logiREF-FACE-TRACK-EVK

Xylon logicBRICKS™ Face Detection and Tracking Reference Design for Xilinx® Zynq®-7000 AP SoC based MicroZed Embedded Vision Development Kit

User‘s Manual
Version: 1.01.a

logiREF-FACE-TRACK-EVK_v1_01_a.docx
All rights reserved. This manual may not be reproduced or utilized without the prior written permission issued by Xylon.
Copyright © Xylon d.o.o. logicBRICKS™ is a registered Xylon trademark.
All other trademarks and registered trademarks are the property of their respective owners.
This publication has been carefully checked for accuracy. However, Xylon does not assume any responsibility for the contents or use of any product described herein. Xylon reserves the right to make any changes to product without further notice. Our customers should ensure to take appropriate action so that their use of our products does not infringe upon any patents.
1 INTRODUCTION .. 4
 1.1 HARDWARE PLATFORM ... 5
 1.2 DESIGN DELIVERABLES ... 6
 1.2.1 Hardware Design Files .. 6
 1.2.2 Software .. 6
 1.2.3 Binaries .. 6
 1.3 USAGE MODES ... 6
 1.3.1 Quick Evaluation with no HW and/or SW Changes ... 6
 1.3.2 Develop Standalone Software, no HW Changes .. 6
 1.3.3 Full logiFDT Customization, HW and SW Changes ... 7
 1.4 XILINX DEVELOPMENT SOFTWARE ... 7
 1.5 FACE TRACKING DEMO PREVIEW .. 7

2 LOGICBRICKS IP CORES ... 8
 2.1 ABOUT LOGICBRICKS IP LIBRARY .. 8
 2.2 EVALUATION LOGICBRICKS IP CORES ... 10
 2.3 LOGICBRICKS IP CORES USED IN THIS DESIGN .. 10
 2.3.1 logiFDT Face Detector and Tracker .. 10
 2.3.2 logiCVC-ML Compact Multilayer Video Controller .. 11
 2.3.3 logiWIN Versatile Video Input ... 12
 2.3.4 logiBAYER Color Camera Sensor Bayer Decoder .. 12
 2.3.5 logiCLK Programmable Clock Generator .. 13
 2.4 LOGICBRICKS IP CORES FOR VIDEO PROCESSING ... 14
 2.5 LOGICBRICKS IP CORES FOR GRAPHICAL USER INTERFACE (GUI) IMPLEMENTATIONS ... 15

3 GET AND INSTALL THE REFERENCE DESIGN ... 17
 3.1 REGISTRATION PROCESS ... 17
 3.2 INSTALLATION PROCESS ... 20
 3.2.1 Filesystem permissions of the installed directory (Windows 7) 20
 3.3 DIRECTORY STRUCTURE .. 22

4 GETTING LOGICBRICKS EVALUATION LICENSES ... 24

5 LOGIREF-FACE-TRACK-EVK DESIGN .. 27
 5.1 DESIGN CUSTOMIZATION ... 28
 5.2 MEMORY LAYOUT .. 29
 5.3 RESTORING FULL SOC DESIGN FROM XYLON DELIVERABLES 30

6 QUICK START ... 31
 6.1 SET UP THE MICROZED EMBEDDED VISION KIT FOR USE WITH THE FACE TRACKING DEMO FROM THE SD CARD .. 31
 6.2 RUNNING THE PRECOMPILLED DEMO FROM THE SD CARD IMAGE 32

7 SOFTWARE DOCUMENTATION ... 33
 7.1 LOGIFDT SDK DOCUMENTATION ... 33
 7.2 LOGIFDT TRACKING CONFIGURATION ... 33

8 REVISION HISTORY .. 36
1 INTRODUCTION

A human face provides a variety of different communication functions in complex interactions between humans. Beside to identification, humans use head pose and facial expressions during conversation to express emotions, reveal intents, display attention and more. The face detection and tracking is a computer technology that uses video images captured by the video camera to determine and track those distinctive facial features.

