QEIFORTH I A Forth for interactive hardware designs

Andreas Wagner

andreas.wagner@lowfatcomputing.org
http://www.0xFF.in

@lowfatcomputing

The CGypress PSo(G 5LP
(What is it?)

an SoC with:
an ARM Cortex M3

a Universal Digital Block “UDB” array

- reconfigurable logic & routing
- something like a CPLD

a Universal Analog Block “UAB” array
- reconfigurable logic & routing

Proprietary Windows Only Toolchain :(
Routing fabric is undocumented :(

The Gypress PsoG 5LP
(block diagram)

rn

< $s01do
a
T

I

Analog Interconneet
Digital Interconnect t
= 0
2], SYSTEM WIDE DIGITAL SYSTEM H"{
5) RESOURCES Universal Digital Block Array (24 x UDB) CAN I2C
4-33 MHz £l Deoadar y ” A [e-BRERs 2.0 h;alsm‘
| Optiona) - on] on on uon uos ave
P i | e L e] -||—”—|
A5 I Xtal us
I T Osc a - FS USH
<'—| I Lt =) — ?‘ 2.0
=3 120 S B —— Timer
ﬁ' | | | Counter
o uoe uoe uoe
g Mo a : PWM
sy | B e .
[Optional _ﬂ =K
q_‘ | i UAAT T EFWM I w
L RTC
<]_| L T Timer
f T l t SYSTEM BU’TI
MEMORY SYSTEM CPU SYSTEM Program& g
WwoT 5051 Debug =
and or Interrupt
Wake EEPROM SRAM 8 ™| cortex s P controlled]
w | i Debugs| ||
c 2 '|' Trace
] EMIF FLASH [Cache PHUB Boundar]
Lo Controller DMA Secan
Clocking System| t
— ANALOG SYSTEM e
™ Power Management| LCD Direc Drigital
o System . Filter
—Llha Drive Block
ADCs
PCR and ot ;A;
LVD Opamg
4x SO CT Blocks ADC
Sleep {TIA, PGA, Mixer etq
Power 1
s. Temperatune 4
-— Iq : | x
:] I 1.8V LDO Sensor 4 %X DA 1x CMP
Del Sig o
E'i | smp CapSense ADC b~
g 1
0.5t05.5V * ’

{ Optiona)

Interactive Hardware Design. Why?

« Electronics multi-tool with loadable
“hardware” modules and good performance
for them.

. Free/Open Source. No MS Windows IDE
necessary.

« Rapidly and interactively explore hardware
designs with the same code used to write
software.

Forth — Gates
(has anyone done it?)

mﬂ

: WASHER| @

Virtual Hardware Definition Language

Using Forth as a VHDL

Abstract

A set of VHDL extensions to Forth lets programmers de-
fine hardware in the same language with which they write
software. Hardware defined in Forth can be verified by ex-
ecuting the hardware-definition words at the command line
or by writing special Forth words to test their operation. The
use of the same language for hardware and software simpli-
fies the task of swapping hardware and software functions
during optimization.

Introduction

Computer-aided design has become an essential part of
product development, and several different hardware defini-
tion languages (HDLs) are marketed for that purpose, but I
wanted to define the hardware in the same language the soft-
ware was written in. We have been using Forth to define PAL
equations for about ten years using a set of extensions to Forth
called CARMAP. When we started using complex program-
mable logic devices (CPLDs), it seemed more logical to ex-
tend CARMAP than to buy an off-the-shelf compiler and learn
a new language.
With each improvement, CARMAP has moved closer to

1 1 1 « 1 1 1 1

Designing logic with the Forth VHDL

1. Write a software simulation of the design.

2. Test the design.

3. Convert the software simulation into a hardware defini-
tion.

4. Compile the hardware definition into logic equations.

5. Fit the logic equations into the device.

6. Verify that the logic equations work correctly.

7. Route the signals and assign the [/O pins.

8. Convert the routed design into a fuse map.

Simulation

The simulation of a design allows interactive analysis of
many aspects of the hardware including complexity, func-
tionality, timing, and performance. If the application pro-
gram for the proposed hardware is also written in the same
language as the hardware, hard and soft components can be
interchanged during optimization.

