
H8 Microcontroller Series
Application Notes

Collection

Oct 1996

Lit. No. 21-098A

H8 Microcontroller Series Application Notes

Content

App.Note Number CPU, Title Pages

APPS/001/1.0 H8/300, Physical and Logical Address Space 5
APPS/003/1.0 H8/325, Configuring the 8-bit timer to create PWM waveforms 3
APPS/004/1.0 H8/300, Development and Debugging Code using the Banked

Memory models for the H8/300 4
APPS/005/1.0 H8 Series, Using the S-Record file splitting utility ‘splitter’ 4
APPS/008/1.0 H8/300, Serial communications interface 6
APPS/009/1.0 H8/300, Analogue to digital converter 4 APPS/010/1.0 H8/300,

Digital to analogue converter 2
APPS/011/1.0 H8, EPROM security on the H8/300 and H8/500 Families 3
APPS/012/1.0 H8/300H, DMA request and transfer time for H8/300H 2
APPS/013/1.0 H8/300H, Interfacing various bit-size DRAM to the 300H 5
APPS/014/1.0 H8/3003, Adding the damping resistor to the oscillator 1
APPS/015/1.0 H8/300H, Enabling DMA end-of-transfer interrupts 2
APPS/016/1.0 H8/304X, Multiplexed I/O functions on the 3003 and 304X 4
APPS/019/1.0 H8/300, ‘C’ code framework example program 9
APPS/022/1.0 H8, Memory checking and initialisation program 7
APPS/026/1.0 H8/325, Interfacing to LCD character modules 4
APPS/036/1.0 H8/300H, Software UART implementation using 2 timer and

2 DMA channels 13

APPS/002/1.0 A Mechanism for Banking Data on the H8/300 6
APPS/006/1.0 Example Assembler Fuzzy Driver Routine, which can be called

from C 6
APPS/007/1.0 Writing Downloadable C code using the IAR C Compiler 13
APPS/029/1.1 H8/300 C Code Demonstration Program 4
APPS/032/1.1 H8-3042 Framework Program 9
APPS/037/1.1 H8/300H Software UART implementation using 2 Timer and

2 DMA channels 12
APPS/043/1.0 Flat Panel Displays - EMI Considerations 4
APPS/044/1.0 H8/300H Direct Memory Access Channel (DMAC) example 4
APPS/045/1.0 H8/300H Direct Memory Access Channel (DMAC) - Serial

communication example 5
APPS/048/1.1 LCD character module control using H8_300H 10
APPS/049/1.1 Producing Optimised C for 300/300H Controllers 12
APPS/050/1.2 Memory Access Speed on the H8/300H 2
APPS/051/1.0 Real time low power sheduler for the 300L series. 7

Hitachi Europe Ltd. ISSUE : APPS/001/1.0

APPLICATION NOTE D ATE : 23/11/93
__

H8/300 Physical and Logical Address Space

The H8/300 C compiler can be used to produce code which is greater in size than
the total address space of the microcontroller. The banked (b) and mini-banked
(m) memory models make use of an I/O port to extend the address bus by up to 8
bits for code only. Each time a given function is called a bank switch may have to
be undertaken to access the memory device / area containing it, thus a table of
addresses must be available to be able to perform the bank switch, this is created
for you by the compiler in the segment FLIST. Each vector in FLIST has the
following structure:

Figure 1: Structure of FLIST vector in banked models

31 24 23 16 15 0

16-bit offset addressbank number

The default I/O port used is Port 4, but this can be changed by modifying the
CSTARTUP and L07 assembler source files.

The start address, size, separation and type of banked segments is defined at link
time using the following format:

-b<storage class>(<segment type>)<segment name>=<start>,<size>,<offset>
where:

<storage class> is ≅ # for physical addressing
or blank for logical addressing

<segment type> is ≅ CODE to define the correct segment type
<segment name> is the comma separated list of segment

names to be included in the banks
<start> is the start address in hexadecimal
<size> is the bank size in hexadecimal
<offset> is the logical offset between the start

addresses of successive banks

There are two ways to allocate memory to banked segments at link time - either
Logically or Physically the difference is defined below, using the example of a
three code bank system, where the banks are of size H 4000.

Hitachi Europe Ltd. ISSUE : APPS/003/1.0

APPLICATION NOTE D ATE : 10/12/93
__

Configuring the 8 - bit timer on the H8-325 to create PWM waveforms

The H8/325 series have one 16 bit free-running timer and two multifunctional 8-
bit timers on board. Each of the two 8 bit timers have two registers; TCORA and
TCORB associated with it. The values contained in these registers are compared
with the timer register -TCNT. If a match occurs then an interrupt will be
requested. An interrupt request will also occur if the timer overflow (FFH > 00H)
occurs. If enabled, the interrupt requests will cause the program to vector to the
appropriate interrupt service routine.

TCORA and TCORB are both set to FFH after reset, whilst the timer control and
status registers are depicted below.

Figure 1 - 8-bit Timer Control/Status Registers

Compare match
Interrupt enable for
registers A or B

Enables/Disables
Overflow Interrupt-
(OVI) i f OVF is set.

Select the way in
wh ich th e counter
is reset.

Determines th e source from
wh ich th e counter increments
ie. Internal/External

 TCR - REGISTER
CMIEB CMIEA OVIE CCLR1 CCLR0 CKS2 CKS1 CKS0

 TCSR - REGISTER

Compare match
flags A and B.

CMFB CMFA OVF ----- OS2OS3 OS1 OS0

Overflow Flag-
Must be cleared
by software.

Select the action performed
by th e relevant output pin
for compare/match wi th
register B.

Select th e action performed
by th e relevant output pin
for compare/match wi th
register A.

bi t7 bi t 0

bi t 0bi t7

Creating a PWM waveform

By using the compare/match facility to toggle an output pin, PWM can be
achieved using the 8-bit timers. The following code example demonstrates this
effect and creates a waveform of 50% duty cycle, see figure2, below. Software
intervention is not required, hence no interrupt service routines are used.

NB. By changing the initial values of TMR0_TCORA and TMR0_TCORB, the

1 of 3

duty cycle can be altered.
Program

#include <ioh8325.h> /* include I/O header files */

void init_timer (void)
{
TMR0_TCORA = 0xE0; /* sets pulse rate */
TMR0_TCORB = 0x70; /* sets pulse width */
TMR0_TCSR = 0x06; /* o/p '0' on compare B */

/* o/p '1' on compare A */
}

int main (void)
{
init_timer(); /* initialise the 8-bit timer ctrl registers */
TMR0_TCR |= 0x0B; /* start timer with phi/1024 internal clock */

/* timer reset on comp/match with TCORA */
while(1); /* main code sequence ... repeat ≅ forever */
}

Figure 2 - Output Waveform

0xE0

0x70

TM0
Output
Pin

1

0

0x00

0xFF

TCNT

2 of 3

Hitachi Europe Ltd. ISSUE : APPS/004/1.0

APPLICATION NOTE D ATE : 7/2/94
__

Developing and Debugging Code using the Banked memory
models for the H8/300

The H8/300 series of microcontrollers have a linear 64KByte address range. The C
compiler does directly support an extended ≅ banked address range for code. The
banked memory model used by the compiler extends the effective address bus by
utilising a number of I/O pins to switch between banked external memory (see the
H8/300 C tools tutorial for more information).

The linker provided with the C compiler produces a single output file in the format
specified by the user (usually Motorola S-Record format). The S-Record file
contains the following:

1, Constant ROM segments (vectors, constants and initialisers)
2, Startup code ROM segments.
3, Library code ROM segments.
4, Non-banked user code ROM segments.
5, Banked user code ROM segments.
6, Various data RAM segments.

Having generated the S-Record files the user then may decide to debug the code
using an evaluation board, or an in-circuit emulator, or to program an H8 device and
try to run the code directly.

In Circuit Emulators:

The Hitachi in circuit emulators PCE83XX do not directly support the banked
memory models as the I/O lines used to switch banks are user defined and may be
changed dynamically in some systems. Thus the full S-Record file cannot be
loaded into the device as the banked segments contained in the object code will be
outside the addressing range of the PCE83XX. One approach is to separate the
banked segments from the object code, and then load them into external memory
on the target board (i.e. not emulator memory). There are two hurdles to overcome
in doing this, firstly the object code needs to be dissected , and secondly the target
memory needs to be programmed.

1 of 4

i, Dissecting the S-Record Object file:

The user may dissect a S-Record file by hand using an EPROM programmer to load
in the whole file, then selectively save blocks to separate files. This however can
take some time to do, and will have to be repeated each time the user has a new
revision of code to debug. The process as a whole is prone to errors and will
increase the development time unnecessarily.

ii, Moving the S-Record addresses:

Given that the banks of code exist in separate files, the base file may be loaded into
an In-Circuit Emulator (ICE) for debugging. The memory on the target board which
is to contain the banked code segments must then be programmed. Usually the
finished product will use EPROM devices to store the banks. Typically many banks
will typically exist in one EPROM, thus the EPROM will need to have the banks
contiguously loaded from address 0. To move logically spaced S-Records into one
contiguous range suitable for loading into a single EPROM the user will need to cut
and paste all of the banks using an EPROM programmer. Once again the process
will take some time and is fraught with possible errors.

iii, Choosing the storage medium:

Once the user has generated separate files which contain the code / data to exist
on the H8 microcontroller and one or more banked code segment files, the data
needs to be programmed into the target memory. Usually this has been achieved
using EPROMs, as this matches the final production run for the target hardware,
however this will be a slow process as the EPROMs will have to be erased and then
reprogrammed. A quicker solution is to use SRAM on the target and program it
directly from the ICE. This can be achieved using the following method:

1, Compile and link the banked code using the IAR tools using logical addressing.

2, Use the Hitachi ≅ splitter routine to segment the file in the following manner:

a, Place all H8 files into a single output file without moving them.
b, Place bank 0 code into another file without moving the bank base
address.
c, Place all successive banks in separate files and move the base
address of each to the start address of bank 0.

3, Use the ICE to set up a series of macros to perform the following:

a, Set the I/O lines responsible for addressing bank 0
b, load in the S-record file for bank 0

...and repeat for banks 1..N

2 of 4

The ICE will effectively switch the address decoding on the target hardware to point
to the correct SRAM bank start address, and then the bank will be loaded into area
using the ICE to load the S-Record file (which has the correct lower 16-bit
addresses).

In short the ≅ splitter utility is used to separate all banks into separate files and then
move all banks so that they occupy the same address range (the lower 16-bits of
the actual bank address). The full bank address is reconstructed by the ICE just
before loading of the bank from the file using the I/O ports as defined by the bank
switching routine L07.

The Hitachi utility ≅ splitter is available on request from Hitachi, and is supplemented
by applications note APPS/005.

3 of 4

Hitachi Europe Ltd. ISSUE : APPS/005/1.0

APPLICATION NOTE D ATE : 19/1/94
__

Using the S-Record file splitting utility ≅ splitter

Hitachi has produced a utility to enable code developers to reformat the object code
produced by the IAR C compiler / linker. The ≅ splitter utility has been written for
customers who wish to develop and debug code which is to reside in target system
memory (i.e. not on an in-circuit emulator). The decoding logic used to define the
target memory map may require that the logical addresses put out by the H8
processor do not correspond to the actual addresses the code resides in.

Splitter Specification

The splitter utility allows the user to take a single S-Record object file and split it into
a number of separate files, the features are:

1, The splitter utility uses a textual format file to define the input file (i.e. linker
produced S-Record file), the names of all of the output files, and the addresses and
ranges of the segments to move.

2, Each output file may have a number of segment areas associated with it.
3, Each segment area may have its base address moved to any address.
4, Segments which need to be ≅ shadowed can be copied to any number of output
files.
5, Each shadow segment may have its base address moved.

6, In performing the split, it may be necessary to change the base address for many
S-Records, and in addition certain S1 records may need to be translated into S2
records to handle a wider address range. This is all done automatically by splitter
with the appropriate recalculation of checksums where necessary.

6, ≅ splitter checks the given format file for segment clashes and invalid ranges. In
addition if an S-Record exists in the input file which has no defined output
destination the user is informed of the error and the splitting process stops.

7, On completion ≅ splitter informs the user of the total number of S-Records
processed.

Format File Specification

A line in the format file may take one of the following forms:

1 of 4

1, Input file name specification line contains ≅ -I, whitespace, then the filename in
double quotes:

e.g. -I ∋ input.obj

2, Output file specification for a segment ≅ -O plus filename, the segment range (in
hexadecimal or decimal) plus an optional new base address:

e.g. -O ∋ out1.obj 0x1000 0x1FFF
e.g. -O ∋ out2.obj 0x1000 0x1FFF BASE 0x20000

If no BASE value is specified the S-Records are copied to the new file directly,
without modification.

3, Copied segment specification ≅ -C , the output filename, the range of addresses
defining the segment and an optional new base address for the segment.

e.g. -C ∋ out3.obj 0x0000 0x0100

4, Any line not containing one of ≅ -I, ≅ -O or ≅ -C is treated as a comment.

Example address Mapping and format file:

The user has a program for the H8/300, compiled using the banked memory model.
The system can be described in logical addresses as:

0000 to 7FFF Vectors, constants, startup code and libraries.
8000 to BFFF Bank 0 user code
C000 to FFFF User data.
18000 to 1BFFF Bank 1 user code
28000 to 2BFFF Bank 2 user code
38000 to 3BFFF Bank 3 user code

The banked code will actually reside in a single EPROM on the target, with each
bank segment being contiguous in memory. Thus the actual S-Record addresses
need to be:

0000 to 7FFF Vectors, constants, startup code and libraries. (H8)
0000 to 3FFF Bank 0 user code (EPROM)
C000 to FFFF User data. (H8)
4000 to 7FFF Bank 1 user code (EPROM)
8000 to BFFF Bank 2 user code (EPROM)
C000 to FFFF Bank 3 user code (EPROM)

Thus we need two output files, one for the H8 and the other for the EPROM. The
format file is then:

define input file
-I ∋ aout.a21
H8 output file segments
-O ∋ h8.a21 0x0000 0x7FFF

2 of 4

-O ∋ h8.a21 0xC000 0xFFFF
EPROM output file segments
-O ∋ eprom.a21 0x8000 0xBFFF BASE 0x0000
-O ∋ eprom.a21 0x18000 0x1BFFF BASE 0x4000
-O ∋ eprom.a21 0x28000 0x2BFFF BASE 0x8000
-O ∋ eprom.a21 0x38000 0x3BFFF BASE 0xC000

To invoke the splitter utility, enter ≅ splitter with the filename of your format file (if no
extension is specified the default extension ≅ .fmt is used).

e.g. c:\> splitter example.fmt
Two output files will then be created, with the desired S-Record configuration.

3 of 4

Hitachi Europe Ltd. ISSUE : APPS/008/1.0

APPLICATION NOTE D ATE : 21/3/94
__

THE H8/300 SERIAL COMMUNICATIONS INTERFACE

The serial communications interface (SCI) can perform either synchronous or
asynchronous communications, and data rates of up to 2.5Mbit/sec are possible.
Each channel of SCI has its own baud rate generation, so the use of serial
communications does not impact the number of timers available in the
microcontroller.
By programming a control register and loading the baud rate register, a wide
range of data rates can be achieved from one source of microcontroller clock. In
asynchronous mode, several data formats are catered for, including the provision
of odd or even parity.
To indicate various conditions occurring within the SCI, a status register is
provided which contains flags for receive buffer full, transmit buffer empty or
receive error. Each of these flags has an interrupt associated with it to indicate the
occurrence of such a condition. Each of the SCI data registers (TDR and RDR) is
double buffered so it is possible to transmit and receive data in a "Back-to-back"
manner.

The following three code examples show how to initialise and use both the
transmit and receive interrupts. Two types of transmission are provided,
synchronous and asynchronous.

MODULE TO TRANSMIT A MESSAGE USING SYNCHRONOUS
COMMUNICATIONS

#pragma language=extended /* ALLOW NON ANSI SPECIFIC EXTENSIONS */
#include <inth8337.h>
#include <ioh8337.h>

#define BRR_SETUP 0x0C
#define SMR_SETUP 0x80
#define SCR_SETUP 0xCF
#define CLR_TDRF 0x7F
#define SRR_SETUP 0xC8
#define SET_TE 0x20
#define TEND_SET 0x40
#define CLR_TE 0xDF

char message[5] = "HELLO"; /* TRANSMISSION MESSAGE */
int index = 0; /* INDEX VARIABLE FOR MESSAGE TRANSMISSION */

1 of 6

interrupt [SCI_TXI0] void tx_isr (void)
{
SCI0_TDR = message[index++]; /* TRANSMIT NEXT CHARACTER */
SCI0_SSR &= CLR_TDRE; /* CLEAR THE TDRE BIT TO '0' */
if (index > 4) /* ENSURE ALL BITS HAVE BEEN TRANSMITTED */
{
while (SCI0_SSR &= TEND_SET != TEND_SET); /* WAIT FOR TEND BIT IN

SSR TO BE SET (TO '1') */
SCI0_SCR &= CLR_TE; /* CLEAR TE BIT IN THE SCR */
}
}

/* DELAY OF 105 us */
void wait_for_1_bit (void)
{
int a;
for (a=0;a<100;a++);

}

void init_sci (void)
{
SCI0_SCR &= SCR_SETUP; /* CLEAR TE AND RE BITS IN SCR TO '0' */

SCI0_SMR = SMR_SETUP; /* SETUP SYNCH, NO PARITY, 8 BIT, 1 STOP
BIT */

/* INTERNAL CLOCK */

SCI0_BRR = BRR_SETUP; /* 9600 BAUD (FOR AN 8 Mhz XTAL) */

wait_for_1_bit(); /* WAIT FOR AT LEAST THE TIME TAKEN TO TX OR RX
1 BIT */

SCI0_SCR |= SET_RE; /* SET THE RECEIVE ENABLE (RE) BIT AND
INTERRUPT ENABLE */

}

void main (void)
{

/* INITIALISE THE SERIAL COMMUNICATIONS INTERFACE */
init_sci();
set_interrupt_mask(0); /* DISABLE THE INTERRUPT MASK */

2 of 6

while (1); /* DO FOREVER */
}

MODULE TO TRANSMIT A MESSAGE USING ASYNCHRONOUS
COMMUNICATIONS

#pragma language=extended /* ALLOW NON ANSI SPECIFIC EXTENSIONS */
#include <inth8337.h>
#include <ioh8337.h>

#define BRR_SETUP 0x0c
#define SMR_SETUP 0x00
#define SCR_SETUP 0xcf
#define SET_TE 0x20
#define CLR_TDRE 0x7f
#define TDRE_SET 0x80

char message[5] = "HELLO"; /* TRANSMISSION MESSAGE */

/* DELAY OF 105 us */
void wait_for_1_bit (void)
{
int a;
for (a=0;a<100;a++);
}

void init_sci (void)
{
SCI0_SCR &= SCR_SETUP; /* CLEAR TE AND RE BITS IN SCR TO '0' */

SCI0_SMR = SMR_SETUP; /* SETUP ASYNCH, NO PARITY, 8 BIT, 1 STOP
BIT */

/* INTERNAL CLOCK */

SCI0_BRR = BRR_SETUP; /* 9600 BAUD (FOR AN 8 Mhz XTAL */

wait_for_1_bit(); /* WAIT FOR AT LEAST THE TIME TAKEN TO TX OR RX
1 BIT */

SCI0_SCR |= SET_TE; /* SET THE TRANSMIT ENABLE (TE) BIT */
}

void transmit_msg (int index)
{
/* REPEAT POLLING UNTIL TDRE = '1' */
while ((SCI0_SSR &= TDRE_SET) == TDRE_SET);

3 of 6

SCI0_TDR = message[index]; /* TRANSMIT CHARACTER */
SCI0_SSR &= CLR_TDRE; /* CLEAR TDRE TO '0' */
}

void main (void)
{
int i;

init_sci();

/* TRANSMIT SERIAL DATA */
for (i=0;i<5;i++)
{
transmit_msg(i);
}
while (1); /* DO FOREVER */
}

MODULE TO RECEIVE A 255 CHARACTER MESSAGE USING
ASYNCHRONOUS COMMUNICATIONS

#pragma language=extended /* ALLOW NON ANSI SPECIFIC EXTENSIONS */
#include <inth8337.h>
#include <ioh8337.h>

#define BRR_SETUP 0x0C
#define SMR_SETUP 0x00
#define SCR_SETUP 0x50
#define CLR_RDRF 0xBF
#define SRR_SETUP 0xC8
#define SET_RE 0x10

#pragma language=extended /* SPECIFY NON ANSI EXTENSIONS */

#include <ioh8337.h> /* REQUIRED I/O HEADER FILE */
#include <inth8337.h> /* REQUIRED INTERRUPT HEADER */

#define DATA_PACKETS 255 /* MAX NO. OF DATA TO BE RECEIVED */

char data_in[DATA_PACKETS]; /* DATA TO BE RECEIVED */
int i=0; /* POINTER TO THE DATA-INPUT BUFFER */

interrupt [SCI_RXI1] void rx_isr (void)
{
data_in[i++] = SCI1_RDR; /* READ DATA FROM REGISTER */

4 of 6

SCI1_SSR &= CLR_RDRF; /* CLEAR RDRF FLAG IN SSR */
}

interrupt [SCI_ERI1] void rx_error_isr (void)
{
/* ERROR RECOVERY CODE OR */
/* SIGNAL THE END OF RECEPTION */
/* AND INITIATE TRANSMISSION --SEE AS_TX.C APPLICATION CODE */

SCI1_SSR &= SSR_SETUP; /* CLEAR THE ORER, FER AND PER BITS TO '0' */
}

/* DELAY OF 105 us */
void wait_for_1_bit (void)
{
int a;
for (a=0;a<100;a++);
}

void init_sci (void)
{
SCI0_SCR &= SCR_SETUP; /* CLEAR TE AND RE BITS IN SCR TO '0' */
SCI0_SMR = SMR_SETUP; /* SETUP ASYNCH, NO PARITY, 8 BIT, 1 STOP

BIT */

/* INTERNAL CLOCK */
SCI0_BRR = BRR_SETUP; /* 9600 BAUD (FOR AN 8 Mhz XTAL) */

wait_for_1_bit(); /* WAIT FOR AT LEAST THE TIME TAKEN TO TX OR RX
1 BIT */

SCI0_SCR |= SET_RE; /* SET THE RECEIVE ENABLE (RE) BIT AND
INTERRUPT ENABLE */

}
void main (void)
{
int i;
init_sci();
set_interrupt_mask(0); /* DISABLE THE INTERRUPT MASK */
while (1)
/* DO FOREVER */
;
}

5 of 6

Hitachi Europe Ltd. ISSUE : APPS/009/1.0

APPLICATION NOTE D ATE : 21/3/94
__

THE H8/300 SERIES ANALOGUE TO DIGITAL CONVERTER

Some devices within the H8/300 family have A/D facility, these converters have
the following features:-

* Eight bit resolution
* Eight channels of analogue inputs - specified using a multiplexer.
* Conversion times as low as 12.2 us (at 10Mhz)
* Conversion can be triggered by an external signal
* A CPU interrupt (ADI) is generated once A/D conversion is completed
* Selectable modes

- Single Mode
- Scan Mode

Single Mode - A/D conversion begins when the ADST bit in the ADCSR is set to
1. When conversion is completed, the completion flag(ADF) is set. If the
interrupt enable bit (ADIE) is also set, an A/D conversion end interrupt (ADI) is
requested so that the result can be processed.

Scan Mode - This mode is used to monitor inputs on up to four channels -
selected by the CH0 - 2 bits in the Analogue to Digital Control Status Register
(ADCSR). When the ADST bit is set to 1, A/D conversion starts on the first
selected channel.
As soon as conversion of the first channel is completed, conversion of the next
channel begins. The selected channels are repeatedly converted until the ADST
bit is cleared. The converted results for each channel are transferred to and stored
in the data registers ADDRA to ADDRD.
The ADST bit can be set to 1 by software, or the external trigger signal (ADTRG).

The following code examples show how to configure the on-board A/D in both
Single and scan modes

EXAMPLE OF THE A/D CONVERTER USING AN INTERRUPT TO SAMPLE
ONE CHANNEL

#pragma language=extended /* ALLOW NON ANSI SPECIFIC EXTENSIONS */
#include <inth8327.h>
#include <ioh8327.h>

1 of 4

/* VARIABLE TO HOLD THE CONVERTED DATA */
unsigned char a2d_data ;

#define CLR_ASDT 0xdf ;
#define DIS_EXT 0x7f ;
#define A2D_SETUP 0x61 ;
#define CLR_ADF 0x7f ;

/* THE A/D CONVERTS THE VOLTAGE AT AN1 TO AN 8-BIT VALUE */
/* AT THE END OF THE CONVERSION, THE RESULT IS IN ADDRB */
/* THE ADF FLAG IS THEN CLEARED. THE ADST IS CLEARED
AUTOMATICALLY */
/* AND THE CONVERSION HALTS */

interrupt [AD_ADI] void a_to_d_isr (void)
{
a2d_data = AD_ADDRB; /* READ THE A TO D DATA */
AD_ADCSR &= CLR_ADF; /* CLEAR THE ADF FLAG */
}

void init (void)
{
AD_ADCSR &= CLR_ASDT; /* CLEAR ADST TO '0' IN THE STATUS
CONTROL REG */
AD_ADCR = DIS_EXT; /* DISABLE EXTERNAL TRIGGER FROM THE
CONTROL REG */
AD_ADCSR = A2D_SETUP; /* SET TO 'SINGLE MODE'. CLOCK AND
CHANNEL ARE ALSO SETUP */
/* ALTERING THESE VALUES DURING CONVERSION MAY LEAD TO

ERRORS */

}

int main (void)
{
init(); /* SET UP CONTROL / STATUS REGISTERS */

while (1)
/* TO RESUME DATA CONVERSION, SOFTWARE MUST SET THE ADST BIT
TO '1' */
;
}

EXAMPLE OF AN A/D INTERRUPT TO SCAN SEVERAL ANALOGUE INPUT

2 of 4

CHANNELS
#pragma language=extended /* ALLOW NON ANSI SPECIFIC EXTENSIONS */
#include <inth8327.h>
#include <ioh8327.h>

/* VARIABLES TO HOLD THE CONVERTED DATA */
unsigned char a2d_data0, a2d_data1, a2d_data2, a2d_data3;
#define CLR_ASDT 0xdf ;
#define DIS_EXT 0x7f ;
#define A2D_SETUP 0x73 ;
#define CLR_ADF 0x7f ;
/* THE A/D CONVERTS THE VOLTAGES AT AN0-3 TO AN 8-BIT VALUE*/

/* AT THE END OF THE CONVERSION, THE RESULT IS IN ADDRA-D */
/* THE ADF FLAG IS THEN CLEARED */

interrupt [AD_ADI] void a_to_d_isr (void)
{
a2d_data0 = AD_ADDRA; /* INPUT FIRST A/D CHANNEL */
a2d_data1 = AD_ADDRB; /* INPUT SECOND A/D CHANNEL */
a2d_data2 = AD_ADDRC; /* INPUT THIRD A/D CHANNEL */
a2d_data3 = AD_ADDRD; /* INPUT FOURTH A/D CHANNEL */
AD_ADCSR &= CLR_ADF ; /* CLEAR THE ADF FLAG */
}

void init (void)
{
AD_ADCSR &= CLR_ASDT; /* CLEAR ADST TO '0' IN THE STATUS

CONTROL REG */
AD_ADCR = DIS_EXT; /* DISABLE EXTERNAL TRIGGER FROM THE

CONTROL REG */
AD_ADCSR = A2D_SETUP; /* SET TO 'SCAN MODE'. CLOCK AND

CHANNEL ARE ALSO SETUP */
/* ALTERING THESE VALUES DURING CONVERSION MAY LEAD TO

ERRORS */
}

int main (void)
{
init(); /* set up control/status registers */

while (1)
/* TO HALT DATA CONVERSION, SOFTWARE MUST CLEAR THE ADST BIT
TO '0' */
;
}

3 of 4

Hitachi Europe Ltd. ISSUE : APPS/010/1.0

APPLICATION NOTE D ATE : 21/3/94
__

THE H8/300 DIGITAL TO ANALOGUE CONVERTER

Some members of the H8/300 series have an on-chip Digital to Analogue
converter. Analogue signals can be output on up to two channels. The on-chip
D/A has the following features:-
* 8 bit resolution
* Maximum conversion time of only 10us
* Output voltage in the range 0 Volts to AVcc
The D/A is enabled when the D/A 'Enable' bit is set to 1. Once enabled, the DADR
contents are continuously converted and output. The output value is calculated
by:- D/A OUTPUT VOLTAGE = (DADR/256) x AVcc

D/A CONVERTER EXAMPLE
#pragma language=extended /* allow non ANSI specific extensions */
#include <inth8327.h>
#include <ioh8327.h>

#define DA_DACR_SETUP 0x40

/* DELAY OF 105 us */
void wait (void)
{
int a;
for (a=0;a<100;a++);
}
int main (void)
{
int i; /* LOOP VARIABLE */
DA_DACR = DA_DACR_SETUP; /* SET UP ANALOGUE CHANNEL 0 IN

D/A CONTROL REGISTER */
while(1)
{
for (i=0;i<256;i++)
{
DA_DADR0 = i; /* PROVIDE DATA TO BE CONVERTED */
wait(); /* DELAY TO ALLOW A CONVERSION TO AN

ANALOGUE OUTPUT */
}

}
}

1 of 2

Hitachi Europe Ltd. ISSUE : APPS/011/1.0

APPLICATION NOTE D ATE : 24/8/94
__ Page 1of
3

EPROM Security on the H8/300 and H8/500 families

The H8/300 and H8/500 microcontrollers have an EPROM security feature that
can be used by the application programmer. This feature allows the user of the
microcontroller to protect parts (or all) of the code programmed into the on chip
EPROM of the device from being read by means other than his or her own
program. Due to the nature of this feature it cannot be tested by Hitachi and is
therefore not guaranteed. It is up to the user to determine whether or not to
implement the features of this function and accept sole responsibility for its
outcome.