The technology significantly improves human-machine interaction and opens a very wide range of applications, such as driver drowsiness detection in automotive safety systems that prevent accidents, speaker detection in video conferencing systems capable to automatically zoom to the current speaker, hands-free interfacing helping disabled people to improve their daily lives, character animations in virtual reality entertainment and gaming, health, robotics, audio processing and others.

Xylon and Visage Technologies AB have entered a technology partnership with the goal of jointly delivering Visage Technologies' state-of-the-art face detection and tracking technology through the Xylon logicBRICKS IP Library. As the result of this partnership, Xylon has designed the logiFDT Face Detector and Tracker IP core optimized for use with Xilinx® Zynq®-7000 All Programmable SoC.

The logiFDT IP core finds and tracks the face and facial features in video sequences in real time (up to 30fps) and returns full 3D head pose, gaze direction, facial features coordinates and a wealth of other information that can be used in different applications developed on top of it.
This user’s manual describes Xylon’s logiREF-FACE-TRACK-EVK Face Tracking reference design for the MicroZed™ Embedded Vision Development Kit from Avnet Electronics Marketing and the ON Semiconductor’s PYTHON-1300 1.3 MP video camera.

This free and pre-verified logicBRICKS reference design includes evaluation logicBRICKS IP cores and hardware design files prepared for Xilinx Vivado® Design Suite. It also includes the demo software, software drivers and documentation.

The offered evaluation design is customizable and logicBRICKS IP cores can be setup through the Vivado IP Integrator (IPI). For example, the logiFDT IP core can be configured differently; i.e. to track less facial features at higher speed, use more programmable logic for faster calculations on multiple pixels in a parallel, etc. System designers can leverage this flexibility and adopt the logiFDT IP core regarding speed and precision, overall SoC design and other application requirements.

1.1 Hardware Platform

The logiREF-FACE-TRACK-EVK Image Signal Processing (ISP) Reference Design works with the MicroZed Embedded Vision Kit from Avnet Electronics Marketing. A full evaluation requires the following hardware components:

- **MicroZed Embedded Vision Development Kit**
 (Part Number*: AES-MBCC-EMBV-DEV-KIT)

 or the equivalent combination built of:

 - **MicroZed 7020 SOM**
 (Part Number*: AES-Z7MB-7Z020-SOM-G)

 - **MicroZed Embedded Vision Carrier Card Kit**
 (Part Number*: AES-MBCC-EMBV-G)

 and:

 - **ON Semiconductor PYTHON-1300-COLOR Camera**
 (Part Number*: AES-CAM-ON-P1300C-G)

* Avnet Electronics Marketing part number – for more details visit www.microzed.org
1.2 Design Deliverables

1.2.1 Hardware Design Files

- Configuration bitstream file for the programmable logic and the SDK export of the reference design that allows immediate start and software changes
- Xylon evaluation logicBRICKS IP cores:
 - logiFDT Face Detector and Tracker
 - logiWIN Versatile Video Input
 - logiCVC-ML Compact Multilayer Video Controller
 - logiCLK Programmable Clock Generator
 - logiBAYER Color Camera Sensor Bayer Decoder

1.2.2 Software

- logicBRICKS standalone (bare-metal drivers) with driver examples
- Zynq FSBL sources and the Xilinx SDK project – custom version for standalone applications
- Face Tracking demo application

1.2.3 Binaries

- Precompiled SD Card image for the fastest demo startup
- First Stage Bootloader (FSBL)

1.3 Usage Modes

The logiREF-FACE-TRACK-EVK reference design can be used in different ways, which are listed in this paragraph and thoroughly explained through this document.

