

Mechaduino 0.1 Manual v0.1.1

1

Table of Contents
Table of Contents 2

Introduction 3

Overview of Specifications 4
Microcontroller: SAMD21G18A 4
Encoder: AS5047D 4
Motor Driver: A4954 4
Motor included with Mechaduino 0.1 Servo: 17HS16-2004S1 4
Magnet: Diametrically Magnetized NdFeBr 5
Mounting Hardware: 5

Getting Started 6
Assembly: 6
Firmware: 7
Calibration Routine: 8
Basic Commands: 9
Tune Control Loop: 10

Hardware 11
Board Layout 11
Pin Diagram 12
Power Connections 13
Step/Dir Wiring Diagram 14

Firmware v0.1.3 15
Overview 15
Files 15
Block Diagram 16
Variables 16
Control Algorithms: 17

Position Mode: 17
Velocity Mode: 18
Torque Mode: 18

Functions 19

Examples 20
Serial Interface 20
Step/Dir Interface 21
Button 22
Print 23
Torque Detect 24
Slow Moves 25

License 27

Mechaduino 0.1 Manual v0.1.1

2

Introduction

Mechaduino is an Arduino for mechatronics! Mechaduino is a self-contained motion control
platform which allows you to develop your own custom servo mechanisms. It can be also be
used as a drop-in servo motor for 3D printers and CNC machines. No more missed steps!

Mechaduino 0.1 Manual v0.1.1

3

Overview of Specifications

Microcontroller: SAMD21G18A
ARM Cortex-M0+ CPU running at 48MHz
Arduino Zero compatible
Operating Voltage: 3.3V
NOTE: only pins D0 and D1 have level converters for use with 5V logic. All others are 3.3V

Encoder: AS5047D
Resolution: 14bit
Accuracy: about ±0.1° worst case after calibration routine*
Interface: SPI

Motor Driver: A4954
Dual Full-Bridge DMOS PWM Motor Driver
Peak output currents: ±2 A

Motor included with Mechaduino 0.1 Servo: 17HS16-2004S1
Motor Type: Bipolar Stepper
Step angle: 1.8°
Holding Torque: 45Ncm (63.7oz.in)
Rated Current/phase: 2A
Phases: 2
Positional accuracy: ±5%
Phase Resistance: 1.1ohms
Inductance: 2.6mH±20%(1KHz)
Rotor Inertia 54gcm2

Frame Size: NEMA 17 (42mm X42mm)

*This is limited by the positional accuracy of the stepper motor that you use. This encoder has
an integral nonlinearity of up to ±0.8°. Our calibration routine uses the stepper motor’s full step
positions as references to calibrate out most of this error. Most stepper motors claim a full step
accuracy of ±5% or better.

Mechaduino 0.1 Manual v0.1.1

4

http://www.atmel.com/Images/Atmel-42181-SAM-D21_Datasheet.pdf
https://www.arduino.cc/en/Main/ArduinoBoardZero
http://www.mouser.com/ds/2/588/AS5047D_DS000394_2-00-347336.pdf
http://www.allegromicro.com/~/media/Files/Datasheets/A4954-Datasheet.ashx
http://www.omc-stepperonline.com/download/pdf/17HS16-2004S1.pdf

Magnet: Diametrically Magnetized NdFeBr
Mount about 1mm-2mm from encoder chip. Use epoxy/superglue to secure to shaft.
Calibration routine corrects for minor misalignment.

Mounting Hardware:
We use m3 threaded rods epoxied into 4mm M3 standoffs. Be careful not to remove all motor
screws at once while installing: Opening a stepper motor can weaken its magnetization.

Mechaduino 0.1 Manual v0.1.1

5

http://www.kjmagnetics.com/proddetail.asp?prod=D42DIA

Getting Started

Assembly:

You will need to mount the magnet to the back of the motor shaft. Note: the magnet must be diametrically
magnetized, as opposed to axially magnetized. The magnet may naturally stick to the shaft, but we
recommend a dab of epoxy or super glue to hold it in place. The magnet should be fairly centered, but the
calibration routine will correct for minor misalignment.