Memory Configuration:

The memory matrix of the H8 microcontroller is configured as a dual matrix, one
with even addresses and one with odd addresses. The configuration of each
matrix appears as lines of memory 32 bytes wide. (32 x 8, 256 bits). This
configuration allows an individual memory line to consist of 64 bytes of data (
including both even and odd addressing). Each memory line has 1 security bit
thus allowing every 64 byte segment to have the option of the security feature.
The address of this security bit is the same as the starting address for the memory
line.

Security Functions:

The security function has two different operations depending on the mode of
operation that the device is placed into; EPROM programming mode or CPU
operation mode.

EPROM Programming mode:
In the EPROM programming mode, the ability of the EPROM programmer

to read the EPROM contents is limited by the state of the security bit.
If the security bit is a ‘ 1 ’ (unprogrammed state), then the data in the

EPROM can always be read. If the security bit is a ‘ 0 ’ (programmed state), then
any read operation to the EPROM will result in a ‘00’ being read. This indicates
that once the security bit is programmed, the user will be unable to verify the
contents of the EPROM.

security bit 1 EPROM data can be read (normal)

security bit 0 “00” data can be read.

CPU operating mode:
In the CPU operating mode, the ability of any device to read the EPROM

contents is limited by the state of the security bit.
If the security bit is a ‘ 1 ’ (unprogrammed state), then the data in the

EPROM can always be read. If the security bit is a ‘ 0 ’ (programmed state), then
the read state of the EPROM (from the CPU), depends upon where the instruction
execution is occurring from.

security bit 1 EPROM data can be read (normal)
security bit 0 After Reset, the CPU can read EPROM data until it

executes an instruction outside the internal EPROM area
(either external memory or internal RAM). Once an
instruction is executed outside the internal EPROM
memory area, then the EPROM becomes disabled and
cannot be accessed any further. This prohibits an external
program from being able to “dump” the contents of the
internal on chip EPROM.

Programming the Security bit:

There exists two EPROM programming modes; Normal and Security. The
Normal programming mode allows the user to program the code/data area of
the on-chip memory of the device. The Security programming mode allows the
user to program the security bits, thus implementing the security feature. The
security function is implemented by programming a ‘0’ into the address
corresponding to the memory line location. Setting the programming mode is
accomplished by setting certain I/O port pins as shown in the following table.

H8/300 Family Programming modes

 Device Programming Mode Port Pins

H8/325 Normal P70 = 1 P71 = 1
 Family Security P70 = 1 P71 = 0

H8/330 Normal P80 = 1 P81 = 1
 Security P80 = 1 P81 = 0

H8/338 Normal P64 = 1 P63 = 1
 Family Security P64 = 1 P63 = 0

H8/350 Normal P80 = 1 P81 = 1
 Security P80 = 1 P81 = 0

H8/500 Family Programming modes

 Device Programming Mode Port Pins

H8/520 Normal P50 = 1 P51 = 1
 Security P50 = 1 P51 = 0

H8/532 Normal P60 = 1 P61 = 1
 Security P60 = 1 P61 = 0

H8/534 Normal P60 = 1 P61 = 1
 Security P60 = 1 P61 = 0

H8/536 Normal P60 = 1 P61 = 1
 Security P60 = 1 P61 = 0

Again, this feature cannot be tested by Hitachi and therefore cannot be
guaranteed. It is up to the user to determine whether or not to
implement the function of this feature and accept sole responsibility for
its outcome.

Hitachi Europe Ltd. ISSUE : APPS/012/1.0

APPLICATION NOTE D ATE : 31/8/94
__

DMA Request and Transfer Time for H8/300H

The DMA Controller module of the H8/300H family of microcontrollers can be
activated in 3 possible ways:

1. By internal interrupts from either the ITU (upon compare-match or
input capture conditions), or the SCI (upon transmit-end or
receive-end).
2. By external request via a falling edge or low level at the DREQ pin.
3. In software by register setup (auto-request).

The table below shows the activation methods, transfer direction, and the bus
modes for each DMA transfer type.

TRANSFER TYPE BUS MODE ACTIVATION
Address orRegister Length

SOURCE DESTINATION

Short Address Modes Cycle-St eal Compare-Match, Input-Capture, or TxI

RxI

External Request

- /O Mode

- Idle Mode

- Repeat Mode

24 Bits8 Bits

24 Bits

24 Bits

8 Bits

8 Bits

Normal Mode

Block Transfer Mode

Cycle-St eal

Burst Compare-Match, Input-Capture, or
External Request

24 Bits 24 BitsCycle-Steal

Cycle-Steal or Burst

External Request

Auto Request

During Cycle-Steal DMA modes, only one byte (or word) of data is transferred at
each request, and the CPU and DMAC share the data bus by alternating CPU cycles
with DMA transfer cycles. During Burst DMA modes, a whole string of data is
transferred at each request; consequently, the DMAC keeps the bus until each data
block is transferred while the CPU is idling. This Tech Note will describe how to
calculate the minimum time between 2 consecutive byte or word DMA transfer
requests by each of the following activation sources (assuming no wait-states are
added into the alternating CPU cycles).

Interrupt requests:

The minimum time between consecutive transfer requests activated by an
internal interrupt, and with the DMAC operating in either the Short Address
Modes or the Normal Mode, can be calculated by adding the following timing

parameters:
1. The time it takes to request the DMA, ie., the time between the interrupt-
causing event and the internal interrupt request signal. If the interrupt is caused
by a compare-match event, the interrupt acknowledge time between the compare-
match signal and the internal interrupt request signal (IMI) is 1 Timer clock
period, as can be seen in the ITU section of the the H8/3003 Hardware Manual. If
the interrupt is caused by an input-capture event, the acknowledge time between
the input-capture pin toggling and the DMA request input-capture signal is 1
clock period, and the interval between the input-capture signal and the internal
interrupt request signal is 1.5 clock periods, which makes it a total of 2.5 Timer
clock periods, as can be observed from the figures in the same section in the
manual. If the interrupt source is an SCI transmit or receive-end, there is no
delay between the event occurence and the interrupt request signal.
2. The DMA “latency” time, ie., the time it takes from the transfer request until
the DMA controller starts operating. The H8/3003 Hardware Manual specifies a
minimum latency time of 4 T-states.
3. One DMA “dummy” cycle (Td), which lasts for 1 T-state.
4. The time it takes the DMA to read the contents of the source address.
Depending upon the bus-controller settings and/or what memory area is being
accessed, this process can take a minimum of either 2 or 3 T-states (assuming no
wait states are induced in the cycle).
5. If the DMAC operates in the Block Transfer Mode, the time it takes the DMA to
write data at the destination address must be added in the above calculation, since
the interrupt request is sampled at the end of this cycle. Depending upon the bus
controller settings and/or what memory area is being accessed, this process can
take a minimum of either 2 or 3 T-states (again assuming no wait states are
induced in this cycle).
6. Additional CPU states occurring during the following CPU cycle.

As an example, figure 1 below shows the timing between consecutive input-
capture activated DMA cycles operating in the Short Address Modes performing
transfers from a 16-bit 2 T-state access area to an 8-bit 3 T-state access area. The
Timer as well as the DMAC is assumed to operate at the system clock frequency.
The Timer is set up so that input-capture events are triggered on both edges at the
input-capture pin. The minimum time between consecutive input-capture
signals will be 7 T-states between the first 2 toggle actions at the input-capture pin,
and 8 T-states between the following requests, assuming the inserted CPU cycle is
only 2 T-states.

Hitachi Europe Ltd. ISSUE : APPS/013/1.0

APPLICATION NOTE D ATE : 31/8/94
__

Interfacing various bit-size DRAMs to the
H8/300H

The H8/300H microcontroller family facilitates the task of interfacing various
types of memory devices within its linearly addressed memory map. In
particular, dynamic random access memories can be easily connected given the
addition of a Refresh Controller module into the H8/300H chip which provides
properly timed control signals (RAS, CAS, WE, RD) as to insure smooth access
and refresh cycles. In addition, external device decoding logic is kept at a bare
minimum since the microcontroller provides chip select signals for each
memory block area. The H8/3003 Hardware Manual, Application Note AE-0043,
and technote TN-0131 discuss in detail how x16 DRAMs can be interfaced to the
H8/3003 AS WELL AS THE NECESSARY TIMING CONSIDERATIONS. THIS
TECHNOTE WILL ILLUSTRATE HOW OTHER DRAM PARTS CAN BE
PROPERLY CONNECTED TO THE MICROCONTROLLER.

DRAMs of x1, x4, and x8 bit-size can also be directly (or with a minimum amount
of glue logic) attached to the H8/300H family. Figure 1 below shows bit-by-bit
how the Refresh Control Register (RFSHCR) must be programmed for these
particular interfaces. The CAS/WE bit can be programmed either way since no
byte control is required. If this bit is set, then the CAS signal will be provided
through both HWR and LWR pins, and the WE signal will be provided via the
RD line. If the CAS/WE bit is cleared, the CAS signal will be available at the RD
pin, and the WE signal can be wired from either HWR or the LWR pins of the
H8/300H. The M9/M8 bit must be set to 1 for DRAM devices that use 9-bit or
higher column address mode; most x1, x4, and x8 available DRAMs use this
mode.

SRFMD PSRAME DRAME CAS/WE M9/M8 RFSHE Reserved RCYCE

X 0 1 0 or 1 0 or 1 X 1 X

7 6 5 4 3 2 1 0

Figure 1. Refresh Control Register Settings.

Figures 2-8 show the following examples of generic x4 and x8 bit-size DRAM

1 of 5

connections via either 8-bit or 16-bit data bus along with its corresponding
memory map for the 16MByte expanded modes:

Example 1 (fig. 2-3):

A Hitachi HM514800 512k x 8 is interfaced to the H8/300H via an 8-bit data bus.
Since the DRAM uses a 10 rows x 9 columns addressing mode, lines A0 - A9 will
provide the row address, and lines A1 - A9 will output the column address. A0 is
connected to pin A9 of the DRAM since its state remains unchanged during both
row and column addressing. The CAS signal is obtained from the HWR line of
the microcontroller, and the WE signal is provided at the RD pin (assuming the
CAS/WE bit of RFSHCR is set). The RAS pin of the H8/300H is connected to the
CAS pin of the DRAM since these signals are multiplexed inside the
microcontroller. Given this hardware configuration, the addressable DRAM
memory occupies 512KBytes between H’600000 and H’67FFFF.

Example 2 (fig. 3-4):

Four Hitachi HM514256 256K x 4’s are connected to the H8/300H via a 16-bit data
bus. The RAS, CAS and WE signals are provided as described in the example
above. Since the DRAM uses a 9 rows x 9 columns addressing mode, lines A1 -
A9 will provide both row and column address. The A0 line form the H8/300H is
not connected since word accesses are performed (see explanation in AE-0043).
The addressable DRAM memory occupies the same boundaries as in the previous
example.

Example 3 (fig. 5-6):

Two Hitachi HM514800 512K x 8’s are interfaced to the H8/300H via a 16-bit data
bus. The RAS, CAS and WE signals are provided as described in the previous
examples. The DRAMs use a 10 row x 9 column addressing mode. One device
will store the upper bytes, and the other will contain the lower bytes. A0 is not
connected since word accesses are performed. Therefore, the row address will be
provided through line A1 - A9 and A19, while the column address via lines A1 -
A9. The memory is mapped identically to the previous examples.

Example 4 (fig. 7-8):

Two Hitachi HM514800 512K x 8’s are connected to the H8/300H via an 8-bit data
bus. The CAS and WE signals are provided as described in the previous examples.
Since the first DRAM will contain the 512KBytes between H’600000 and H’67FFFF,
and the second device will contain the remaining 512KBytes between H’680000
and H’6FFFFF, additional decoding logic is necessary. The first device must be
enabled for either byte transfers (if A19 = 0 and CS3 goes low), or for refresh cycles
(if A19 = 0 and both CS3 and RFSH to low). The second DRAM must be enabled
for byte transfers or refresh cycles if A19=1. The address lines are connected as
described in example 1.

2 of 5

A0

A1
A2
A3
A4
A5
A6
A7
A8
A9

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9

CS3-

RD-
HWR-

RAS-

WE-
CAS-
OE-

D15-8

I/O 7-0

+5V

8

H
8

 /
 3

0
0

H

H
M

5
14

8
00

CAS-
I /O 3-0

A 1
A 2

A 3
A 4
A 5
A 6
A 7

A 8
A 9

A 0
A 1

A 2
A 3

A 4
A 5
A 6
A 7
A 8

CS3-

RD -
H WR-

RAS-

WE-
CAS-
O E-

D 15-0

I/O 3-0

+5V

16

H
8

 /
 3

0
0

H

H
M

5
1
4

2
5

6

CA S-
I/O 3- 0

CAS-
I/O 3-0

D11-8

D7-4

D 3- 0

D15-12

Fig. 2. DRAM Connection. Fig. 4. DRAM Connection

H'600000

H'67FFFF

H'7FFFFF

H'600000

H'67FFFF

H'7FFFFF

Fig. 3. Memory Mapping. Fig. 5. Memory Mapping

3 of 5

A0

A1

A2

A3

A4

A5

A6

A7

A8

I/ O7-0

WE-

CAS-

O E-

H
M

51
48

00
 -

 N
O

. 1

CS3-

H
8

/ 3
00

H

H
M

51
48

00
 -

 N
O

. 2

A1

A2

A3

A4

A5

A6

A7

A8

A9

A 0

A9

D1 5-8

RD-

HWR-

A1 9

RAS -

OE-

RAS-

+5V

+5V

RFSH -

CAS-
I/O 7- 0

A0

A1
A2
A3

A4
A5
A6
A7

A8

RAS-

WE-
CAS-

O E-

I/O 7-0

H
M

51
4

80
0

A1
A2

A3
A4
A5

A6
A7
A8

A9

CS3-

RD-
HWR-

D15- 0

H
8

/ 3
00

H

A19

+5V

8

D15-8

D 7- 0

8

16

LWR-

Fig. 6. DRAM Connection Fig. 8. DRAM Connection

H'600000

H'67FFFF

H'7FFFFF

H'600000

H'67FFFF

H'7FFFFF

H'680000

H'6FFFFF

No. 1

No. 2

Fig. 7. Memory Mapping. Fig. 9. Memory Mapping.

4 of 5

Hitachi Europe Ltd. ISSUE : APPS/014/1.0

APPLICATION NOTE D ATE : 31/8/94
__

Adding the damping resistor to the oscillator line
of the H8/3003

The H8/3003 hardware manual, ADE-602-055 (O), talks about a damping
resistance Rd in connection with the crystal resonator on page 506, section 16.2.1
and table 16-1. However, this resistance is not shown in figure 16-2. The
damping resistance Rd should be placed between the XTAL and the bottom end of
the crystal as shown in the figure below:

CL1

EXTAL

CL2

XTAL

Rd

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's
permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation of
the user's unit according to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi's semiconductor
products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on
the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hiatchi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi's products are not authorised for use in MEDICAL APPLICATIONS without the written consent of
the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's
products are requested to notify the relevant sales office when planning to use the products in MEDICAL APPLICATIONS.

Copyright © Hitachi, Ltd., 1994. All rights reserved

1 of 1

Hitachi Europe Ltd. ISSUE : APPS/015/1.0

APPLICATION NOTE D ATE : 31/8/94
__

Enabling DMA end-of-transfer interrupts on the
H8/300H

All members of the 16-bit H8/300H family feature an on-chip DMA controller
providing fast and direct data transfers between memory and I/O locations or
between memory locations without CPU involvement. A maximum of 8 DMA
channels can operate simultaneously in memory-to-I/O transfer mode, and a
maximum of 4 DMA channels can operate simultaneously in memory-to
memory operation mode (on the H8/3003). For each DMA mode of operation, an
end-of-transfer interrupt (DEND) may be requested upon a byte (or word) transfer
completion or, if the block transfer DMA mode is used, upon transfer completion
of a memory block of data. In order to ensure proper operation, the user must
adhere to a sequenced setup procedure for each DMA mode of operation, as
shown in the hardware manuals. However, extra care must be exercised when
enabling the end-of-transfer interrupts in each mode of operation.

The Data Transfer Control Register (DTCR) in the memory-to-I/O modes, and its
counterpart in memory-to-memory modes (DTCRA), contain 2 control bits that
determine a DMA-end interrupt is correctly issued. These are are the data
transfer enable (DTE) bit, and the data transfer interrupt enable (DTIE) bit. The
function of the DTE bit is to enable or disable data transfer, and the function of the
DTIE bit is to enable or disable a DEND interrupt at the end of the transfer.
According to the setup procedure for each DMA transfer type outlined in the
H8/3003 hardware manual, the DTE bit should be cleared and the DTIE bit should
be set (thus enabling a DEND interrupt at end-of-transfer) by writing the DTCR
(or DTCRA) register in one write cycle. This step must be undertaken although
the DTE bit has an initialization value of 0.

If, during the setup procedure, the user programs the DTCR (A) with the DTIE bit
cleared to 0 (thus initially disabling end-of-transfer interrupts) and, later on in the
program, after a series of DMA transfers have been executed, the user decides to
enable end-of-transfer interrupts by setting the DTIE bit to 1 (using the BSET
instruction), an end-of-transfer DEND interrupt will be issued right away before
the DMA transfer starts. In order to avoid this situation, 2 options are available:

1. Clear the DTE bit again, as the DTIE bit is set in the same write cycle (that is, use
a MOV instruction).

1 of 2

2. Set the DTIE bit right after the DTE bit is set, that is after the DMA transfer is
enabled.

Also, the programmer must make sure that the DTCR (or DTCRA) must be read
while the DTE bit is cleared before the DTE bit is set to start the DMA transfer.
Using bit manipulation instructions to program any bits in DTCR (A) except DTIE
should take care of reading the register, Alternatively, a MOV instruction can be
used to write the content of DTCR into a CPU register, and then write it back to
DTCR.

When using this doc ument, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's
perm ission.
3, Hitach i will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation
of the user's unit according to this document.
4, Circuitry and other examples described herein are meant only to in dicate the characteristics and performance of Hitachi's
sem iconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may resu lt from
applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hiatchi, Ltd .
6, MEDICAL APPLICATIONS: Hitachi's products are not authorised for use in MEDICAL APPLICATIONS without the written consent of
the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's
products are requested to not ify the relevant sales off ice when planning to use the products in MEDICAL APPLICATIONS.

Copyright © Hitachi, Ltd., 1994. All rights reserved

2 of 2

Hitachi Europe Ltd. ISSUE : APPS/016/1.0

APPLICATION NOTE D ATE : 31/8/94
__

Multiplexed I/O Functions on the H8/3003 and
H8/304X

The H8/300H microcontroller family combines a 32-bit register architecture CPU
with high peripheral function integration in a small, 112-pin QFP package.
Consequently, the need of multiplexing signals belonging to various on-chip
modules arises. Virtually all I/O Port Pins are multiplexed with 1, 2 or 3 other
input/output signals that control various peripheral and CPU functions. The
H8/3003 has 9 I/O Ports with a total of 58 I/O pins, and the H8/3042 has 11 I/O
Ports with a total of 78 I/O pins. All but 2 I/O bits are multiplexed on the
H8/3003, and all I/O lines of the H8/3042 have at least dual functions. Although
the distribution of peripheral function signals among the available I/O pins have
at least dual functions. Although the distribution of peripheral function signals
among the available I/O pins has been carefully optimized, the high degree of pin
function-sharing poses some constraints on the operation conditions of the chip.
This technote will elucidate these constraints for each I/O Port. Also refer to
Appendix C - I/O Port Block Diagrams in the Hardware Manual for more
information on the I/O Ports structure.

Port 8 (lines 0-3):
P80/RFSH- /IRQ0-
P81/CS3- / IRQ1-
P82/CS2- / IRQ2-
P83/CS1- / IRQ3-

If the corresponding interrupt enble bit for IRQ1, IRQ2 and/or IRQ3 in the
Interrupt Enable Register (IER) is set (and the corresponding I-bit in CCR is
cleared) while the microcontroller is interfaced to external devices mapped i n
memory area 3, 2 and/or 1 respectively, an interrupt request will occur every time
the corresponding chip select signal is asserted. The reason is that the output chip
select signal is fed back to the interrupt controller inputs through a non-tristatable
buffer and an inverter, as illustrated in the Port 8 Block Diagram of Appendix C i n
the Hardware Manual. Since in most cases this situation is undesirable, a user
cannot employ an external interrupt signal if it is multiplexed with a chip select
signal used to address an external device. Similarly, IRQ0- cannot be used if the
microcontroller is interfaced to PSRAM or DRAM devices that uses the RFSH-
line for its refresh cycle.

Port 9 (lines 4 and 5):

1 of 4

P94 / SCK0 / IRQ4-
P95 / SCK1 / IRQ5-

If the corresponding interrupt enable bit for IRQ4 and/or IRQ5 in IER is set (and
the I-bit in CCR is cleared) while the SCI is driven from an external serial clock or
outputs the internal serial clock, an interrupt request will occur on each falling
edge of low level at the SCK0 and/or SKC1 pins respectively (and regardless of
the DDR-bits settings). In order to avoid these occurrences, and external interrupt
cannot be used if it is multiplexed with an I/O pin used for the SCI serial clock.

Port A (lines 0-7):
PA0 / TP0/ TEND0- / TCLKA
PA1 / TP1 / TEND1- / TCLKB
PA2 / TP2 / TIOCA0 / TCLKC
PA3 / TP3 / TIOCB0 / TCLKD
PA4/ TP4 / TIOCA1 / A23 (only for H8/304X in modes 3 and 4)
PA5 / TP5 / TIOCB1 / A22 (only for H8/304X in modes 3 and 4)
PA6 / TP6 / TIOCA2 / A21 (only for H8/304X in modes 3 and 4)
PA7 / TP7 / TIOCB2 / A20 (only for H8/304Z in modes 3 and 4)

If the Integrated Timer Unit (ITU) is configured for external clock input via
TCLKA or TCLKB, and the DMA module is activated by external request and uses
signals TEND0 or TEND1 as end-of-DMA cycle flags, the ITU will be driven from
the corresponding TEND signal (and regardless of the DDR-bits settings). Since
this situation is not desirable in most applications, the ITU should not be driven
by an external clock if it is multiplexed with an I/O oun used by the DMA
controller to provide an end-of-cycle flag.

The ITU should not be set to use TCLKC or TCLKD as external clock inputs while
using TIOCA0 or TIOCB0 respectively, as compare-match outputs since the
corresponding I/O Port outputs are fed back to the counter clock inputs (see
Appendix C in the Hardware Manuals). If the ITU is configured to use TCLKC or
TCLKD while set up for input-capture trigger action at TIOCA0 or TIOCB0
respectively, an input-capture event will occcur on the selected exernal clock
transitions. Unless this particular situation is needed, do not set up the ITU to be
driven from an external clock input pin that is multiplexed with an input-
capture pin used the timer network.

The Timing Pattern Controller (TPC) cannot use ouputs TP2-3 to be triggered by
an ITU input-capture event at pins TIOCA0 or TIOCB0 (if TPC is operating in the
non-overlapping mode) since TP2 and TP3 are function multiplexed with
TIOCA0 and TIOCB0 respectively. Likewise , outputs TP4 and TP6 cannot be
triggered by input-capture action at pins TIOCA1 and TIOCA2 respectively
because they are function-multiplexed on the same I/O pins. Also, outputs TP5
and TP7 cannot be utilized if input-capture occurs at TIOCB1 and TIOCB2
respectively, if TPC is operating in the non-overlapping mode.

Also, the ITU cannot be driven from an external clock via TCLKD, TCLKC,
TCLKB, or TCLKA if TPC outputs are desired from TP3, TP2, TP1, or TP0
respectively.

2 of 4

Port B (lines 0-3, 6-7):
PB0 / TP8 / TIOCA3
PB1 / TP9/ TIOCB3
PB2 / TP10 / TIOCA4
PB3 / TP11 / TIOCB4
PB6 / TP14 / DREQ0-
PB7 / TP15 / DREQ1- / ADTRG-

The TPC cannot use outputs TP8 or TP10 if they are triggered by an input-capture
action via TIOCA3 or TIOCA4 respectively, since the same pins are used for both
functions. Similarly, ouputs TP9 or TP11 cannot be used if they are triggered by
an input-capture action via TIOCB3 or TIOCB4 respectively (and if the TPC is
operating in the non-overlapping mode).

If the TPC is configured to use outputs TP14 and/or TP15 while the DMA
controller is set up to be activated upon an external trigger at DREQ0- or DREQ1-,
DMA transfer operations will occur every time a high-to-low transition happens
at the corresponding TP outputs (since the I/O port output is fed back to the input
line (see Appendix C in the Hardware Manual).

If the DMA controller is configured to perform transfers upon a falling edge at
DREQ1- while the A/D converter is setup to accept start-of-conversion upon a
falling edge at ADTRG-, both operations will start simultaneously since they are
triggered at the same pin (PB7).

Port C (lines 2-5) and only for H8/3003:
PC2 / TEND2- / CS4-
PC3 / DREQ2- / CS5-
PC4 / TEND3- / CS6-
PC5 / DREQ3- / CS7-

If the DMA controller is set up to be activated upon an external trigger at the
DREQ2- or DREQ3- pins while the microcontroller is interfaced to external
devices mapped in memory areas 5 or 7 respectively, DMA transfers will occur
every time the corresponding multiplexed chip select signal (CS5- or CS7-) is
asserted. This situation can be avoided by using only one of the pin functions.
Similarly, if the DMA uses the TEND2- or TEND3- pins to signal end-of-transfer,
the microcontroller should not be interfaced to external devices mapped i n
memory areas 4 and 6, and vice versa.

3 of 4

Hitachi Europe Ltd. ISSUE : APPS/019/1.0

APPLICATION NOTE D ATE : 5/3/95
__

Page 1 of 9.

H8-300 ‘C’ Code Framework Example Program

This is a ‘Starter’ example program for the H8-300 family of processors, and
in particular the H8-325. It is intended to indicate a typical framework
program which can be run on a 300 series processor. The code performs a
number of functions which are described in the code header. The idea is that,
if the code is thought relevant, then it can be added to or modified, to produce
a user application. In addition the code can be compiled, linked, down loaded
to a suitable emulator and run. The code header describes a number of simple
functions that are performed in the code which can be checked using an
oscilloscope on the emulator header, no target hardware is required.

The code can be compiled and linked without an alteration and the following
compile and link command lines can be used:-

To Compile

icch8300 h325frm -ms -r -L -q -s -C -P

This compiles code for the small memory model (-ms), produces a list file
which ‘C’ and assembler are interspersed (-L -q), includes debug information
(-r), optimises for speed (-s), allows nested comments (-C) and generates
promable code (-P).

To Link

xlink h325frm -f h325 -r -o h325frm -l h325frm.map -xsme

This links the code according to the memory assignments in the h325.xcl
memory mode (-f h325.xcl), produces debug information (-r), outputs a down
loadable debug file h325frm.d20 (-o h325frm) and generates a map file
h325frm.map (-l h325frm.map -xsme).

The h325frm.d20 file can be downloaded to an emulator such as a PCE that is
running ‘C’ Spy, ISDT or CIDE. If required to run under ICE the
h325frm.obj file is used.

For further details on compiling and linking please refer to the H8 C Tools
Tutorial for the H8/300 family.

The h325.xcl file which is based on the small memory model xcl file ,
LNKH83S.XCL, is shown below.

-! -LNKH83S.XCL-

XLINK 4.xx command file to be used with the H8300 C-compiler V2.xx
using the -ms option (small stack memory model).
Usage: xlink your_file(s) -f lnkh83s -o your_output_file

First define CPU -!

