

gelFORTH | A Forth for interactive hardware design.

Andreas Wagner
andreas.wagner@lowfatcomputing.org

http://www.0xFF.in
@lowfatcomputing

The Cypress PSoC 5LP
(What is it?)

an SoC with:

● an ARM Cortex M3

● a Universal Digital Block “UDB” array

– reconfigurable logic & routing

– something like a CPLD

● a Universal Analog Block “UAB” array

– reconfigurable logic & routing

● Proprietary Windows Only Toolchain :(

● Routing fabric is undocumented :(

The Cypress PsoC 5LP
(block diagram)

Interactive Hardware Design. Why?

● Electronics multi-tool with loadable
“hardware” modules and good performance
for them.

● Free/Open Source. No MS Windows IDE
necessary.

● Rapidly and interactively explore hardware
designs with the same code used to write
software.

Forth Gates→
(has anyone done it?)

Testra’s VHDL in Forth

It’s a special purpose lexicon…

...Perhaps it need not be so special.

Parallel Forth
(new wrapper; same GREAT taste!)

Verilog is parallel,
Forth HDL as just parallel Forth?!

● Uses an alternate set of primitive words

● Same high level Forth code on top

...but it runs in parallel.

Ladder Logic or String Diagrams

When WORDs are independent they
are in-parallel:

They are parallel and are leveraging Boolean
OR

Where WORDs have dependencies they
are in-series:
● The parameters pile up on the stack

● Therefore they must be dealt with in-order.

(another reason to minimize stack effects!)

designing the alternate primitive wordset...

an XNOR gate

: XNOR

 (XNOR gate from pins 1.6, 1.7 to blue led at pin 2.1)

 P1.6 @ , P1.7 @ , (DSI → routing tiles → pi tiles)

 | (compiles a wire)

 P1.6 @ ~ , P1.7 @ ~ , (DSI → routing tiles → pi tiles)

 | (compiles a parallel wire)

 P2.1 ! (build route to the blue led)

;

an XNOR gate

: XNOR

 (route the output of input pins through…)

 P1.6 @ , P1.7 @ , (DSI → routing tiles → pi tiles)

 |

 P1.6 @ ~ , P1.7 @ ~ , (DSI → routing tiles → pi tiles)

 |

 P2.1 !

;

Port Pins reference VARIABLE data

● Indicate a variable data reference with @

● Compile a variable data reference with !

synth alternate wordset: @ !

we can reference a thing…

…but we’ll have to build a route to it ourselves.

an XNOR gate

: XNOR

 (compile NOT gates into AND array)

 P1.6 @ , P1.7 @ , (no complement bits compiled)

 |

 P1.6 @ ~ , P1.7 @ ~ , (compile complement bits)

 |

 P2.1 !

;

an XNOR gate

: XNOR

 (compile YES gates into AND array)

 P1.6 @ , P1.7 @ , (compile truth bits)

 |

 P1.6 @ ~ , P1.7 @ ~ , (compile truth bits)

 |

 P2.1 !

;

an XNOR gate

: XNOR

 (compile bits to the OR-array)

 P1.6 @ , P1.7 @ ,

 | (compiles a wire)

 P1.6 @ ~ , P1.7 @ ~ ,

 | (compiles a parallel wire)

 P2.1 !

;

an XNOR gate

: XNOR

 (compile bits to the OR-array)

 P1.6 @ , P1.7 @ ,

 | (compiles a wire)

 P1.6 @ ~ , P1.7 @ ~ ,

 | (compiles a parallel wire)

 P2.1 !

;

an XNOR gate

: XNOR

 (macrocell and PLD output)

 P1.6 @ , P1.7 @ ,

 | (compiles a wire)

 P1.6 @ ~ , P1.7 @ ~ ,

 | (compiles a parallel wire)

 P2.1 !

;

synth parallel wordset: ALLOT
Maneuvering

Logic Synth words, analogous to
regular Forth words

● we’re compiling regular Forth to parallel Forth

● synth words have the same names

● …but they compile to the UBD array instead
of the Flash or RAM dictionary.

synth alternate wordset: ALLOT
Maneuvering

● the addressing scheme is very consistent

● manipulate the addresses to maneuver

ALLOT revolves around
YES, NOT, AND, OR

● Logic can spill over into other PLD’s, UDB’s,
UDB Pairs, and UDB Banks.

● Routes are also ALLOTed.

Routing is short-circuiting.

● PSoC 5LP routing works by short-circuiting

● Shorting in-series gates: AND-gates

● Shorting in-parallel wires: OR-gates

Routing as logic synthesis?

Placement

● How can we rearrange Boolean expressions?

● By way of the commutative, associative,
distributive properties!

Done & To be done

Done:

● PLD synthesis

● routing fabric PI, HS, HC, VS tiles understood

To Do:

● Parallel logic synthesis (in-progress)

● Universal Analog Blocks (in-progress)

● Hard IP blocks

● HV tiles (in-progress)

Questions , Comments , World Views?

Thanks for listening !

(– Follow the project on hackaday.io!)

references.

● https://www.reddit.com/r/Forth/comments/58
7dfh/high_stack_finegrain_concurrency/d8yb
gi0/

● https://www.reddit.com/r/Forth/comments/59
9lb4/symbols_for_stack_operators/d9e7vqg/?
context=9999

● http://www.forth.org/fd/FD-V21N1,2.pdf#pag
e=21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