The Mechaduino PCB must be mounted so that the magnet is directly under the encoder chip. (Close but
not touching. About 1-2mm. See the AS5047 datasheet for details.) We replaced the standard motor
hardware with M3 threaded rods and short standoffs to mount on our Mechaduinos, but there are other ways
this could be done.

When wiring your motor up to the Mechaduino board, please make sure that one phase is connected to
outputs 1&2, and the other phase is connected to outputs 3&4.

Mechaduino 0.1 Manual v0.1.1

6

Firmware:
Next, you need to install the firmware:

The Mechaduino firmware can be compiled/edited/uploaded using the popular Arduino IDE:

https://www.arduino.cc/en/Main/Software

Once you have the Arduino IDE installed, you will need to add Arduino Zero support. Open the
Arduino IDE, navigate to Tools>Board:...>Board Manager and install the latest "Arduino SAMD
(32-bits ARM Cortex-M0+)" .

At this point you you can connect your Mechaduino via USB. It will appear as an Arduino Zero.
(If it does not appear, please make sure any drivers have finished installing, then try hitting the
reset button or disconnecting/reconnecting the hardware...see note below)

Download the latest Mechaduino_01 firmware (the ‘master’ branch on GitHub), open it in the
Arduino IDE, compile it, and upload to your Mechaduino. Previous versions of the firmware are
available here.

1.8 vs 0.9 degree steppers:
By default the firmware assumes a 1.8 degree (200 steps per rev) stepper. If you are using a
0.9 degree (400 steps per rev) or other size stepper, you will need to adjust the parameter “spr”
(steps per rev) in parameters.cpp.

const int spr = 200; // 200 steps per revolution -- for 400 step/rev, you only need to edit this value

*NOTE:
Apparently the arduino zero drivers do not always automatically install. Please take a look at
these instructions:
https://www.arduino.cc/en/Guide/ArduinoZero
I have had issues where it will show up in the device manager, but not as a COM port (as an
unidentified device). If this is the case, the bootloader is present, but the drivers have not
installed properly.

Mechaduino 0.1 Manual v0.1.1

7

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://github.com/jcchurch13/Mechaduino-Firmware
https://github.com/jcchurch13/Mechaduino-Firmware
https://github.com/jcchurch13/Mechaduino-Firmware/releases
https://www.arduino.cc/en/Guide/ArduinoZero

Calibration Routine:
Once you have the firmware installed, you will need to run the encoder calibration routine.
With the Mechaduino connected to your computer, open a serial monitor (115200 baud) in the
Arduino IDE. You will need to provide V+ to the Mechaduino to power the motor drivers (needed
to calibrate). Type "s" and press enter a couple times to verify that everything is working. The
Mechaduino should step like a stepper. It is currently in open loop mode. press "d" and the
stepping direction will change.

Now, make sure nothing will touch the Mechaduino shaft during the calibration routine. Type "c"
to start the calibration routine. The Mechaduino will now step through all full steps to calibrate
the encoder. When the routine is done, a very long lookup table (16,384 entries) will be printed
to the serial terminal. These are the calibrated angles at each encoder count. You will need to
copy these into the Parameters.cpp file here:

//This is the encoder lookup table (created by calibration routine):

const float lookup[] = {
//Put lookup table here!
};

You can easily select the whole lookup table from the serial monitor by clicking on the next line
and dragging the cursor up.
Save, compile, and re-upload the firmware to your Mechaduino. Your Mechaduino is now
calibrated.

Mechaduino 0.1 Manual v0.1.1

8

Basic Commands:
As long as you have "serialCheck();" in your main loop, you can use the following built
in commands to control the Mechaduino from a serial monitor:

 Implemented serial commands are:

 s - step (steps one full step in open loop mode)
 d - dir (changes step direction in open loop mode)
 p - print angle [step count] , [assumed angle] , [encoder reading]

 c - calibration routine
 e - check encoder diagnostics
 q - parameter query (prints current PID values and cal table)

 x - position mode (set mode for closed loop operation)
 v - velocity mode
 x - torque mode

 y - enable control loop (enter closed loop mode)
 n - disable control loop (go back to open loop mode)
 r - enter new setpoint (new setpoint for control loop)

 j - step response
 k - edit controller gains*
 g - generate sine commutation table
 m - print main menu