-cH8300

-! Allocate segments which should be loaded -!

-Z(BIT)BITVARS=0

-! First allocate the read only segments . -!

-Z(CODE)INTVEC=0
-Z(CODE)IFLIST,RCODE,CODE,CDATA,ZVECT,CONST,CSTR,CCSTR=100

-! Then the writeable segments which must be mapped to a RAM area
C000 was here supposed to be start of RAM -!

-Z(DATA)DATA,IDATA,UDATA,ECSTR,WCSTR,TEMP,CSTACK+40=FB80
-Z(DATA)SHORTAD=FF00-FF7F
-! NOTE: In case of a RAM-only system, the two segment lists may be

connected to allocate a contigious memory space. I.e. :
-Z...CCSTR,DATA...=start_of_RAM -!

-! See configuration section concerning printf/sprintf -!
-e_small_write=_formatted_write

-! See configuration section concerning scanf/sscanf -!
-e_medium_read=_formatted_read

-! Now load the 'C' library -!
clh83s -! or clh83sd for -2 option -!

-! Code will now reside in file aout.a20 in Motorola 'S' format -!

/*

H8-300 Framework Program

This application code example is intended for use as a
framework program for H8-300 series microcontrollers.
The program has the following functions:

1.0 Provides a 5ms, 50ms, 100ms, 250ms and 500ms scheduler
based on a 5ms interrupt from the 8bit timer.

2.0 Initialistation functions for the 8bit timer and serial
port 1.

3.0 A simple state machine skeleton utilising switch statements.

The example is based on the H8-325, but is relevant for most
H8-300 microcontrollers. The code can be compiled, linked and
downloaded to a PCE or LEV. To prove that everything is OK,
portx, pin x is toggled every 5ms from the scheduler, resulting
in a 100Hz waveform. The H8-325 is working in single chip, mode 3,
at an internal system clock frequency of 10MHz.

Ver 1.0 -- 17 April 94.

*/
#pragma language = extended /* extentions to Ansii 'C' */

/*#include "ioh8325.h" /* port definitions */*/
#include "ioh8sfr.h" /* special function register definitions */
#include "inth8325.h" /* interrupt vector identifiers */

/* Typedefs ! */

/* The StateN would be replaced by user description */

typedef enum { State1, State2, State3, State4 } State;

/* Function prototypes */

void Initialise(void);
void Init_Ports(void);
void Init_Timer_0(void);
void Init_Serial_0(void);
State State_Mc(void);
void Mainloop(void);
void User_5ms_Func1(void);
void User_5ms_Func2(void);
void User_5ms_Func3(void);

void User_50ms_Func1(void);
void User_50ms_Func2(void);
void User_50ms_Func3(void);
void User_100ms_Func1(void);
void User_100ms_Func2(void);
void User_100ms_Func3(void);
void User_250ms_Func1(void);
void User_250ms_Func2(void);
void User_250ms_Func3(void);
void User_500ms_Func1(void);
void User_500ms_Func2(void);
void User_500ms_Func3(void);

/* Definitions */
#define OSC 20 /* 10 MHz system clock */
#define BAUD_RATE 31250
#define BAUD_VALUE (OSC * 1000000/(64*BAUD_RATE)-1) /* for n=0 */

/* Global variables - Note all globals are of format g_xxxxx */

unsigned char g_rxd_buffer0[32];

unsigned char g_Message[] = "Faster than a speeding bullit !";

void main(void)
{

Initialise();
Mainloop();

}

void Mainloop(void)
{
/* This is were the main code is called */
/* Scheduler interrupts in background */

while (1)
{
/* infinte loop calling user functions */
/* user loop functions called here */

}

}

void Initialise(void)
/* This routine calls the peripheral initialisation routines and

enables the global interrupt bit.
*/
{
Init_Ports(); /* Initialise output ports */

Init_Timer_0(); /* Initialise 8 bit timer 0 */
Init_Serial_0(); /* Initialise Serial port 0 */
set_interrupt_mask(0); /* enable global interrupts - this is a pre-defined

assembler function */
}

void Init_Ports(void)
{
/* Set Port 4 & 7 as outputs */

P4DDR = 0xFF;
P7DDR = 0xFF;

/* Tx and Rx port pins set automatically */
}

void Init_Timer_0(void)
{
/* set up to produce a 5ms interrupt on compare match A of 8 bit timer 0 */

TMR0_TCR = 0x4B; /* int on CMIEA, clear on A, clock/1024 */
TMR0_TCSR = 0x00; /* no change on compare match */
TMR0_TCORA = 48; /* value to give compare match every 5.0176mS */
}

void Init_Serial_0(void)
{
/* This initialises the serial port to asynch mode, 8bit data, no parity,

1 stop, 1 start and 31250 baud. An interrupt will be generated on
character receive but not on transmit.

*/
SCI0_SMR = 0;
SCI0_SCR = 0x70; /* Rxd int enable, Rxd, Tx enabled, int clock */
SCI0_BRR = BAUD_VALUE;

}

State State_Mc(void)
{
/* This is a simple switch based state machine. Typical use, keyboard

decode, structured decision making - more ordered than 'if', 'else'
structure.

*/

static State l_state;

switch (l_state)

{
case State1: /* user function and new state

l_state = StateN */
break;

case State2: /* user function and new state
l_state = StateN */
break;

case State3: /* user function and new state
l_state = StateN */
break;

case State4: /* user function and new state
l_state = StateN */
break;

/* and any number of unit states */

default: /* default state - error handler ! */
break;

}

}

interrupt [TMR_CMI0A] Scheduler(void)
/* Note - variables cannot be passed or

returned on interrupt functions */
{

static unsigned char t50ms=9, t100ms=1, t250ms=4, t500ms=1, index=0;

/* clear compare match flag */

/* Use 'sfr' keyword for bit access to timer control status register */
TMR0_TCSR.6 = 0;

/* This interrupt is called every 5ms */

/* user functions to be called every 5ms - note combined run time
of these functions must be < 5ms */

User_5ms_Func1();
User_5ms_Func2();
User_5ms_Func3();

/* Toggle port pin for square wave output at 100Hz (10mS) */

P4DR.7 = (!P4DR.7) ? 1 : 0; /* toggle pin */

/* Test routine - this routine outputs a message from the transmit
of serial port0 to the receive of serial port 0 (the tx and rx
pins required to be linked). A character is output every 5ms.
Delete this routine as required */

while (!SCI0_SSR.7); /* wait until tx buffer free */
SCI0_TDR = g_Message[index++];
SCI0_SSR.7 = 0; /* reset TDRE flag */

if (!g_Message[index]) index=0;

if (!t50ms)
{
/* user functions to be called every 50ms - note combined run time
of these functions must be < 50ms */

/* 50ms tick */

User_50ms_Func1();
User_50ms_Func2();
User_50ms_Func3();

/* reload 50ms tick */
t50ms = 9;

/* user functions to be called every 100ms - note combined run time
of these functions must be < 100ms */

/* 100ms tick */

if (!t100ms)
{
/* Toggle port pin for square wave output at 5Hz (200mS) */

P4DR.5 = (!P4DR.5) ? 1 : 0; /* toggle pin */

User_100ms_Func1();
User_100ms_Func2();
User_100ms_Func3();

/* reload 100ms tick */
t100ms = 1;

/* user functions to be called every 500ms - note combined
run time of these functions must be < 500ms */

/* 500ms tick */

if (!t500ms)
{
User_500ms_Func1();
User_500ms_Func2();

User_500ms_Func3();

/* reload 500ms tick */
t500ms = 4;
}

else t500ms--;

}
else t100ms--;

/* user functions to be called every 250ms - note combined run time
of these functions must be < 250ms */

/* 250ms tick */

if (!t250ms)
{

User_250ms_Func1();
User_250ms_Func2();
User_250ms_Func3();

/* reload 250ms tick */
t250ms = 4;

}

else t250ms--;
}

else t50ms--;

}

interrupt [SCI_RXI0] Receive_Port0(void)
/*

Interrupt handler for receive interrupt generated by port 0
*/
{
static unsigned char Index=0;

/* read character into circular buffer */

g_rxd_buffer0[Index++] = SCI0_RDR;

/* Reset RDRF flag - using sfr structure */
SCI0_SSR.6 = 0;

if (Index >= 32) Index = 0;

}

/* User Functions */

void User_5ms_Func1(void){}
void User_5ms_Func2(void){}
void User_5ms_Func3(void){}
void User_50ms_Func1(void){}
void User_50ms_Func2(void){}
void User_50ms_Func3(void){}
void User_100ms_Func1(void){}
void User_100ms_Func2(void){}
void User_100ms_Func3(void){}
void User_250ms_Func1(void){}
void User_250ms_Func2(void){}
void User_250ms_Func3(void){}
void User_500ms_Func1(void){}
void User_500ms_Func2(void){}
void User_500ms_Func3(void){}

Hitachi Europe Ltd. ISSUE : APPS/021/1.0

APPLICATION NOTE D ATE : 5/3/95
__

Page 1 of 4.

Sample program to illustrate the low power modes and
LCD drive of the H8-38XX family of microcontrollers

This is an example program to implement a simple counter using 5 character, seven segment
LCD display driven directly from the onboard LCD drive on the H8-38XX family of
microcontrollers. The low power features of the controller are also demonstrated by performing
direct transfers from active high speed to active medium speed to sub-active and back to active
high speed. As would be expected the counter updates at a speed dependent on the mode of
operation.

The program source is supplied on disk complete with a sample ‘xcl’ for linking.

/***

LCD Counter Using the H8/3834 Microcontroller in three different operating modes:

Full_speed - running off the system clock
Active_medium - 1/8 of system clock
Sub_active - 32KHz sub_clock

The effect of the different modes is to cause the counter to count at different rates.

***/

/* Version 1.0 */

#include "c:\icch8300\inc\ioh83834.h" /* H8-3834 IO labels */

#pragma language=extended

interrupt [0x28] void direct_transfer(void);

void active_medium(void);
void sub_active(void);
void full_speed(void);

void pause(long delay);

/* ********* */
/* Variables */
/* ********* */
#pragma memory = dataseg(LCDRAM) /* Define LCD RAM area as

relocatable code */
char ram[20];

#pragma memory = default

char value[] ={0x3f,0x0c,0x76,0x5e,0x4d,0x5b,0x7b,0x0e,0x7f,
0x5f,0x3f};

char dig1,dig2,dig3,dig4,dig5;

main()
{

RLCTR = 0xfc; /* locate LCD Ram in area 0xF740 to 0xF77F */
LPCR = 0x0f; /* No expansion, but all segments in use. static
duty */

LCR = 0xf0; /* resistor ladder on, lcd controller on, blank off,
frame frequency = 128Hz */

dig1=0;
ram[0]=ram[1]=ram[2]=ram[3]=ram[4]=value[dig1];

IENR2 = IENR2 | 0x80; /* Interrupt enable register 2,
Enable direct transfer interrupt mode */

TMA = TMA | 0x08; /* Timer Mode register A ,set for 1 second
time base interrupt */

set_interrupt_mask(0); /* Clear I bit */

for (;;)
{
active_medium(); /* Change to active medium mode */
sub_active(); /* Change to sub_active mode */
full_speed(); /* Change to full_speed (active full) */
}

}

interrupt [0x28] void direct_transfer(void)
/* Direct transfer available between high, medium and sub-active mode

by executing the sleep instruction when the DTON bit in SYSCR2 is set.
The sleep instruction generates an interrupt that causes the processor
to change to the next mode.

*/
{

IRR2 = IRR2 & 0x7f; /* Clear interrupt request flag */
}

void active_medium(void)
{

/* set for transistion from active high speed to active medium speed mode via sleep mode */

SYSCR1 = SYSCR1 & 0x77; /* clear SSBY & LSON bits */
SYSCR2 = SYSCR2 | 0x0c; /* set MSON & DTON bits */
sleep(); /* Initiate mode change */
pause(12000); /* count time */
}

void sub_active(void)
{

/* set up for transistion from active medium speed to
subactive mode via watch mode */

SYSCR1 = SYSCR1 | 0x88; /* set SSBY & LSON bits */
sleep(); /* Initiate mode change */
pause(160);
}

void full_speed(void)
{

/* Transistion from sub-active to active high speed via watch mode */

SYSCR1 = SYSCR1 | 0x80; /* set SSBY bit */
SYSCR1 = SYSCR1 & 0xf7; /* reset LSON bit */
SYSCR2 = SYSCR2 & 0xFB; /* reset MSON bit */

sleep(); /* change to high speed mode via watch after delay set by bits
STS2 to STS0 in SYSCR1 - 8192 states */

pause(60000);
}

void pause(long delay)
{
long loop;

for (loop=0;loop<delay;loop++)
{
/* While pausing in mode, update the LCD counter */
ram[4] = value[++dig1];
if (dig1==10) { dig1=0; ram[3]=value[++dig2]; }
if (dig2==10) { dig2=0; ram[2]=value[++dig3]; }
if (dig3==10) { dig3=0; ram[1]=value[++dig4]; }
if (dig4==10) { dig4=0; ram[0]=value[++dig5]; }
if (dig5==10) { dig5=0; }

}
}

Hitachi Europe Ltd. ISSUE : APPS/022/1.0

APPLICATION NOTE D ATE : 5/3/95
__

Memory Checking and Initialisation Program for the
H8 Range of Microcontrollers

This application code is designed to run on any Hitachi H8 Microcontroller
compiled under IAR C compiler. The source code is supplied on disk with
a sample ‘xcl’ file to enable linking.

The code has been written to check an area of either 8 or 18 bit memory and
then clear to zero. The memory check is performed by writing then reading
the Hex values 55 and AA to the specified memory area. The check is continued until the
memory area has been completed or an error has been found. If an error is found the
address and the data pattern is reported. Upon a successful memory check
the memory area is initialised to 0.

Program Details:

Function:- mem_status *Chk_Clr_Mem(unsigned int, unsigned int)

Passed: Start address and end address of memory area to be checked.

Returns: pointer to structure mem_status.

/*
This function checks and then clears an area of memory
bounded from a start address to an end address. The
start and end address are passed in the function call.
Apointer to a structure is returned which reports on
the result of the memory check and initialisation.

18 July 1994.

*/

typedef unsigned char Bool;

/* define state values used in memory check and initialisation routine */

typedef enum { END=0, WRITE_55, CHECK_MEM_55, WRITE_AA, CHECK_MEM_AA,
PASS, FAIL, CLEAR } memory_state;

/* define structure for memory status after memory area check */

typedef struct
{
unsigned int address;
unsigned int value;
Bool status;
} mem_status;

mem_status *Chk_Clr_Mem(unsigned int, unsigned int);

/*mem_status memory;*/

void main(void) /* This was used to test the function */
{
static mem_status *mem_results;

mem_results = (mem_status *)Chk_Clr_Mem(0x8000, 0xA000); /* check this area */

}

mem_status *Chk_Clr_Mem(unsigned int start, unsigned int end)
/* Function to check and clear an area of memory. Passed start and end

address of memory area to be checked. Returns a pointer to a structure
that contains the status of the check, the address at which it failed
and what value it failed on. If the check has passed than the address
and data value are not required.

*/
{
static unsigned char *start_ptr;

static memory_state memory_check;

static mem_status memory; /* declare return structure */

/* Perform memory check by writing and reading 0x55 and 0xAA
to specified areas */

start_ptr = (unsigned char *)(start);

/* state machine for checking memory */

memory_check= WRITE_55; /* initial state */

while (memory_check)
{
switch (memory_check)

{

case WRITE_55: /* write data to memory */

while (start_ptr <= (unsigned char *)end)
*(start_ptr++) = 0x55;

/* re-load start pointer */
start_ptr = (unsigned char *)(start);

/* next state */
memory_check = CHECK_MEM_55;

break;

case CHECK_MEM_55: /* read memory and compare with 0x55 */

while ((start_ptr <= (unsigned char *)end) &&
(*(start_ptr++) == 0x55));

/* if pointer did not reach end error detected */

/* next state ? */
memory_check = (--start_ptr == (unsigned char *)end) ?

WRITE_AA : FAIL;

memory.value = 0x55;
break;

case WRITE_AA: /* write data to memory */

start_ptr = (unsigned char *)(start);

while (start_ptr <= (unsigned char *)end)
*(start_ptr++) = 0xAA;

/* re-load start pointer */
start_ptr = (unsigned char *)(start);

/* next state */
memory_check = CHECK_MEM_AA;

break;

case CHECK_MEM_AA: /* read memory and compare with 0xAA */

while ((start_ptr <= (unsigned char *)end) &&
(*(start_ptr++) == 0xAA));

/* if pointer did not reach end error detected */

/* next state ? */
memory_check = (--start_ptr == (unsigned char *)end) ?

PASS : FAIL;
memory.value = 0xAA;
break;

case PASS: /* return status */
memory.status =0; /* Pass */
memory_check = CLEAR;
break;

case CLEAR: /* clear memory */

start_ptr = (unsigned char *)(start);

while (start_ptr <= (unsigned char *)end)
*(start_ptr++) = 0x00;

memory_check = END;
break;

case FAIL: /* return status */
/* where did it fail ? */
memory.address = (unsigned int)start_ptr;
/* what value ? */
memory.status =1; /* Fail */
memory_check = END;
break;

default: break;

}

}

return &memory; /* return pointer to structure */

}

Hitachi Europe Ltd. ISSUE : APPS/026/1.0

APPLICATION NOTE D ATE : 5/8/95
__

Interfacing to LCD Character Modules

Configuring the HD44780 LCD controller / driver which is built onto the range of Hitachi
Character Liquid Crystal Display Modules.

The HD44780 gives the user the ability to display alphanumerics, Kana characters, symbols
and also the facility to generate custom characters. The interface to a microcontroller/processor
can be either 8-bit or 4-bit wide. The HD44780 can drive upto 16 characters, configured as 1
line by 16 characters or 2 lines by 8 characters. However, built into the device is a display data
RAM area which can support upto 80 characters maximum, so by attaching 9 off HD44100's
(40-channel segment driver) for a 1 line display with a duty factor of 1/8 or 1/11, or 4 off
HD44100 for a 2 line display with a duty factor of 1/16 you will be able to drive upto 80
characters.

The functions below have been extracted from a program which is designed to drive any
Hitachi Character LCD Module which has the HD44780 controller/driver built-in. This display
module is controlled via the Hitachi H8/325 8-bit single chip microcontroller. To enable
customers to fully evaluate the H8/325, we have produced a low cost evaluation board, the
following code has been writen to run on this EV board (LEV8325). The displays control and
data lines are controlled via a PIA.

/* This string of characters is to be displayed on the character display module. */

const char char_screen [] = {'T', 'h' , ' i ' , 's ' , ' ' , ' C', 'h ' , 'a ' , ' r ' , 'a ' , 'c ' , ' t ' , 'e ' , ' r ' , ' ' , '
M','o', 'd', 'u', 'l ', 'e', ' ' ,
'i','s',' ',' t','h','e',' ',' L', 'M','0', '9', '2', 'L', 'N', ' ',' w','h', 'i ', 'c', 'h', ' ', 'i ', 's', ' ', ' a ' , '
2',' b','y',' 4','0', 'D','i', 's', 'p','l ', 'a', 'y',0x00,0x01,0x02};

/* This functon reads back the status of the data bus and is called during the 'Busy
Flag' check.*/

char read_lcd (char reg)
{
char temp, read_val;

write_E_port (PIA1_CRA,0); /* enable DDRA access */
write_E_port (PIA1_DRA,0); /* port A all inputs */
write_E_port (PIA1_CRA,0x04); /* enable DRA access */
write_E_port (PIA1_CRB,0x04);
temp = read_E_port (PIA1_DRB); /* read control signal values */
if (reg) /* if reg is true then access lcd data reg */

temp = temp | 0x03; /* set RS and R/W pins */
else

{
temp = temp | 0x02; /* set R/W pin only */

temp = temp & 0xfe; /* ensure RS pin = 0 */
}

write_E_port (PIA1_DRB,temp); /* output control signals RS and R/W */
temp = temp | 0x04; /* set E clock pin */
write_E_port (PIA1_DRB,temp); /* output E clock */
for (read_val = 0; read_val <= 10; read_val ++)

{ } /* delay to allow data set up from lcd*/
read_val = read_E_port (PIA1_DRA); /* get data */
temp = temp & 0x0b; /* clear E clock pin */
write_E_port (PIA1_DRB,temp); /* output E clock */
temp = temp & 0xf8; /* clear RS and R/W pins */
write_E_port (PIA1_DRB,temp);
return (read_val);
}

/* This function is used to send data to the HD44780, to set up the various registers and also to
send the character information to the display data RAM. */

void write_lcd (char reg, char write_val)
{
char temp,i;

write_E_port (PIA1_CRA,0); /* enable DDRA access */
write_E_port (PIA1_DRA,0xff); /* port A all outputs */
write_E_port (PIA1_CRA,0x04); /* enable DRA access */
write_E_port (PIA1_DRA, write_val); /* output the data */
temp = read_E_port (PIA1_DRB); /* read control signal values */
if (reg) /* if reg is true then access lcd data reg */

{
temp = temp | 0x01; /* set RS pin */
temp = temp & 0xfd; /* clear R/W pin */
}

else
temp = temp & 0xfc; /* ensure R/W and RS pins = 0 */

write_E_port (PIA1_DRB,temp); /* output R/W and RS signals */
temp = temp | 0x04; /* set E pin */
write_E_port (PIA1_DRB,temp); /* output E signal */
for (i = 0; i <=10; i++)

{ } /* short delay */
temp = temp & 0xfb; /* clear E pin */
write_E_port (PIA1_DRB,temp); /* output E signal */
temp = temp & 0xf8; /* clear RS and R/W pins */
write_E_port (PIA1_DRB,temp); /* output RS and R/W signals */
}

/* This function checks the status of the 'Busy Flag'. If DB7 is High ('1'), this indicates that
the HD44780 is busy processing the previous instruction. The controller can only accept the
next instruction when DB7 is Low ('0').*/

void wait_lcd (void)
{
while (read_lcd (lcd_control) & 0x80) /* wait for busy flag = '0' */
{ }
}

/* Before writing any screen data to the display you need to initialise it in terms of number of
display lines, cursor, font etc. This function sets up the controller to drive a 2 line display, 5*7
dots, cursor and blink ON, with increment. */

void set_up_lcd (void)
{
char temp;
long i;

/* first set up the PIA */
write_E_port (PIA1_CRB,0x04); /* allow access to DR */
temp = read_E_port (PIA1_DRB);
temp = temp & 0xf8; /* ensure RS, R/W and E are inactive */
write_E_port (PIA1_DRB,temp);
write_E_port (PIA1_CRB,0x00); /* select access to DDRB */
write_E_port (PIA1_DRB,0x07); /* RS, R/W and E to outputs */
write_E_port (PIA1_CRB,0x04); /* allow access to DRB */
write_E_port (PIA1_CRA,0x04); /* allow access to DRA */
write_E_port (PIA1_DRA,0x00); /* data bus to 0 */
write_E_port (PIA1_CRA,0x00); /* allow access to DDRA */
write_E_port (PIA1_DRA,0xff); /* all port A are outputs */
write_E_port (PIA1_CRA,0x04); /* allow access to DRA */
for (i = 0; i <= 10000; i++)

{ }

write_lcd (lcd_control,0x38); /* initialise display function set, need to
send thrice to ensure correct initialisation */

for (i=0; i <= 10000; i++); /* delay */
for (i=0; i <= 10000; i++); /* delay */
write_lcd (lcd_control,0x38); /* send again! */
for (i=0; i <=10000; i++); /* delay */
write_lcd (lcd_control,0x38); /* and again! */
wait_lcd (); /* now check 'Busy Flag' */
write_lcd (lcd_control,0x01); /* clear display */
wait_lcd ();
write_lcd (lcd_control,0x0f); /* display ON, cursor ON with Blink */
wait_lcd ();
write_lcd (lcd_control,0x02); /* return to home position */
}

void custom (void)
{
set_cgram_addr(0x40); /* address location for custom chars */
wait_lcd(); /* check status of busy flag */
write_lcd(lcd_data,0x11), /* 1st byte of bit pattern for 1st custom char */
write_lcd(lcd_data,0x0f),
write_lcd(lcd_data,0x0f),
write_lcd(lcd_data,0x11),
write_lcd(lcd_data,0x1e),
write_lcd(lcd_data,0x1e),
write_lcd(lcd_data,0x01),
write_lcd(lcd_data,0x00),

write_lcd(lcd_data,0x00), /* 1st byte of bit pattern for 2nd custom char */

write_lcd(lcd_data,0x1b),
write_lcd(lcd_data,0x1b),
write_lcd(lcd_data,0x1b),
write_lcd(lcd_data,0x1b),
write_lcd(lcd_data,0x1b),
write_lcd(lcd_data,0x1b),
write_lcd(lcd_data,0x00),

write_lcd(lcd_data,0x1f), /* 1st byte of bit pattern for 3rd custom char */
write_lcd(lcd_data,0x15),
write_lcd(lcd_data,0x1f),
write_lcd(lcd_data,0x1b),
write_lcd(lcd_data,0x1f),
write_lcd(lcd_data,0x11),
write_lcd(lcd_data,0x1f),
write_lcd(lcd_data,0x00),
}

void main (void)
{

int n;

set_up_lcd (); /* initialise the display */
wait_lcd ();
n=0;
while (char_screen[n]) {

write_lcd (lcd_data, char_screen [n++]); /* send the character string to the
LCM*/

}

}

Hitachi Europe Ltd. ISSUE : APPS/036/1.0

APPLICATION NOTE D ATE : 14/11/94
__

H8/300H Software UART implementation using
2 timer and 2 DMA channels

Most variants of the H8/300H family of microcontrollers support two hardware
UARTS at standard. However in a lot of detailed embedded applications today
there is an increasing requirement for more than two. Detailed here is a method
where a further full duplex UART channel can be implemented using two on
board timers and two of the DMA channels. For the transmission side there is
some overhead required to set up the transmission table and pattern and on the
receive side there are two CPU interrupts, one at reception of the first start pulse
edge (approximately 8µs) and one when the packet has been received
(approximately 64µs).
The outer layer of the application code has been written in C but the bit bashing
routines are shown here in assembler for speed purposes, but there is no reason
why these cannot be converted to Ansi C.

Asynchronous Communications:

An asynchronous data packet will be of one of the following formats:

<start bit > <data> <stop bit>
<start bit> <data> <stop bit> <stop bit>
<start bit> <data> <parity bit> <stop bit>
<start bit> <data> <parity bit> <stop bit> <stop bit>

The data content may be, typically, between five and eight bits. Parity may be
even, odd or disabled. There may be one or two stop bits. In standard use the
user selects the format required for the communications protocol in use, and
then the UART remains set at a standard format. This example assumes that the
user has only one protocol required, and that this is known at compile time, thus
the code may be written specifically for the format required, and may therefore
have any generalisations removed to increase execution speed and reduce code
overhead.

The selected packet format is: 9600 bps, 8 data bits, no parity, 1 stop bit.

1 of 13

To implement a UART two separate operations must be catered for:

• The UART must be able to create data packets on an I/O line which conform to
the required bit rate and packet format.
• The UART must be able to detect transitions on a separate I/O line and
disassemble the transitions into a valid data value.

Both the above operations require the UART simulation software be able to time
I/O control at a rate which is proportional to the bit rate of the asynchronous
interface. In addition data must be transferred to/from the I/O lines i n
synchronisation with the time steps. It is feasible to implement such timing and
data transfer operations in a number of ways:

• CPU performs a timing loop and transfers data.
• Timers generate timeout interrupts, the CPU then transfers data on interrupts
occurring.
• Timers generate timeout interrupts, data is transferred by DMA on timeout
events.

The above three options represent a decreasing requirement on the CPU, with the
timer/DMA option requiring CPU intervention only to set up and start
transmission, or to disassemble the received data. It is this option which has been
selected for this example, as it represents the best use of the H8/300H peripherals
to minimise the CPU overhead in implementing a UART.

Transmitter Implementation:

The algorithm used to implement the transmission part of the software UART
reduces the number of DMA transfers to the absolute minimum required, with
the slight CPU overhead of creating a timer set up table before invoking the
timer/DMA transmission system. The algorithm uses the following basic
principle:

• if a bit pattern is exclusive-ORed with itself divided by 2, the resulting pattern
represents the 0 to 1, or 1 to 0 transitions in the original bit pattern.

for example:

Original Pattern: 01110100
Pattern / 2 00111010
XOR 01001110

i.e. a bit transition occurs at (reading from left to right) bits 1, 4, 5 and 6.

This transition data may then be used to determine the exact time at which the
transmit line must be toggled, which will not usually be on every bit of the

2 of 13

packet. Thus worst case, the transition method of forming data packets will tend
to that of transferring bit data at the bit rate, while usually the number of transfers
will be significantly reduced (four transitions in the above example).

