releasing more than one can.

Also humans cannot press faster than about 10 ms, in general if we read a key more than 50 times

per second, we read the same key stroke many times.

 To debounce a key, we can use three main hardware ways:

 Use a circuit similar to flip flip RS made of nands;

 Non inverting CMOS gates

 Integrated debouncer (a capacitor in parallel)

And one software way:

 Wait and see, the program waits for 10ms and check if the key is still pressed.

Interfacing to a Keyboard (from Hwang’s book)

A keyboard input is divided into three steps:

 1. Scan the keyboard to discover which key has been pressed.

 2. Debounce the keyboard to determine if a key is indeed pressed. Both hardware and

 software approaches for key debouncing are available.

 3. Lookup the ASCII table to find out the ASCII code of the pressed key.

ASCII Code Table Lookup

The ASCII code of each key can be stored in a table for easy look up, with the base address in an

index register, and the displacement in the table comes from the key pressed.

2510 – Spring 2016 - Lab 9 – LCD & Keyboard
Instructor: Prof. Mauro Pereira - Teaching Assistant: Ayaz Akram – Authors:Mauro/Ayaz

6 | P a g e `

Example of look-up table

;This program takes a table of data, and creates a new table

; which is the original table divided by 2

PROG: EQU $0800 ;put program at address 0x0800

DATA: EQU $0900 ;put data at address 0x0900

COUNT: EQU 10 ;number of entries in table

 ORG PROG ;set program counter to 0x0800

 LDX #TABLE1 ;Reg X points to entry to process in table 1

 LDY #TABLE2 ;Reg Y points to entry to write to table 2

 LDAB #COUNT ;ACC B holds number of entries left to process

REPEAT: LDAA 1,x+ ;Get table1 entry into ACC A; inc X to next entry

 ASRA ;Divide by 2 by shifting right 1 bit

 STAA 1,y+ ;Save in table2; inc Y to next entry in table2

 DBNE B,REPEAT ;Decrement number left to process;

 ;If not done, process next table1 entry

 SWI ;Done -- Exit

 ORG DATA

 ;initialize table1 (COUNT bytes long)

TABLE1: dc.b $07,$AE,$4A,$F3,$6C,$30,$7F,$12,$67,$CF

TABLE2: ds.b count ;reserve count bytes for table2.

Interfacing the HCS12 to a Keypad

 A keypad is a smaller keyboard for simpler taks, generally with 12 (phones) to 24 kews,

arranged in columns and rows. The number of pins required to interface it can be reduced by

activating one columns at a time and reading if any of the columns was activated, indicating that the

key in the crossing was pressed. It reduces pins, but requires more time and an algorithm to sweep all

columns. A typical schematic is below, extracted from Mazidi’s book – however it shows the wrong

port, the Dragon board in the lab uses port A instead. The right one is from Hwang’s book, and shows

the correct port. The total pins required is log2Q divided into rows and columns, where Q is the total

quantity of keys.

 In larger keyboard like PCs, a dedicated microcontroller scans the keys and interfaces serially

to the PC, sending the corresponding code for the key. To simplify a keypad interface, there are also

ICs dedicated to scan a keyboard, as well as encoder like the 74C923.

A

B

C

D

E

F

0

1

2

3

4

5

6

7

8

9

10 K

VCC

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

HCS12 MCU

Figure 7.32 Sixteen-key keypad connected to the HCS12

PA7 PA6 PA5 PA4 Selected Keys

1

1

1

0

1

1

0

1

1

0

1

1

0

1

1

1

0,

4,

8,

C,

1,

5,

9,

D,

2,

6,

A,

E,

and 3

and 7

and B

and F

Table 7.12 Sixteen-key keypad row selections

Connection between HCs12 pins and the keypad at the DragonBoard

PA0 (output) Pin 57 Col_0 of keypad

PA1 (output) Pin 58 Col_1 of keypad

PA2 (output) Pin 59 Col_2 of keypad

PA3 (output) Pin 60 Col_3 of keypad

PA4 (input) Pin 61 Row_0 of keypad

PA5 (input) Pin 62 Row_1 of keypad

PA6 (input) Pin 63 Row_2 of keypad

PA7 (input) Pin 64 Row_3 of keypad

2510 – Spring 2016 - Lab 9 – LCD & Keyboard
Instructor: Prof. Mauro Pereira - Teaching Assistant: Ayaz Akram – Authors:Mauro/Ayaz

7 | P a g e `

Figure 12-7 from Mazidi’s book provides a flowchart for scanning and identifying the pressed key, in

four stages.

2510 – Spring 2016 - Lab 9 – LCD & Keyboard
Instructor: Prof. Mauro Pereira - Teaching Assistant: Ayaz Akram – Authors:Mauro/Ayaz

8 | P a g e `

In-Lab Tasks

Task 1

 Assemble and execute the code provided to send a character “M” to the LCD on the Dragon Board.

Task 2

 Alter the code blank the LCD and send a string with your name in the first line.

Task 3

 Alter the code to blank the LCD and send a string with your name in the first line, but writing your

birthday in the second line (MM/DD/YY) (hint: look up the command for cursor positioning).

Task 4

 Alter the code on Task2 to use Macro instead of Subroutine as mentioned in the theory class.

Task 5

 Assemble and execute the code provided to read the keyboard using lookup table – read and

understand it well enough to explain its structure to someone else.

Task 6

 Alter the code to read a key and send it to the LCD

Task 7

 Alter the code to read a send a string of characters on the keyboard and send it to the LCD

continuously.

Lab Report
 All students are supposed to write their own lab reports. It should contain:

 Headers of the programs as specified in class (example in Lab08)

 Flowcharts of the code implemented

 Decode table used

 Meaningful comments in code

Note:

 TA can ask for a specific format for the report.

 TA can also ask for additional information in your report

 Lab reports are due at the beginning of your next lab session.