See serialCheck() in Utils for more details

*Note, these edits are stored in volatile memory and will be reset if power is cycled

Mechaduino 0.1 Manual v0.1.1

9

Tune Control Loop:
At this point you may need to tune the controller gains. By default, the position and
velocity loops have PID controllers with parameters that can be edited in Parameters.cpp:

//----Current Parameters-----

volatile float Fs = 6500.0; //Sample frequency in Hz

volatile float pKp = 10.0; //position mode PID values.
volatile float pKi = 0.15;
volatile float pKd = 20.0;

volatile float vKp = 0.05; //velocity mode PID values.
volatile float vKi = 0.033;
volatile float vKd = 3.0;

To tune the control loop from the serial monitor:

● Connect your Mechaduino to your computer and open up a serial monitor
● Use the commands ‘x’ followed by ‘y’ to enter closed loop position mode
● Use the command ‘k’ to bring up the tuning menu
● Adjust the parameters until you get a good response
● To make these changes permanent, you will need to copy these values into the

Parameters.cpp file and re-upload.
● You can compare tunings by using the step response command ‘j’. (You must exit the

tuning menu first.)

PID values will vary a lot depending on the motor you use and the load you have connected to
your motor. There are lots of resources online that discuss PID tuning, but here are some simple
pointers:
-Start with a low proportional gain and no integral or derivative action. If the motor seems to
buzz or behave erratically, then your Kp is probably too high. Try setting Kp low enough that the
motor behaves like a fairly compliant spring about the setpoint.
-Slowly increase Kp to improve the stiffness of the control. Adding integral action can remove
steady state errors. Derivative action can also be added in to improve performance.

Mechaduino 0.1 Manual v0.1.1

10

Hardware

Board Layout

Mechaduino 0.1 Manual v0.1.1

11

Pin Diagram

Mechaduino 0.1 Manual v0.1.1

12

Power Connections

Mechaduino 0.1 Manual v0.1.1

13

Step/Dir Wiring Diagram

Mechaduino 0.1 Manual v0.1.1

14

Firmware v0.1.3

Overview
The Mechaduino Firmware can be edited, compiled and uploaded from the popular Arduino
IDE. It is written in Arduino language (similar to C/C++). You can script the Mechaduino’s
behavior in the main loop of the file Mechaduino_01.ino . The stock Mechaduino firmware is
configured to listen for serial commands using serialCheck(). A step/dir interrupt can be
enabled to increment/decrement the setpoint variable.

Files
Mechaduino_01.ino

This is the main file that contains setup(), which runs once on startup and loop() which runs
thereafter.

Controller.cpp
Contains the TC5_Handler() which executes at 6.5kHz* when enabled and contains the closed loop
control algorithms. For more info on configuring TC5, please see this.

Parameters.cpp
Contains configurable parameters including PID gains, calibration table, and other constants.

State.cpp

Contains controller state variables.

Utils.cpp

Contains utility function definitions.

AnalogFastWrite.c

The latest arduino zero board files (1.6.7 and up) have a much lower PWM
frequency than previous versions (732.4Hz , down from 187.5kHz). This
causes audible hissing when used with the Mechaduino. We added the
analogFastWrite command to provide 187.5kHz PWM to eliminate this issue.

Additionally, the header files (.h) contain function declarations and macro definitions for the
above files. Utils.h is a good reference since it gives a list of all the implemented utility
functions.

*Set by Fs in Parameters.cpp which changes TC5->COUNT16.CC[0].reg = (int)(
round(48000000 / Fs)); in setupTCInterrupts() in Utils.cpp.

Mechaduino 0.1 Manual v0.1.1

15

https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Reference/Setup
https://www.arduino.cc/en/Reference/Loop
https://www.arduino.cc/en/Reference/Loop
http://www.atmel.com/Images/Atmel-42181-SAM-D21_Datasheet.pdf#page=635

Block Diagram

Variables
Important global variables include controller state variables and configuration parameters. While
the use of global variables is sometimes frowned upon, we wanted these values to be
accessible and modifiable to make it easier to develop custom applications (see the example
section of this document). Similarly, we chose to use floating point math for the controller
instead of fixed point math. While fixed point math would be faster, we’ve found that our floating
point algorithms are generally fast enough, and are much more readable. As a result, many of
these variables are floats. Here is an overview:

Name Description Type range unit Definition Location

r Control loop setpoint float N/A Degrees in
position mode….