1.3.1 Quick Evaluation with no HW and/or SW Changes

- Download and install the logiREF-FACE-TRACK-EVK reference design (chapter 3 GET AND INSTALL THE REFERENCE DESIGN)
- Setup the demo hardware and use the provided SD card image to run precompiled demo applications (paragraph 6.1 Set Up the MicroZed EVK kit for Use with the Precompiled Demo From the SD Card)

1.3.2 Develop Standalone Software, no HW Changes

- Download and install the logiREF-FACE-TRACK-EVK reference design (chapter 3 GET AND INSTALL THE REFERENCE DESIGN)
Setup the demo hardware (paragraph 6.1 Set Up the MicroZed EVK kit for Use with the Precompiled Demo From the SD Card)

- Use the provided Zynq-7000 AP SoC as it is (binaries)
- Follow instructions for working with logicBRICKS standalone (bare-metal) - please get the full instructions in the start.html file from your installation root directory
- Develop software applications prior to the availability of the actual target system

1.3.3 Full logiFDT Customization, HW and SW Changes

- Download and install the logiREF-FACE-TRACK-EVK reference design (chapter 3 GET AND INSTALL THE REFERENCE DESIGN)
- Setup the demo hardware (paragraph 6.1 Set Up the MicroZed EVK kit for Use with the Precompiled Demo From the SD Card)
- Obtain logicBRICKS evaluation licenses from Xylon (chapter 4 GETTING LOGICBRICKS EVALUATION LICENSES)
- Use the provided Zynq-7000 AP SoC design to add or remove more logicBRICKS IP cores and/or third-party IP cores, or to change logicBRICKS IP settings through the GUI
- Implement new Zynq-7000 AP SoC design
- Develop software by following instructions listed in the start.html file from your installation root directory

1.4 Xilinx Development Software

The logiREF-FACE-TRACK-EVK reference design and Xylon logicBRICKS IP cores are fully compatible with Vivado Design Suite 2014.3. Future design releases shall be synchronized with the newest Xilinx development tools.

1.5 Face Tracking Demo Preview

Please check Xylon’s Video Gallery web pages (http://www.logicbricks.com/logicBRICKS-IP-Library/Video-Galleries/logicBRICKS-Face-Tracking-Demo.aspx) to preview the Face Tracking demo provided with the logiREF-FACE-TRACK-EVK installation for your MicroZed EVK development kit.
2 LOGICBRICKS IP CORES

2.1 About logicBRICKS IP Library

Xylon’s logicBRICKS IP core library provides IP cores optimized for Xilinx FPGAs and Zynq-7000 All Programmable SoC. logicBRICKS IP cores shorten development time and enable fast design of complex embedded systems based on Xilinx All Programmable devices.

The key features of the logicBRICKS IP cores are:

- Compatibility with the Xilinx Vivado and ISE Design Suites – logicBRICKS can be used in same ways as Xilinx IP cores and require no skills beyond general tools knowledge. IP core feature sets and programmable logic utilization can be setup through Xilinx tool GUI.

- Each logicBRICKS IP core comes with the extensive documentation, reference design examples and can be evaluated on reference hardware platforms. Xylon provides evaluation logicBRICKS IP cores to enable risk-free evaluation prior to purchase.

- Broad software support – from bare-metal software drivers to standard software drivers for different operating systems (OS).

- Xylon assures skilled technical support.

![Figure 3: logicBRICKS IP Cores in the Vivado IP Catalog](image-url)

Some of the latest logicBRICKS IP cores are provided in the Vivado compatible version only. Please visit our web site, or contact Xylon to learn more about the tools compatibility of the specific logicBRICKS IP core.
The Figure 3 shows imported logicBRICKS IP cores into Vivado Design Suite, while the Figure 4 shows a typical logicBRICKS IP core’s configuration GUI.

Figure 4 shows a typical logicBRICKS IP core’s configuration GUI.