The software model
The software model is like a black box, it doesn’t matter
how it works as long as it works correctly. The main advan-

i 1 ol 1 1 = 1 1 1 4+ =1 i a1

100%

number of terms may be possible.

How the logic compiler works (CARMAP)

Thelogic compiler converts each of the functions described
in Forth into a set of logic equations for each output bit of the
function. This is a conceptually simple process that involves
expanding the function into a truth table and then reducing
the number of terms in the truth table to the minimum.

The function is mapped into the truth table using the in-
puts that are related to the output. After the function has been
mapped, the table is scanned for unused inputs. If any unused
inputs are found, they are removed from the table. Each input
that is removed cuts the table size by half.

The truth table is then converted into logic equations by
an exhaustive scanning process that tries all possible combi-
nations of inputs and compares them with the truth table.
The first step is to search the table for a true output. When an
output is found, all sets in which it resides are tested for corre-
lation with the other outputs. The largest true set is saved, and
the bits within it are marked as solved. Then the next unsolved
output is found and the process repeats until finished.

The second step of the transformation is to delete the sets
in which all elements have more than one solved mark. This
gives something close to the ideal two-level array. Fitting the
logic into a FPGA would require a third step to convert this
ideal array into a multi-level array that would fit into their
finer structure. This could be accomplished by recursively fac-
toring gates from the high-level sets and ORing them together.

Conclusion

Forth provides a good foundation for a VHDL system be-
cause Forth is an extensible virtual interpreter. Most every-
one who works with Forth knows its unique features can en-
hance software productivity. My experience has shown it to
be very useful when working with variable hardware, as well.

The Forth inner interpreter is a very simple list processor
that requires only three pointers, two registers, and an ALU to

Logi.”
Clive “Max” Maxfield, EDN, 3/1/1996.

Appendix A. CARMAP Word Set

Variables: (ltems)
MAX : GLB: INPUTS

1/0 Definitions:
TI0-GROUP " name"

INPUT "name" [START BITS]

OUTPUT "name" [START BITS CLOCK XORS TERMS
FLIP USES USEX SEL SELX]
[OE PTCLOCK are Lattice-specific commands]

BITS (n —)
A word that defines the number of bits used in an INPUT or
QUTPUT.

START (n —)

A word used in conjunction with BITS that sets the starting
bit number. If START is not specified, the first bit number
will be zero.

CLOCK "name"
A word that defines the clock for registered outputs.

XORS (n —)
A word that sets the maximum number of inputs to be tried
in the XOR term.

TERMS (n —)

A word that sets the maximum number of inputs to a logic
block.

22

Forth Dimensions XXI1.1,2

¥ Page:

23 of 80 - 4+

100%

RA
N

1

FLIP (m —)
A mask that defines which output bits in the truth table will
be inverted.

USES (m —) "name"

A bit mask that defines what bits are used by an output. A
counter is a function where each output bit depends on all of
the bits less than it. The USES mask is rotated to the position
of the current output bit. The upper bits in the mask are ro-
tated into the lower bits so they will be used in counting
functions.

USEX (m —) "name"

A bit mask that defines what bits should be tried in an X0OR
function. This word is used in conjunction with USES, and
the mask rotates the same as for USES.

SEL (m —) "name"

A bit mask that defines a set of bits in a fixed position that
are used as a selector. This word is like USES but the mask
does not rotate .

SELX ((m —) “name”

A bit mask that defines what bits should be tried in an XOR
function. The mask stays in a fixed position. This word is
used in conjunction with SEL.

OE (=)
A word that defines an output-enable term for a Lattice de-

vice.

PTCLOCK (—)
A word that defines a clock term for a Lattice device.

END-IO-GROUE
A word that closes the I/O group.

Software Simulation Words

>> (1o —) "label"
The top element on the stack is moved to the input and out-
put registers. (This word is used for design verification.)

>>0 (o —) "label"
The top element on the stack is moved to the output register.

>>X (x —) "label"
The top element on the stack is moved to the don’t-care reg-
ister.

>>0X (d x —) "label"
The top element on the stack is moved to the don’t-care reg-
ister, and the next element is moved to the output register.

0>> (— o) "label"
The output register is copied to the stack.

TRUTH-TABLE: (io-group ads —)

"simulation word"

Builds the truth table for a function, and solves the logic equa-
tions.