State.cpp

y Corrected encoder
reading

float 0.0 to 360.0 degrees State.cpp

yw Wrapped angle (keeps
track of revolutions)

float N/A degrees State.cpp

e Error (r-yw) float N/A degrees State.cpp

u Control effort float -uMAX to uMAX Bits (8.6mA/bit)* State.cpp

(3.3V/255bits)(1A/10*rsense)= 8.6mA

Mechaduino 0.1 Manual v0.1.1

16

Control Algorithms:

Position Mode:
The default position mode controller is a PID controller of the following form (represented as
discrete transfer functions using the z-transform):

(z) P term(z) Iterm(z) term(z)u = + +D

 w e = r − y

(z) pKpe

Pterm =

(z) e

Iterm = z − 1
pKi z

(z) − Kd 1)yw

Dterm = p * (− a (z−a)
(z−1)

In code, this is implemented with the following difference equations:

 e = (r - yw);

 ITerm += (pKi * e); //Integral wind up limit
 if (ITerm > 150.0) ITerm = 150.0;
 else if (ITerm < -150.0) ITerm = -150.0;

 DTerm = pLPFa*DTerm - pLPFb*pKd*(yw-yw_1);

 u = (pKp * e) + ITerm + DTerm;

A couple notes:

-Dterm is calculated from angle measurement, yw, rather than from error. This is a common
practice that prevents jumps from step reference commands, but provides the same damping.
(This is why there is a negative sign: e = r - y)

-Dterm has a first order low pass filter. The breakpoint of the filter is set by adjusting pLPF (in
hertz) and is calculated as follows:

 e a = (sT)s = e(−pLPF 2pi T)* * s
(in code, a is pLPFa)

Mechaduino 0.1 Manual v0.1.1

17

https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Z-transform

Velocity Mode:

The default velocity mode controller is a PID controller of the following form
(represented as discrete transfer functions using the z-transform):

(z) P term(z) Iterm(z) term(z)u = + +D

− 1) Fs 0.16666667v

yw = (− a * * * (z−a)
(z−1)

 (r v);e = −

(z) pKpe
Pterm =

(z) e

Iterm = z − 1
pKi z

(z) Kde

Dterm = p * (z)
(z−1)

In code, this is implemented with the following difference equations:

 v = -(vLPFa*v + vLPFb*(yw-yw_1)); //filtered velocity

 e = (r + v); //error in degrees per rpm (sample frequency in Hz*(60 seconds/min)/(360 degrees/rev))

 ITerm += (vKi * e); //Integral wind up limit
 if (ITerm > 200) ITerm = 200;
 else if (ITerm < -200) ITerm = -200;

 u = ((vKp * e) + ITerm - (vKd * (e-e_1)));

A couple notes:

v, the filtered, measured velocity, has a first order low pass filter. The breakpoint of the filter is
set by adjusting pLPF (in hertz) and is calculated as follows:

 e a = (sT)s = e(−pLPF 2pi T)* * s
(in code, a is vLPFa)

Torque Mode:
In torque mode, the setpoint r directly sets the control effort u, which in turn sets the current
level. The a4954 driver chip has an internal current loop that forces the motor phase current to
the commanded level. The torque exerted by the Mechaduino is equal to the motor torque
constant times the phase current.

Mechaduino 0.1 Manual v0.1.1

18

https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Z-transform

Functions
void setupPins(); // initializes pins

void setupSPI(); // initializes SPI

void configureStepDir(); // configure step/dir interface

void configureEnablePin(); // configure enable pin

void stepInterrupt(); // step interrupt handler

void dirInterrupt(); // dir interrupt handler

void enableInterrupt(); // enable pin interrupt handler

void output(float theta, int effort); // calculates phase currents (commutation) and outputs to Vref pins

void calibrate(); // calibration routine

void serialCheck(); // checks serial port for commands. Must include this in loop() for serial interface to work

void parameterQuery(); // prints current parameters

void oneStep(void); // take one step

int readEncoder(); // read raw encoder position

void readEncoderDiagnostics(); // check encoder diagnostics registers

void print_angle(); // for debugging purposes in open loop mode: prints [step number] , [encoder reading]

void receiveEvent(int howMany); // for i2c interface...

