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The Cypress PSoC 5LP
( What is it?)

an SoC with:

● an ARM Cortex M3

● a Universal Digital Block “UDB” array

– reconfigurable logic & routing

– something like a CPLD

● a Universal Analog Block “UAB” array

– reconfigurable logic & routing

● Proprietary Windows Only Toolchain :(

● Routing fabric is undocumented :(



  

The Cypress PsoC 5LP
( block diagram)



  

Interactive Hardware Design. Why?

● Electronics multi-tool with loadable 
“hardware” modules and good performance 
for them.

● Free/Open Source. No MS Windows IDE 
necessary.

● Rapidly and interactively explore hardware 
designs with the same code used to write 
software.



  

Forth  Gates→
( has anyone done it?)



  



  



  



  



  

Testra’s VHDL in Forth

It’s a special purpose lexicon…

...Perhaps it need not be so special.



  



  

Parallel Forth
( new wrapper; same GREAT taste!)



  

Verilog is parallel,
Forth HDL as just parallel Forth?!

● Uses an alternate set of primitive words

● Same high level Forth code on top

...but it runs in parallel.



  

Ladder Logic or String Diagrams



  

When WORDs are independent they  
are in-parallel:

They are parallel and are leveraging Boolean 
OR



  

Where WORDs have dependencies they 
are in-series:
● The parameters pile up on the stack

● Therefore they must be dealt with in-order.



  

( another reason to minimize stack effects!)



  

designing the alternate primitive wordset...



  

an XNOR gate

: XNOR 

   ( XNOR gate from pins 1.6, 1.7 to blue led at pin 2.1)

   P1.6 @   , P1.7 @   , ( DSI → routing tiles → pi tiles)

   | ( compiles a wire)

   P1.6 @ ~ , P1.7 @ ~ , ( DSI → routing tiles → pi tiles)

   | ( compiles a parallel wire)

   P2.1 ! ( build route to the blue led)

;

   



  

an XNOR gate

: XNOR 

   ( route the output of input pins through…)

   P1.6 @   , P1.7 @   , ( DSI → routing tiles → pi tiles)

   |

   P1.6 @ ~ , P1.7 @ ~ , ( DSI → routing tiles → pi tiles)

   |

   P2.1 !

;

   



  

Port Pins reference VARIABLE data

● Indicate a variable data reference with @

● Compile a variable data reference with !



  

synth alternate wordset: @ !

we can reference a thing…

…but we’ll have to build a route to it ourselves.



  

an XNOR gate

: XNOR 

   ( compile NOT gates into AND array)

   P1.6 @   , P1.7 @   , ( no complement bits compiled)

   |

   P1.6 @ ~ , P1.7 @ ~ , ( compile complement bits)

   |

   P2.1 !

;

   



  

an XNOR gate

: XNOR 

   ( compile YES gates into AND array)

   P1.6 @   , P1.7 @   , ( compile truth bits)

   |

   P1.6 @ ~ , P1.7 @ ~ , ( compile truth bits)

   |

   P2.1 !

;

   



  

an XNOR gate

: XNOR 

   ( compile bits to the OR-array)

   P1.6 @   , P1.7 @   ,

   | ( compiles a wire)

   P1.6 @ ~ , P1.7 @ ~ ,

   | ( compiles a parallel wire)

   P2.1 !

;

   



  

an XNOR gate

: XNOR 

   ( compile bits to the OR-array)

   P1.6 @   , P1.7 @   ,

   | ( compiles a wire)

   P1.6 @ ~ , P1.7 @ ~ ,

   | ( compiles a parallel wire)

   P2.1 !

;

   



  

an XNOR gate

: XNOR 

   ( macrocell and PLD output)

   P1.6 @   , P1.7 @   ,

   | ( compiles a wire)

   P1.6 @ ~ , P1.7 @ ~ ,

   | ( compiles a parallel wire)

   P2.1 !

;

   



  

synth parallel wordset: ALLOT
Maneuvering



  

Logic Synth words, analogous to 
regular Forth words

● we’re compiling regular Forth to parallel Forth

● synth words have the same names

● …but they compile to the UBD array instead 
of the Flash or RAM dictionary.



  

synth alternate wordset: ALLOT
Maneuvering

● the addressing scheme is very consistent

● manipulate the addresses to maneuver



  

ALLOT revolves around
YES, NOT, AND, OR

● Logic can spill over into other PLD’s, UDB’s, 
UDB Pairs, and UDB Banks.

● Routes are also ALLOTed.



  

Routing is short-circuiting.

● PSoC 5LP routing works by short-circuiting

● Shorting in-series gates: AND-gates

● Shorting in-parallel wires: OR-gates



  

Routing as logic synthesis?



  

Placement

● How can we rearrange Boolean expressions?

● By way of the commutative, associative, 
distributive properties!



  

Done & To be done

Done:

● PLD synthesis

● routing fabric PI, HS, HC, VS tiles understood

To Do:

● Parallel logic synthesis (in-progress)

● Universal Analog Blocks (in-progress)

● Hard IP blocks

● HV tiles (in-progress)



  

Questions , Comments , World Views?



  

Thanks for listening !

( – Follow the project on hackaday.io!)



  

references.

● https://www.reddit.com/r/Forth/comments/58
7dfh/high_stack_finegrain_concurrency/d8yb
gi0/

● https://www.reddit.com/r/Forth/comments/59
9lb4/symbols_for_stack_operators/d9e7vqg/?
context=9999

● http://www.forth.org/fd/FD-V21N1,2.pdf#pag
e=21
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