After you have assembled the buttons, LEDs, connectors, wires and the board, you have to load and configure the software part of the MGine mod. In order to do this, you have to check several steps, as follows:

A. Preparing the programs and drivers to be used

A.1. Downloading the necessary software

- the ”MGine_for_Logitech_DFS_v0904_all_en.zip”

- the ”Joystick” library created by MatthewH for the ATMEL ATmega32U4 microcontroller, which you can find here:

https://github.com/MHeironimus/ArduinoJoystickLibrary

(on this page from github use the button ”Clone or download”, then select ”Download ZIP” to download the archive of libraries created by MatthewH: ”ArduinoJoystickLibrary-master.zip”; attention! for the MGine project, you will use ONLY the ”Joystick” folder from this archive)

- you will find here the information about how to install and use the Joystick library:

http://www.instructables.com/id/Arduino-LeonardoMicro-as-Game-ControllerJoystick/?ALLSTEPS

- software and drivers for the Pololu A-Star 32U4 Micro board:

https://www.pololu.com/file/0J743/a-star-2.0.0.zip

- the Arduino IDE, the software you will use in order to program the Pololu A-Star 32U4 Micro board:

https://www.arduino.cc/en/Main/Software

A.2. Installation of the drivers, libraries and programs

- unzip the ”MGine_for_Logitech_DFS_v0904_all_en.zip” archive in a folder from which you may copy the files from

- unzip the ”a-star-2.0.0.zip” archive in a folder from which you may copy the files from

- unzip the ”ArduinoJoystickLibrary-master.zip” library in a folder from which you may copy the files from

- install the drivers for A-Star 32U4 Micro; excerpt from the A-Star 32U4 Micro archive's readme:
„The "drivers" directory contains the A-Star drivers for Microsoft Windows. To install the drivers, right-click on "a-star.inf" and select "Install".”

- install the Arduino IDE

 - run the Arduino IDE

- in the Arduino IDE program, in the File/Preferences menu, under ”Sketchbook location” you will find the position of the folder into which you must copy the libraries necessary for the MGine for Logitech DFS mod

-close the Arduino IDE program

- enter the folder indicated under ”Sketchbook location” and copy the whole content of the ”libraries” folder from the ”MGine_for_Logitech_DFS_v0904_all_en” folder into the ”libraries” folder

- enter the folder indicated under ”Sketchbook location” and copy the folder ”Joystick” from the ”ArduinoJoystickLibrary-master” folder into the ”libraries” folder

- enter the folder indicated under ”Sketchbook location” and create there a new folder named ”hardware”

- in order to be able to program the Pololu A-Star 32U4 Micro board specifically, you must install the corresponding library for the Arduino IDE; excerpt from the A-Star 32U4 Micro archive readme:
”The "add-on" directory contains a folder named "pololu" which can be used to add a "Pololu A-Star 32U4" entry to the "Board" menu in the Arduino IDE. The add-on supports the 1.0.x, 1.5.x, and 1.6.x, versions of the Arduino IDE.
To install the add-on, copy the "pololu" folder into the "hardware" subfolder of the Arduino sketchbook location. The Arduino sketchbook location is typically in your Documents folder in a subfolder named "Arduino". You can see the sketchbook location in the Arduino IDE Preferences dialog, which is available from the File menu.”

- at this time, the folder indicated under ”Sketchbook location”should contain 2 folders - ”hardware” and ”libraries”; inside the ”hardware” folder there should be a ”pololu” folder and inside the ”libraries” folder there should be at least the following folders: ”Joystick”, ”mgButton”, ”mgLed”, ”mgPot”, ”mgVirtualButton”

- after you have followed the previous steps and after you have connected the A-Star 32U4 Micro board to the PC through the USB port, run the Arduino IDE, and in the ”Tools” menu , under the ”Board” section, select ”Pololu A-Star 32U4”

- in the ”Tools” menu, under the ”Port” section, select the port displayed as available, in case it has not already been selected by default; attention! you will need this port often, and if it is not selected you will receive an error message from the Arduino IDE regarding this matter - so make it a habit to verify that there always is a port selected under the ”Port” section of the ”Tools” menu

- in the ”Sketch” menu, under the ”Include Library” section, verify if between the listed libraries in the lower section of the list there are the following names: Joystick, mgButton, mgLed, mgPot, mgVirtualButton; these are the libraries needed for the MGine project

B. Programing the MGine USB adapter (based on the Pololu A-Star 32U4 Micro board)

ATTENTION!!! For the whole duration of the A-Star 32U4 Micro board programming process, the board must be connected to one of the USB ports on your PC.