MAKEMACS
Solves all of the logic equations in a design.

Hardware Simulation Words

INIT-LOGIC
Must be done before defining nodes.

NODE " name"
Creates a single-bit, self-fetching variable called %name.

NODES (s n —) "name"
Creates a multiple-bit, self-fetching variable called $name.

CLOCK "name"

- 4+

Software Simulation Words

INVERT (d — d)
The logical NOT of the bits in a word.

MAP[(v —) n
A word that creates an associative memory structure similar
to a CASE statement.

MAP (v a —)
A word that inserts a token (v) and its associated value (a)
into the MAP structure.

IMAP (& —)
A word that inserts the default value (v) into the MAP struc-
ture, and finishes the mapping function.

I (—a)
A word that changes the state to compilation and returns the
address of the start of the compiled string.

il
A word that inserts a next into the compiled string and
changes the state back to interpret.

100%

CLOCK "name"
Creates a single-bit, self-fetching variable called %%name.

UPDATE-STATE
Updates the state of the outputs for all functions.

EXECUTE-CLCCK
Copies the state of the outputs to the inputs.

SIMLDF
The name of the simulation vocabulary.

Lattice-specific words for defining I/O pins
CLKMAC (n io-group_ads —) "name" FORGET
"1lo-group_name"

IOMAC (n io-group_ads —) "name" FORGET
"io-group_name"

IMAC (n io-group ads —) "name" FORGET
"io-group name"

Forth Dimensions XX1.1,2

Reconfigurable Architecture Computation Engine

RACE

Testra’s VHDL in Forth

It’s a special purpose lexicon...
...Perhaps it need not be so special.

FORTH | comments | show images (0)

[High Stack] Fine-Graln Concurrency v sei Fonn

submitted 2 days ago * (last edited 2 days ago) Dy transfire [+2]

-

In my previous post, | suggested that each word would get its own scraich stack. That idea was questioned mightily. But here’s the
fundamental issue that leads to that choice: In "High Stack” concurrency will be a natural part of the language. In fact | am leaning
toward concurrency being the default mode of execution, and synchronous execution must be explicitly instructed. This concurrency
can occur at the word level. So it is possible for two words to be running at the same time.

Now assume for a moment that the two words are not accessing RAM, they are just calculating, i.e. pure functions. Nonetheless they
must have their own private scratch stacks, or they could clobber each other. So | don't see a way around it. So that's where the
private scratch stacks come from. And that being the case, | just have to figure how to handle them efficiently.

Now let's go back to the case where there is access to RAM (or 10). That's a more complicated matter and | have been trying to
figure out how best to handle it. One idea is the Ownership Model, like that of Rust!'l, though I'm not quite sure how that might be
applied to Forth. Another Is Transactional Memory'®, Personally | can't quite understand how TM can be efficient, or perfectly safe,
but all claim that it is, and there is even talk of building it into hardware in the future. (Also | don't think it applies to 107)

Beyond that, there is the Erlang-style Actor Model of no shared memory -- everything must be explicitly passed. Yet, despite the
impressive speed of Erlang with regard to concurrency, | worry it will prove too much overhead for fine-grained concurrency. CSP
(ke Go's channels) are similar, so | think they might be in the same boat -- nor am | sure how they could be implemented in a
transparent manner.

BTW, with regard to the stack, | have (at least | think | have) a good working model using promises/futures and no reference will ever
point to anything on the stack (references only point to things in the heap). So | think | am good there.

Hope that explains a few things. This is probably going to be the most difficult nut for me to crack, so | am hoping the community has
some good ideas.

Thanks in advance.

L,

17 comments source share save hide give gold spam remove report lock nsfw hide all child comments

all 17 comments | & subscribe

Parallel Forth
(new wrapper; same GREAT taste!)