int mod(int xMod, int mMod); // modulo, handles negative values properly

void setupTCInterrupts(); // configures control loop interrupt

void enableTCInterrupts(); // enables control loop interrupt. Use this to enable "closed-loop" modes

void disableTCInterrupts(); // disables control loop interrupt. Use this to diable "closed-loop" mode

void antiCoggingCal(); // under development...

void parameterEditmain(); // parameter editing menu

void parameterEditp(); // parameter editing menu

void parameterEditv(); // parameter editing menu

void parameterEdito(); // parameter editing menu

void hybridControl(); // open loop stepping, but corrects for missed steps. under development

void serialMenu(); // main menu

void sineGen(); // generates sinusoidal commutation table. you can experiment with other commutation profiles

void stepResponse(); // generates position mode step response in Serial Plotter

void moveRel(float pos_final,int vel_max, int accel); // Generates trapezoidal motion profile for closed loop position mode

void moveAbs(float pos_final,int vel_max, int accel); // Generates trapezoidal motion profile for closed loop position mode

Mechaduino 0.1 Manual v0.1.1

19

Examples

Below are a few examples. Please note that there are a few changes from previous versions of
the firmware (specifically for the step/dir interface).

Serial Interface
As long as the function serialCheck() is included in your loop (it is by default), you can use
the built in serial commands. (Full list here.) You can also create your own by creating a
function and adding it to serialCheck().

The serial interface is useful for debugging/initial testing. Generally, when using a Mechaduino
in a new application, we might do the following:

● Connect to computer, open serial monitor
● Run cal routine, copy table to firmware, recompile, and upload
● Connect Mechaduino to mechanical load
● Set closed loop position mode using commands ‘x’, ‘y’
● Tune PID loop using ‘k’ (parameter edit) and ‘j’ (step response) commands
● Copy best PID values to firmware, recompile, and upload
● Move Mechaduino to various setpoints in closed loop mode using ‘r’ command to

test out application

Mechaduino 0.1 Manual v0.1.1

20

Step/Dir Interface
Here is how to correctly enable the step/dir interface for use with a 3D printer/CNC
machine after calibrating and tuning your PID loop.

void setup() // This code runs once at startup
{

 digitalWrite(ledPin,HIGH); // turn LED on
 setupPins(); // configure pins
 setupTCInterrupts(); // configure controller interrupt

 SerialUSB.begin(115200);
 delay(3000); // This delay seems to make it easier to establish a connection when the
Mechaduino is configured to start in closed loop mode.
 serialMenu(); // Prints menu to serial monitor
 setupSPI(); // Sets up SPI for communicating with encoder
 digitalWrite(ledPin,LOW); // turn LED off

 // Uncomment the below lines as needed for your application.
 // Leave commented for initial calibration and tuning.

 configureStepDir(); // Configures setpoint to be controlled by step/dir interface
 // configureEnablePin(); // Active low, for use wath RAMPS 1.4 or similar
 enableTCInterrupts(); // uncomment this line to start in closed loop
 mode = 'x'; // start in position mode
}

//////////////////////////////////////
/////////////////LOOP/////////////////
//////////////////////////////////////

void loop() // main loop
{

 serialCheck(); //must have this execute in loop for serial commands to function

 //r=0.1125*step_count; //Don't use this anymore, step interrupts enabled above by
 //"configureStepDir()", adjust step size in parameters.cpp

}

If you would like to use an enable pin, you can uncomment this line:

 configureEnablePin(); // Active low, for use wath RAMPS 1.4 or similar

Note that only pins D0 & D1 have built in level converters. You will need to step down a 5V
enable signal to 3.3V. You could use a level converter board like this, or a simple resistor
divider.