Figure 4: Example of logicBRICKS IP Configuration GUI

Click on the Documentation icon in the GUI opens the User’s Manual of the logicBRICKS IP core!
2.2 Evaluation logicBRICKS IP Cores

Xylon offers free evaluation logicBRICKS IP cores which enable full hardware evaluation:

- Imported into the Xilinx ISE Platform Studio (XPS) and Vivado IP Integrator (IPI)
- IP parameterization through the tool GUI interface
- Bitstream generation
- If you need to simulate logicBRICKS IP cores, please contact Xylon

The logicBRICKS evaluation IP cores are run-time limited and cease to function after some time. Proper operation can be restored by reloading the bitstream. Besides this run-time limitation, there are no other functional differences between the evaluation and fully licensed logicBRICKS IP cores.

Specific IP cores can be downloaded from Xylon’s web shop: http://www.logicbricks.com/Products/IP-Cores.aspx.

2.3 logicBRICKS IP Cores Used in This Design

2.3.1 logiFDT Face Detector and Tracker

The logiFDT Face Detector and Tracker IP core finds and tracks the face and facial features in video sequences in real time and returns full 3D head pose, gaze direction, facial features coordinates and a wealth of other information that can be used in different applications developed on top of it.

- Supports Xilinx Zynq-7000 AP SoC
- Real-time face and facial features tracking in video sequences from a camera or a file
- Easy-to-Use API for accessing the tracking data:
 - 3D head pose (translation and rotation)
 - Gaze direction and eye closure
 - Facial feature coordinates in global 3D space
 - Feature points specified according to the MPEG-4 FBA standard
 - Action units describing the current facial expressing, i.e. brow raise, lips stretch, jaw drop, etc.
 - 3D model of the face in current pose and expression returned as single textured 3D triangle mesh
 - Other tracking data...
- Fully automatic operation and robust recovering from losses due to occlusions, face turning away and similar
- Tracking internally works on a single-channel YUV video (Y-luminance component used), which can be recorded by color, grayscale and infrared camera. For thermal video info, please contact Xylon
December 9th, 2014

- Carefully hardware/software partitioned to assure maximal performance and minimal resources utilization
- The tracking engine uses single ARM Cortex-A9 CPU core supported by hardware acceleration of the most used computing intensive operations implemented in programmable logic
- The required Zynq-7000 AP SoC resources utilization and achievable performance allows for parallel execution of other real-time vision applications on the same SoC
- Parametrical VHDL design that allows tuning of slice consumption and features set
- Prepackaged for Xilinx Vivado Design Suite and fully controllable through the IP Integrator GUI interface
- IP deliverables include the software driver, documentation and technical support

More info: http://www.logicbricks.com/Products/logiFDT.aspx

2.3.2 logiCVC-ML Compact Multilayer Video Controller

The logiCVC-ML IP core is an advanced display graphics controller for LCD and CRT displays, which enables an easy video and graphics integration into embedded systems with Xilinx Zynq-7000 All Programmable SoC and FPGAs.

This IP core is the cornerstone of all 2D and 3D GPUs. Though its main function is to provide flexible display control, it also includes hardware acceleration functions: three types of alpha blending, panning, buffering of multiple frames, etc.

- Supports all Xilinx FPGA families
- Supports LCD and CRT displays (easily tailored for special display types)
- 64x1 to 2048x2048 display resolutions
- Available SW drivers for: Linux, Android, QNX and Microsoft Windows Embedded Compact OS
- Support for higher display resolutions available on request
- Supports up to 5 layers; the last one configurable as a background layer
- Configurable layers’ size, position and offset
- Alpha blending and Color keyed transparency
- Pixel, layer, or Color Lookup Table (CLUT) alpha blending mode can be independently set for each layer
- Packed pixel layer memory organization:
 - RGB – 8-bpp, 8-bpp using CLUT, 16bpp Hi-color RGB 565 and True-color 24bpp
 - YCbCr – 16bpp (4:2:2) and 24bpp (4:4:4)
- Configurable CoreConnect™ PLBv4.6, Xylon XMB or ARM® AMBA® AXI4 memory interface data width (32, 64 or 128)
- Programmable layer memory base address and stride
- Simple programming due to small number of control registers
- Support for multiple output formats:
 - Parallel display data bus (RGB): 12x2-bit, 15-bit, 16-bit, 18-bit or 24-bit
 - YCbCr 4:4:4 or 4:2:2 output format
 - Digital Video ITU-656: PAL and NTSC
 - LVDS output format: 3 or 4 data pairs plus clock
2.3.3 logiWIN Versatile Video Input