[-] reepca [+1] 3 points 1 day ago

Forth seems like a natural fit for SIMD, where you couldn't really imagine performing multiple steps of a computation at the same time
(stack serialization and all that), but the tendency to use the stack means that it's easy to imagine performing multiple instances of the
same computation at the same time. Are you trying for the former (MIMD/MISD) or the latter (SIMD)? If you're trying to do MISD with a
stack, | think you're going to have some difficulties - the same difficulties people trying to do that in hardware to exploit instruction-level
parallelism have. To that end, I'd suggest checking up on what the folks working on superscalar stack machines have been up to.

ab+dupc/swapd**
can be rewritten as ((a + b) / c) * ((a + b) * d)

| imagine it would be quite difficult to easily infer during compilation that a divide and a multiply could be performed simultaneously. Part
of it is that statically analyzing the stack effect can be difficult, because conditionals are a thing. Being able to do that for all possible
words would, | imagine, be quite difficult. It might be doable if you outlaw variable stack effects, though.

The way | always thought of handling concurrent threads running in a forth system is to just have each thread have its own data stack
and return stack. Is that what you mean by "scratch stacks"?

permalink source embed save save-RES spam remove report give gold reply

Verilog is parallel,
Forth HDL as just parallel Forth?!

« Uses an alternate set of primitive words
« Same high level Forth code on top
...but it runs in parallel.

Ladder Logic or String Diagrams

[-] phalp 2 points 10 days ago

First of all, make sure the diagrams are showing up in a fixed-width font and that the line-drawing characters are coming out
right. Otherwise they're nonsense. Second, it may help to know that the code being diagrammed is

ab+dup c / swap d * *,

Ok, so here's another version of the diagram. All three are identical up to horizontal spacing. | increased the spacing on this
one to hopefully make it easier to read.

da + |
p—l L : | %l

c—1 d—1

Thesymbols a, b, +, ¢, d,and * are the same as in the Forth code. + is simply division (| used this symbol because my
first diagram versions used / to represent part of a wire). There are two further symbols:

—T —r
L 1
dup swap

My concept is that each operator takes a number of items from the stack, represented by strings going into its left side, and
leaves a number of items on the stack, represented by strings coming out its right side. Since dup takes one items and
leaves two, it has one string coming in on the left, and two going out on the right. Since swap takes two and leaves two, it has
two strings on each side. The math operators all take two and leave one. | used the vertical double line in an attempt to show
that the operator is two “lines" high. So if | had an operator that took 3 stack items and left 2, it would appear like one of the
following:

When WORDs are independent they
are in-paraliel:

They are parallel and are leveraging Boolean
OR

Q

Output

—] — | ——

- m oo
|| =23
=
v o =

Where WORDs have dependencies they
are in-series:

« The parameters pile up on the stack
« Therefore they must be dealt with in-order.

Q

Y o el
- D= |20
=
o

(another reason to minimize stack effects!)

designing the alternate primitive wordset...

: XNOR

an XNOR gate

(_ XNOR gate from pins 1.6, 1.7 to blue led at

P1.6 @

, PL.7 @)

| (compiles a wire)

PL.6 @~ , P1.7 @ ~ , (
| (compiles a parallel
(build route to

P2.1

pin 2.1)

(DSI - routing tiles -

DSI - routing tiles -

wire)
the blue led)

pi tiles)

pi tiles)

2 2 d d 2 F 3 3
N0 - TC|[Tc|Tc|Tc|Tc|TCc|TCc|TC|
INL »TC|TC|TC TC|TC|TC|TC|TC
IN2—|TC|TC|TC TC|TC|TC|TC|TC
IN3 »TC|TC|TC TC|TC|TC|TC|TC
IN4 - TC|TC|TC TC|TC|TC|TC|TC
IN5 - TC | TC TC TC|TC TC TC TC| | AND
IN6 = TC|TC|TC TC|TC|TC|TC |TC| [Amy
IN7 »{TC|TC|TC TC|TC|TC|TC|TC
INS »TC|TC|TC TC|TC|TC|TC|TC
INO »TC|TC|TC TC|TC|TC|TC|TC
INIO = TC |TC |TC | TC|TC|TC|TC | TC
IN1L = TC|TC TC TC|TC|TC TC | TC| |
(LT FLT (%; (Lj rlT rlj r#j F#j Carry In
P YV Y Y YV ¥
T|T | T T |T | T |T T—D—»MCO—.—OUTO
T|T | T T |T | T |T T—T)—»MCl—»OUTl
T|T | T T |T | T |T T—D—»Mcz—poun
T|T | T T |T | T |T T—D—DMC3+OUT3
N > J v
OR Carry Out