The set up procedure for transmission is described below:

• Calculate the transition pattern.
• Form a table of transition times based upon the bit rate. The table should
contain multiples of the bit rate count for the frequency of the timer channel
used.
• Set the timer channel to compare-match on the first transition timeout and to
toggle an I/O line on each compare-match event. The timer channel should also
trigger a DMA transfer on each compare-match event.
• Set a DMA channel to transfer successive data from the transition data channel,
to the compare-match register on each successive compare-match event, until all
transitions have occurred.

Thus once the transition table has been created and the timer and DMA
initialised, then the timer will control the I/O line using a compare-match event,
and the DMA will reload the compare-match register automatically with the next
compare-match value. When the required number of transitions have occurred
the DMA can be used generate a CPU interrupt, which may then stop any further
timer and DMA operations. This represents a completely self-contained system
which will only interrupt the CPU on completion of transmission .

Receiver Implementation:

The receiver needs to detect the start of a data packet (denoted by the low start bit),
it then must sample the receive data line at a minimum of the bit rate to
determine the incoming data bits. It is recommend that the received data line is
sampled at a frequency greater than the bit rate, so that more than one sample is
available for each data bit. This will then enable the receiver to remove any
spurious readings from the incoming bit stream, by taking the majority of the
readings for each bit.

The implementation described below uses a sampling rate which is four times
the bit rate. The start bit is detected by a timer channel using the input capture
function. This may then be used to interrupt the CPU, which may then start the
sampling process. A timer channel may then be used to set a sampling interrupt
which may be used to trigger a DMA transfer from the receiver I/O line to a
receive data buffer.

Having finished the sampling process the CPU may then examine the sampled
data to determine the received value. This is accomplished by taking the
majority level of each four samples as the received bit level. Once the data value
has been determined any parity checking may be performed, if required.

3 of 13

To summarise the operations:

Setup - Timer & DMA

• Set the sample rate into a compare-match register.
• Enable input-capture interrupts for the timer channel
• start the timer channel
• set the source and destination DMA transfer addresses
• set the DMA transfer count
• set the DMA operation mode

On Input-capture Interrupt:

• Stop timer channel
• Disable input capture interrupt & clear flag
• Enable compare match-interrupts
• Enable DMA transfers on compare-match interrupt and enable DMA.
• Start timer channel.

On DMA completion interrupt:

• Stop the timer channel & clear flags
• Disable DMA transfers
• Disassemble receive buffer using majority samples to determine data bits.
• Set receiver flag and store data.

The above process may then be used to receive multiple data bytes at the desired
bit rate.

Please note that this method uses two DMA channels to perform the data transfer,
as normal address mode is required. If these are not available, the sample
transfer could be implemented as a compare-match CPU interrupt. However, this
would have more impact on CPU bandwidth.

UART design notes:

The UART uses the following hardware:

Transmitter - One channel of the ITU
One channel of the DMA

Receiver - One channel of the ITU
Two channels of the DMA.

However if the UART is not required to transmit at the same time as data may be
received, then the total requirement for the UART will be one channel of the ITU

4 of 13

and two channel of the DMA.

In this example the UART has been set up assuming that reception and
transmission will not occur simultaneously

UART Benchmark Timings:

The code was timed on an E7000PC emulator for the H8/3042 device in advanced
single chip mode (mode 6) operating at 16MHz system clock. The
functions/interrupt handlers are listed below with execution times. In addition
timings were taken from the invocation of the transmit function, until the last
data bit was transferred, and the handler returned. This will give an indication of
the total transmit time which the CPU requires - please note that the CPU will
not be performing this code exclusively during this period.

Function: Time taken (µsec):

Receiver 64 µsec
Transmit 21 to 25 µsec
InitialiseUART 21 µsec
ITUCaptureInterrupt 8 µsec
DMAIsr 2 µsec

5 of 13

//
//
// UART.C - software UART implementation for H8/3042
//
//

#include "ioh83042.h" // I/O register defintions
#include "inh83042.h" // Interrupt vector addresses
#include <inh83.h> // In-line functions

#pragma language=extended

//
// System Constants

#define GRA0 0x6A
#define DRA 0xD3

//
// Union for C access to DMAC MAR registers

union u_tag {
unsigned long full;
struct w_tag {
unsigned short hw;
unsigned short lw;

} word;
struct b_tag {
unsigned char rb;
unsigned char eb;
unsigned char hb;
unsigned char lb;

} byte;
} MAR;

//
//Global data and transmit/receive buffers

unsigned short dma_buff[20];
unsigned short period;
unsigned short dma_count;
unsigned char rx_buff[40];

//
// Assembler based fast comms routine

void Transmit (unsigned char);

//
// Globals used for Flags

unsigned char SCI2_SMR;
unsigned char SCI2_SSR;
unsigned char SCI2_SCR;
unsigned char SCI2_RDR;

6 of 13

//
// Function to set the ITU and DMAC channels to their initial
// settings, the ITU is run for a short time to allow a
// compare match to occur so that the output line may be set to
// a logic high.
//
// The transmitter uses ITU channel 0 (CMA) and DMA channel 0A
// (in I/O mode).
//
// The receiver uses ITU channel 1 (ICA then OCA) and DMA channels
// 1A and 1B (in block transfer full address mode)

void InitialiseUART (void)
{
period = 417; //sys/4 @16MHz -> 9600 bps
//
// set up for Transmit, initialise the timer output to high...
ITU_TCNT0 = 0x0000;
ITU_TCR0 = 0xA2; //CCLRA, sys/4
ITU_TIOR0 = 0x8A; // output 1 on CMA
ITU_GRA0 = 10; // compare match value
ITU_TSR0 &= 0xF8; // clear flags
ITU_TSTR |= 0x01; // start the timer channel
while ((ITU_TSR0 & 0x01) != 0x01); //wait on compare match
ITU_TSTR &= 0xFE; // stop channel 0 with output = 1
ITU_TSR0 &= 0xF8; // clear flags
//
//now set up the timer and DMA channels to perform the transmission
ITU_TIOR0 = 0x8B; // toggle O/P on CMA
ITU_TIER0 = 0xF9; // enable interrupts on CMA
DMAC_IOAR0A = GRA0; // set I/O destination to GRA0 register
DMAC_DTCR0A = 0x40; // word, inc MAR, I/O, CMA
//
// set up ITU for receive
ITU_TCNT1 = 0x0000; //reset counter
ITU_TCR1 = 0xA0; //CCLRA, sys
ITU_TIOR1 = 0x8E; //ICA falling edge
ITU_TSR1 &= 0xF8; //clear flags
ITU_TIER1 = 0x01; //enable interrupt on ICA
//set up DMA for receive
DMAC_DTCR1A = 0x07; //byte, fixed source, block mode
DMAC_DTCR1B = 0x19; //inc dest, source is block, trigger on CMA1
DMAC_ETCR1AH = 0x01; //1 byte per block
DMAC_ETCR1AL = 0x01;
DMAC_ETCR1BH = 0x00; //36 transfers to complete
DMAC_ETCR1BL = 0x24;
DMAC_MAR1AE = 0x00; //port A is the source address
DMAC_MAR1AH = 0xFF;
DMAC_MAR1AL = DRA;
MAR.word.lw = (unsigned short)&rx_buff; //set destination
DMAC_MAR1BE = MAR.byte.eb;
DMAC_MAR1BH = MAR.byte.hb;
DMAC_MAR1BL = MAR.byte.lb;

}

7 of 13

//
// Interrupt service routine to fire off the sampling process
// for a packet of data, given that the low edge of a start
// bit has been detected by the input capture logic of the
// timer channel.

interrupt [ITU_IMIA1] void ITUCaptureInterrupt (void)
{
ITU_TSTR &= 0xFD; //stop channel 1
ITU_TCNT1 = 0x0000; //reset counter
ITU_TIOR1 = 0x88; //CMA, no output
ITU_GRA1 = 417; //sys @ 16MHz -> 4 * 9600 samples/sec
DMAC_DTCR1A |= 0x80; //enable DMA
DMAC_DTCR1B |= 0x80; //DMA master enable
DMAC_DTCR1A |= 0x08; //enable DMA interrupts
ITU_TSR1 &= 0xF8; //clear flags
ITU_TSTR |= 0x02; //start channel 1

}

//
// main function to test that the transmit and receive operations
// work - here the transmit line may be fed back to the recieve
// line to allow simultaneous transmission and receipt.

int main (void)
{
int i;
set_interrupt_mask(0);
InitialiseUART();
while (1)
{
Transmit(0x74); // transmit the byte 0x74
for (i=0;i<4000;i++); // delay for a bit between packets

}
return (0);

}

8 of 13

;;;
;;
;; RXTX - assembler routines for H8/3042 software UART
;;
;;
;;;

NAME rxtx

CASEON

PUBLIC Transmit
PUBLIC Receiver
PUBLIC DMAisr
EXTERN period
EXTERN dma_buff
EXTERN dma_count
EXTERN rx_buff
EXTERN SCI2_RDR
EXTERN SCI2_SSR

;;;
;; Set the CPU control register constants

ITU_TCNT0 equ H'FF68
ITU_GRA0 equ H'6A
ITU_TCR0 equ H'64
ITU_TIOR0 equ H'65
ITU_TSR0 equ H'67
ITU_TIER0 equ H'66
ITU_TSTR equ H'60
DMA_MAR0AM equ H'20
DMA_MAR0AS equ H'21
DMA_MAR0AB equ H'22
DMA_MAR0AY equ H'23
DMA_IOAR0A equ H'26
DMA_ETCR0AH equ H'24
DMA_ETCR0AL equ H'25
DMA_DTCR0A equ H'27
DMA_DTCR1A equ H'37
DMA_DTCR1B equ H'3F

;;;
;; Bit constants

RXERFLG equ 6

RSEG CODE

9 of 13

;;
;; Transmit function to form transition table and then
;; set the ITU and DMA off to transmit the data packet
;;
;; Parameters: char to transmit will be in R6L
;;
;; Register usage:

Transmit:
;;set up a work environment
PUSH.L ER6
PUSH.L ER5
PUSH.L ER4
PUSH.W R3
PUSH.W R0

MOV.B R6L,R6H ;get a copy of the input char
SHLL.B R6H ;right shift
XOR.B R6L,R6H ;form transition byte

;initialise data
MOV.L #dma_buff:32,ER4;buffer pointer
SUB.L ER5,ER5 ;zero out ER5
MOV.B #H'08,R3L ;set loop count to 8
MOV.W @period:24,E6 ;load bit period to E6
MOV.W E6,R5 ;initial setting for dma timeout

;form timeout table
label02:

SHLR.B R6H ;is there a transition ?
BCC label01
MOV.W R5,@ER4 ;if yes then buffer the time period
INC.L #2,ER4
SUB.W R5,R5 ;clear period count
INC.W #1,E5 ;inc count

label01:
ADD.W E6,R5 ;add next bit period to count
DEC.B R3L
BNE label02 ;do eight times...

MOV.W R5,@ER4 ;buffer the time period
INC.W #1,E5 ;inc count

label03:

;;
;; Finally load the stop bit timeout into the dma table
;; here there is one stop bit in a packet
INC.L #2,ER4 ;point to next entry in the transition table
MOV.W E6,@ER4 ;set stop period in transition table
INC.W #1,E5 ;increment dma transfer count

10 of 13

;;
;now send it out using DMA & ITU

SUB.W R0,R0 ;load ITU_TCNT with 0
MOV.W R0,@ITU_TCNT0:16
MOV.L #dma_buff,ER4
MOV.W #20,R0 ;load GRA with start offset
MOV.W R0,@H'FF6A:16
BCLR #0,@ITU_TSR0:8 ;clear IMIA flag
MOV.B R4H,@DMA_MAR0AB:8
MOV.B R4L,@DMA_MAR0AY:8
MOV.W E4,R4
MOV.B R4L,@DMA_MAR0AS:8
MOV.W E5,R5 ;ECTR0A data =
MOV.B R5H,@DMA_ETCR0AH:8 ;no of transfers
MOV.B R5L,@DMA_ETCR0AL:8

;;
;;finally start the timer channel 0 to tx the data
BSET #0,@ITU_TSTR:8
BSET #7,@DMA_DTCR0A:8 ;enb dmas
BSET #3,@DMA_DTCR0A:8 ;enb dma ints

POP.W R0
POP.W R3
POP.L ER4
POP.L ER5
POP.L ER6

RTS

;;;
;; need to place received char is placed in SCI2_RDR

Receiver:

;;;
; assume that the data is in rx_buff
; 4 samples per bit, 9 bits...
PUSH.L ER0
PUSH.W R1
PUSH.W R2
PUSH.W R6

MOV.B #H'FD,R0L
MOV.B R0L,@ITU_TSTR:8 ;stop the timer channel
BCLR #3,@DMA_DTCR1A:8 ;disable DMA interrupts
BCLR #7,@DMA_DTCR1A:8 ;disable DMA transfers
BCLR #7,@DMA_DTCR1B:8 ;ditto

11 of 13

;;
;;now disassemble the received data

MOV.L #rx_buff,ER0
ADD.L #4,ER0 ;zip past start bit
SUB.B R2H,R2H ;set bit count to 0
SUB.B R6L,R6L ;initilaise return value

receive6:
SUB.W R1,R1 ;initialise zero & 1 counts
MOV.B #04,R2L ;sample count

receive0:
BTST #4,@ER0
BEQ receive1
INC.B R1H ;if its a 1 inc 1s count
BRA receive2

receive1:
INC.B R1L ;if its a 0 inc 0s count

receive2:
INC.L #1,ER0 ;point to next item
DEC.B R2L ;dec sample counter
BNE receive0
CMP.B #3,R1H
BGE receive3
CMP.B #3,R1L
BGE receive4
BRA rxerror

receive3: ;if majority was 1
BSET R2H,R6L ;set bit in O/P data register
BRA receive5

receive4: ;if majority was 0
BCLR R2H,R6L ;clear bit in O/P register

receive5:
INC.B R2H
CMP.B #08,R2H ;are all 8 bits done
BNE receive6

receive7:
MOV.B R6L,@SCI2_RDR

POP.W R6
POP.W R2
POP.W R1
POP.L ER0
RTE

rxerror:
MOV.B #H'FF,R6L
MOV.L #SCI2_SSR,ER0
BSET #RXERFLG,@ER0
BRA receive7

12 of 13

;;
;; Interrupt Handler for DMA on transmit completion

DMAIsr:
BCLR.B #3,@DMA_DTCR0A:8 ;disable DMA interrupts
BCLR.B #7,@DMA_DTCR0A:8 ;disable DMA transfers
BCLR #0,@ITU_TSTR:8 ;stop timer channel 0
RTE

;;
;; Interrupt vector definitions for the isrs
;;

COMMON INTVEC
DS.B 88
DC.W DMAIsr
DS.B 2
DC.W Receiver

;;
END

When using this doc ument, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's
perm ission.
3, Hitach i will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation
of the user's unit according to this document.
4, Circuitry and other examples described herein are meant only to in dicate the characteristics and performance of Hitachi's
sem iconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may resu lt from
applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hiatchi, Ltd .
6, MEDICAL APPLICATIONS: Hitachi's products are not authorised for use in MEDICAL APPLICATIONS without the written consent of
the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's
products are requested to not ify the relevant sales off ice when planning to use the products in MEDICAL APPLICATIONS.

Copyright © Hitachi, Ltd., 1994. All rights reserved

13 of 13

HITACHI

Page 1

Hitachi Europe Ltd. ISSUE: APPS/002/1.0

APPLICATION NOTE DATE: 19/5/95

A Mechanism for Banking Data on the H8/300

The bank switching mechanism used by the H8/300 C compiler uses a look up table to
determine the pseudo 32-bit address for each function as it is called. This results in both a data
and a code overhead as each function call will in fact be surplanted by a call to a bank switcher
which reads the relevant 32-bit value from the look up table store in the FLIST segment. The
bank switching mechanism for user code function calls is selected at compile time by selecting
one of the banked memory models. The size and position of the banks is determined at link
time (however please not that each code module cannot exceed the size of a bank as it is treated
as a non-divisible object at link time!).

To implement a secondary data switching mechanism the user will have to set up the data banks
as a separate data segments (either constant data (ROM) or static data (RAM). To do this the
#pragma directives should be used in the following way:

Constant Data Segments

#pragma memory = constseg (NAME1)
unsigned int = 450;
char str[] = “Please Enter Password”; /* string constant */
char *strptr = str’ /* ptr to string constant
char array[] = {‘0’,0x56,’2’,’3’,’4’,’5’}; /* initialised array */
#pragma memory = default

Non-Initialised Data Segments

#pragma memory = dataseg(NAME2)
int a;
char *b;
struct tag {

char a;
struct tag *next;

} item;
#pragma memory = default

There are a few points to note from the above fragments of C code.

HITACHI

Page 2

1. Firstly all ROM variables should of course be initialised to their default values (or they will
take the value 0).

2. Please note that to initialise a pointer to a character string a two stage process has to be
undergone - firstly define an array of characters which is initialised to the desired string.
Then declare a pointer to a character which is initialised to the start address of the array (as
above for str and strptr).This process is required to force the string constant into the user
defined constant segment. If the code read ‘char *str = “Please Enter Password”; then the
compiler would recognise a pointer to a constant string and place the string into the constant
string segment CSTR!

3. Static (volatile) data variables cannot be initialised at start-up due to the way that the cstart-
up code has been written (i.e. there is no mechanism for recognising user segments and
their locations). This could be coded into cstart-up but a ROM shadow area would have to
be created to do it (and so you still wouldn’t define the initialisation values in the above
fragments).

Switching Banks

Now that the data itself has been defined the user has to note the position of each data bank so
that the switch can be made. Figure 1 shows the scenario, the code banking scheme is being
used with four code banks residing in the window H’D000 to H’FB00, the switch table has
been located after the vector table (here at H’00C0). This in fact has all been done for you by
the compiler.

In this example the code banks are physically separated by H’10000 (i.e. a full 64kbyte page)
so that the code bank 1 will be between addresses H’1D000 and H’2FB80 etc.

This was achieved by the linker command:

-b(CODE)CODE=D000,2B00,10000

To implement the data bank switching scheme you must decide on the address decoding that
will be required to select the relevant bank to be examined.

For example here the data banks are at logical addresses H’C000 TO H’D000, when banked
they must not clash with the logical addresses of the code banks. Perhaps explicitly stated in the
linker command file, e.g.

-Z(DATA)NAME1=C000-D000
-Z(DATA)NAME2=1C000-1D000
-Z(DATA)NAME3=2C000-2D000 (e.t.c).

The various external banks may then be switched by a couple of I/O lines forming the most
significant two bits of the address (more bits will give you more banks). Naturally the user may
decide to use the same port as the one used for code bank switching (but different pins!) to
switch. In this case the following code may suffice when bits 4 and 5 or port 4 are used:

#define DBDDR P4DDR
#define DBDR P4DR
#define BANK(x) DBDR=(DBDR & 0xCF) | (x <<4))

HITACHI

Page 3

The macro definition for BANK will simply compile down to four assembler lines for each
invocation of BANK () and will allow the user to swiftly switch between data banks. For
example

In C: BANK (3);will be....

In assembler: MOV.B @P4DR,R1L
AND.B #207,R1L
OR.B #48,R1L
MOV.B R1L,@P4DR

N.B. You must also define the relevant port to be an output port (DBDDR =) if it isn’t the same one as used for
banked code.

Judicious use of Multiple Data Banks

The most efficient use of the data bank scheme, where possible is to have each data bank large
enough to handle the data which is local to, and shared between, a number of banked code
modules. Thus if five functions all access the same data structure, then fitting all of the data for
those functions into one bank will reduce the total number of switches required. This may mean
that one code bank has one associated data bank, or more than one code bank will use a given
data bank. The only time multiple switches may be required will be when given functions
require access to more than one data bank at the same time. If carefully written the code will not
cause any unsurvivable clashes between accesses - this means that intermediate ‘overlapping’
variables must be stored in non-banked memory. To do this the data must be ‘shadowed’.

Shadowing Data across Multiple Data Banks

If your system requires multiple data banks to be accessed, at the same time, and this proves to
be practicably impossible to avoid, then a shared ‘shadow’ area of memory must be maintained.

The simplest method will be to use non-banked memory to act as a temporary ‘scratch pad’ for
intermediate sets of variables. This may be fine if the data structures are quite small, and not too
much copying back and forth is required. However, when dealing with large systems this
cache approach may result in a significant overhead with multiple reads, writebacks and then re-
reads.

The functions ‘malloc’ and ‘free’ can be used to maintain a dynamically created scratch pad
within the data heap on page 0.

HITACHI

Page 4

Figure 1: H8/300 Dual Banked Memory Allocation

H8/300 Memory Map

CODE BANK

DATA BANK

H8/300 Memory Map

H8/300

Hardware Setup For Dual Banks

1

0

2

3

0

1

2

3

Address Bus
(A0 to A15)

Data
Switch

Data Banks

Code
Switch

Code Banks

P44

P45

P40

P41

0000

00C0

00FF

C000

D000

FB80

FFFF

0 1 2 3

0
1

2 3

On chip ROM

Banked External RAM

Banked External ROM

On chip RAM

On-chip Peripheral Register Field

When using this document, keep the following in mind,

 1. This document may, wholly or partially, be subject to change without notice.
 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document

without Hitachi’s permission.
 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons

during the operation of the user’s unit according to this document.
 4. Circuitry and other examples described herein are meant only to indicate the characteristics and performance of

Hitachi’s semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples therein.

 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without

the written consent of the appropriate officer of Hitachi’s sales company. Such use includes but is not limited to, use
in life support systems. Buyers of Hitachi’s products are requested to notify the relevant sales office when planning
to use the products in MEDICAL APPLICATIONS.

HITACHI

Page 1

Hitachi Europe Ltd. ISSUE: APPS/006/1.0

APPLICATION NOTE DATE: 09/02/95

Example Assembler Fuzzy Driver Routine,

which can be called from C

The Fuzzy Logic development tools available from Hitachi use the Togai Infra Logic, TILshell,
windows based development environment to define test and simulate fuzzy logic control
systems. The system comes with a copy of the fuzzy logic kernel look-up table to determine
how it should act.

A simplified example of a design and test process is as follows:

1. The user defines the fuzzy input and output variables, with associated membership sets and
defines the fuzzy rule base (using TILshell).

2. The user then uses the TILshell to test the fuzzy system using a combination of:
a. test input values
b. 3-D control surface plot
c. system simulation using a ‘C like’ test harness

3. The defined system is compiled (using TILshell) to produce an assembler source
look-up table.

4. An assembler driver is written to interface to the application code’s variables, point to
the fuzzy look-up table, invoke the fuzzy kernel and finally return the calculated outputs.
5. The application code is written using the assembler driver to interface to the fuzzy

kernel.

HITACHI

Page 2

Figure 1:

Application
Code

Fuzzy
Kernel

TILshell
windows

GUI

1. the assembler table is created
using TILshell, and then assembled.

2. The driver accesses the input and
output variables in the table.

3. the driver invokes the kernel.
4. The kernel acts according to the

setup information and the data in
the table.

5. The C application code calls the driver
to invoke the kernel when required.

Fuzzy Driver

Look-up
Table

4 1

3
2

5

HITACHI

Page 3

Example Fuzzy Driver:

The example is from a simple red/green light traffic control system. For this example the fuzzy
system is defined thus:

The Input variables:

 TILshell name Allocated symbol Type

traffic_density _traffic_density unsigned char
traffic_speed _traffic_speed unsigned char

The Output Variables:

 TILshell name Allocated symbol Type

green_light _green_light unsigned char
red_light _red_light unsigned char

Rule Base:
 TILshell name Allocated symbol Type

traffic _traffic

Required C interface;

As the system reutrns more than one variable, it would seem sensible to pass pointers to
structures to the fuzzy driver, one structure would contain the input variables, the second would
be filled by the driver to return the output variables. Thus C type definitions could be:

typedef struct i_vals {
unsigned char speed;
unsigned char density;

}FUZZ_IN;

typedef struct o_vals {
unsigned char green_time;
unsigned char red_time;

}FUZZ_OUT;

And the function prototype for the driver might be:

void fuzzy_driver (FUZZ_IN *, FUZZ_OUT *);

HITACHI

Page 4

The Assembler Driver

This must take the input variables from the structure and write them to the fuzzy input variable
locations, then setup a pointer to the fuzzy look-up table, call the kernel and finally place the
returned variables into the output structure. Here the assembler is for the H8/300 family. The
code might then be:

;FUZZY kernel interface routine enabling data passed via a pointer to
;be passed to the kernel (param 1), and returning data from the kernel
;at the address pointed to by a second pointer (param2)

NAME fuzzy
PUBLIC fuzzy_driver

EXTERN _traffic_density ;variables used by fuzzy table
EXTERN _traffic_speed
EXTERN _green_light
EXTERN _red_light
EXTERN Traffic
EXTERN _H300RTME ;fuzzy kernel

RSEG RCODE

fuzzy_driver:
MOV.W R0,@-R7
MOV.W R1,@-R7
MOV.W R2,@-R7
MOV.W R3,@-R7
MOV.W R4,@-R7
MOV.W R5,@-R7
MOV.W R6,@-R7
MOV.B @R1+,R0L ;put vals from FUZZ_IN into rule

base
MOV.B R0L,@_traffic_speed
MOV.B @R1,R0H
MOV.B R0H,@_traffic_density
MOV.W #_Traffic:16,R0 ;point to rule base
MOV.W #_H300RTME:16,R1 ;point to kernel
JSR @R1 ;invoke fuzzy kernel
MOV.W @(H’0010:16,R7),R0;pointer to OP var1 (green_time)
MOV.W R0,R1
ADDS.W #1,R1 ;pointer to OP var2 (red_time)
MOV.B @_green_light,R3L
MOV.B @_red_light,R3H
MOV.B R3L,@R0 ;saves values in structure

FUZZ_OUT
MOV.B R3H,@R1
MOV.W @R7+,R6 ;restore old register values
MOV.W @R7+,R5
MOV.W @R7+,R4
MOV.W @R7+,R3
MOV.W @R7+,R2

HITACHI

Page 5

MOV.W @R7+,R1
MOV.W @R7+,R0
RTS
END

When using this document, keep the following in mind,

 1. This document may, wholly or partially, be subject to change without notice.
 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document

without Hitachi’s permission.
 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons

during the operation of the user’s unit according to this document.
 4. Circuitry and other examples described herein are meant only to indicate the characteristics and performance of

Hitachi’s semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples therein.

 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without

the written consent of the appropriate officer of Hitachi’s sales company. Such use includes but is not limited to, use
in life support systems. Buyers of Hitachi’s products are requested to notify the relevant sales office when planning
to use the products in MEDICAL APPLICATIONS.

HITACHI

Page 1

Hitachi Europe Ltd. ISSUE: APPS/007/1.0

APPLICATION NOTE DATE: 24/02/94

Writing Downloadable C code using the IAR C Compiler

In certain systems the user may require a different set of functions to be called according to the
situation or mode of operation that the H8 microcontroller is in. The code will need to be
downloaded into RAM and then executed from there.

In most systems RAM space is at a premium and so the user cannot leave an area of RAM free
for the worst case scenario of downloading a large amount of code. One approach is to
overwrite obsolete/irrelevant data with the code. In addition the interface between the base code
and the dynamically loaded code DLC) needs to be standardised - i.e. if the base code calls
dynamically loaded code (or vice-versa) the addresses need to have been fixed at link time. If
there is to be some shared data area this needs to have accesses fixed at link time. However the
linker (xlink) will not allow the user to have two segments located at the same address at link
time, therefore some other action must be taken to ensure that both the base code and the DLL
can access each others functions and shared data in a sensible manner. Figure 1 shows the
possible interaction required by code used in such a system.

Figure 1: An example of a shared RAM system (First 64Kbytes)

Base Data Store DLC Area

Base Code and Constant Area

Shared Data Area

I/O

Basic Config. Using DLC

FFFF FFFF

HITACHI

Page 2

Proposed Solution Using Splitter

 Base Object Code Creation

In one case the object code created at link time has to have the base code, base data and shared
data located at the correct addresses so that the default configuration can run correctly. The
dynamically loadable code segments may be located in an unused area of the address map. This
should then be done in linker stage 1.

Thus the interface between the base code and all data is correctly set-up. The object code
created for the dynamically loadable code segments will however contain incorrect addresses
and needs to be discarded.

 Dynamically Loadable Code Creation

In each successive case for dynamically linked code the dynamically linked code must reside in
the correct place, as should be shared data and the base code. However it is not necessary to
have the discardable data in the correct place as this is not ever addressed by the dynamically
loaded code. Thus another link should take place to create the correct object code for each
successive dynamically loadable code segment. Thus linker stages 2 to N need to be performed
for N sets of loadable code.

