
MGED Quick Reference Card
(for version 7.x) 

Starting & Stopping MGED

start MGED with default graphical user interface (GUI) mged
run MGED in classic console mode  mged -c
open geometry database fi le creating new if necessary mged fi le.g
run a single MGED command on database mged -c fi le.g cmd
quit MGED   exit or quit or q

Files
Geometry database fi les in MGED are always automatically saved to disk after an edit is made.  As 
such, performing a fi le “Save” operation manually is not necessary and is not provided by MGED.

open a new or existing geometry database opendb fi le.g
close any open geometry database  closedb
save a copy of the currently open database dump newfi le.g
export objects from currently open database keep newfi le.g obj ...
check if fi le contains duplicate object names dup fi le.g
combine a geometry database into existing dbconcat fi le.g
eliminate unused space from open database garbage_collect
display version of currently open database dbversion
upgrade currently open database to the latest dbupgrade
import data fi le as a binary object wdb_binary -i u c obj fi le
export binary object to a data fi le wdb_binary -o u c fi le obj

BRL-CAD File Name Conventions

binary BRL-CAD geometry database fi les  .g
ascii BRL-CAD geometry database fi les (deprecated) .asc
raw binary headerless 3-channel color image data fi les .pix
raw binary headerless 1-channel grayscale image fi les .bw
extended UNIX 2D/3D color plot format fi les .pl
raytrace command saveview shell script (text) fi les .rt

Geometry Naming Conventions
MGED imposes minimal restrictions on how geometric objects are named.  It is up to the indi-
viduals and organizations to utilize consistent naming conventions when creating geometry.   e 
below object naming suffi  x convention is frequently utilized and recommended.

groups / assemblies   no suffi x or .g
regions / parts   .r
non-region combinations  .c
primitive solid shapes   .s

Constructive Solid Geometry Operations
Constructive Solid Geometry (aka Combinatorial Solid Geometry) is based on three mathematical 
boolean operations: union, intersection, and diff erence (aka subtraction).   ese operators are 
applied to primitives to form compound objects in MGED using the “u”, “+” and “-” notation.  
Consider the example of combining two primitive object shapes, n and l.   e example below 
shows the resulting CSG combination object when the two shapes are overlapping.

           Union                            Intersection                   Diff erence

Getting Help
With non-classic MGED, right-clicking most labels and input fi elds will provide a description.  
Additionally, documentation is provided via the Help menu and on-line at http://brlcad.org/

obtaining help on all commands  help
obtaining help on a particular command help command
search for commands that relate to keyword apropos keyword
display command history for current session history
record transcript of commands used to fi le journal fi le
list subset of various simulatable GUI actions press help

Geometry Information

list the top-level objects  tops
list the objects in currently open database ls
get a table of contents for current database t
display the information details for object(s) l obj ...
    cat obj ...
get/set title of currently open database title
get/set units of currently open database units
print out CSG hierarchy for object(s) tree obj ...
display combinations that reference object(s) dbfi nd obj ...
display full paths that reference object(s) dbfi ndtree obj ...
list all CSG paths under given object(s)  paths obj ...
show transformation matrices along a path showmats path
list all regions referenced by object(s) get_regions obj ...
display all regions with given air code(s) eac code ...
display counts of primitives, regions, groups summary p r g
save region identifi er summary to fi le idents fi le obj ...

Creating Geometry

interactively type in new object parameters in
create a prototypical primitive object make type name
create a CSG combination object  comb name op obj ...
    c name obj op obj ...
create CSG region (aka “part”) combination r name op obj ...
create group (aka “assembly”) combination g name obj1 obj2 ... 
create a region from a range of solids build_region prefi x #
create a shallow copy of an object  cp obj objcopy 
create deep patterned copies of objects clone
rename an object   mv old new
rename an object and all references mvall old new
add a prefi x to all references to an object prefi x prefi x obj
create an arb8 with rotation and fallback arb rot fallback
duplicate a cylinder, positioned at end or orig cpi cyl cylcopy
make a bounding box around object(s) make_bb name obj ...
mirror an object about the x, y, or z axis mirror obj new axis
create arb given 3 points, 2 coords of 4th, and thickness 3ptarb

Deleting Geometry
MGED provides no direct means to recover deleted geometry, so delete objects with caution.   
Regularly performing geometry database backups (e.g. see the ‘dump’ command) is recommended.

delete object(s) from database  kill obj ...
delete object(s) and all references  killall obj ...
delete object(s), all sub-objects, all references killtree obj ...