Armray

an XNOR gate

: XNOR
(route the output of input pins through..)
) , {(DSI - routing tiles - pi tiles)

~ ~ , (DST - routing tiles - pi tiles)

o o o o o o o Y
| 4 4 4 4 4 4 4 A
o Ll N w B~ (%] [+)] ~

INO » TC|Tc|Tc|Tc|Tc|Tc|[Tc|Tc]

P2.1 ! INL » TC|TC|TC|Tc|Tc|Tc|Tc |Tc|
IN2-» TC |TC|Tc|Tc|Tc|Tc|Tc|TC

. IN » TC|TC|TC |TC|TC|TC |TC TC|
IN4 » TC |TC|TC|Tc|TCc|TCc|TCc|TC

INs »{TC |TC |Tc|Tc|Tc|Tc|Tc|Tc| | anD

IN6 » TC |TC |TC |TC|TC|TC|TC|Tc| [Amy

IN7 » TC |TC|Tc|Tc|Tc|Tc|Tc|TC

IN8 » TC |TC|TC|Tc|Tc|Tc|Tc |TC

INO » TC |TC|TC|Tc|Tc|Tc|Tc | TC

INIo » TC|TC|TC|Tc|TCc|TCc|Tc|TC

INIL » TC | TC

PRI

\ CarryIn
Y Y Y YY Y YUY Oy
T T T T T T T T — »# MCO —» OUTO
T T T T T T T T ¢+ { - MC1l —» OUT1
T T T T T T T T M p» MC2 —» OUT2
T T T T T T T T + { > MC3 —» OUT3
, \J
OR Carry Out

Armray

Port Pins reference VARIABLE data

 Indicate a variable data reference with @
« Compile a variable data reference with !

synth alternate wordset: @ !

we can reference a thing...
...but we’ll have to build a route to it ourselves.

Syster
114 104A 104B 102 104C
¢ L Wl [
| wopm l & ccccccc LER‘ ‘ vo l | 13
— 501

1 1
123
* T 112
[504 133 /
I B I s
4 — 128
12
< ™ N 2

an XNOR gate

XNOR

(compile NOT gates into AND array)

P1.6 @ , P1.7 @ , (no complement bits compiled)

I
P1.6 @ , P1L.7 @ , (compile complement bits)

| g 2 3 d 2 d 3 3
IN0O » TC|TC Tc|Tc|Tc|[TCc|[TCc TC|
P2.1 ! INL | TC |TE|TCc|TCc|Tc|Tc|TCc[TC]
IN2»| TC|TC|TC | Tc |Tc|Tc|Tc|TC
IN3 » TC|TC|TC|Tc|Tc|Tc|Tc | Tc|
IN4 » TC|TC|TC |TC|TC|TC|TC|TC
INS » TC|TC|TC|TC|TC|TC|TC|TC AND
IN6 » TC |TC|TC | TC |TC|TC|TC|TC| [Amy
IN7 » TC|TC|TC | TC|TCc|Tc|Tc|TC
INe » TC|TC|TC | TC|TC|TCc|TCc|TC
INO » TC|TC|TC |TC|TC|Tc|TCc|TC
INIO » TC |TC|TC TC|TC|Tc |TC TC
INIL » TC |TC|TC|TC | Tc|Tc|Tc |Tc|
hli TAT Tli Fl? ilf TlT le le Carry In
Y Y Y YYY Yy oy
T/t rt v [7]7 113 »l mcols outo
T T/ /Tt T T T)» M »oun
T T T /Tt T T T) e M2 »oum
T T T T | T T |T T) » M3 »ouTs
’ \/
OR Carry Out

Armray

XNOR

an XNOR gate

(_compile YES gates into AND array)
(_compile truth bits)

P1.6 @

P1.6 @ ~

|
P2.1

P1.7 @

P1.7 @ ~

(_compile truth bits)

B

g 2 3 d 2 d 3 3

) »TC'TC[TC'TC Tc|[tc[TcTC]