Thus the dynamically loadable code and its shared data will be located at the correct addresses.
However the base code will be incorrect as it will contain accesses to base data, which will be at
incorrect addresses and thus needs to be discarded.

 The remaining problem

In any one of the above link stages the interface is correct between the base code and data, or
the dynamically linked code and data. However, in linker stage 1 (creation of base code) the
interface from the base code to the dynamically loadable code is incorrect (see Figure 2). Thus
lookup function address tables will need to be created for calls to dynamically loadable code
segments. As this information is different for each dynamically loadable segment it would be
sensible to have a fixed address access table which was also downloaded with the code.

HITACHI

Page 3

Figure 2: Function access Problems

Link Stage 1 Link Stage 2

Base code with
correct data
addresses

Data at correct
location

DLC code in
incorrect location

Incorrect
Function
Calls

Shared
Data

I/O

Base code with
incorrect data

addresses

DLC code in
correct location

Data at incorrect
location

Correct
Function
Calls

 Setting up function Access Tables

For the base code the correct addresses of the dynamically loadable functions need to be
accessible in a table format. This needs to be set at linker stages 2..N when the dynamically
loadable code segments are correctly positioned.

Thus a series of function pointers would need to be created for accesses to each function (see
Figure 3).

Figure 3: Function Pointer access of DLC from base code

Full DLC Loaded System

DLC Table

DLC Code

FFFF

Table
Function
Addresses

Set Function
Pointers via
DLC table

0 Base Code Area

Shared Memory Area

HITACHI

Page 4

 Splitting Valid Object Code from Inval id Object Code

At each linker stage the linker will create code and perhaps data which will not be located at the
correct addresses. To create a fully correct system the user will have to split the valid data from
the invalid data. In addition the down loadable segments will probably exist in some external
medium (EPROM for example) and thus will need to have the physical addresses of the
Srecords moved so that they fit within the EPROM, whilst still maintaining the integrity of the
code which will be downloaded to a different address. The Hitachi utility Splitter allows the
user to perform these functions (see application note 005 for Splitter usage instructions).

Example of Dynamically Linked Code

The following example shows a process which may be undergone to load in a single DLC. The
DLC will reside in an EPROM between the addresses 0000 and 1E7F.

 Base System Specification

#include <stdio.h>
#include <string.h>

#define TRUE 1
#define FALSE 0

/* Function prototypes */
void LoadDLC (char *);
void SetupPointers (char *);

#pragma memory = dataseg (SHARED)
char *array;
#pragma memory = default

/* Table access pointers Table base address here is E000 */
#define TABLE(x) (0XEE000 + (size of(void *) *x))

void ** pfpTestStr = (void **)TABLE(0);
void ** pfpFillStr = (void **)TABLE(1);

/* Actual function pointers for DLC */

int (*pTestStr) (char *);
int (*pFillStr (char *, char *)

void LoadDLC (char *DLCName)

{
/* your DLC loader code goes here */

}

void set-up pointers (char *DLCName)
{

HITACHI

Page 5

{
/*having loaded the table, set the function pointers to
point to the functions in the DLC using the table entries in

TABLE segment*/
if (!strcmp (DLCName, “DLC1”))

{
pTestStr = *pfpTestStr;
pFillStr = *pfpFillStr;
return;

}
else if (!strcmp (DLCName, “DLC2”))
{
/* etc */
}
}
int main (void)
{
int res;
array = “Hello There”;
LoadDLC (“DLC1”)
SetupPointers (“DLC1”);
res = pTestStr (“Hello There”);
res = pFillStr (array, “Hello again”);
return (0);
}

 DLC Code

#define TRUE 1
#define FALSE 0

int TestStr (char *str);
int FillStr (char *, Char *);

/*
--------------------------------------SHARED DATA AREA-------------------------------------

*/

#pragma memory = dataseg (SHARED)
extern char *array;
#pragma memory = default

/*

--------------------SET-UP TABLE FOR FUNCTION ADDRESSES---------------------

#pragma memory = constseg (TABLE)
void *table [] = {
(void *) TestStr,
(void *) FillStr
};
#pragma memory = default

HITACHI

Page 6

/*

---DLC CODE--

*/

#pragma codeseg (DLC)

int TestStr (char *str)
{
int i = 0
while (*str != ‘\0’)
{
if (*str ! = array [i++])
return (FALSE);
str++;
}
return (TRUE);
}
int FillStr (char *source, char *dest)
{
while (*source ! = ‘\0’)
{
*dest = *source;
dest++;
source++;
}
return (TRUE);

}
 System Build Batch File

@echo off
echo compiling base
icch8500 base -P-s-e-L-q
echo compiling dlc
icch8500 dlc -P-s-e-L-q

echo linking for base addresses + data
xlink dlc base -f base.xcl -o base -FPentica-bm -1 base.map -xsme
echo linking for dll
xlink dlc base -f dlc.xcl -o dlc -FPentica-bm -l dlc.map -xsme

echo splitting S-Records

splitter base
splitter dlc

del base.obj
del dlc.obj
rename main.obj base.obj
rename loader.obj dlc.obj

HITACHI

Page 7

 Linker Command Files

1,BASE.XCL
-! BASE.XCL
This file defines the correct addresses for the data segments and the code
-!
-! First define CPU -!
-cH8500

-! CORRECT BASE CODE SEGMENT AREAS -!
-Z(CODE)INTVEC, CODE, RCODE, CDATA, ZVECT, CONST, CSTR,

CCSTR=0

-! TEMPORARY PLACE TO PUT DLL -!
-Z(CODE) TABLE, DLC=B000-CFFF

-! DLL AND BASE AREA SHARED VARIABLE STORAGE -!
-Z(DATA) SHARED=d000-dfff

-! CORRECT BASE VARIABLE AREA -!
-Z(DATA) DATA, IDATA, UDATA, ECSTR, WCSTR, TEMP,
CSTACK+200=E000-FEFF
-Z(DATA) SHORTAD=FF00-FF7F

-DREG_BR=FF

-! See configuration section concerning printf/sprintf -!
-e_small_write=_formatted_write
-e_medium_read=_formatted_read
-! Now load the ‘C’ library -!
c1h85s

2, DLL.XCL

-! DLL.XCL
This file defines the correct addresses for the data segments and the code.
-!
-! First define CPU -!
-cH8500

-! CORRECT BASE CODE SEGMENT AREAS -!
-Z(CODE) INTVEC, CODE, RCODE, CDATA, ZVECT, CONST, CSTR,

CCSTR=0

-! CORRECT PLACE TO PUT DLL -!
-Z(CODE) TABLE, DLC=E000-FEFF

-! DLL AND BASE AREA SHARED VARIABLE STORAGE -!
-Z(DATA) SHARED=d000-dfff

-! TEMPORARY BASE VARIABLE AREA -!
-Z(DATA) DATA, IDATA, UDATA, ECSTR, WCSTR, TEMP,
CSTACK+200=B000-CFFF

HITACHI

Page 8

-Z(DATA) SHORTAD=FF00-FF7F

-DREG_BR=FF

-! See configuration section concerning printf/sprintf -!
-e_small_write=_formatted_write
-e_medium_read=_formatted_read

-! Now load the ‘C’ library -!
c1h85s

 Splitter Command Files

1,BASE.FMT

BASE FORMAT FILE
-I “base.obj”

CODE SPLIT
-O “main.obj” 0x0000 0xAFFF
DATA SPLIT
-O “main.obj” 0xD000 0xFF7F
JUNK THE REST
-O “JUNK.OBJ” 0XB000 0XCFFF

2, DLC.FMT

DLL FORMAT FILE
-I “dlc.obj”

CODE SPLIT
-O “loader.obj” 0xE000 0xFEFF BASE=0x0000
JUNK THE REST
-O “JUNK.OBJ” 0x0000 0xDFFF

 Created Output Files

A number of files have been created by the above process. In fact only the following files will
be required for use by the end system:

dlc.obj - DLC code plus table (in EPROM format).
base.obj - base code, base data and shared data.

 Final Comments:

The above example is intended as a guide to how a shared RAM system may be implemented
using the IAR C compiler and Splitter. However the example shown here is a generalised one,
and the user may find ways to improve the speed and storage usage of the system.

HITACHI

Page 9

When using this document, keep the following in mind,

 1. This document may, wholly or partially, be subject to change without notice.
 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document

without Hitachi’s permission.
 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons

during the operation of the user’s unit according to this document.
 4. Circuitry and other examples described herein are meant only to indicate the characteristics and performance of

Hitachi’s semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples therein.

 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the

written consent of the appropriate officer of Hitachi’s sales company. Such use includes but is not limited to, use in life
support systems. Buyers of Hitachi’s products are requested to notify the relevant sales office when planning to use the
products in MEDICAL APPLICATIONS.

 Hitachi Europe Ltd. ISSUE : APPS/029/1.1

 APPLICATION NOTE DATE : 14/11/95

C Code Demonstration Program

This code illustrates some of the key features of the H8-300 C compiler V3.11/2 by IAR running
on the H8-3834.

The program configures timer A as a RTC to generate a 1s interrupt. This 'Tick' interrupt
increments variables seconds, minutes and hours, resulting in a clock function. The code also shows
examples of general cpu initialisation such as interrupt handling and port configuration.

When not processing the processor is placed in either 'Sleep' or 'Watch' mode. The code for both
modes is include but commented out for 'Watch', this can be re-selected if desired.

Internal CPU clock frequency = 5Mhz.

Compiler options:

1.0 -v0 300 cpu
2.0 -mL large memory model, normal intrinsics
3.0 -1id precision - 2byte ints, 4 byte doubles
4.0 -C nested comments
5.0 -K C++ // comments
6.0 -W(No) allows No size of trash on stack before clearing
7.0 -s(0-4) speed optimiser with level
8.0 -r debug information
9.0 -L -q list file with embedded assembler
10.0 -P PROMable code

*/

#include <ioh83834.h> /* H8/3834 IO labels */
#include <inh83834.h> /* and the interrupts */
#include <inh83.h> /* include interrupt std fn's*/

#define EVER ;

/* ********* */
/* Functions */
/* ********* */

void init_port_4(void); /* Function to initialise port 4*/
void init_timer_a(void); /* Function to initialise timer A as a RTC*/
void watch(void); /* Function to configure watch mode */
void toggle_port_4(void); /* Configure port 4 to outputs */
void do_tasks(void);
tiny_func void Clock(void); /* Clock defined as a tiny function */
interrupt [TIMER_A] void schedule(void); /* Interupt Service routine */

/***********************************/
/* Example's variables declarations*/
/***********************************/

bit set ; /* bit variable which can only exist in tiny address range*/

 Hitachi Europe Ltd. ISSUE : APPS/029/1.1

bit clear ;

no_init unsigned char cal_vals[20]; /* example of non initialised variables*/

/* Data placement to user defined segments */
#pragma memory= dataseg(USER1)

unsigned char image[20];
unsigned short val1;
float fpval1;

#pragma memory=default /* back to the default type*/

near unsigned short far *ptr1; /* pointing to far segment pointer in near area */

/* ********* */
/* Variables */
/* ********* */
#undef PCR4
sfr PCR4 = 0xFFE7;

#undef SYSCR2
sfr SYSCR2 = 0xFFF1; /* Examples of register field definition using bits variables*/
bit NELSEL = SYSCR2.4;
bit DTON = SYSCR2.3; /* Direct transfere on flag */
bit MSON = SYSCR2.2; /* Medium speed on flag */
bit SA1 = SYSCR2.1; /* SA1 and SA0 = Sub active mode clock select*/
bit SA0 = SYSCR2.0;

unsigned char seconds=0, minutes=0, hours=0;
unsigned short ctick=0;

C_task void main(void) /* C-task does not save registers which saves stack
 space. Only root functions should be declared
 like this. */

{
 init_port_4(); /* make port 4 an output */
 init_timer_a(); /* initialise timer a as RTC */
 IENR1 |= 0x80; /* enable interrupt on timer A */
 IENR2 |= 0x80; /* enable direct transfer */
 set_interrupt_mask(0); /* Clear I bit, demonstartes the

 use of an intrinsic function */

 for (EVER)
 {

 /* after the interrupt has woken up the
processor, the prog will execute the isr
and return here */

 watch(); /* bed time !*/

 }

}

void do_tasks(void)
{ /* This is the kernal from which all of */

 Hitachi Europe Ltd. ISSUE : APPS/029/1.1

/* The tasks are called when the */
/* processor is in active mode */

unsigned char count1,count2;
Clock();
toggle_port_4(); /* delay to give indication to outside world via

 LED */
for(count1=0;count1<10;count1++)
 {
 for(count2=0;count2<10;count2++)
 {
 }
 }

}

void init_port_4(void)
{

PCR4 = 0x7; /*bottom 3 bit output*/
}

void init_timer_a(void)
{

 TMA = 0x1e; /* reset tca and psw */
 TMA = 0x18; /* bits 7,6,5 set o/p to 1Hz */

/* bit 4 reserved */
/* bits 3,2,1,0 set overflow to 1s */

}

void watch(void)
{ /* CONFIGURATION FOR WATCH MODE */

/* SYSCR1 &= 0x7f; /* reset LSON bit (bit3)*/
 SYSCR2 |= 0x04; /* set MSON bit (bit 2)*/
 SYSCR1 &= 0xb0; /* reset bit 6 */
 SYSCR1 |= 0xb0; /*set bit 7 ssby bit, and bits 4,5*/
 IENR1 |= 0x80; /*enable interrupt on timer a*/
*/

/* CONFIGURATION FOR SLEEP MODE */
 SYSCR1 = 0x37;
 NELSEL = 0;
 DTON = 0; /*configure transition to sleep*/
 MSON = 1; /*set active medium mode */
 SA1 = 0; /*subactive mode = clock/8 */
 SA0 = 0;
 /* SYSCR2 = 0xE4; */ /* Alternative method to above*/
 IENR1 = 0x80; /* enable interrupt on timer A*/

 sleep(); /*Shut down*/
}

 Hitachi Europe Ltd. ISSUE : APPS/029/1.1

void toggle_port_4(void)
{

 PDR4 ^= 0x07;
}

#pragma function=tiny_func /* all functions will use tiny function calling mechanisms */
void Clock(void)
/* This function updates the seconds, minutes and hours. The standard

function calling mechanism is overridden by 'tiny_func'. Will now
use memory indirect addressing mode.

*/
{
if (ctick >= 1) { ctick = 0; seconds++;}
if (seconds>=60) { seconds=0; minutes++;}
if (minutes>=60) { minutes=0; hours++;}
}

#pragma function=default /* back to default calling mechanism */

interrupt [TIMER_A] void schedule(void)
{

 IRR1 &= 0x7f; /* reset the interrupt request */
 ctick++;
 do_tasks(); /* execute tasks */

/* this lot must be <1 S */
/* The processor will return here */

}

/* Program End */

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the
operation of the user’s unit according to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s
semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result
from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written
consent of the appropriate officer of Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems.
Buyers of Hitachi’s products are requested to notify the relevant sales office when planning to use the products in MEDICAL
APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

 APPLICATION NOTE DATE : 14/11/95

H8-3042 Framework Program

This is a framework program for use on the H8-300H family of 16bit microcontrollers. It can be
used as a basis for other programs and also to examine the various features of the 300H Peripherals.
The program has been written for the H8-3042 but can be easily adapted to other members of the 300H
family.

 There are 7 basic functions for the program:-

 1.0 Read 4 AD values, scale and output to serial port 0. The
 message is formatted via the 'sprintf' function and output
 to the serial port via a scheduler. The scheduler is called
 every 5mS from an interrupt generated by Ch0 of the ITU. A
 character is passed to the serial port every 5mS. Port B lines
 are toggled at multiples of 5mS to check correct operation.

 2.0 Serial port 0 is set for 9600 baud, asynch, 8 data, 1 stop,
 no parity.

 3.0 Configure ITU Ch1 to generate an output PWM of frequency 25KHz
 at 75% duty cycle. This can then be varied by adjusting the
 varying the voltage on analogue channel 0. This part is commented
 out to allow TPC operation.

 4.0 Configure ITU Ch2 to measure the PWM frequency by using the
 input capture facilty.

 5.0 Configure ITU Ch0 to generate a 5ms interrupt to act as a time
 base for a simple scheduler.

 6.0 Configure ITU Ch3 to generate a 2mS interrupt that triggers
 DMAC channel 0A to load a byte of data to the TPC.

 7.0 The DMAC is configured to short address I/O mode. Eight
 values are read from a look up table and transferred to the
 TPC. After these values have been transferred a cpu interrupt is
 generated and the cpu resets the DMA source address to point
 to the start of the look up table.

 8.0 The TPC is configured so that outputs TP0 to TP7 are enabled,
 the TPC being set for non-overlap mode.

 9.0 Configure the watchdog, for watchdog mode with a 65 mS timeout.

 10.0 Configure the Refresh Controller for compare match interval mode,
 to give a match every 20mS. Upon a compare match, an interrupt
 is generated. The interrupt handler is used to reset the watchdog
 timer to prevent overflow and hence the MCU from reseting.

Specification Ends.
Software start date 11 January 95. - Version P1.0.

 ---*/

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

/* Program starts here */

#pragma language = extended // enable extensions
#include "inh83.h" // in-line functions
#include "ioh83042.h" // port cast definitions
#include "inh83042.h" // interrupt vector identifiers
#include "stdio.h" // for sprintf

//---
/* Function Prototypes */

void Init_Interrupts(void);
void Init_ITU(void);
void Init_DMAC(void);
void Init_TPC(void);
void Init_AD(void);
void Init_Serial(void);
void Init_Ports(void);
void Init_WDog(void);
void Init_Refresh(void);

//---

/* Definitions */

#define EVER ;;

//---

/* Global Variables */

unsigned char tx_msg_buf1[60]; // buffer for 'sprintf'
unsigned short An0,An1,An2,An3,msg_ptr=0;
bit msg_sending_flag;
unsigned char step_out[8] = {0x95, 0x65, 0x59, 0x56, 0x95, 0x65, 0x59, 0x56};
unsigned short schedule_count=0;

unsigned long dmac_test=0;

//---

/* 'sfr' & 'sfrp' declarators here */

sfr ITU0_TSR0 = 0xFFF67;
sfr PB_DR = 0xFFFD6;
sfr SCI0_SSR0 = 0xFFFB4;
sfr RTM_CSR = 0xFFFAD;

//---

/* Code starts here */

C_task main(void) // C_task forces function not to save
{ // registers on entry
unsigned char x;

/* Initialise Peripherals */

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

Init_Interrupts();
Init_Ports();
Init_DMAC();
Init_TPC();
Init_ITU();
Init_AD();
Init_Serial();
Init_Refresh();
Init_WDog();

for(EVER)
 {
 while (msg_sending_flag); // wait until last message sent
 for (x=0; x<=59; tx_msg_buf1[x++]=0); // clear buffer
 sprintf(tx_msg_buf1, "Analogue Ch

Values:An0=%d,An1=%d,An2=%d,An3=%d\n\r",An0,An1,An2,An3);
 msg_sending_flag = 1; // start transmission

 /* Read A-D buffers */

 An0 = ADDRA>>6; // shift down to botton of short, '0's moved in
 An1 = ADDRB>>6;
 An2 = ADDRC>>6;
 An3 = ADDRD>>6;

 /* Scale in tenths of a volt */

 An0 = (An0*50)/1024;
 An1 = (An1*50)/1024;
 An2 = (An2*50)/1024;
 An3 = (An3*50)/1024;

 /* Use An0 to vary the PWM ratio on ITU Ch 0 */

 ITU_GRA1 = (An0*640)/50;

 }

}

void Init_Interrupts(void)
{
/* Configue SYSCR and CCR first */

SYSCR = 0x03; // set UI bit in CCR as an interrupt mask bit

and_ccr(0x3F); // enable interrupts, set UI bit to 0 - inline function

/* or alternatively this could be used to enable interrupts */

set_interrupt_mask(0); // enable all interrupts

/* Set priorities, Refresh controller and DMAC interrupt have priority. */

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

IPRA = 0x08; // Priority for refresh controller
IPRB = 0x20; // Priority for DMAC interrupts
IER = 0; // all external ints disabled as default
ISCR = 0x3F; // all external ints triggered by falling edge input

}

void Init_ITU(void)
{

/* Ch 0 - 5ms timebase interrupt for scheduler */

ITU_TCR0 = 0x21; // clear comp' match GRA, internal clock/2
ITU_TIOR0 = 0; // no output at compare match
ITU_TIER0 = 0x01; // interrupt on compare match GRA
ITU_GRA0 = 0x9c3F; // 40000 - to give 5ms compare match

/* Ch 1 - 25Khz PWM with 75% on duty cycle */

// Commented out for TPC operation

/*ITU_TCR1 = 0x40; // clear comp' match GRB, internal clock
ITU_TIOR1 = 0; // ignored PWM mode set in TMDR register
ITU_TIER1 = 0; // no interrupts
ITU_GRA1 = 160; // Go high
ITU_GRB1 = 640; // Go low*/

/* Ch 2 - Input capture */

ITU_TCR2 = 0x40; // clear on i/p cap on GRB
ITU_TIOR2 = 0x45; // i/p capture GRB +ve edge, GRA -ve edge
ITU_TIER2 = 0; // no interrupts

/* Ch 3 - 2mS interrupt to trigger DMA */

ITU_TCR3 = 0xC3; // counter clear compare match GRB, clk/8
ITU_TIOR3 = 0; // set GRA & GRB to output compares
ITU_TIER3 = 0x01; /* interrupt on compare match A, triggers DMA & TPC,
 interrupt flag, automatically cleared by DMAC */
ITU_GRA3 = 400; // set non-overlap margin (10uS @ 16Mhz)
ITU_GRB3 = 4000; // set period (2mS @ 16Mhz)

/* set registers common to all ITU channels */

ITU_TSNC = 0; // channels operate independently - not synch'd
// Commented out for TPC operation
/*ITU_TMDR = 0x02; // Ch 1 set for PWM mode*/
ITU_TFCR = 0; // Ch 4 not used
ITU_TOER = 0; // Ch 4 not used, pins used for normal i/o
ITU_TOCR = 0xFF; // not used as default
ITU_TSTR = 0x0D; // start channels 0, 2 and 3 - 1 stopped for TPC

}

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

void Init_DMAC(void)
{
/* configure DMAC for short addressing mode. Channel 0A set
 for I/O mode with a cpu interrupt generated after 8 transfers */

unsigned char temp;

DMAC_MAR0A = (unsigned long)step_out; // address of look up table
DMAC_IOAR0A = 0xA5; // NDRA same output trigger for TPC groups 0 & 1
DMAC_ETCR0AH = 0; // high byte
DMAC_ETCR0AL = 8; // Low byte, transfer count of 8

temp = DMAC_DTCR0A; /* dummy read to allow DTE bit to be set to 1 */

DMAC_DTCR0A = 0x8B; /* enable transfers, byte size, increment MAR,
 I/O mode, enable CPU interrupt at end of transfer
 count, trigger compare match A ITU 3 - DTCRB only
 used for full address mode */
}

void Init_TPC(void)
{
/* configure for non overlap with byte output on TPC groups 0 & 1. Groups
 are triggered by same timer, ITU Ch3. */

TPC_TPCR = 0xFF; // groups 0 & 1 triggered by ITU Ch3 compare match
TPC_TPMR = 0x03; // non overlap mode for groups 0 & 1
TPC_NDERA = 0xFF; // enable transfer of NDERA data to PADR
}

void Init_AD(void)
{
/* Configure for scan mode on channels 0 to 3 */

ADCSR = 0x3B; // Scan mode, ch's 0 to 3, start, no interrupt

}

void Init_Serial(void)
{
/* configure serial port for 9600baud, 1 stop, 8 data, no parity,
 interrupt on receive */

// Serial Port 1 not used

SCI0_SMR = 0; // multiprocessor bit not used
SCI0_SCR = 0x70; // interrupt on receive , start tx and rx
SCI0_BRR = 51; // set for 9600 baud
}

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

void Init_Ports(void)
{
/* Ports set for following:-

 PortB = Output.

*/

PADDR = 0xFF; // output
PBDDR = 0xFF; // output

}

void interrupt [DMAC_DEND0A] DMAC0A_Tfr_End(void)
{
/* interrupt generated by DMAC0A at end of transfer count */
unsigned char temp;
DMAC_ETCR0AH = 0; // re-write transfer count - high byte
DMAC_ETCR0AL = 8; // Low byte, transfer count of 8
DMAC_MAR0A = (unsigned long)step_out; // reset MAR to point to start of table
temp = DMAC_DTCR0A; // dummy read
DMAC_DTCR0A |= 0x80; // re-enable DTC transfers
}

void interrupt [ITU_IMIA0] ccr_mask[0x02FF] Scheduler(void)
/*
 Interrupt Service routine for compare match on
 ITU Ch 0. Note ccr_mask shown for example only
 as mask operation and value is set to have no
 effect on ccr.

*/
{
static unsigned char t50ms=9, t100ms=1, t250ms=4, t500ms=1, index=0;
ITU0_TSR0.0 = 0; // reset GRA compare match interrupt flag
 // read modify write required ie a bit operation

/* This interrupt is called every 5ms */

/* Toggle port pin for square wave output at 100Hz (10mS) */

PB_DR.5 = (!PB_DR.5) ? 1 : 0; /* toggle pin */

schedule_count++;

if (schedule_count >= 5000) schedule_count=0;

/* transmit message from buffer */

if (msg_sending_flag)

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

 {
 while (!SCI0_SSR0.7); /* wait until tx buffer free */
 SCI0_TDR = tx_msg_buf1[msg_ptr++];
 SCI0_SSR0.7 = 0; /* reset TDRE flag */
 }

if (!tx_msg_buf1[msg_ptr])
 {
 msg_ptr=0;
 msg_sending_flag = 0; // message sent
 }

/* user functions to be called every 5ms - note combined run time
 of these functions must be < 5ms */

/* User_5ms_Func1();
 User_5ms_Func2();
 User_5ms_Func3(); */

if (!t50ms)
 {
 /* user functions to be called every 50ms - note combined run time
 of these functions must be < 50ms */

 /* 50ms tick */

/* User_50ms_Func1();
 User_50ms_Func2();
 User_50ms_Func3(); */

 /* reload 50ms tick */
 t50ms = 9;

 /* user functions to be called every 100ms - note combined run time
 of these functions must be < 100ms */

 /* 100ms tick */

 if (!t100ms)
 {
 /* Toggle port pin for square wave output at 5Hz (200mS) */

 PB_DR.6 = (!PB_DR.6) ? 1 : 0; /* toggle pin */

/* User_100ms_Func1();
 User_100ms_Func2();
 User_100ms_Func3();*/

 /* reload 100ms tick */
 t100ms = 1;

 /* user functions to be called every 500ms - note combined
 run time of these functions must be < 500ms */

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

 /* 500ms tick */

 if (!t500ms)
 {
/* User_500ms_Func1();
 User_500ms_Func2();
 User_500ms_Func3();*/

 /* reload 500ms tick */
 t500ms = 4;
 }
 else t500ms--;

 }
 else t100ms--;

 /* user functions to be called every 250ms - note combined run time
 of these functions must be < 250ms */

 /* 250ms tick */

 if (!t250ms)
 {

/* User_250ms_Func1();
 User_250ms_Func2();
 User_250ms_Func3();*/

 /* reload 250ms tick */
 t250ms = 4;

 }
 else t250ms--;
 }
else t50ms--;

}

void Init_Refresh(void)
{
RFSHCR = 0; // set for interval timer mode
RTCOR = 78; // set for a compare match every 20mS
RTMCSR = 0x7F; // interrupt, clk/4096
}

void interrupt [CMI] Refresh_Int(void)
/* Interrupt handler for refresh controller when in interval mode */
{
RTM_CSR.7 = 0; // reset compare match flag

PB_DR.7 = (!PB_DR.7) ? 1 : 0; /* toggle pin */

 Hitachi Europe Ltd. ISSUE : APPS/032/1.1

/* reset watchdog timer to prevent overflow */

WDT_TCNT = 0x5A00; // '5A' password - reset timer to zero

}

void Init_WDog(void)
{
/* configure for watchdog mode - will reset MCU at overflow */

WDT_TCSR = 0xA57F; // 'A5' password, watchdog mode, clk/4096, started
 // will overflow every 65mS if not reset
}

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the
operation of the user’s unit according to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s
semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result
from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written
consent of the appropriate officer of Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems.
Buyers of Hitachi’s products are requested to notify the relevant sales office when planning to use the products in MEDICAL
APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

 APPLICATION NOTE DATE : 8/5/96

H8/300H Software UART implementation using
2 Timer and 2 DMA channels

Most variants of the H8/300H family of micro-controllers support two hardware UARTS as standard. However
in a lot of detailed embedded applications today there is an increasing requirement for more than two. Detailed
here is a method where a further full duplex UART channel can be implemented using two on board timers and
two of the DMA channels. For the transmission side there is some overhead required to set up the transmission
table and pattern and on the receive side there are two CPU interrupts, one at reception of the first start pulse
edge (approximately 8 µs) and one when the packet has been received (approximately 64 µs).