The logiWIN IP core enables easy implementation of video frame grabbers. Input video can be decoded, real-time scaled, de-interlaced, cropped, anti-aliased, positioned on the screen...

- Supports Xilinx Zynq-7000 AP SoC and FPGAs
- Maximum input and output resolutions 2048x2048
- Supports different input interface standards:
 - ITU656 and ITU1120 (PAL and NTSC)
 - RGB
 - YUV 4:2:2
- Built-in YCrCb to RGB, YUV to RGB and RGB to YCrCb converters
- Real-time scale-up to 64x and scale-down to 16x; lossless scaling down to 2x or 4x in the cascade scaling mode
- Supports video de-interlacing, cropping, positioning, pixel alpha blending...
- Embedded image color enhancements: brightness, contrast, hue, saturation
- ARM AMBA AXI4 and AXI4-Lite bus compliant
- Available for Xilinx Vivado IP Integrator and ISE XPS implementation tools

More info: http://www.logicbricks.com/Products/logiWIN.aspx

2.3.4 logiBAYER Color Camera Sensor Bayer Decoder

Converts Bayer color coded video inputs into RGB video. Supports all possible Bayer patterns. Supports input resolutions up to 4096x4096 (including 4K2K). Also supports input video scaling.

- Supports Xilinx Zynq-7000 AP SoC and FPGAs
- Converts camera sensor video from Bayer color space to RGB or YCrCb 4:2:2
- Supports all possible Bayer pattern combinations (first two pixels: BG, RG, GB, GR)
Maximum input and output resolutions 4096x4096
Supports different input interface standards:
- Parallel – data, control and clock signals
- AXI4-Stream – AXI4 compliant video interface
- LVDS – 1:12 deserialization with embedded clock
Supports different output interface standards:
- Parallel – data, control and clock signals
- AXI4-Stream – AXI4 compliant video interface
- Memory – XMB, PLBv46, NPI and AXI4
- Cropping two pixels or two lines from each side of the input image
- RGB (24-bit RGB888 or 32-bit ARGB8888) or YCrCb (16-bit 4:2:2) output color representation
- Available for Xilinx Vivado IP Integrator and ISE XPS implementation tools

More info: http://www.logicbricks.com/Products/logiBAYER.aspx

2.3.5 logiCLK Programmable Clock Generator

The logiCLK is a programmable clock generator IP core featuring twelve independent and fully configurable clock outputs. While six clock outputs can be fixed by generic parameters prior to the implementation, the other six clock outputs can be either fixed by generics or dynamically reconfigured in a working device. The Dynamic Reconfiguration Port (DRP) interface gives system designers the ability to change the clock frequency and other clock parameters while the design is running by mean of a set of PLL registers.

- Supports Xilinx Zynq-7000 All Programmable SoC, 7 series and Spartan®-6 FPGAs
- Provides 12 independent clock outputs that can be configured by generic parameters:
 - 6 outputs can be dynamically configured through the DRP interface
 - 6 outputs can be configured by generics only
- Input clock frequency range*:
 - Spartan-6: 19 – 540 MHz
 - 7 series: 19 – 1066 MHz
- Output clocks frequency range*:
 - Spartan-6: 3.125 – 400 MHz
 - 7 series: 6.25 – 741 MHz
- Configurable ARM AMBA AXI4-Lite and CoreConnect PLBv46 compliant registers interface
- Software support for Linux and Microsoft Windows Embedded Compact operating systems
- Available for Xilinx Vivado IP Integrator and ISE Platform Studio

* Depending on the used device’s speed grade

More info: http://www.logicbricks.com/Products/logiCLK.aspx
2.4 logicBRICKS IP Cores for Video Processing

The logiISP Image Signal Processing Pipeline IP core is a full high-definition ISP pipeline designed for digital processing and image quality enhancements of an input video stream in Smarter Vision embedded designs based on Xilinx Zynq-7000 All Programmable SoC and 7 Series FPGA devices.