INL—»lTIc [TIc |TC [Tc|Tc|Tc|Tc|TC|

IN2» TC|TC|TC | Tc |Tc|Tc|Tc|TC

IN3 » TC|TC|TC|Tc|Tc|Tc|Tc | Tc|

IN4 » TC|TC|TC |TC|TC|TC|TC|TC

INS » TC|TC|TC|TC|TC|TC|TC|TC AND

IN6 » TC |TC|TC | TC |TC|TC|TC|TC| [Amy

IN7 » TC|TC|TC | TC|TCc|Tc|Tc|TC

INe » TC|TC|TC | TC|TC|TCc|TCc|TC

INO » TC|TC|TC |TC|TC|Tc|TCc|TC

INIO » TC |TC|TC TC|TC|Tc |TC TC

INIL » TC |TC|TC|TC | Tc|Tc|Tc |Tc|
Tli TAT ilﬁ Flj ilj TlT le le CarryIn
Y Y Y YYY Yy oy
Tttt [ttt}))» mcol» ouro
T T/ /Tt T T T)» M »oun
T T T /Tt T T T) e M2 »oum
Tt (T[T [T[T[T J» MC3 | » OUT3

' \/
OR Carry Out

Armray

an XNOR gate

XNOR
(compile bits to the OR-array)
P1.6 @ , P1.7 @)
(compiles a wire)
P1.o @ ~, P1.7 @ ~ ,
(compiles a parallel wire)
P2.1 !

g 2 3 d 2 d 3 3

INo » TC|Tc|Tc|Tc|Tc|Tc|[Tc|TCc]

INL | TC |TC|TC|TC|TC|Tc|Tc|TC|

IN2» TC |TCc|Tc|Tc|Tc|Tc|Tc|TC

IN » TC|TC|TC |TC|TC|TC |TC TC|

IN4 » TC |TC|TC|Tc|TCc|TCc|TCc|TC

INs » TC |TC|TC|Tc|Tc|Tc|Tc |Tc AND

IN6 » TC |TC |TC |TC|TC|TC|TC|Tc| [Amy

IN7 » TC |TC|Tc|Tc|Tc|Tc|Tc|TC

IN8 » TC |TC|TC|Tc|Tc|Tc|Tc |TC

INO » TC |TC|TC|Tc|Tc|Tc|Tc | TC

INIo » TC|TC|TC|Tc|TCc|TCc|Tc|TC

INIL » TC |TC|TC|TC | Tc|Tc|Tc |Tc|
Tli TAT ilﬁ Flj ilj TlT le le CarryIn
Y Y Y YYY Yy Y
Tttt]ttt]1]))» mcols ouro
T[T/ttt T T)» M »oun
T T T /Tt T T T) e M2 »oum
Tt (T[T |[T|[T|T|T J» MC3 - » OUT3

' \/
OR Carry Out

Armray

an XNOR gate

XNOR
(compile bits to the OR-array)
P1.6 @ , P1.7 @)
(compiles a wire)
P1.o @ ~, P1.7 @ ~ ,
(compiles a parallel wire)
P2.1 !

o

o

o
-

-
-

o

e
-

B

g 2 3 d 2 d 3 3

N0 » Tc|Tc|Tc|Tc|Tc T T TC|

INL | TC|TC|Tc|Tc|Tc|Tc|Tc|Tc|

IN2»| TC|TC|TCc |Tc |Tc|Tc|Tc|TC

IN3 » TC|TC|TC|Tc|Tc|Tc|Tc | Tc|

IN4 » TC|TC|TC |TC|TC|TC|TC|TC

INS » TC|TC|TC|TC|TC|TC|TC|TC AND

IN6 » TC|TC|TC TC |TC|TC|TC|TC Amay

IN7 » TC|TC|TC | TC|TCc|Tc|Tc|TC

INe » TC|TC|TC | TC|TC|TCc|TCc|TC

INO » TC|TC|TC |TC|TC|Tc|TCc|TC

INIO » TC |TC|TC TC|TC|Tc |TC TC

INIL » TC |TC|TC|TC | Tc|Tc|Tc |Tc|
Tli TAT ilﬁ Flj ilj TlT le le CarryIn
Y Y Y YYY Yy Y
Tttt]ttt]1]))» mcols ouro
T[T/ttt T T)» M »oun
T T T /Tt T T T) e M2 »oum
Tt (T[T [T[T[T J» MC3 | » OUT3