Displaying Geometry

display object(s) for editing  e obj ...
    draw obj ...
erase object(s) from the display  d obj ...
    erase obj ...
erase any objects that reference object(s) dall obj ...
    erase_all obj ...
“zap”: clear all objects from the display Z
“blast”: clear all objects & display object(s) B obj ...
mark object(s) as “hidden” to hide from ‘ls’ hide obj ...
unmark object(s) as “hidden”  unhide obj ...
hierarchical geometry browser GUI tool geometree

Rendering Geometry

raytrace current view to a lingering window rt -F/dev/Xl
raytrace current view to 2048x2048 fi le rt -s2048 -o fi le.pix
raytrace white background hidden-line image rtedge -W -o fi le.pix
abort any raytraces started within mged rtabort

Customization
MGED will process a “.mgedrc” initialization fi le in your home directory as a sourced Tcl script.  
 is fi le generally contains defaults set by the GUI but may also include your own customizations 
including new commands, shortcuts, loadable plugin modules, and custom key bindings.

 n u l                  n + l              n - l’’’’’’
’ ’ ’



Editing Geometry
MGED is a modal editor (akin to “vi”) meaning that you have to enter and exit various editing 
modes.  e primary mode states related to editing are VIEWING (default), SOLEDIT, and 
OBJEDIT.  Some commands are only valid in certain modes or change behavior based on mode.

visually illuminate & select combination ill comb 
visually illuminate & select solid primitive sill prim 
enter object-illuminate mode  press oill
get the current editing state  status state
edit a primitive (enter solid edit mode) sed prim
edit a matrix (enter object edit mode) oed lpath rpath
add object reference to existing combination i obj comb
remove object reference(s) from combination rm comb obj ...
set/get the center of editing transformation keypoint x y z
manipulate an object’s matrix or material arced path cmd
copy the matrix on one object to another copymat path1 path2
select matrix path when in pick mode matpick path1 path2
set a matrix on a given path  putmat path m0 ... m16
apply all matrix transformations down to the primitives push obj ...
same as push but creates new primitives as needed  xpush obj ...

e geometry editing commands below including the commands related to translation, scaling, 
and rotation require that MGED be  in an edit mode before they can be utilized.  e commands 
implicitly apply to the objects currently selected (e.g. with ‘sed’ or ‘oed’) for editing.

set parameter(s) for current edit operation p val ...
return to viewing mode, accept any edits accept
return to viewing mode, rejecting any edits reject
edit selected primitive using a text editor ted
edit the face of selected arb interactively facedef face
mirror selected arb face across x, y, or z axis mirface face axis
permute the vertices of selected arb permute 8vertices

T  M G
move object being edited to relative position tra dx dy dz
move object being edited to absolute position translate x y z

S  R G
scale primitive being edited  sca factor
scale combination object being edited oscale factor
extrude arb face by some absolute distance extrude face dist

R G
rotate primitive being edited  rot x y z
rotate combination object being edited orot x y z
rotate angle degrees about an arbitrary axis arot x y z angle
incrementally rotate combination object rotobj -i dx dy dz
rotate combination about vector qorot x y z dx dy dz angle
use provided planar coefficients when rotating arb face eqn A B C

Text File & Table Editing
Several commands in MGED utilize an external text editor, determined from your environment 
EDITOR setting, to edit object values.  Depending on your shell, you may need to set your EDI-
TOR environment variable before invoking MGED.  Bash example: export EDITOR=pico

edit a combination using a text editor red comb ...
edit the region identifier codes for object(s) edcodes comb ...
edit the combination/region materials edmater comb ...
print the color table   prcolor
edit the color table codes  edcolor
read/import region identifier codes from file rcodes file
write region identifier codes to file wcodes file obj ...
read combination materials from file rmater file
write combination materials to file wmater file obj ...
write report of primitive solids to file solids file obj ...