More info: http://www.logicbricks.com/Products/logiISP.aspx

The logiISP Image Signal Processing (ISP) Pipeline IP core can be combined with the logiFDT Face Detector and Tracker in order to enhance the video quality prior to the face tracking processing.

The logiISP IP core accepts diversely formatted video inputs generated by different sensors and removes defective pixels, de-mosaics Bayer encoded video, makes image color and gamma corrections, filters the noise from the video, collects video analytics data for various control algorithms and manipulates video data formats and color domains. The IP core can be used with processor-based control algorithms for Auto White Balancing (AWB) and Auto Exposure (AE) that can be licensed from Xylon.

![logiISP Demo](http://www.logicbricks.com/logicBRICKS/Reference-logicBRICKS-Design/ISP-Pipeline-for-Xilinx-All-Programmable.aspx)

Figure 5: Screenshots from the Xylon logiISP Demo (logiREF-VIDEO-ISP-EVK)

To get Xylon free ISP reference design, please visit:

To learn more about other Xylon logicBRICKS IP cores for the video processing, please visit:

http://www.logicbricks.com/Products/IP-Cores.aspx
2.5 logicBRICKS IP Cores for Graphical User Interface (GUI) Implementations

Xylon’s logicBRICKS library of IP cores optimized for Xilinx All Programmable devices includes several graphics logicBRICKS IP cores for full range implementation of 2D and 3D Graphics Processing Units (GPU) on Xilinx Zynq-7000 All Programmable SoC and FPGAs. Xylon’s graphics logicBRICKS IP cores can be quickly combined with the graphic processing IP cores when it is necessary to support complex GUI interfaces. Graphics logicBRICKS IP cores are well supported by Xylon provided software drivers for the most popular operating systems: Linux, Android™, QNX® and Microsoft® Windows® Embedded Compact. A number of Xilinx partners who provide BSPs (Board Support Package) for different operating systems support Xylon logicBRICKS IP cores for graphics.

To get Xylon free GUI reference designs, please visit:

To learn more about the available software support for graphics logicBRICKS IP cores, please visit:

logiBITBLT Bit Block Transfer 2D Graphics Accelerator

This 2D graphics accelerator speeds up the most common GUI operations and off-loads the processor. The logiBITBLT transfers graphics objects from one to another part of system’s on-screen or off-screen video memory, and performs different operations during transfers, such as ROP2 raster operations, bitmap scaling (stretching) and flipping, Porter & Duff compositing rules or transparency.

More info: http://www.logicbricks.com/Products/logiBITBLT.aspx

logi3D Scalable 3D Graphic Accelerator

The logi3D* Scalable 3D Graphics Accelerator IP core is a 3D Graphics Processing Unit (GPU) IP core developed for embedded systems based on the Xilinx Zynq-7000 All Programmable SoC.

The IP is designed to support the OpenGL ES 1.1 API specifications – a royalty-free, cross-platform API for full-function 2D and 3D graphics on embedded systems – including consoles, phones, appliances and vehicles.