Mechaduino 0.1 Manual v0.1.1

21

https://www.sparkfun.com/products/12009

Button
In this code, when digital pin 3 goes HIGH, the Mechaduino moves from 0 to 90 degrees, holds
that position for 3 seconds, and then goes back.

 void setup() // This code runs once at startup
{

 digitalWrite(ledPin,HIGH); // turn LED on
 setupPins(); // configure pins
 setupTCInterrupts(); // configure controller interrupt

 SerialUSB.begin(115200);
 delay(3000); // This delay seems to make it easier to establish a connection when the
Mechaduino is configured to start in closed loop mode.
 serialMenu(); // Prints menu to serial monitor
 setupSPI(); // Sets up SPI for communicating with encoder
 digitalWrite(ledPin,LOW); // turn LED off

 // Uncomment the below lines as needed for your application.
 // Leave commented for initial calibration and tuning.

 // configureStepDir(); // Configures setpoint to be controlled by step/dir interface
 // configureEnablePin(); // Active low, for use wath RAMPS 1.4 or similar
 enableTCInterrupts(); // uncomment this line to start in closed loop
 mode = 'x'; // start in position mode

 pinMode(3, INPUT);
}

//////////////////////////////////////
/////////////////LOOP/////////////////
//////////////////////////////////////

void loop() // main loop
{
 r = 0;
 if (digitalRead(3) == HIGH){
 r = 90;
 delay(3000);
 }
}

Mechaduino 0.1 Manual v0.1.1

22

Print
Here is some demo code showing how to print some of the the state variables to the
serial monitor while the Mechaduino is running. You can access these variables and use them
in other ways as well. For example you could toggle some of the GPIO depending on the value
of the position error e, or you could set an analog out pin proportional to the control effort u .

void setup() // This code runs once at startup
{

 digitalWrite(ledPin,HIGH); // turn LED on
 setupPins(); // configure pins
 setupTCInterrupts(); // configure controller interrupt

 SerialUSB.begin(115200);
 delay(3000); // This delay seems to make it easier to establish a connection when the
Mechaduino is configured to start in closed loop mode.
 serialMenu(); // Prints menu to serial monitor
 setupSPI(); // Sets up SPI for communicating with encoder
 digitalWrite(ledPin,LOW); // turn LED off

 // Uncomment the below lines as needed for your application.
 // Leave commented for initial calibration and tuning.

 // configureStepDir(); // Configures setpoint to be controlled by step/dir interface
 // configureEnablePin(); // Active low, for use wath RAMPS 1.4 or similar
 enableTCInterrupts(); // uncomment this line to start in closed loop
 mode = 'x'; // start in position mode

}

//////////////////////////////////////
/////////////////LOOP/////////////////
//////////////////////////////////////

void loop() // main loop
{
 serialCheck();

 SerialUSB.print("setpoint: ");
 SerialUSB.print(r);
 SerialUSB.print(", error: ");
 SerialUSB.println(e);
 delay(100); //delay 0.1 seconds
}

Mechaduino 0.1 Manual v0.1.1

23

Torque Detect
The Mechaduino can detect and react to external disturbances. In this example,
exerting a slight torque in either direction on the Mechaduino’s rotor will cause the setpoint to
advance in the corresponding direction by 90 degrees:

void setup() // This code runs once at startup
{

 digitalWrite(ledPin,HIGH); // turn LED on
 setupPins(); // configure pins
 setupTCInterrupts(); // configure controller interrupt

 SerialUSB.begin(115200);
 delay(3000); // This delay seems to make it easier to establish a connection when the
Mechaduino is configured to start in closed loop mode.
 serialMenu(); // Prints menu to serial monitor
 setupSPI(); // Sets up SPI for communicating with encoder
 digitalWrite(ledPin,LOW); // turn LED off

 // Uncomment the below lines as needed for your application.
 // Leave commented for initial calibration and tuning.

 // configureStepDir(); // Configures setpoint to be controlled by step/dir interface
 // configureEnablePin(); // Active low, for use wath RAMPS 1.4 or similar
 enableTCInterrupts(); // uncomment this line to start in closed loop
 mode = 'x'; // start in position mode

}

//////////////////////////////////////
/////////////////LOOP/////////////////
//////////////////////////////////////

void loop() // main loop
{
 if (u > 35){
 r -= 90;
 delay(100);
 }
 else if (u < -35){
 r += 90;
 delay(100);
 }
}

The torque is detected by monitoring the control effort u in closed loop position mode.