The outer layer of the application code has been written in C but the bit bashing routines are shown here in
assembler for speed purposes, but there is no reason why these cannot be converted to Ansi C.

 Asynchronous Communications:

An asynchronous data packet will be of one of the following formats:

<start bit> <data> <stop bit>
<start bit> <data> <stop bit> <stop bit>
<start bit> <data> <parity bit> <stop bit>
<start bit> <data> <parity bit> <stop bit> <stop bit>

The data content may be, typically, between five and eight bits. Parity may be even, odd or disabled. There
may be one or two stop bits. In standard use the user selects the format required for the communications
protocol in use, and the UART remains set at a standard format. This example assumes that the user has only
one protocol required, and that this is known at compile time, thus the code may be written specifically for the
format required, and may therefore have any generalisations removed to increase execution speed and reduce code
overhead.

The selected packet format is: 9600 bps, 8 data bits, no parity, 1 stop bit.

To implement a Uart two separate operations must be catered for:

• The UART must be able to create data packets on an I/O line which conform to the required bit rate and
packet format.

• The UART must be able to detect transitions on a separate I/O line and disassemble the transitions into a
valid data value.

Both the above operations require the UART simulation software to be able to time I/O control at a rate which
is proportional to the bit rate of the asynchronous interface. In addition data must be transferred to/from the I/O
lines in synchronisation with the time steps. It is feasible to implement such timing and data transfer
operations in a number of ways:

• CPU performs a timing loop and transfers data.
• Timers generate time-out interrupts, the CPU then transfers data on interrupts occurring.
• Timers generate time-out interrupts, data is transferred by DMA on time-out events.

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

The above three options represent a decreasing requirement on the CPU, with the timer/DMA option requiring
CPU intervention only to set up and start transmission, or to disassemble the received data. It is this option
which has been selected for this example, as it represents the best use of the H8/300H peripherals to minimise
the CPU overhead in implementing a UART.

 Transmitter Implementation:

The algorithm used to implement the transmission par of the software UART reduces the number of DMA
transfers to the absolute minimum required, with the slight CPU overhead of creating a timer set up table before
invoking the timer/DMA transmission system. The algorithm uses the following basic principle:

• If a bit pattern is exclusive-ORed with itself divided by 2, the resulting pattern represents the 0 to 1, or 1 to
0 transitions in the original bit pattern.

For example:

Original Pattern: 01110100
Pattern / 2 00111010
XOR 01001110

i.e. a bit transition occurs at (reading from left to right) bits 1,4,5 and 6.

This transition data may then be used to determine the exact time at which the transmit line must be toggled,
which will not usually be on every bit of the packet. Thus worst case, the transition method of forming data
packets will tend to that of transferring bit data at the bit rate, while usually the number of transfers will be
significantly reduced ((four transitions in the above example).

The set up procedure for transmission is described below:

• Calculate the transition pattern.
• Form a table of transition times based upon the bit rate. The table should contain multiples of the bit rate

count for the frequency of the timer channel used.
• Set the timer channel to compare-match on the first transition time-out and to toggle an I/O line on each

compare-match event. The timer channel should also trigger a DMA transfer on each compare-match event.
• Set a DMA channel to transfer successive data from the transition data channel, to the compare-match

register on each successive compare-match event, until all transitions have occurred.

Thus once the transition table has been created and the timer and DMA initialised, then the timer will control the
I/O line using a compare-match event, and the DMA will reload the compare-match register automatically with
the next compare-match value. When the required number of transitions have occurred the DMA can be used
generate a CPU interrupt, which may then stop any further timer and DMA operations. This represents a
completely self-contained system which will only interrupt the CPU on completion of transmission

 Receiver Implementation

The receiver needs to detect the start of a data packet (denoted by the low start bit), it then must sample the
receive data line at a minimum of the bit rate to determine the incoming data bits. It is recommended that the
received data line is sampled at a frequency greater than the bit rate, so that more than one sample is available for
each data bit. This will then enable the receiver to remove any spurious readings from the incoming bit stream,
by taking the majority of the readings for each bit.

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

The implementation described below uses a sampling rate which is four times the bit rate. The start bit is
detected by a timer channel using the input capture function. This may then be used to interrupt the CPU,
which may then start the sampling process. A timer channel may then be used to set a sampling interrupt which
may be used to trigger a DMA transfer from the receiver I/O line to a receive data buffer.

Having finished the sampling process the CPU may then examine the sampled data to determine the received
value. This is accomplished by taking the majority level of each four samples as the received bit level. Once
the data value has been determined any parity checking may be performed, if required.

To summarise the operations

 Set-up - Timer & DMA

• Set the sample rate in to a compare-match register
• Enable input-capture interrupts for the timer channel
• Start the timer channel
• Set the source and destination DMA transfer addresses
• Set the DMA transfer count
• Set the DMA operation mode

 On Input-capture Interrupt:

• Stop timer channel
• Disable input capture interrupt & clear flag
• Enable compare match-interrupts
• Enable DMA transfers on compare-match interrupt and enable DMA
• Start timer channel

 On DMA completion interrupt:

• Stop the timer channel & clear flags
• Disable DMA transfers
• Disassemble receive buffer using majority samples to determine data bits.
• Set receiver flag and store data.

The above process may then be used to receive multiple data bytes at the desired bit rate.

Please note that this method uses two DMA channels to perform the data transfer, as normal address mode is
required. If these are not available, the sample transfer could be implemented as a compare-match CPU interrupt.
However, this would have more impact on CPU bandwidth.

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

 UART design notes:

The UART uses the following hardware:

Transmitter - One channel of the ITU
One channel of the DMA

Receiver - One channel of the ITU
Two channels of the DMA

However if the UART is not required to transmit at the same time as data may be received, then the total
requirement for the UART will be one channel of the ITU and two channel of the DMA.

In this example the UART has been set up assuming that reception and transmission will not occur
simultaneously.

 UART Benchmark Timings:

The code was timed on an E7000PC emulator for the H8/3042 device in advanced single chip mode (mode 6)
operating at 16Mhz system clock. The functions/interrupt handlers are listed below with execution times. In
addition timings were taken from the invocation of the transmit function, until the last data bit was transferred,
and the handler returned. This will give an indication of the toal transmit time which the CPU requires - please
note that the CPU will not be performing this code exclusively during this period.

Function: Time Taken (µsec):

Receiver 64 µsec
Transmit 21 to 25 µsec
Initialise UART 21 µ sec
ITU Capture Interrupt 8 µsec
DMA Isr 2 µsec

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

UART.C - Software UART implementation for H8/3042.

#include “ioh83042.h” // I/O register definitions
#include “inh83042.h” // Interrupt vector addresses
#include <inh83.h> // In-line functions

#pragma language=extended

//System Constants

#define GRA0 0x6A
#define DRA 0xD3

//Union for C access to DMAC MAR registers

union u_tag {
unsigned long full;
struct w_tag {

unsigned short hw;
unsigned short lw;

} word;
struct b_tag {

unsigned char rb;
unsigned char eb;
unsigned char hb;
unsigned char lb;

} byte
} MAR

//Global data and transmit/receive buffers

unsigned short dma_buff[20]
unsigned short period;
unsigned short dma_count
unsigned char rx_buff[40];

//Assembler based fast comms routine

void Transmit (unsigned char);

//Globals used for Flags

unsigned char SCI2_SMR;
unsigned char SCI2_SSR;
unsigned char SCI2_SCR;
unsigned char SCI2_RDR;

Function to set the ITU and DMAC channels to their initial settings, the ITU is run for a short time to allow a
compare match to occur so that the output line may be set to a logic high.

The transmitter uses ITU channel 0 (CMA) and DMA channel OA (in I/O mode).

The receiver uses ITU channel 1 (ICA then OCA) and DMA channels 1A and 1B (in block transfer full address
mode)

void Initialise UART (void)

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

{

period = 417; //sys/4 @16MHz -> 9600 bps

//set up for Transmit, initialise the timer output to high...

ITU_TCNT0 = 0x0000;
ITU_TCR0 = 0xA2; //CCLRA, sys/4
ITU_TIOR = 0x8A; //output 1 on CMA
ITU_GRA0 = 10; //compare match value
ITU_TSRO &= 0xF8; //clear flags
ITU_TSTR | = 0x01; //start the timer channel
while ((ITU_TSRO & 0x01) ! = 0x01); //wait on compare match
ITU_TSTR & OxFE; //stop channel 0 with output = 1
ITU-TSRO & = 0xF8; //clear flags

//now set up the timer and DMA channels to perform the transmission

ITU_TIOR0 = 0x8B; //toggle O/P on CMA
ITU_TIER0 = 0xF9; //enable interrupts on CMA
DMAC_IOAR0A = GRAO //enable interrupts on CMA
DMACIOAR0A = GRA0; //set I/O destination to GRA0 register
DMAC_DTCR0A= 0x40; //word, inc MAR, I/O CMA

//set up ITU for receive

ITU_TCNT1 =0x0000; //reset counter
ITU_TCR1 =0xA0; //CCLRA, sys
ITU_TIOR1 = 0x8E; //ICA falling edge
ITU_TSR1 & = 0xF8; //clear flags
ITU_ TIER1 = 0x01; //enable interrupt on ICA
//set up DMA for receive
DMAC_DTCR1A = 0x07; //byte, fixed source, block mode
DMAC_DTCR1B = 0x19; //inc dest, source is block, trigger on CMA 1
DMAC_ETCR1AH = 0x01; //1 byte per block
DMAC_ETCR1AL = 0x01;
DMAC_ETCR1BH = 0x00; //36 transfers to complete
DMAC_ ETCR1BL = 0x24;
DMAC_MAR1AE = 0x00; //port A is the source address
DMAC_MAR1AH = 0xFF;
DMAC_MAR1AL = DRA;
MAR.word.lw = (unsigned short) &rx_buff; //set destination
DMAC_MAR1BE = MAR.byte.eb;
DMAC_MAR1BH = MAR.byte.hb;
DMAC_MAR1BL = MAR.byte.lb;

}

Interrupt service routine to fire off the sampling process for a packet of data, given
that the low edge of a start bit has been detected by the input capture logic of the timer
channel.

interrupt [ITU_IMIA1] void ITUCaptureInterrupt (void)

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

{

ITU_TSTR & = 0xFD; //stop channel 1
ITU_TCNT1 = 0x0000; //reset counter
ITU_TIOR1 = 0x88; //CMA, no output
ITU_GRA1 = 417; //sys @ 16Mhz -> 4 * 9600 samples/sec
DMAC_DTCR1A | = 0x80; //enable DMA
DMAC_DTCR1B | = 0x80; //DMA master enable
DMAC_DTCR1A | = 0x08 //enable DMA interrupts
ITU_TSR1 &= 0xF8; //Clear flags
ITU-TSTR |= 0x02; //start channel 1

}

Main function to test that the transmit and receive operations work - here the transmit
line may be fed back to the receive line to allow simultaneous transmission and receipt.

int main (void)
{
int i;
set_interrupt_mask (0);
InitialiseUART();
while (1)
{
Transmit (0x74); //transmit the byte 0x74
for (i=0;i<4000;i++); //delay for a bit between packets
}
return (0);
}

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

RXTX - assembler routines for H8/3042 software UART

NAME rxtx

CASEON

PUBLIC Transmit
PUBLIC Receiver
PUBLIC DMAisr
EXTERN period
EXTERN dma_buff
EXTERN dma_count
EXTERN rx_buff
EXTERN SCI2_RDR
EXTERN SCI2_SSR

Set the CPU control register constants

ITU_TCNT0 equ H’FF68
ITU_GRA0 equ H’6A
ITU_TCR0 equ H’64
ITU_TIOR0 equ H’65
ITU_TSRO equ H’67
ITU_TIERO equ H’66
ITU_TSTR equ H’60
DMA_MAR0AM equ H’20
DMA_MAR0AS equ H’21
DMA_MAR0AB equ H’22
DMA_MAR0AY equ H’23
DMA_IOAR0A equ H’26
DMA_ETCROAH equ H’24
DMA_ETCROAL equ H’25
DMA_DTCROA equ H’27
DMA_DTCR1Aequ H’37
DMA_DTCR1B equ H’3F

Bit constants

RXERFLG equ 6

RSEG CODE

Transmit function to form transition table and then set the ITU and DMA off to transmit
the data packet.

Parameters: char to transmit will be in R6L

Register usage:

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

Transmit:

set up a work environment

PUSH.L ER6
PUSH.L ER5
PUSH.L ER4
PUSH.W R3
PUSH.W R0

MOV.B R6L,R6H ;get a copy of the input char
SHLL.B R6H ;right shift
XOR.B R6L,R6H ;form transition byte

initialise data
MOV.L #dma_buff:32,ER4;buffer pointer
SUB.L ER5,ER5;zero out ER5
MOV.B #H’08,R3L ;set loop count to 8
MOV.W @period:24,E6 ;load bit period to E6
MOV.W E6,R5 ;initial setting for dma timeout

form timout table

label02;

SHLR.B R6H ;is there a transition?
BCC label01
MOV.W R5,@ER4 ;if yes then buffer the time period
INC.L #2,ER4
SUB.W R5,R5 ;clear period count
INC.W #1,E5 ;inc count

label01:

ADD.W E6,R5 ;add next bit period to count
DEC.B R3L
BNE label02 ;do eight times...

MOV.W R5,@ER4 ;buffer the time period
INC.W #1,E5 ;inc count

label03:

Finally load the stop bit timeout into the dma table here there is one stop bit in a packet.

INC.L #2,ER4 ;point to next entry in the transition table
MOV.W E6,@ER4 ;set stop period in transition table
INC.W #1,E5 ;increment dma transfer count

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

Now send it out using DMA & ITU

SUB.W R0.R0 ;load ITU_TCNT with 0
MOV.W R0,@ITU_TCNT0:16
MOV.L #dma_buff,ER4
MOV.W #20,R0 ;load GRA with start offset
MOV.W R0,@H’FF6A:16
BCLR #0,@ITU_TSRO:8 ;clear IMIA flag
MOV.B R4H,@DMA_MAR0AB:8
MOV.B R4L,@DMA_MAR0AY:8
MOV.B E4,R4
MOV.B R4L,@DMA_MAR0AS:8
MOV.W E5,R5 ;ECTR0A data =
MOV.B R5H,@DMA_ETCR0AH:8 ;no of transfers
MOV.B R5L,@DMA_ETCR0AL:8

finally start the timer channel 0 to tx the data

BSET #0,@ITU_TSTR:8
BSET #7,@DMA_DTCR0A:8 ;enb dmas
BSET #3,@DMA_DTCR0A:8 ;end dma ints

POP.W R0
POP.W R3
POP.L ER4
POP.L ER5
POP.L ER6

RTS

need to place received char is placed in SCI2_RDR

Receiver:

Assume that the data is in rx_buff
4 samples per bit, 9 bits...

PUSH.L ER0
PUSH.W R1
PUSH.W R2
PUSH.W R6

MOV.B #H’FD,R0L
MOV.B R0L,@ITU_TSTR:8 ;stop the timer channel
BCLR #3,@DMA_DTCR1A:8 ;disable DMA interrupts
BCLR #7,@DMA_DTCR1A:8 ;disable DMA transfers
BCLR #7,@DMA_DTCR1B:8 ;ditto

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

Now disassemble the received data

MOV.L rx_buff,ER0
ADD.L #4,ER0 ;zip past start bit
SUB.B R2H,R2H ;set bit count to 0
SUB.B R6L,R6L;initialise return value

receive6:

SUB.W R1,R1 ;initialise zero & 1 counts
MOV.B #04,R2L ;sample count

receive0:

BTST #4,@ER0
BEQ receive1
INC.B R1H ;if its’s a 1 inc 1s count
BRA receive2

receive1:

INC.B R1L ;if it’s a 0 inc 0s count

receive2:

INC.L #1,ER0 ;point to next item
DEC.B R2L ;dec sample counter
BNE receive0
CMP.B #3,R1H
BGE receive3
CMP.B #3,R1L
BGE receive4
BRA rxerror

receive3: ;if majority was 1

BSET R2H,R6L ;set bit in O/P data register
BRA receive5

receive4: ;if majority was 0

BCLR R2H,R6L ;clear bit in O/P register

receive5:

INC.B R2H
CMP.B #08,R2H ;are all 8 bits done
BNE receive6

 Hitachi Europe Ltd. ISSUE : APPS/037/1.1

receive7:

MOV.B R6l,@SCI2_RDR

POP.W R6
POP.W R2
POP.W R1
POP.L ER0
RTE

rxerror:

MOV.B #H’FF,R6L
MOV.L #SCI2_SSR,ERO
BSET #RXERFLG,@ER0
BRA receive7

Interrupt Handler for DMA on transmit completion

DMAIsr:

BCLR.B #3,@DMA_DTCR0A:8 ;disable DMA interrupts
BCLR.B #7,@DMA_DTCR0A:8 ;disable DMA transfers
BCLR #0,@ITU_TSTR:8 ;sto timer channel 0
RTE

Interrupt vector definitions for the isrs

COMMON INTVEC
DS.B 88
DC.W DMAIsr
DS.B 2
DC.W receiver

END

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the
operation of the user’s unit according to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s
semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result
from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written
consent of the appropriate officer of Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems.
Buyers of Hitachi’s products are requested to notify the relevant sales office when planning to use the products in MEDICAL
APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/043/1.0

 APPLICATION NOTE DATE : 28/07/95

Flat Panel Displays - EMI Considerations

The following application note describes EMI considerations on Thin Film Transistor(TFT) and
Super Twist Neumatic (STN) displays. The considerations cover the equivalent circuit of the
display, what harmonics of operating noise will affect the display and also suggest methods by
which electro-magnetic interference can be reduced.

1. Antena Model and Estimation

~

L

f

I

Common Mode
E α fLI

~
f

Differential Mode
E α f 2 AI

A

I

Estimation of EMI strength based on the differential model

VGA TFT

SVGA TFT

XGA TFT

Number
of Colour

Dot Clock
(MHz)

Number of
Data Line

EMI Strength
(Differential Mode)

512 colour

262K colour

262K colour

16M colour

25 MHz

25 MHz

38 MHz

33 MHz

9 bit

18 bit

18 bit

48 bit

0 dB (base)

+ 6 dB

+ 13 dB

+ 19 dB

 Hitachi Europe Ltd. ISSUE : APPS/043/1.0

2. Harmonics

= a0 + a1 sinwt + a2 sin2wt + a3 sin3wt + a4 sin4wt +
+ b1 coswt + b2 cos2wt + b3 cos3wt + b4 cos4wt +

Test Result Example

Freq.
(MHz)

Peak Q .
Peak

Limit Delta

48.38
193.31

48.38
51.36
87.05

120.02
193.28
200.08
233.31
270.67

25.4
32.8

33.76
39.93
28.32

33.1
37.2
38.6

35.48
38.9

33.93

39.0

40.23

40.0
43.6

40.0
40.0
40.0
43.6
43.6
43.6
46.0
46.0

14.60 dB
10.80 dB

6.24 dB
6.07 dB

11.68 dB
10.50 dB
6.40 dB
4.60 dB

10.52 dB
5.77 dB

Horizontal

Vertical

Dot clock frequency
= 38.66 MHz

Data frequency
= 9.665 MHz

Generated by graphic
controller

Analysis

48.38 / 9.665 = 5.00 - 5th harmonic of data
51.36 / 9.665 = 5.31 - not related to video frequency
87.05 / 9.665 = 9.00 - 9th harmonic of data
120.02 / 9.665 = 12.41 - not related to video frequency
193.31 / 9.665 = 20.00 - 20th harmonic of data or

5th harmonic of dot clock
200.08 / 9.665 = 20.70 - not related to video frequency
233.31 / 9.665 = 24.14 - not related to video frequency
270.67 / 9.665 = 28.00 - 28th harmonic of data or

7th harmonic of dot clock

 Hitachi Europe Ltd. ISSUE : APPS/043/1.0

3. Actual System Configuration

Graphic Controller : EMI Generator

Filter : Help to reduce harmonics

Cable, LCD Module : Antenna

Metal Shield : Should completely cut EMI radition ...
but, it creates a signal return path
ie. creating differential mode noise

Need to reduce the return current on Metal Shield and case

Metal Shield

Cable

Filter

Graphic
Controller

System
GND

LCD
Module

LCD Module

Metal Shield

~

Cable

Graphic
Controller

Filter

Signal GND

 Hitachi Europe Ltd. ISSUE : APPS/043/1.0

4. How to reduce EMI?

(1) Apply 3V signal voltage

20 log = -4.4 dB

(2) Replace RC filter to Inductive filter

3V
5V

-60dB

-40dB

-20dB

0dB

Gain

10 100 1000

Frequency

MHz

-20dB/dec
-40dB/dec

-60dB/dec-10 ~ -20dB

(3) Use flat cable instead of wire cable

Impedance of wire cable is not too low
Well designed flat cable is effective in lowering GND impedance

2 layer cable

(4) Ferrite Core helps to decrease GND impedance

1 layer - signal
1 layer - plain GND{

Ferrite Core Cable

i +

i -

(i + = i -)

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the
operation of the user’s unit according to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s
semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result
from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written
consent of the appropriate officer of Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems.
Buyers of Hitachi’s products are requested to notify the relevant sales office when planning to use the products in MEDICAL
APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/044/1.0

 APPLICATION NOTE DATE : 14/11/95

H8/300H DIRECT MEMORY ACCESS CHANNEL
(DMAC) EXAMPLE

The following application note describes the way in which the DMAC is configured to move
information on the H8/3042. Data is passed from a location in memory to an output Port every
time a value matches the state of an on board timer.

DMAC CHANNEL 0A USING REPEAT TRANSFER ON TIMER 3 COMPARE
MATCH WITH REGISTER GRA.

The following software example sets up the following functions:-
• A DMAC channel in repeat mode to place a value (from 0x11 to 0x88) into the NDRA

register. The DMAC performs this operation on a compare match of GRA with Timer 3.

• The value held in NDRA is output to the Port A data register (PADR) on a compare/match of
GRB with Timer 3.

Both of the above functions are performed by peripheral blocks in ‘background’. When an
emulator ‘break’ occurs, the CPU is halted, however both functions will continue to run
unaffected.

 SOFTWARE FLOWCHART

MAIN LOOP
Infinite loop
(Do Nothing)

INITIALISE INTERRUPTS
Configure SYSCR & CCR

Set Interrupt mask and priorities

INITIALISE ITU
Compare match with GRB, clock / 8
Set period of compare/match @ 2ms

INITIALISE TPC
Configure for non-overlap on TPC groups 0 & 1

INITIALISE DMAC
Setup MAR and enable transfer on Compare/Match with GRA

Set to repeat mode ITU3 DTCRB

INITIALISE PORTS
Set PA & PB to o/p

START

 Hitachi Europe Ltd. ISSUE : APPS/044/1.0

 DMAC OPERATION

The DMAC sends the contents of the STEP_OUT array into NDRA on a compare/match with
GRA. This is then sent to PADR, outputting the byte to the port data register on compare/match
with GRB.

STEP_OUT NDERA PORT A DR

0x11
0x22
0x33
0x44
0x55
0x66
0x77
0x88

Occurs every 2 ms

DMAC ITU

When DMAC channel 0A has completed all its transfers, the MAR is re-initialised and the value
8, placed in the transfer count register.

CODE LISTING

/* Software start date 11 January 95. - Version P1.0.

*/

/* Program starts here */

#pragma language = extended // enable extensions
#include "ioh83042.h" // port cast definitions
#include "inh83042.h" // interrupt vector identifiers
#include "inh83.h" // in-line functions

//---
/* Function Prototypes */

void Init_Interrupts(void);
void Init_ITU(void);
void Init_DMAC(void);
void Init_TPC(void);
void Init_Ports(void);

 //---
/* Definitions */
#define EVER ;;
//---

 Hitachi Europe Ltd. ISSUE : APPS/044/1.0

/* Global Variables */

unsigned char step_out[8] = {0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88};

//#pragma memory=dataseg(TEST) // user defined data segment, location
 // specified by linker
unsigned long dmac_test=0;

//#pragma memory=default

//---
/* 'sfr' & 'sfrp' declarators here */

sfr PB_DR = 0xFFFD6;

//---
/* Code starts here */
C_task main(void) // C_task forces function not to save
{ // registers on entry
unsigned char x;

/* Initialise Peripherals */
Init_Interrupts();
Init_Ports();
Init_DMAC();
Init_TPC();
Init_ITU();
for(EVER)
 {
 }
}

void Init_Interrupts(void)
{
/* Configue SYSCR and CCR first */
SYSCR = 0x03; // set UI bit in CCR as an interrupt mask bit
and_ccr(0x3F); // enable interrupts, set UI bit to 0 - inline function

/* or alternatively this could be used to enable interrupts */
set_interrupt_mask(0); // enable all interrupts

/* Set priorities, Refresh controller and DMAC interrupt have priority. */
IPRA = 0x08; // Priority for refresh controller
IPRB = 0x20; // Priority for DMAC interrupts
IER = 0; // all external ints disabled as default
ISCR = 0x3F; // all external ints triggered by falling edge input

}

 Hitachi Europe Ltd. ISSUE : APPS/044/1.0

 void Init_ITU(void)
{
/* Ch 3 - 2mS interrupt to trigger DMA */
ITU_TCR3 = 0xC3; // counter clear compare match GRB, clk/8
ITU_TIOR3 = 0; // set GRA & GRB to output compares
ITU_TIER3 = 0x01; /* interrupt on compare match A, triggers DMA & TPC
 interrupt flag, automatically cleared by DMAC */
ITU_GRA3 = 400; // set non-overlap margin (10uS @ 16Mhz)
ITU_GRB3 = 4000; // set period (2mS @ 16Mhz)
ITU_TSTR = 0x08; // start channels 0, 2 and 3 - 1 stopped for TPC
}

void Init_DMAC(void)
{
/* configure DMAC for short addressing addressing mode. Channel 0A set
 for I/O mode with a cpu interrupt generated after 8 transfers */
unsigned char temp;
DMAC_MAR0A = (unsigned long)step_out; // address of look up table
DMAC_IOAR0A = 0xA5; // NDRA same output trigger for TPC groups 0 & 1
DMAC_ETCR0AH = 8; // high byte
DMAC_ETCR0AL = 8; // Low byte, transfer count of 8
temp = DMAC_DTCR0A; /* dummy read to allow DTE bit to be set to 1 */
DMAC_DTCR0A = 0x93; /* enable transfers, byte size, increment MAR,
 repeat mode, trigger compare match A ITU 3 - DTCRB only
 used for full address mode */
}

void Init_TPC(void)
{
/* configure for non overlap with byte output on TPC groups 0 & 1. Groups
 are triggered by same timer, ITU Ch3. */

TPC_TPCR = 0xFF; // groups 0 & 1 triggered by ITU Ch3 compare match
TPC_TPMR = 0x03; // non overlap mode for groups 0 & 1
TPC_NDERA = 0xFF; // enable transfer of NDERA data to PADR
}

void Init_Ports(void)
{
/* Ports set for following:-
 PortA = Output
 PortB = Output.
*/
PADDR = 0xFF; // output
PBDDR = 0xFF; // output
}

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation of the user’s unit according
to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes
no responsibility for any intellectual property claims or other problems that may result from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of
Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are requested to notify the relevant sales
office when planning to use the products in MEDICAL APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/045/1.0

 APPLICATION NOTE DATE : 14/11/95

H8/300H DIRECT MEMORY ACCESS CHANNEL(DMAC) -
SERIAL COMMUNICATION EXAMPLE

The following example demonstrates how to set-up and use the DMAC for serial
communication on the H8/300H series of microcontrollers

DMAC CHANNEL 0A USING REPEAT TRANSFER ON SCI0_TDR (To
Transmit) AND DMAC CHANNEL 0B USING REPEAT TRANSFER ON
SCI0_RDR (To Receive)

The following software example sets up the following functions:-

• DMAC channel 0A in repeat mode to place a value (from A TRANSMIT BUFFER
‘SCI_out’) into the SCI0_TDR. The DMAC performs this operation when the transmit
buffer is empty.

• DMAC channel 0B in repeat mode to place a value from SCI0_RDR into a receive array

‘SCI_in’. The DMAC performs this operation when the receive data register is full.

Both of the above functions are performed by peripheral blocks in ‘background’. When an
emulator ‘break’ occurs, the CPU is halted, however both functions will continue to run
unaffected. The transmit buffer is thirty characters long. The receive buffer is sixty characters
long, therefore when the program is run, the receive buffer should contain the transmit message
twice.