' \/
OR Carry Out

Armray

an XNOR gate

XNOR
(macrocell and PLD output)
P1.6 @ , P1.7 @)

(compiles a wire)

Pl1.6 @ ~, P1.7 @ ~ ,

(compiles a parallel wire)

g 2 3 d 2 d 3 3
INo - TC|Tc|Tc|Tc|Tc|Tc|[Tc|TCc]
INL »{TC |TC|TC|TC|TC|TC|TC|TC|
IN2-» TC |TCc|Tc|Tc|Tc|Tc|Tc|TC
IN » TC|TC|TC |TC|TC|TC |TC TC|
IN4 » TC |TC|TC|Tc|TCc|TCc|TCc|TC
INs » TC |TC|TC|Tc|Tc|Tc|Tc |Tc AND
IN6 » TC |TC|TC|TC|TC|TC|TCc |TcC Amay
IN7 » TC |TC|Tc|Tc|Tc|Tc|Tc|TC
IN8 » TC |TC|TC|Tc|Tc|Tc|Tc |TC
INO » TC |TC|TC|Tc|Tc|Tc|Tc | TC
INIo » TC|TC|TC|Tc|TCc|TCc|Tc|TC
INIL » TC |TC|TC|TC | Tc|Tc|Tc |Tc|
Tli TAT ilﬁ Flj ilj TlT le le CarryIn
P Y Y Y Y Y Yy 4
T ottt t T}))» mcol »ouro
T T/ T/t T T T)» M »ouT1
T T T /Tt T T T) e M2 »oum
Tt (T[T |[T|[T|T|T J» MC3 - » OUT3
’ \/
OR Carry Out

Armray

synth parallel wordset: ALLOT
Maneuvering

|
DSI13_HVK

PRT12/PRT5 PRT1 777 777 PRT2 PRT6/PRT12
2\ VAN | 2N VAN | N [T NI
I] =, | — I] 1.1 & . T 1
1| 7) AU NN ‘k l N7 A Y N Al < N - N}
(—DSI13_HC— Jpsiz v —DsI12_HC—, E’S'lHVl\r——DSW_HCﬂ D{ostenv K —DSI6_HC— fpsis.wv (DI HC— Jositv € " Dsl4 HC)|
DSI=(0,0 || Dbpsi=0,1) L __ DSI=(0,2) | DsI=(0,3) 1" bsi=0,4) L__1" DsI=(0,5)
s ~ s it
I - T ‘ I . A | | [
| | | | [
| B1_UDB10O B1_UDB09 [l | Bo_ubBO9 BO_UDB10 ; BO_UDB13 | BO_UDB14
| B1_P5_UO B1_P4_Ul | | | BO_P4_UL BO_P5_UO [BO_P6_U1l BO_P7_UO |
L (0,0) (0.1) | L (0,2) (0.3) ; (0.3) (0.5) ;
- I - S - J L S - L S -)
e ‘ 4 SN e ‘ 4 A [T, 2\
| {L‘ [ir r/ 1 N r JAL‘ 1 1]‘r r/ ! _I ‘\ AN ‘ I \ |)
i\ﬁIPS_H;'r(o L ;?[4_H(E;\;‘:‘ P4_HV i\ﬁM_ng\,,: | v \;—;ES_HC/;\;‘} P6_HV ."'___']P‘G_HC/;) Rl < '![77_Hc/f_x D
..._\;;'.L“1 /:.A.\”_i;lz N ,-L‘_L,.] N S AN M,;J: 7N sz 1‘
| | | ‘

B1_UDB1l | B1_UDBO08 BO_UDBO8 | BO_UDB11 ! ’ BO_UDB12 | || BO_UDB15

B1_P5 U1 B1_P4_UO BO_P4_UO BO_P5_U1 | BOP6 U0 | || | BOP7UL

(1,0) j (11) (12) | (13) (1,4) s

| | | L —
B1 UDBO4 | B1_UDBO7 BO_UDBO7 | BO_UDB04 BO_UDBO3 ‘ BO_UDBO0O
B1_P2_UO B1_P3_U1 BO_P3_U1 BO_P2_UO BO_P1_U1 i BO_PO_UO
(2,0) 2,1) (2,2) (2,3) (2,4) ; (2,5)