Mechaduino 0.1 Manual v0.1.1

24

Slow Moves
By design, setting a setpoint in position mode causes the Mechaduino to snap to the
new setpoint as fast as possible. This is not always ideal. There are a number of ways to
create slow smooth motion in position mode.

One way is to use an external motion controller to create a trajectory of setpoints for the
Mechaduino to follow. An example of this would be using the Mechaduino’s step/dir interface
with a 3D printer or CNC machine. Here the motion profiles are generated in external
firmware/software such as Marlin or Mach 3.

If you would like smooth motion in a stand-alone application, you can generate your motion
profile on the Mechaduino itself. To illustrate this, here is a crude loop that will move the
Mechaduinos setpoint from 0 to 90 degrees and back at constant speed:

void setup() // This code runs once at startup
{

 digitalWrite(ledPin,HIGH); // turn LED on
 setupPins(); // configure pins
 setupTCInterrupts(); // configure controller interrupt

 SerialUSB.begin(115200);
 delay(3000);
 serialMenu(); // Prints menu to serial monitor
 setupSPI(); // Sets up SPI for communicating with encoder
 digitalWrite(ledPin,LOW); // turn LED off

 // Uncomment the below lines as needed for your application.
 // Leave commented for initial calibration and tuning.

 // configureStepDir(); // Configures setpoint to be controlled by step/dir interface
 // configureEnablePin(); // Active low, for use wath RAMPS 1.4 or similar
 enableTCInterrupts(); // uncomment this line to start in closed loop
 mode = 'x'; // start in position mode
}

//////////////////////////////////////
/////////////////LOOP/////////////////
//////////////////////////////////////

void loop() // main loop
{

 while (r < 90.0){
 r += 0.1;
 delayMicroseconds(100);
 }
 delay(2000);
 while (r > 0.0){
 r -= 0.1;
 delayMicroseconds(100);
 }
 delay(2000);
}

Mechaduino 0.1 Manual v0.1.1

25

We’ve gone a step further and implemented two commands that generate trapezoidal
speed trajectories (contant acceleration, max speed, constant deceleration):
moveRel() for relative movements; and moveAbs() for absolute movements. From
Parameters.cpp:

 void moveAbs(float pos_final,int vel_max, int accel){

 //Use this function for slow absolute movements in closed loop position mode
 //
 // This function creates a "trapezoidal speed" trajectory (constant accel, and max speed, constant decel);
 // It works pretty well, but it may not be perfect
 //
 // pos_final is the desired position in degrees
 // vel_max is the max velocity in degrees/second
 // accel is the max accel in degrees/second^2
 //
 //Note that the actual max velocity is limited by the execution speed of all the math below.
 //Adjusting dpos (delta position, or step size) allows you to trade higher speeds for smoother motion
 //Max speed with dpos = 0.225 degrees is about 180 deg/sec
 //Max speed with dpos = 0.45 degrees is about 360 deg/sec

And here’s an example showing how to use these functions:

 void setup() // This code runs once at startup
{

 digitalWrite(ledPin,HIGH); // turn LED on
 setupPins(); // configure pins
 setupTCInterrupts(); // configure controller interrupt

 SerialUSB.begin(115200);
 delay(3000);
 serialMenu(); // Prints menu to serial monitor
 setupSPI(); // Sets up SPI for communicating with encoder
 digitalWrite(ledPin,LOW); // turn LED off

 // Uncomment the below lines as needed for your application.
 // Leave commented for initial calibration and tuning.

 // configureStepDir(); // Configures setpoint to be controlled by step/dir interface
 // configureEnablePin(); // Active low, for use wath RAMPS 1.4 or similar
 enableTCInterrupts(); // uncomment this line to start in closed loop
 mode = 'x'; // start in position mode
}

//////////////////////////////////////
/////////////////LOOP/////////////////
//////////////////////////////////////

void loop() // main loop
{
 moveRel(360.0,100, 30);
 delay(2000);
 moveAbs(0.0,100,30);
 delay(2000);
}

Mechaduino 0.1 Manual v0.1.1

26

License
All Mechaduino related materials are released under the Creative Commons Attribution
Share-Alike 4.0 License

Mechaduino 0.1 Manual v0.1.1

27

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