The serial communication channel can be set up for synchronous communication at the baud
rate required eg:-

FAST:- 1Mbaud SMR CK=0 BRR=3
SLOW:- 250 baud SMR CK=3 BRR=249

 Hitachi Europe Ltd. ISSUE : APPS/045/1.0

 SOFTWARE FLOWCHART

CLEAR SCI0 STATUS REGISTER
PLACE A VALUE IN TRANSMIT REGISTER (TO INITIATE TRANSFER)

INFINITE LOOP
(*Do Nothing*)

INITIALISE INTERRUPTS
Configure SYSCR & CCR

Set Interrupt mask and priorities

INITIALISE SCI0
Set MODE to SYNCHRONOUS
Set BAUD RATE REGISTER

ENABLE TX/RX - ENABLE TX/RX INTERRUPTS

INITIALISE DMAC0B
Setup MAR and enable transfer on SCI0 RECEIVE REGISTER FULL

Set to repeat mode (60 times/transfer)

INITIALISE DMAC0A
Setup MAR and enable transfer on SCI0 TRANSMIT REGISTER EMPTY

Set to repeat mode(30 times/transfer)

INITIALISE PORT
Set P9 to o/p (except RX pin - PORT 9 PIN 2)

START

 DMAC OPERATION

The DMA Channel 0A sends the contents of the ‘SCI_out’ array into SCI0_TDR when the
transmit data register is empty. The DMA Channel 0B sends the contents of the SCI0_RDR
into the ‘SCI_in’ array when the receive data register is full.

SCI_out

DMA Channel 0A

DMA Channel 0B

SCI0_TDR Port9 Pin 0

Port 9 Pin 2 SCI0_RDR SCI_in

DMASCI

SCIDMA

When DMAC channel 0A has completed all its transfers, the MAR is re-initialised and the value
30 is placed in the transfer count register.

When DMAC channel 0B has completed all its transfers, the MAR is re-initialised and the value
60 is placed in the transfer count register.

 Hitachi Europe Ltd. ISSUE : APPS/045/1.0

CODE LISTING

/* Software start date 11 January 95. - Version P1.0.
--*/

/* Program starts here */

#pragma language = extended // enable extensions
#include "ioh83042.h" // port cast definitions
#include "inh83042.h" // interrupt vector identifiers
#include "inh83.h" // in-line functions

//---
/* Function Prototypes */

void Init_Interrupts(void);
void Init_ITU(void);
void Init_DMAC(void);
void Init_SCI(void);
void Init_Ports(void);

//---
/* Definitions */

#define EVER ;;

//---
/* Global Variables */

unsigned char SCI_out[30] = {" HITACHI MICRO SYSTEMS EUROPE "};
unsigned char SCI_in[60] ;
unsigned long dmac_test=0;
//---
/* Code starts here */

C_task main(void) // C_task forces function not to save
{ // registers on entry
unsigned char dummy ;

/* Initialise Peripherals */
Init_Ports();
Init_DMAC();
Init_SCI();
Init_Interrupts();

dummy = SCI0_SSR;
SCI0_SSR = 0x00 ;
SCI0_TDR = 0x20;

for(EVER)
{
}

}

 Hitachi Europe Ltd. ISSUE : APPS/045/1.0

void Init_Interrupts(void)
{
/* Configue SYSCR and CCR first */
SYSCR = 0x03; // set UI bit in CCR as an interrupt mask bit

and_ccr(0x3F); // enable interrupts, set UI bit to 0 - inline function

/* or alternatively this could be used to enable interrupts */
set_interrupt_mask(0); // enable all interrupts

/* Set priorities, Refresh controller and DMAC interrupt have priority. */
IPRA = 0x00;
IPRB = 0x20; // Priority for DMAC interrupts
IER = 0; // all external ints disabled as default
ISCR = 0x3F; // all external ints triggered by falling edge input
}

void Init_SCI(void)
{
SCI0_SMR = 0x80;
SCI0_BRR = 0x03;
SCI0_SCR = 0xF0;
}

void Init_DMAC(void)
{

/* configure DMAC0 for short addressing addressing mode. Channel 0A set
 for repeat mode with a cpu interrupt generated after 30 transfers */
/* configure DMAC0 for short addressing addressing mode. Channel 0B set
 for repeat mode with a cpu interrupt generated after 60 transfers */

unsigned char temp;

DMAC_MAR0A = (unsigned long)SCI_out; // address of look up table
DMAC_IOAR0A = 0xB3; // SCI0_TDR empty
DMAC_ETCR0AH = 0x1F; // high byte, transfer count of 31
DMAC_ETCR0AL = 0x1E; // Low byte, transfer count of 30

temp = DMAC_DTCR0A; /* dummy read to allow DTE bit to be set to 1 */

DMAC_DTCR0A = 0x94; /* enable transfers, byte size, increment MAR,
 repeat mode, trigger TDR empty */

DMAC_MAR0B = (unsigned long)SCI_in; // address of look up table
DMAC_IOAR0B = 0xB5; // SCI0_RDR full
DMAC_ETCR0BH = 0x3D; // high byte, transfer count of 61
DMAC_ETCR0BL = 0x3C; // Low byte, transfer count of 60

temp = DMAC_DTCR0B; /* dummy read to allow DTE bit to be set to 1 */

DMAC_DTCR0B = 0x95; /* enable transfers, byte size, increment MAR,
 repeat mode, trigger RDR full */

}

void Init_Ports(void)

 Hitachi Europe Ltd. ISSUE : APPS/045/1.0

{
/* Ports set for following:-

Port9 = Output -- (Except receive pin)
*/
P9DDR = 0xFB; // pin 2 (RD0) is an input
P9DR = 0xFB ;
}

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation of the user’s unit according
to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes
no responsibility for any intellectual property claims or other problems that may result from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of
Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are requested to notify the relevant sales
office when planning to use the products in MEDICAL APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

 APPLICATION NOTE DATE : 22/1/96

LCD character module control using H8_300H

The following application note details the requirements to interface an LCD module to a typical microcontroller,
in this case a 300H processor. The technical note will show details of hardware, firmware and software
requirements for the LCD interface. This particular application note will show the LCD interface solution shown
as a mixture of hardware and software that should provide the most timely and efficient mechanism of
controlling the module. However, it should be realised that the module could be directly controlled from software
by using a mechanism of bit bashing and polling input pins. This procedure will not be shown in this
application note.

System Specification.

The following specifications of timing requirements are valid for any of the 300H microcontrollers with an LCD
module under the control of the HD44780 LCD driver and controller.
The timings show a 300H processor running at 16Mhz with the low level control returning the wait signal to
stall the 300H.

 Figure 1 : LCD timming for HD44780

The manner in which the 300H will, address and control the LCD module is to use the address and chip select
lines to decode the enable line to the LCD module, data will be sent on the high lines of the data bus under direct
control of the RD pin. The wait pin signal will again be generated by the decode logic to sufficiently stall the
300H for the period of 610nsecs after the initial access.

The address of the LCD display shall be designated to be within byte wide memory area 7 with A1 (lowest
address line for byte wide memory) used to select between the instruction and data registers.

For completeness the watchdog timer has been used to ensure that the LCD display is not accessed, either read or
write, within 1µsecond. The manner by which this is done is to stall the software until the watchdog counts up
to 1µsecond. Note this could easily be done by using a simple a simple wait or NOP loop.

16mhz
clock

CS

RD

VALID DATA
D16-8

~wait

Enable
450 nsesc

140nsecs 20nsecs

Note : Enable Pulse cycle > 1usecs

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

Hardware Specification
 The schematic below shows the hardware involved in the control of the LCD. However, it should be noted that
the choice of low level control is up to the final design although the logic architecture must provide registers to
enable the construction of a counter and state machine, as shown later.

 Figure 2 : Hardware schematics

The low level control requirements are simply to provide the enable and wait signal pulses to the LCD module
and 300H respectively. The operation of the logic can be simply defined using the state diagram overleaf.

 Figure 3 : Low level control operation

To provide the timing requirements from the initial application of RS and R/W (A1 and RD) to the ENABLE
signal at the LCM a simple counter mechanism can be used. For example the counter can be enabled when the
address strobe signal is asserted, thereby indicating A1 is valid along with RD, from which the states can be
counted until the necessary time

IDLE
 Enable
WAIT pin

 Send
ENABLE
 pulse

wait on
 300H

CS7,.AS/WAIT

CS7,.AS/WAIT,ENABLE

CS7,.AS/..

CS7,.AS/ ..

../..

../..
stall
150nsecs

stall
 450nsecs

LCD MODULE

300H
LOW LEVEL
CONTROL

DATA(high)

RD
A1

~wait
CS7
AS

DB0-7 R/W RS E

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

Software Specification

The software requirements for the interface to the LCD screen are shown in the following sections which
describe not only the functionality of the code but the generation of it.

Generation of code

The tools that are used for the code generation are that of the IAR compiler/linker system as shown in the figure
overleaf.

 Figure 4 : IAR code system.

For the purposes of the control of the LCD driver software the program was built using the following options.
It should be noted that when choosing development options they should be replicated right across the IAR
system build. Since failure to do so could cause errors at the linker stage.

1. Processor options : v3 > H8_300H with a 16Mbyte address space
2. Memory model : ml > far function calls with default data type of huge, stack size is unlimited
3. Floating point precision : -1id > ints are 2 bytes long and doubles are used as floats(4 bytes long)
4. De-bugging level : NA > High level de-bugging not required (C-spy or CIDE not used)
5. Memory configuration :

• INTVEC - 0-FF > Interrupt vector table
• RCODE, CODE - 100 - FFFF > Vector handling code and normal code in area0 of device
• Data, IData : FFFD10 - FFFE00 > Initialised and non-initialised data kept in ON-chip

Ram.
6. Stack size : Stack set as 120 bytes
7. Code optimisation : Using standard speed and size optimisation s3 and z4

Consequently, the following commands were used to firstly build the library , compile the code and then linking
together.

BUILDLIB -v3 -ml -1id -s3 -z4 ------> Outputs library file CLHSF3.r20

LCD driver
software
(*.C)

AH8300 ICCH83 XLIB

XLINK

LCD driver
object code
 (*.obj)

Assembler Compiler Library manager

Linker

IAR suitelink file *.xcl

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

ICCH83 -v3 -ml -1id -s3 -z4 -P Lcd_Drv.c -l Lcd_Drv.lst -----> Outputs Lcd_Drv list and r20 files
XLINK -f linkfile.xcl ------> Outputs executable Lcd_Drv object file

It should be noted that the format of linkfile.xcl is as shown below :

lcd_drv
-ch8300h
-o lcd_drv.obj
-l lcd_drv.lst
clh83sf3
-FPENTICA-BM
-xsme

-Z(CODE)INTVEC,IFLIST,FLIST=0-ff
-Z(CODE)RCODE,CODE,CDATA0,CDATA1,CDATA2,CDATA3,ZVECT,CONST,CSTR,CCSTR=100

-! Then the writeable segments which must be mapped to a RAM area
 C000 was here supposed to be start of RAM -!

-Z(huge)DATA3,IDATA3,UDATA3,ECSTR,WCSTR,TEMP=fffd10
-Z(huge)CSTACK+120=Fffde0
-Z(FAR)DATA2,IDATA2,UDATA2=fffd10
-Z(FAR)DATA1,IDATA1,UDATA1=fffd10
-Z(FAR)DATA0,IDATA0,UDATA0,SHORTAD,DATA=fffd10

Software functionality

The algorithm below shows the progression of control from reset or power-on, through initialisation to the
writing of an ASCII string to the display.

1. Initialise On-chip registers
• Set-up bus control registers for area 7 - 8-bit, 3 accesses with wait controller enabled
• Set-up wait state controller - Pin wait mode 1 with 1 wait state automatically included
• Enable CS7 on port C
• Set-up watchdog timer to count 1µsecond

2. Initialise LCD display to correct mode
• Delay for 15msecs after power-on (minimum)
• Set function interface - 8bits
• Delay for 4.1msecs to next write to LCD display
• Set function interface to 8bits
• Delay for 100usecs
• Set function to 8-bits (Busy flag now valid to check)
• Set LCD function/type to 8-bits, 2 lines with char. format of 5x7.
• Set LCD display,cursor and blink to off.
• Clear LCD display and return cursor to home position.
• Set entry mode to increment cursor with accompanied shift left

3. Set pointer to ASCII text string to display
4. Clear LCD display
5. Return cursor to home
6. while not(end of string) do
7. check not end of current LCD row
8. write ASCII character to LCD screen
9. increment pointer to LCD screen
10. increment count for cursor
11. endwhile

It should be noted that for each access to the LCD screen whether reading or writing to either the instruction or
data register the following procedure is followed to ensure that the LCD screens operating procedure is not
violated (i.e. writing to screen when still busy and making an access to screen within 1µsecond of last access).

1. while (LCD flag still busy)
2. wait for watchdog to count down 1µsecond
3. read busy flag from LCD module
4. endwhile

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

To access the busy flag is simply a matter or reading the instruction register and checking bit 7 which indicates
the busy flag status.

As can be seen from the above algorithm the functionality of the code should be very simple once the LCD
module and 300H controller has been properly initialised, thus requiring minimal CPU control. Also note that
the watchdog timer should be turned off when in a period of inactivity in accessing the LCD screen as the
watchdog timer can use a great deal of processing cycles, since it is interrupt driven.

Register set-up

As shown in the previous section care must be taken in setting up the 300H microcontroller to ensure the LCD
module is correctly and effectively interfaced to.

[1] Bus controller set-up

As noted earlier the LCD module has been addressed in area 7 of the 300H memory map consequently a number
of registers must be set-up to enable the module to be accessed in 8-bit mode using CS7 and enabling the use of
A0 to differentiate between the instruction and data registers respectively.

The above requirements are provided through the following register set-up

ABWCR - Bus width control register

ABW7 ABW6 ABW5 ABW4 ABW3 ABW2 ABW1 ABW0

0 X X X X X X 1

ASTCR - Area access state control register

AST7 AST6 AST5 AST4 AST3 AST2 AST1 AST0

1 0 0 0 0 0 0 1

PCDDR - Port C data direction register

PCDDR7 PCDDR6 PCDDR5 PCDDR4 PCDDR3 PCDDR2 PCDDR1 PCDDR0

0 0 1 0 0 0 0 0

[2] Wait state controller

The wait state controller has been enabled in area 7 to provide wait mode 1 which automatically inserts 1 wait
state and then thereafter depends if the input wait signal is low at the next low to high transition of the clock.
This mechanism should enable the LCD module to stall the microcontroller by the required amount (around
500nsecs), through the low level hardware control.

WCR - Wait control register

X X X X WMS1 WMS2 WC1 WWC0

X X X X 1 0 0 1

WCER - Wait control enable register

WCE7 WCE6 WCE5 WCE4 WCE3 WCE2 WCE1 WCE0

1 0 0 0 0 0 0 0

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

[3] Watchdog timer set-up

The following watchdog timer setup should enable the microcontroller to ensure accesses to the LCD module are
no more frequent that 1µsecond access cycle. (Clock ticks at 0.125usecs thus count for 8 at least before enabling
access)

It should be noted that in the 300H microcontrollers the watchdog registers are password protected and cannot be
written to normally.

If using a microcontroller without a watchdog simply stall within the loop with NOP commands.

TCSR - Timer control/status register

OVF WT/IT TME X X CKS2 CKS1 CKS0

0 0 1 X X 1 1 1

TCNT - Timer counter register

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

1 1 1 1 0 1 1 1

LCD driver code

The attached C-code shows example code that can control the LCD display as specified throughout this
document. The code shows example text which can be replaced by any ASCII or a sub-set of KANJI codes to
send to the screen.

/***
LCD MODULE DRIVER SOFTWARE.

Purpose : Software designed to integrate 300H processor to a typical Hitachi LCD
 module. Applicable units are all the ones listed in the character display
 catalog.
 Input text can be derived from serials ports or constant strings, text

 shown here gives an example of ASCII and KANJI text.
**/

#pragma language = extended
#include <ioh83003.h> /*300h port defines*/
#include <INH83003.h> /*300h interrupt vector table*/

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

#define END_ROW1 20 /*Define of length of LCD row*/
#define NEW_LINE 0x40 /*Define of the cursor position of the 2nd row*/
#define NULL 0x00 /*ASCII null char. which terminates string*/
#define CR 0x0d /*ASCII equivalent of carriage return*/

unsigned char *LCMIR = 0 ; /*Pointer to the LCD module instruction register*/
unsigned char *LCMDR = 0 ; /*Pointer to the LCD module data register*/
unsigned char Access_Made = 0 ; /*Global flag that signifys if it is okay to access LCD display*/

unsigned char *text_string ; /*Pointer to string to output to LCD display*/

interrupt [WDT_WOVI] void LCD_count(void)

/* Purpose is to count from last LCD access and enable a flag if more than 1µsecond*/
{
unsigned char temp=0;

Access_Made = 0 ; /*Clear flag to indicate that it is okay to re-access LCD*/
/*Setup TCNT register again to count 1µsecond*/
/*10 ticks of a 8Mhz clock is sufficient for 1µsecond */
temp = (char)WDT_TCNT & 0xF5 ;
WDT_TCNT = 0x5A|temp ; /*Write value to TCNT register*/

}

void reg_setup()

/* Purpose : Procedure to set-up internal 300H registers*/
{
 unsigned char temp =0 ; /*Temp var used to write values to watchdog register*/

/*Wait state enable register*/
WCER=0x80 ; /*Wait control only enabled in area 7 accesses*/
/*Wait state control register*/
WCR=0xf9 ; /*Wait mode 1 with 1 wait state automatically inserted*/
/*Bus width control register*/
ABWCR=0x80 ; /*Area 7 accessed as an 8-bit area - only high data bus*/
/*Access state control register*/
ASTCR=0xff ; /*Area 7 (and all the rest) accessed in a 3 state access*/
/*Port C data direction control register*/
PCDDR=0x20 ; /*CS7 (PC5) enabled as an output - all the rest as generic inputs*/

/*Set-up watchdog timer - register locked by password*/
/*10 ticks of a 8Mhz clock is sufficient for 1µsecond */
temp = (char)WDT_TCNT & 0xF5 ;
WDT_TCNT = 0x5A|temp ; /*Write value to TCNT register*/
/*temp = (char)WDT_TCSR & 0x38 ; /*Enable timer operation using 8Mhz increment clock*/
WDT_TCSR = 0xA500|temp ; /*Use password to write value*/ */

}

void delay(long *delay_val)

/* Purpose : Delay loop for waiting on LCD display - passed value indicates length of delay*/
{
 long times ;

 times = 0 ;

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

 while (times < *delay_val)
 {

 times = times + 1 ;
 }

}

void poll_lcd_busy()

/* Purpose : Function to determine if the LCD module is ready for another access*/

{
while((*LCMIR & 0x80)== 0x80) /* Check bit 7 of Instruction register*/

 {
 /*Wait for LCD busy flag to go low*/

Access_Made = 0 ; /*Included for test */
 while (Access_Made)

 { /*Wait for 1µsecond from last access to LCD display*/
}
Access_Made = 1 ; /*Clear flag to show an access will be made*/

 }
}

void lcdinit()

/* Routine to initialse LCD display into the required setup - dependant on type */

{
long delay_val=0; /*Delay variable for initial initialisation*/

delay_val=200000; /*Delay for 15msecs after powerup - 16Mhz clock*/
delay(&delay_val);
LCMIR = 0x30; / Funciton Set - 8bit interface*/
delay_val=65000; /* Delay for 4.1msecs*/
delay(&delay_val);
LCMIR = 0x30; / Funciton Set - 8bit interface */
delay_val=2000; /* Delay for 100usecs*/
delay(&delay_val);
LCMIR = 0x30; / Funciton Set - 8bit interface*/
poll_lcd_busy(); /*Wait for LCD module*/
LCMIR = 0x30; / Function Set */
/* BUSY FLAG CAN NOW BE CHECKED FROM THE LCD MODULE */
poll_lcd_busy();
LCMIR = 0x08; / Function set to 8bits, 2lines and 5x7character form*/
poll_lcd_busy();
LCMIR = 0x08; / Display on/off control enable */
poll_lcd_busy();
LCMIR = 0x01; / Clear display and return cursor to home */
poll_lcd_busy();
LCMIR = 0x06; / Entry Mode Set as increment with accompanying shift */
poll_lcd_busy();
LCMIR = 0x0C; / Display set to on, cursor and blink off*/
Access_Made = 0 ; /*Access to display enabled*/

/*LCD MODULE NOW READY TO ACCEPT DATA FOR DISPLAYING*/
}

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

void text_out()

/*Purpose : Sub-routine to handle passing of char to module - checks line over run*/

{
unsigned char char_cnt = 0; /*Count of characters sent to LCD screen*/

char_cnt = 0 ;
while (*text_string != NULL)
 { /*While text_string pointing to ASCII char*/

poll_lcd_busy() ; /*Proceed no further if display busy*/
if ((char_cnt == END_ROW1)||(*text_string==CR))
 { /*If new line required from line overrun or carriage return*/

*LCMIR = NEW_LINE; /*Set cursor position to new line position*/
char_cnt = 0 ;
if(*text_string != CR)
 { /*If actual character to show on display*/

*LCMDR=*text_string ;
 }

 }
else
 { /*Simply display next char in next position*/

*LCMDR =*text_string;
char_cnt++;

 }
text_string++ ; /*Next character to display*/

 }

}

void display_txt()

/*Purpose : Routine to set-up display ready for a new text string*/

{

*LCMIR = 0x01; /*Clear display and return cursor to home position*/
poll_lcd_busy();
*LCMIR = 0x0C; /*Display is set on */
poll_lcd_busy();
text_out(); /*Output text string to LCD module*/

}

main()
{

/*Set-up the 300H control by initialising registers*/
reg_setup();

/*Setup the pointers to the LCD display*/
LCMIR = (unsigned char *)0xE04000; /*Instruction register address*/
LCMDR = (unsigned char *)0xE04002; /*Data register address*/

/*Initialise the display*/

 Hitachi Europe Ltd. ISSUE : APPS/048/1.1

lcdinit();
/*Write text strings to the LCD display*/
text_string = "HITACHI EUROPE LTD. LCD MODULE TEXT" ;
/*Display string over two lines of LCD module*/
display_txt() ;

}

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation of the user’s unit according
to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes
no responsibility for any intellectual property claims or other problems that may result from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of
Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are requested to notify the relevant sales
office when planning to use the products in MEDICAL APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

 APPLICATION NOTE DATE : 8/5/96

Producing Optimised C for 300/300H Controllers

The following application note has been produced to demonstrate features of the IAR toolsuite
to enable efficient C coding for all of the 300 and 300H microcontrollers.

The notes in this document will apply to all versions of the compiler and are applicable to all of
the microcontrollers in the 3 something range. Assumptions have been made that a certain
degree of competence has been obtained in the IAR toolsuite. Although appendix A details a list
of contacts and references for the IAR toolset for any teething troubles, the 300 compiler
tutorial is recommended as a quick reference.

The following aspects will be covered :

1 . 0 General C coding practice
1 . 1 Use of modula coding
1 . 2 Globals vs Local variables
1 . 4 General C-guidelines

2 . 0 Memory Models and Processor options

3 . 0 Data and Code segment location.

4 . 0 Processor Bit Representations

5 . 0 Processor dependent code
5 . 1 Memory indirect addressing
5 . 2 Inline functions

6 . 0 Compiler Optimisation switches
6 . 1 Size and speed optimisations
6 . 2 Register Utilisation

As an introduction to the comments on C-coding it is worth refreshing the CPU architectures of the 300 and
300H and their respective instruction sets. The reasoning behind this is that it should make it clear why certain
programming techniques should be avoided to obtain maximum performance from the microcontroller.

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

300 / 300H CPU architecture

In general both of these architectures are based upon a Load/Store type utilising compact instruction sets based
around mostly register operations. A further point to note that the architecture addresses in linear fashion

1.0 General C-Coding Practices

1.1 Modula coding principles
When programming to any C-environment it is recommended that a modular approach is used. The reasons for
this are :

• Ease of Refining complex problem to code solution
• Maintainability can be obtained by enabling distinct modules to be easily swapped out or changed when

necessary.
• Readability for new engineers joining the project
• Enabling portability to other micontrollers.
• Makes possible more refined and localised testing mechanisms.

A further point to note about this is that if code is grouped into similar execution code (code that runs at similar
times) it may be possible to reduce the jumps to simple local ones and thus reduce the amount of full address
reads required to run the code and thus reduce execution time.

1.2 Global Vs Local variables

In general it is much better programming style and practice to make use of local variables wherever possible.
The reason for this is quite simply to reduce the amount of RAM required for DATA structures. The more local
a variable is the more feasible it will be to store the value on STACK or in General Purpose Registers. Thus
avoiding the need to obtain variable address, read from address and write back value to address, which could
possibly be stored as a long pointer requiring 32-bits of data.

For further proof of this it can be seen that by examining the CPU instruction table in the HW manuals
operations are about twice as efficient when using registered or immediate addressing modes rather than indirect
addressing modes.

Therefore where possible local variables should be used and always passed by reference through functions, thus
ensuring that is only one copy of the respective variable.

As an example of this code has been included below and then compiled using the IAR compiler with the
achieved data densities as shown below :

 Version 1 : Automatic variables utilised

char demo(void);

void main(void)
{
char x;

x=demo();

}

char demo(void)

Code size = 20 bytes

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

{

char a=5, b=78, c;

return(c=a*b+5);

}
 Version 2 : Global static variables utilised

char demo(void);
char a=5, b=78, c;

void main(void)
{
demo();
}

char demo(void)
{
c=a*b+5;
}

Thus, as illustrated above careful choice of programming style, such as using localised automatics, can have a
dramatic effect on the code density produced for the 300 or 300H. Later on example benchmark code will be
timed to show how effect of programming style can effect the speed of execution.

1.3 General programming style comments

The following list although by no means definitive gives some final points on programming style that made aid
in obtaining Robust, Readable and Correct code for an embedded application which can quite often be critical
enough without allowing possible compiler/code bugs to be entered :

• Group all externs required for C file in an include *.h file
• Use static to give a variable file scope rather than making it global to the file
• Create fewer special purpose functions to stop thrashing between code areas.
• Always uses reference names that are meaningful to the system purpose
• Always name any constants that maybe required.
• Never use GOTO unless in a critical error situation.
Repeatedly used code should be grouped into a function to avoid redundancy.

Code size = 32bytes

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

2.0 Memory and Processor options

This section will deal with choosing the correct processor and memory models for a particular application.
Careful choice of both these options is essential to achieve the optimum usage of the processor data and code
areas. Also enabling the IAR compiler to generate the most efficient code by choosing the most appropriate
addressing modes.

Processor options are the simplest to choose, effectively only two factors to determine. Firstly, actual processor
of choice (H8_300/300L/300H) and secondly the maximum address range (H8_300H only).

The choice of processor option is simplified even more by the fact that the H8_300 and H8_300L have identical
CPU cores with both having a maximum address range of 64K bytes. Consequently the only choice for 300 or
300L users is : v0.

However, for the 300H there is a choice of 3 address ranges that can be chosen : 64K, 1M and 16M; The choice
of range depends not only depends on the suitability for the software program but most certainly on the choice
regarding the hardware design. For instance it may be a requirement for the hardware to have the full address
range of 0 to FFFFFF where in terms of the software it would make much better sense to compile for a 1M
address range (0 to FFFFF). However, what ever choice is made the software and hardware modes must be
compliant with each other.

Careful choice will be required between modes as this effects the size and location of pointers and function
calling mechanisms. For instance a 16M address range requires pointers of a default size range of 32 bits to
enable each address in the range to be accessed. Where a 64K address range would not require such a large pointer
and could make do with a word pointer.

• v0 - H8_300 OR H8_300L - ADDRESS RANGE = 64K
• v1 - H8_300H - ADDRESS RANGE = 64K
• v2 - H8_300H - ADDRESS RANGE = 1M
• v3 - H8_300H - ADDRESS RANGE = 16M

Memory model options are much more vast and give the user further control of code generation process. For ease
of choice included below is a flowchart which should enable the most efficient choice for a particular application.

When examining the flowchart it should be remembered that the choice of memory model is effected by the
choice of processor option. The reason for this being that the processor options specifies the maximum address
range and thus the default of the calling mechanisms, details of this is shown in the flowchart.

Further to the above choice variations is that it is possible to specify whether intrinsic library modules are
addressed by the tiny_func mechanism or by the default mechanism of the memory model of choice. The case of
the memory model specifies whether the space saving mechanism is employed or not. (lower case tiny_func
calling mechanism will be employed). A discussion of the tiny_func calling mechanism is made later in this
document. However, in general by using the tiny_func mechanism allows the compiler to generate a jsr rather
than a bsr and thus save 2 bytes of code size.