‘j: I \/ S0 AV]’j Il \Z ZAN AVl |> N 4‘r 'T
Gy Hc\:ﬁf} panv ' —P3 HC:"\ p3 Hc;____ N K—p2 Hci’i’i { rwv K—pP1 HC>N pov K —Po HCY N
N ' TSV N— - SV 1 v ean % N SV N I = ATV -V
7 Ll]: N &2 | | o N ~z Al 7 \',’_-‘;,Ev-,f?.s._‘ \Z

B1 UDBO5 | B1_UDB06 BO_UDBO6 | BO_UDBO5 : BO_UDB02 BO_UDBO1

Bl P2 UL | B1_P3_UO BO P3 U0 | BO_P2 U1 : BO_P1_UO BO_PO_U1

(3,0) { (3,1) (3,2) { (3,4) (3,5)

DSI=(1,0) : DSI=(1,1) N7 DSI=(1,2) DSI=(1,4) L DSI=(1,5)
A— DSI9_HC— " bsis_v DSI8_HC__ DSI3_HV /gDSB_HCi Nosiz wv K DSI2_HC » DSI1_HV /*DS|1 HC—' { DSI0_HV :7D5|0_HC N
N | 7NV .] I\ V - IN | 7NV - IN] 7NV - IN 1 — 7N V) N 7N b

S [S — — 4 T =17

Nzl AR | N V4 o~ sz

PRT12/PRT3 PRT15 777 777 PRTO PRT4

Logic Synth words, analogous to
regular Forth words

« we’re compiling regular Forth to parallel Forth
« synth words have the same names

o ...but they compile to the UBD array instead
of the Flash or RAM dictionary.

synth alternate wordset: ALLOT
Maneuvering

« the addressing scheme is very consistent
« manipulate the addresses to maneuver

ALLOT revolves around
YES, NOT, AND, OR

« Logic can spill over into other PLD’s, UDB’s,
UDB Pairs, and UDB Banks.

 Routes are also ALLOTed.

Routing is short-circuiting.

« PSoC 5LP routing works by short-circuiting
« Shorting in-series gates: AND-gates
« Shorting in-parallel wires: OR-gates

Physical View

2
4 s X ‘
H i | QE : Bit 7 ;éit k& B
u v_ﬂ—_{:fiiijfifif T =
= —
) Bit (5444t IR @H SREREN
U ppee—ae i 2 S ———
[Bt [t oo B |[Be @ ;
3U - — -

Ex e e
Rl »#é‘_lr""kp

\, HORIZONTAL ROUTNG
{ CHANNEL 132A

[=]
L

B

&

&
-~ = ‘A ﬁ% “
. BT

FIG. 186

Routing as logic synthesis?

L, L, L, L,
A] B > A 1
| | | | Y. Yt
| | A P4
B
A | B| Output A
e -
o[1] o0 B
1|10 0
117 1 Output

— |

R Y e | el -
|| a0l
=
xS =1

Placement

« How can we rearrange Boolean expressions?

« By way of the commutative, associative,
distributive properties!

Done & To he done

Done:

« PLD synthesis

. routing fabric PIl, HS, HC, VS tiles understood
To Do:

» Parallel logic synthesis (in-progress)

« Universal Analog Blocks (in-progress)

« Hard IP blocks

« HV tiles (in-progress)

Questions , Gomments , World Views?

Thanks for listening !

HACKADAY.IO Projects Lists Contests Stack More Search projects, profiles .. Q4

gelFORTH

a Forth for the malleable PSoC 5LP

& Andreas Wagner

Follow project Like project

513 5 343 LY DESCRIPTION COMPONENTS () LOGS (1)
views comments followers likes

An umbilical Forth, bootstrapped over the KitProg SWD programmer,
the UDB array (the CPLD) during operation for interactive hardware
Open Source Software.

(- Follow the project on hackaday.io!)

references.

« https://www.reddit.com/r/Forth/comments/58
7dfh/high_stack_finegrain_concurrency/d8yb

i0/
. ﬁttps://www.reddit.com/r/Forth/comments/59
9lb4/symbols_for_stack_operators/d9e7vqg/?

context=9999
o http://www.forth.org/fd/FD-V21N1,2.pdf#pag

e=21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