Manipulating the View

get/set the various view parameters view
automatically resize/recenter the view autoview
redraw the current view  refresh
set the azimuth, elevation, and twist ae az el tw
set/get the view center  center x y z
set/get the eye point   eye_pt x y z
set/get the viewing direction  lookat x y z
set/get the view size   size size
zoom the view by specified scale factor zoom scale
set the perspective viewing angle  set perspective angle
translate/move the view relative to current tra dx dy dz
scale the view size by given factor  sca factor
rotate the view by x, y, z degrees  rot x y z
rotate view about a specified model vector mrot x y z
rotate viewpoint by specified degrees vrot xdeg ydeg zdeg
set view using direction and twist angle qvrot dx dy dz angle
set view using x, y, z angles in degrees setview xdg ydg zdg
pan the view   sv x y
set the view orientation from quaternion orientation quat
emulate a knob twist   knob params
control the angle/distance cursor  adc
save the current view orientation to a file saveview file.rt
load a saved view orientation from a file loadview file.rt
save current wireframe to a Postscript file ps file.ps
save current wireframe to a UNIX plot file plot file.pl
overlay a UNIX plot file onto the display overlay file.pl

Analyzing Geometry

analyze the faces of an ARB  analyze arbname
rough estimate of presented area  area
trace single ray from current view or x, y, z nirt x y z
trace single ray from x, y position  vnirt x y
get/set query_ray behavior settings qray
check for overlaps (aka interferences) rtcheck
compute view-dependent surface areas rtarea
get/set MGED calculation tolerances tol

Attributes
In BRL-CAD geometry database files, “attributes” may be used to store arbitrary information, i.e. 
metadata, on an object.  Attributes may be applied to any object in the database.

display current attributes for object(s) attr show obj ...
set the specified attribute on an object attr set obj atr val
append the specified attribute value attr append obj a v
modify an object attribute(s)  adjust obj atr nval 
delete an object attribute  attr rm obj atr
interactively set visual material properties mater comb
set object color (red, green, and blue values) comb_color obj R G B 
get region identifier code for specified region whatid region
list all regions using particular shader(s) which_shader shdr ...
identify regions with specified air code(s) whichair code ...
identify regions with specified region id(s) whichid id ...
incrementally set region id on all regions referenced by object reid obj #
set material id on all regions referenced by object remat obj #

Scripting New Commands in MGED with Tcl

echo, i.e. display or print, the provided text  echo text
pause for the specified amount of time delay sec usec
get combination CSG structure as a Tcl list lt object
use shell-style name globbing  set glob_compat_mode 1
use Tcl shell syntax evaluation set glob_compat_mode 0

Here is an example of writing a custom command called ‘get_primitives’ that traverses over 
all objects in a given combination, printing a list of all primitives encountered.  For this example, 
glob_compat_mode is disabled (i.e. set to 0, not the default value of 1)  so that there is no need to 
escape various characters with a preceding “\” slash.

set glob_compat_mode 0
proc get_primitives {object} {
  set children [lt $object]
  set prims ““
  if { $children != ““ } {
    foreach node $children {
      set name [lindex $node 1]
      set data [db get $name]
      if { [lindex $data 0] != “comb“ } {
        set prims [concat $prims $name]
      } else {
        set prims [concat $prims [get_primitives $name]]
      }
    }  
  }
  return “$prims“
}

Copyright (c) 2006 United States Government
MGED Quick Reference Card version 4 for BRL-CAD version 7, June 2006

designed by Christopher Sean Morrison

Permission is granted to make and distribute copies of this card provided the copyright notice, the 
designed by notice, and this permission statement are preserved on all copies.

Groups
(aka Assemblies)

Regions
(aka Parts)

Primitive Shapes 
(aka Solids)

Groups are simply unions, i.e. collections, of other groups 
or regions.

Regions are CSG operations (i.e. union, 
intersection, and difference) on non-region 

combinations and primitives.

(0,0) pixels per scanline (image width)

sc
an

lin
es

 (i
m

ag
e 

he
ig

ht
)BRL-CAD Coordinate Systems

BRL-CAD uses a right-hand 3D Cartesian coordinate system 
with real number addressing where “up” is in the positive z-axis 
(+Z) direction, “left” and “right” are perpendicular to the y-axis, 
and “front” is towards the positive x-axis (+X) direction.

BRL-CAD uses a first-quadrant 2D Cartesian coordinate system 
with integer addressing where (0,0) is the lower-left corner pixel 
and (width-1,height-1) is the top-right pixel in an image.