B.1. Initializing the EEPROM memory

- in order to start de MGine USB adapter, the first necessary step is to initialize its EEPROM memory; without completing this step you will not be able to use the MGine USB adapter

- run the Arduino IDE and ”File/Open” and open the file ”mgIniEEPROM_00_en.ino” from the folder ”Mgine_for_Logitech_DFS_v0904_all_en\Sketches\mgIniEEPROM_00_en”

- in the ”Sketch” menu press the ”Upload” command

- wait for the Arduino IDE to report that the upload has been done

B.2. Programming the Pololu A-Star 32U4 Micro board as an MGine USB adapter

- run the Arduino IDE and ”File/Open” and open the file ”MGine_for_Logitech_DFS_v0904_en.ino” from the folder ”Mgine_for_Logitech_DFS_v0904_all_en\Sketches\MGine_for_Logitech_DFS_v0904_en”

- in the ”Sketch” menu press the ”Upload” command

- wait for the Arduino IDE to report that the upload has been done

- if everything has worked according to the plan, you may rub your hands, smile maliciously and say ”Excelent!”, with a sparkle of evil satisfaction in your eyes: you now have a USB adapter for your Logitech DFS :-)

B.3. Notes

This mod is applicable to the gear shifters included in the original Logitech G25 and G27 wheels package. It will work, though, only for the gear shifting part, not for the buttons of the old shifters. I did not have such a shifter to experiment with, so, I could not devise the hardware and software necessary to support the button functions on the old Logitech gear shifters. Sorry.

The “mgButton”, “mgLed”, “mgPot”, “mgVirtualButton” Arduino libraries are created by me specificaly for the MGine project. Because a few Arduino libraries that go by the name of “Button” or “Led” are available online, I have chosen to use “mg” as a prefix for the names of the libraries I have created specificaly for the MGine project. This is important because the “mg*” Arduino libraries contain some functions that you may not find in other libraries dedicated to the same electrical/electronic components.

For example, the “mgButton” Arduino library offers support for a long press, alongside with the usual short press of the button. Also, when declaring a “mgButton”, you may define the shortest time period, in milliseconds, that qualifies a press of a button as being long. This way, using the same button, you may give to distinct commands - one for the short press, and the other for the long press.

Another of the “mg*” Arduino libraries, the “mgLed” library, offers support for the blinking working regime of the LED. You have the possibility to define the period of time, in milliseconds, for the On or the Off state of the LED in blinking mode.

On the other hand, the “mgVirtualButton” Arduino Library is a little bit different from the other “mg*” libraries, in that it does not define the behaviour of a real electrical/electronic component, but implements a virtual component. Let me explain: I needed a way to detect if the Logitech DFS is connected to the MGine USB adapter or not. My idea (and certainly one that is common knowledge for anyone who has the patience to read manuals - not my case, sadly) was to use a certain property of the digital input pins from the Arduino boards - that, if a pin, defined as digital input, is not connected to anything, it will continuously and randomly transmit values of “0” or “1”, in shorter or longer intervals. In a word, that unconnected pin is not in a stable state, it is in “float”, unpredictably emitting zeroes or ones.

If that pin receives a signal, the value it will send to the board will be “1”. If it does not receive a signal, BUT it is connected to the ground (GND) through a R1 resistor (of aprox 10 kOhm), that pin will send continuously the “0” value to the board.

[If the pin is connected directly to the ground (GND), without any resistor in series, then the pin will be in “float”.] (of this I am not sure anymore, I will have to experiment when I have the time, I think that I am mistaken and, for the virtual button purpose only, it might not be necessary to use the R1 resistor, but just to directly connect the GND pin to the metalic case of the male DIN connector, through a simple wire)

This is the reason why I have created a connection through a 10 kOhm R1 resistor between the metal case of the male 5 pin DIN connector and the Ground (GND) pin of the same male 5 pin DIN connector. It makes so that, when you connect the male 5 pin DIN connector to the corresponding female 5 pin DIN connector on the MGine USB adapter, a pin from the A-Star 32U4 board, which is connected to the metal case of the female 5 pin DIN connector, gets connected to the ground (GND) through the R1 resistor in the male 5 pin DIN connector, thus stabilizing itself in a very short time to the value of “0” sent to the board. Then the MGine USB adapter knows that the Logitech DFS is connected to it and “wakes up”, restoring its full functionality.

When you disconnect the Logitech DFS from the MGine USB adapter, the pin on the A-Star 32U4 board dedicated to detecting this connection goes into floating state, loosing its connection to the Ground (GND) through the R1 resistor installed in the male 5 pin DIN connector. If this is the case, the MGine USB adapter stops from working, and will not send any signal through the USB connection to the PC, until the Logitech DFS is reconnected to the MGine USB adapter.

In both the “mgButton” and “mgPot” Arduino libraries I have implemented some functions specific to the particular way those analog electrical components work. These functions are: debouncing for the button and smoothing for the potentiometer. When declaring/instantiating/creating a mgButton object, you may define a value for the debouncing time interval, in milliseconds. Inside the “mgPot” library you may modify the default value for the maximum number of sample values for the smoothing procedure. Usually, these numbers may be increased little by little, as time goes by and the electrical components' wear increases - as is often the case with the potentiometers.