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

 Figure 1 : Memory model choice plan

START

64k Address
R ange

1M/16M Addr.
Range

BankedBanked Non-Banked Non-Banked

m b / B mm/M mm/Mm b / B

M i n i m i s e
S t ac k

Default
S t ack

Default
S tack

M i n i m i s e
S tack

me/E m s / S mt/T m l / L m l / Lmt/Tm s / Sme/E

300/300L or
300H single chip

300H option
only

outwith
address range ?

outwith
address range ?

minimum
stack req.

minimum
stack req.

maximum
stack req.

maximum
stack req.

RAM
reduction

RAM
reduction

reduce code
by using tiny
calling

default
code
 calling
16-bit

reduce code
by using tiny
calling

default
code
 calling
16-bit

reduce code
by using tiny
calling

default
code
 calling
32/24-bit

reduce code
by using tiny
calling also with
256 byte stack

default
code
 calling
but with
64K stack

Default stack of
16M or 64K max.

Consequently, although there is a positive wealth of choices they can be quickly tailored down to a choice of
around 2 or 3 for each application if the flowchart is followed correctly.

Note that although the choice of maximum stack size will effect directly the amount of RAM required for an
application it will also have a considerable effect on the code requirements as well. The reason for this being that
if the stack is specified as a maximum of 256 bytes then it can always be accessed as byte, R7L and similarly
64K would be word operations, R7 and 16M would be long operations, ER7. Thus,the code size requirements
reduce as the size of maximum stack reduces.

The final choice of model is usually down to the requirements of data addressing, function calling mechanism
and stack requirements. The points below give a summary on how the models effect the compiler generation of
code.

• LARGE MODEL - Default option using standard calling mechanism and the stack calling
mechanism represents that the stack can be a size up to the complete address range. No real code and
data calling optimisations implemented

• SMALL MODEL - Code calling mechanism reflects maximum address range. However, stack
size is reduced by a factor that enables the stack to be addressed as a word instead of a long or a byte
instead of a word.

• TINY MODEL - Stack size is the default of a maximum as large as complete addressing range,
word or long addressing. Code addressing is reduced by using tiny_func calling mechanism, as long
as the function calling fits into the first 256 addresses of the memory map, where the interrupt
vectors reside.

• EXTRA SMALL - Code optimisations as tiny model, along with further RAM savings by
reducing the stack size to a minimum of 256 bytes. Thus all stack operations are byte wide.

Therefore, although the processor options defines the maximum range it is possible to still configure the
software in a manner that makes use of ROM and RAM most efficiently.

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

3.0 Data and Code Segment direction

Although generally conceived as a linker procedure it is possible to control the final generation of placing code
and data at the compiler routine. When referring to placing code and data what is really meant is the assigning of
addresses to constant code areas and the addresses of data locations. Consequently, it is very important to achieve
the most efficient mapping since it can generally mean the difference between addressing something using a word
value or a long value. Not only will the mechanism of addressing data be examined but also procedures in
calling functions.

As described in the previous section final address mapping of code can be altered depending on the choice of
memory model. The choice of memory model will in general provide the default mechanism to be used by the
compiler and linker to produce the object code. However, it is not the sole instrument in storage class
description. it is in general possible to use overrides of memory directives where a programmer can determine a
particularly time critical part of code that requires to run at optimum speed. Consequently, it may be possible to
override the standard memory model with a more suitable one that may translate into assembly and thus machine
code that will take less CPU cycles to run.

To enable this the IAR toolset enables non-ANSI functions or #pragmas to directly alter the memory usage.
Simply what can be done is to specify memory to be tiny, near, far, huge and back to default as the user may
seem fit.

Further to this the programmer has available 3 further #pragmas. Firstly there are two pragmas to enable direct
naming of code or constant areas and data areas. The reason for doing this is such that it enables complete
control at the linker stage where the actual code or data has to be placed, simply be specify the segment name
and specify an actual address (-Z(DATA)DIFF_POSITION=0x900000). Secondly, the programmer can override
the data initialisation mechanism by specifing certain variables as no_init. Consequently, this means that no
extra ROM area is required for initialising values for data, also as a by product the CSTARTUP routine will
obviously run quicker although this is usually not a concern in most systems.

In general the most popular pragmas will be to control what functions can be addresses in a tiny_func
mechanism. This is true as often programs are too large to be completely compiled as a tiny model so instead a
default mechanism such as large or small can be used and then selectively choose critical modules to be compiled
using the tiny_func mechanism i.e. #pragma tiny_func.

The final technique available to the programmer to effect code generation is the use function attribute pragmas.
Function attributes enable each individual module to be specified into a particular addressing scheme and also
how it is called itself. The availble function attributes fall into two distinct variations =, firstly the ones that
detail

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

4.0 Processor Bit Representation

In many applications the effective representation of bit variables are essential. Either for use in pin
manipulation, register set-up or simply as an efficient mechanism of holding status flags.

To provide bit storage and manipulation there are two techniques of representation available to the programmer.
Firstly, there is the standard keyword bit that can be used to access any variable in any area of memory as a bit
variable and thus used the bit manipulation instructions. Secondly, we can define variables using the no-ANSI
standard sfr and sfrp routines. Using these extended language features enables the actual bit to placed in the
memory address area specifically set out for bit manipulations, 0xFFFF00 to 0xFFFFFF.

 The difference between both these mechanisms although both syntactically correct is the efficiency of
representation in terms of both speed of operation and size of object code created. For instance all bit operations
must be within the address range 0xFFFF00 to 0xFFFFFF since the addressing range of all of them are tiny,
i.e. 0 to FF. Consequently, if data is specified to be of bit type and is not within the tiny addressing range then
before the bit operations is completed the data must be transferred to a general purpose register. Example code is
shown below detailing the size of object code produced and the number of CPU cycles to complete :

 Example Code Using SFRs

#pragma language=extended

sfr right_way = 0xFFFF00 ;

main ()
{
 /*Do some bit manipulations */

right_way.1 = 1 ;
right_way.2 = 0 ;
right_way.3 = right_way.2 & right_way.1 ;

 if (right_way.0 == 1)
 {
 right_way.4 = 1 ;
 }

}

Speed of Execution = 7useconds
Code Size = 948 Bytes

 Example code using Unsigned chars and Bits

/* Bit Testing routine using unsigned chars*/
#pragma extended=language

struct
{
unsigned char Flag1 : 1 ;
unsigned char Flag2 : 1 ;
unsigned char Flag3 : 1 ;
unsigned char Flag4 : 1 ;
unsigned char Flag5 : 1 ;
} Byte_of_Bits;

NAME bitr(31)
RSEG CODE(1)
PUBLICmain
EXTERN ?CL83LD3000_3_22_L00
RSEG CODE

main:
BSET.B #1,@0:8
BCLR.B #2,@0:8
BLD.B #1,@0:8
BAND.B #2,@0:8
BST.B #3,@0:8
BLD.B #0,@0:8
BCC ?0001

?0000:
BSET.B #4,@0:8

?0001:
RTS
END

BSET.B #0,@ER6
BCLR.B #1,@ER6
MOV.L ER6,ER5
MOV.L ER6,ER4
BLD.B #1,@ER4
BAND.B #0,@ER5
BST.B #2,@ER6
MOV.B @Byte_of_Bits,R6L
BTST.B #3,R6L
BNE ?0001

?0000:
MOV.L #Byte_of_Bits,ER6
BCLR.B #4,@ER6

?0001:
RTS
RSEG DATA3

Byte_of_Bits:
DC.B 0,0
END

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

main()
{
 Byte_of_Bits.Flag1 = 1 ;

Byte_of_Bits.Flag2 = 0 ;
Byte_of_Bits.Flag3 =
 Byte_of_Bits.Flag1 & Byte_of_Bits.Flag2 ;

if (Byte_of_Bits.Flag4 == 0)
 {

Byte_of_Bits.Flag5 = 0 ;
 }
}

Speed of Execution = 14useconds
Code size = 1030 bytes

Thus from the code comparisons it can be seen that both speed and size efficiency is gained through using the
provided extended compiler functions of SFRs. Not only efficiency is gained but also the ease of use in
programming.

5.0 Processor Dependant Code

The following sections now deal with more architecture dependant features that will directly effect the efficiency
of representation of the C code.

5.1 Memory Indirect Addressing
The memory indirect addressing mode is an effective way of reducing the overall code implementation of
software. The reason for this is by using memory indirect addressing it is possible to use the JSR command
rather than a BSR which in turn uses 2 less bytes. However, the only constraint of this is that the function that
is being called is within the tiny addressing range. To demonstrate the procedure in making effective use of
memory indirect addressing the following code has been included.

NAME bitw(31)
RSEG CODE(1)
RSEG DATA3(1)
PUBLICByte_of_Bits
PUBLICmain
EXTERN ?CL83LD3000_3_22_L00
RSEG CODE

main:
MOV.L #Byte_of_Bits,ER6

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

Thus, it can be seen that by using the pragma directive to set-up a function as a tiny rather than the default
(Huge in this case) then the JSR command can be used. Which as already discussed uses 2 less bytes in
implementation. than a BSR with addressing mode @(d,PC). Further, to this point it is worth comparing the
size of object code created. If tiny_func is used the size of code is , where if no tiny_func mode was used the
size of code is

5.2 Inline Functions
Intrinsic functions have been provided as extensions to the ANSI library functions to provide more device
specific utilities. For a full list it will be necessary to examine the IAR C manual although detailed in the
included code below shows specifics of some of the routines.

In general the routines allow control of registers that would only be made possible by jumping to an assembly
level module, such as altering the interrupt mask level on the CCR.

The code below not only shows the action of some of the routines it shows that the intrinsic functions are
actually Inline. This meaning that it is not necessary to jump to a distinct routine to complete the action, but
simply include the necessary assembly instructions. This will give a saving on code size and code execution.
The feature of making the functions Inline is even more useful when examination shows how little code is
required to complete the operation. more code would be involved in jumping to/from a function rather than
executing it.

main ()
 8
 9 {

/* Addressing Test Program */

#pragma language=extended
#pragma function=tiny_func
void func_tiny()
{
static unsigned char i;

i ++;
}

#pragma function=default
void norm_func()
{
static unsigned char j;

j++;
}

main ()
{

/*Call normal Function*/
norm_func();
/*Call tiny Function*/
func_tiny();

}

NAME ftest(31)
RSEG CODE(1)
RSEG FLIST(1)
RSEG DATA3(1)
PUBLIC?Flist_func_tiny
PUBLICfunc_tiny
PUBLICmain
PUBLICnorm_func
EXTERN ?CL83LD3000_3_22_L00
RSEG CODE

func_tiny:
PUSH.W R6
MOV.B @?0000,R6L
INC.B R6L
MOV.B R6L,@?0000
POP.W R6
RTS

norm_func:
PUSH.W R6
MOV.B @?0001,R6L
INC.B R6L
MOV.B R6L,@?0001
POP.W R6
RTS

main:
BSR norm_func
JSR @@?Flist_func_tiny
RTS

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

 \ 00000000 main:
 10
 11 /*Set interrupt mask in ccr to level 2*/
 12 set_interrupt_mask(2) ;
 \ 00000000 0480 ORC.B #128,CCR
 \ 00000002 06BF ANDC.B #191,CCR
 13
 14 /* XOR CCR to value shown*/
 15 xor_ccr(8) ;
 \ 00000004 0508 XORC.B #8,CCR
 16
 17
 18 /* Execute sleep command*/
 19 sleep() ;
 \ 00000006 0180 SLEEP
 20
 21 /* Execute a no-operation*/
 22 no_operation() ;
 \ 00000008 0000 NOP
 23
 24 /*etc.. */
 25
 26 }
 \ 0000000A 5470 RTS
 \ 0000000C END

Thus, the main point to consider is that wherever possible use a supplied Inline function, rather than creating
your own function to complete the operation. Since, this will result in a much better implementation in terms
of code density and speed.

Also note that setting a function as Inline is non-ANSI standard and the IAR compiler only enables the already
defined intrinsic functions to be Inline. The reason for this is that complete corruption of code can occur if
registers are altered within Inline code without saving the previous value used within the normal code.

6.0 Optimisation Switches at Compile Time

The following section detail switches that can be used when the compiler ICCH83 is invoked to make use of
certain compilation algorithms to maximise the efficiency of the code.

6.1 Size and Speed Optimisation

The size and speed optimisation algorithm can be implemented at a number of levels to produce optimised code
and data usage. The levels of optimisation will determine the correspondence between the C-code and the
generated assembly code. It should be noted that the algorithms are incompatible and thus cannot be used in the
same execution of the compiler.

Levels of optimisation range from 0 (min) to 8/9 (max.) with the following effects :

• Level 0-2 - No optimisation and thus can be used for debug processes
• Level 3 - debuggable optimisations only
• Level 4-7 - Medium complex optimisations and thus may not be fully debuggable
• Level 8 - Complex optimisations
• Level 9 - New optimisations for a particular version and thus maynot be fully tested and thus can improve in

later versions

 The method to choose the optimisation level should be based on a trial basis by re-compiling the code a number
of times with different options. Typical results obtained are as follows, although the level of optimisation in
general will improve code density to different degrees depending on the code structures. Note that in this case
optimising for speed not only achieves the quickest execution speed it also obtains the smallest code size.
Although, speed optimisation will not always produce the most compact code.

Assembly functions
included within created
object code. No call or
jump to a function.

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

6.2 Register Utilisation

The final run-time compiler technique that can be used is the register utilisation switches, -u and -W. They give
the programmer further control on how the generated code uses registers to clean up and trash.

Using these mechanisms can have a dramatic effect on the code density required for a procedure

Stack Clean Up

The stack clean up option -W directs the compiler in how often it should clean up temporary variables from the
stack. Temporary variables are used in complex operations to store intermediary results. The -W option plus a
number up to 50 specifies how much of the stack can be used by garbage before resetting the SP back again.
With a high -W value less cleans up will occur and thus the code will execute quicker, although to offset this
more stack will be required, specifically if the program has a high degree of function nesting.

 i.e.

 Complex Instruction Bytes of Stack required Clean ups : -W0 Clean ups : -W18
A 4 4->0 4
B 6 6->0 10
C 8 8->0 18->0
D 2 2->0 2
E 6 6->0 8

Register trashing conventions

The -u option effects the manner in which registers are used to store parameters and which registers need not be
saved by a function and thus can be trashed.

For instance the general procedure is to store the first function parameter in R6 and the rest in the stack with all
registers exempt from trashing. This can be extended to store parameters in ER4, ER5 and ER6 with register
trashing enabled on ER4, ER5 and ER6. This is the highest level and will provide the most code compact
solution.

 Hitachi Europe Ltd. ISSUE : APPS/049/1.1

The option is used as follows :

-urxuy where x chooses the level of register parameter storing and y the level of register trashing.

• r0 - Normal procedure R6 stores first parameter
• r1 - ER6 used to store parameter
• r2 - ER5, ER6 used to store parameters
• r3 - ER4 ER5 and ER6 used to store parameters
• u0 - No registers trashed in function call
• u1 - R6 trashed
• u2 - ER6 trashed
• u3 - R5 and ER6 trashed
• u4 - ER5 and ER6 trashed
• u5 - R4, ER5 and ER6 trashed
• u6 - ER4, ER5 and ER6 trashed

Thus, after proving the functionality of the code further levels of optimization can be introduced to reduce code
size.

Please remember the library routines must be built with the same optimizations levels or it will not link!

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation of the user’s unit according
to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes
no responsibility for any intellectual property claims or other problems that may result from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of
Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are requested to notify the relevant sales
office when planning to use the products in MEDICAL APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/050/1.2

 APPLICATION NOTE DATE : 17/4/96

Access Speed on the H8/300H

Minimum access times for external memory of H8/300H series are given in table 1. These
minimum times are for two-, three-, and four-state accesses. Note that H8/3048 Series have
different minimum access times and these times are presented in table 2.

System clock 8MHz 10MHz 12MHz 16MHz
Min Clock Cycle Time 125.0 100.0 83.3 62.5
Min 2-State Access Time 110 100 80 55
Min 3-State Access Time 230 200 160 115
Min 4-State Access Time 355 300 245 180

Table 1. Minimum access times for external memory of H8/300H Series. Times are in ns. Note
that H8/3048 times differ from these (Table 2.).

System clock 8MHz 13MHz 16MHz 18MHz
Min Clock Cycle Time 125.0 76.9 62.5 55.5
Min 2-State Access Time 120 60 60 50
Min 3-State Access Time 240 140 120 105
Min 4-State Access Time 365 220 185 160

Table 2. Minimum access times for external memory of H8/3048 Series. Times are in ns.

Simple example how 8-/16-bit bus width and 2-/3-state access affects performance is shown in
Table 3, where a word from external memory address h’6FFFFF is loaded to register R0,
incremented by 1 and stored back to external memory address h’6FFFFF. Table 3 presents the
amount of states required and table 4 the time in ns required to execute these instructions.

Instruction On-Chip
Memory

8-Bit
Bus, 2-
State

Access

8-Bit
Bus, 3-
State

Access

16-Bit
Bus, 2-
State

Access

16-Bit
Bus, 3-
State

Access

mov.w @aa,R0 8 16 24 8 12
inc.w #1,R0 2 4 6 2 3
mov.w R0,@aa 8 16 24 8 12

States Total 18 36 54 18 27

 Hitachi Europe Ltd. ISSUE : APPS/050/1.2

Table 3. Number of states required for instruction execution with different bus width and
different state accesses. Advanced mode.

Instruction On-Chip
Memory

8-Bit
Bus, 2-
State

Access

8-Bit
Bus, 3-
State

Access

16-Bit
Bus, 2-
State

Access

16-Bit
Bus, 3-
State

Access

mov.w @aa,R0 444 888 1332 444 666
inc.w #1,R0 111 222 333 111 167
mov.w R0,@aa 444 888 1332 444 666

Time Total 999 1998 2997 999 1499

Table 4. Time in ns required for instruction execution with different bus width and different
state accesses. Advanced mode, 16MHz clock speed.

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation of the user’s unit according
to this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes
no responsibility for any intellectual property claims or other problems that may result from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of
Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are requested to notify the relevant sales
office when planning to use the products in MEDICAL APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

 Hitachi Europe Ltd. ISSUE : APPS/051/1.0

1 of 7

 APPLICATION NOTE DATE : 17/4/96

Real time low power sheduler for the 300L series.
INTRODUCTION

The following example is a framework for a real-time sheduler which makes use of the very low power
capabilities of the 300L family.
The 300L family of microcontrollers feature a dual crystal solution; one main oscillator between 0.2 and
10Mhz (0.1-5Mhz internal) and a subclock which uses a standard 32Khz watch crystal. This example uses
full speed mode running off the main oscillator and watch mode using the 32Khz sub clock.

Watch mode is a software triggered standby mode where the main clock is shut down and a few key
peripherals are kept running. All other registers and the on board RAM is retained. The members of the
300L family which feature LCD drive can also keep the display active during watch mode.
The key to watch mode is Timer A which functions as the time base timer, again running off the 32Khz
subclock. When this timer overflows (Period selectable between 1/

32 ,1/8 1/4 or 1 second overflow) an
interrupt is generated which will wake the 300L up into active mode.
The scheduler can then execute the real time tasks at full speed and instantly switch back to watch mode
on completion. The power consumption reduction by switching modes can be as much as from 10mA
down to 15µA, which is particularly applicable to battery operation.

The example considered here uses a quarter second overflow period, and by using two software counters a
simple scheduler providing 1/

4 , one second and ten second schedule periods although these could be
adjusted to any value within reason. To demonstrate the operation of the code each sheduler period
function toggles a port (port 2) which can be connected to an L.E.D. via a buffer.

FUNCTIONS OVERVIEW

main()

This contains only the watch mode call which always happens as soon as the real time scheduler has
finished its current tasks.

interrupt [TIMER_A] void schedule (void)

This is the interrupt service routine for timer A. Its purpose is to reset the interrupt request (to disable
continual looping of the routine) and then call the scheduled functions.

void initialisation (void)

Here the ports controlling the LED’s are initialised to outputs and timer A is set up as the timebase. Also
timer A interrupt is enabled to allow it to wake the CPU up form watch mode on and overflow. The final
and important initialisation is using the in-line function set_interrupt_mask(0) which clears the I bit in the
CCR. This globally enables interrupts by reseting the mask from the default (1).

 Hitachi Europe Ltd. ISSUE : APPS/051/1.0

2 of 7

TMA- Timer A control register set to HEX ba = 1011 1010

TMA7 TMA6 TMA5 - TMA3 TMA2 TMA1 TMA0

Clock output pin prescaler unused Prescaler/overflow period
 timebase on/off

void watch(void)

The watch function sets the system control registers to tell the CPU to enter watch mode when the sleep
instruction is called. SLEEP is another in-line extension to ANSI C provided by the IAR C compiler.

SYSCR1 System control Register 1 - set to HEX b0 = 1011 0000

SSBY STS2 STS1 STS0 LSON - - -

clock settling time selection low speed flag
standby/watch mode (32Khz) reserved

SYSCR2 System control register 2 - set to HEX 00 - 0000 0000

 - - - NESEL DTON MSON SA1 SA2

Reservered Noise elimination Medium speed
Direct transfer Subactive clock

 select.

void quarter_second_tasks(void)
void one_second_tasks(void)
void ten_second_tasks(void)

These functions are where the user should place or call the scheduled tasks. The only two restrictions to be
considered are:-
1) The worst case when all 3 task calls are entered (once every ten seconds), the total execution time
should be less than the schedule period.
2) Other interrupts will not be serviced as the schedule calls are themselves called from the interrupt
service routine. This means the I bit will be set, preventing any further interrupts until it has finished. One
way to avoid this is to use a global flag to request a schedule task, with the schedule call only setting the
flag.

 Hitachi Europe Ltd. ISSUE : APPS/051/1.0

3 of 7

 Hitachi Europe Ltd. ISSUE : APPS/051/1.0

4 of 7

300LRTC.C

/**
This program is an a simple example of a low power, real time scheduler.It can
wake up and execute tasks on a periodic basis.
The 300L initially sit in WATCH mode (see main) until timer A overflows and
causes it to wake up into full speed execution mode. Three schedule time periods
are shown here, 1/4 second, 1 second and 10 seconds. Each schedule function
flashes an led to prove the operation of the program.
**/

#include "c:\h8\inc\ioh83834.h" /* H8/3834 IO labels */
#include "c:\h8\inc\inh83834.h" /*and the interrupts */
#include <inh83.h> /*include interrupt std functions*/

/* ********** */
/* Variables */
/* ********** */

unsigned char one_second,ten_seconds;

/* ********** */
/* Functions */
/* Declaration*/
/* ********** */

interrupt [TIMER_A] void schedule(void);
void initialisation(void);
void watch(void);
void quarter_second_tasks(void);
void one_second_tasks(void);
void ten_seconds_tasks(void);

void main(void)
{

 initialisation(); /*set up timer A overflow interrupt*/
 /*and the port registers */

 for (;;)
 {

/*The processor return to this section of the code as
soon as the scheduler has finished its tasks.

When an interrupt occurs the 300L will wake up and jump to
the relevant interrupt service routine.*/

 watch();
 }

}

 Hitachi Europe Ltd. ISSUE : APPS/051/1.0

5 of 7

interrupt [TIMER_A] void schedule(void)
{

 IRR1 &= 0x7f; /*reset the interrupt request. */
/*this lot must be <250mS!!!!!!!*/
/*otherwise the scheduler will */
/*loose synchronism */

 quarter_second_tasks();
/*call this function every time as
the processor will only reach here
once every quarter second*/

 one_second++; /*increment one_second count*/

 if (one_second==4) one_second_tasks();

/*when the one second count has reached
four then the time is 4*0.25 = 1 second
If this has happened then the

one_second_tasks function is called
which contains the tasks which need to

be done once a second*/

 ten_seconds++; /*increment ten_seconds count*/

 if (ten_seconds==40) ten_seconds_tasks();

/*when the one second count has reached
forty then the time is 40*0.25 = 10

seconds. If this has happened then the
one_second_tasks function is called which

contains the tasks which need to be done once a
second*/

}
void initialisation(void)
{
one_second = 0; /*reset one_second count */
ten_seconds = 0; /*reset ten_seconds count */

PMR2 = 0xf8; /*Set port 2 bottom 3 bits to i/o */
PCR2 = 0x07; /*Set all bits in port 2 to outputs */
PDR2 = 0x00; /*switch ledS ofF initially */

IENR1 |= 0x80; /*enable interrupt on timer a */
TMA = 0xba; /*bits 7,6,5 set o/p to 2Khz */

/*bit 4 reserved */
/*bits 3,2,1,0 set overflow period to 0.25s*/

set_interrupt_mask(0); /* Clear I bit to enable global interrupts*/

}

void watch(void)

 Hitachi Europe Ltd. ISSUE : APPS/051/1.0

6 of 7

{
 SYSCR2 = 0x00; /*set all bits low (medium speed off)*/
 SYSCR1 = 0xb0; /*set bit 7 ssby bit, and bits 4,5 for

64k states*/
 sleep(); /*go for it!*/

}

/**
The three fuctions here are the scheduler functions.
Depending on how often you whish to call a certain
fiunction, place it in the quarter,one or ten second
scheduler function.
**/

void quarter_second_tasks(void)
{

/*Toggle Led to prove operation */
if(PDR2 & 0x01) PDR2 &= 0xfe;

/*if led1 is on, switch it off */
else PDR2 |= 0x01;

/*otherwise switch it on !! */
}

void one_second_tasks(void)
{
one_second=0; /*clear one second count to zero*/
if(PDR2 & 0x02) PDR2 &= 0xfd;

/*if led2 is on, switch it off */
else PDR2 |= 0x02;

/*otherwise switch it on !! */
}

 Hitachi Europe Ltd. ISSUE : APPS/051/1.0

7 of 7

void ten_seconds_tasks(void)
{

ten_seconds=0; /*clear ten second count to zero*/
if(PDR2 & 0x04) PDR2 &= 0xfb;

/*if led3 is on, switch it off */
else PDR2 |= 0x04;

/*otherwise switch it on !! */
}

When using this document, keep the following in mind,

1, This document may, wholly or partially, be subject to change without notice.
2, All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi’s permission.
3, Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation of the user’s unit according to
this document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from applications based on the examples therein.
5, No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6, MEDICAL APPLICATIONS: Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of
Hitachi’s sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi’s products are requested to notify the relevant sales
office when planning to use the products in MEDICAL APPLICATIONS.

Copyright Hitachi, Ltd.,1995. All rights reserved

	Content
	H8 Microcontroller Series Application Notes Collection Contents
	APPS/001/1.0 H8/300, Physical and Logical Address Space
	APPS/003/1.0 H8/325, Configuring the 8-bit timer to create PWM waveforms
	APPS/004/1.0 H8/300, Development and Debugging Code using the Banked Memory models for the H8/300
	APPS/005/1.0 H8 Series, Using the S-Record file splitting utility ‘splitter’
	APPS/008/1.0 H8/300, Serial communications interface
	APPS/009/1.0 H8/300, Analogue to digital converter
	APPS/010/1.0 H8/300, Digital to analogue converter
	APPS/011/1.0 H8, EPROM security on the H8/300 and H8/500 Families
	APPS/012/1.0 H8/300H, DMA request and transfer time for H8/300H
	APPS/013/1.0 H8/300H, Interfacing various bit-size DRAM to the 300H
	APPS/014/1.0 H8/3003, Adding the damping resistor to the oscillator
	APPS/015/1.0 H8/300H, Enabling DMA end-of-transfer interrupts
	APPS/016/1.0 H8/304X, Multiplexed I/O functions on the 3003 and 304X
	APPS/019/1.0 H8/300, ‘C’ code framework example program
	APPS/022/1.0 H8, Memory checking and initialisation program
	APPS/026/1.0 H8/325, Interfacing to LCD character modules
	APPS/036/1.0 H8/300H, Software UART implementation using 2 timer and 2 DMA channels
	APPS/002/1.0 A Mechanism for Banking Data on the H8/300
	APPS/006/1.0 Example Assembler Fuzzy Driver Routine, which can be called from C
	APPS/007/1.0 Writing Downloadable C code using the IAR C Compiler
	APPS/029/1.1 H8/300 C Code Demonstration Program
	APPS/032/1.1 H8-3042 Framework Program
	APPS/037/1.1 H8/300H Software UART implementation using 2 Timer and 2 DMA channels
	APPS/043/1.0 Flat Panel Displays - EMI Considerations
	APPS/044/1.0 H8/300H Direct Memory Access Channel (DMAC) example
	APPS/045/1.0 H8/300H Direct Memory Access Channel (DMAC) - Serial communication example
	APPS/048/1.1 LCD character module control using H8_300H
	APPS/049/1.1 Producing Optimised C for 300/300H Controllers
	APPS/050/1.2 Memory Access Speed on the H8/300H
	APPS/051/1.0 Real time low power sheduler for the 300L series.