* Product is based on a published Khronos specification, and is expected to pass the Khronos Conformance Testing Process. Current conformance status can be found at www.khronos.org/conformance.
Figure 6: Screenshots from Some Demos Provided with the Reference Designs (logiREF-ZGPU-ZED, logiREF-ZGPU-ZC702 and logiREF-ZGPU-ZC706)
3 GET AND INSTALL THE REFERENCE DESIGN

Xylon offers several logicBRICKS reference designs for different hardware platforms. Short descriptions of all Xylon logicBRICKS reference designs can be found at:

A quick access to specific reference design is also possible through the main downloads navigation page: http://www.logicbricks.com/logicBRICKS/Reference-logicBRICKS-Design/Xylon-Reference-Designs-Navigation-Page.aspx

Only registered logicBRICKS users can download logicBRICKS reference designs. Unregistered users will be re-directed to the User Login page. The download link is automatically sent by an e-mail, which means that the registration process requires access to the e-mail account. Xylon reference logicBRICKS designs can be downloaded as cross-platform Java JAR self-extracting installers.

For quick registration and other general instructions, please visit:

http://www.logicbricks.com/logicBRICKS/logicBRICKS-Quick-Info.aspx

3.1 Registration Process

Registration is very quick and simple. If you experience any troubles during the registration process, please contact Xylon Technical Support Service – support@logicbricks.com.
Step 1

If you are the registered logicBRICKS user, please type-in your Username and Password. Unregistered users should click on the Register button, which will open the registration form.

Step 2

Unregistered users should fill-in the registration form from the Fig 8. Please take care on required form’s fields. Your Username is an actual e-mail account used for communication with Xylon logicBRICKS. Xylon accepts only valid company e-mail accounts.

Step 3

As soon as your registration form gets accepted by Xylon, you get a confirmation message. Please check your e-mail to find a link that activates your logicBRICKS account. If you do not get the confirmation message in several minutes, please check your Spam Filter or Junk Mail Folder. If you have not received the confirmation message, please contact Xylon support.
Step 4

Click on the logicBRICKS web account activation link in the received e-mail, and you will get the confirmation status message. Please login to proceed.

Figure 10: Registration Process – Step 4

Step 5

As soon as you select an appropriate logicBRICKS reference design and installer for your operating system from the Downloads Navigation Page (link below), you will get an e-mail with the download link for the selected reference design installation.

Figure 11: Registration Process – Step 5
3.2 Installation Process

Installation process is quick and easy. Each logicBRICKS reference design can be downloaded as a cross-platform Java JAR self-extracting installer. Please make sure that you have a copy of the JRE (Java Runtime Environment) version 6 or higher on your system to run Java applications and applets.

Double-click on the installer’s icon to run the self-installing executable to unpack and install the reference design on your PC.

At the beginning, you will be requested to accept two evaluation licenses – Figure 12 and Figure 13.

For installation in Linux OS, please follow instructions:

If you agree with the conditions from the evaluation licenses, click NEXT and select the installation path for your logicBRICKS reference design – Figure 14.

The installation process takes several minutes. It generates the directory structure described in the paragraph 3.3 Directory Structure.

3.2.1 Filesystem permissions of the installed directory (Windows 7)

The reference design installed in the default path C:\Program Files\xylon will inherit read-only filesystem permissions from the parent directory. This will block you in opening the hardware project file in Xilinx Vivado tools. Therefore it is necessary to change the filesystem permissions for the current user to “Full control” preferably.

To change the user permissions for C:\Program Files\xylon directory and all of it’s subdirectories, right click on the C:\Program Files\xylon directory and select “Properties”. Under “Security” tab select “Edit”. Select “Users” group in the list and check “Full control” checkbox in the “Allow” column.
Figure 12: Installation Process – Step 1

Figure 13: Installation Process – Step 2

Figure 14: Installation Process – Step 3

Figure 15: Installation Process – Step 4

Figure 16: Installation Process – Step 5
3.3 Directory Structure

Figure 17 gives a top level view of the directories and files included with the logiREF-FACE-TRACK-EVK reference design for the MicroZed Embedded Vision development kit. Table 1 explains the purpose of directories.

Please use the start.html file located in the installation root directory as a jump-start navigation page for exploring the reference design.

Figure 17: Installed Reference Design – The Directory Structure
<table>
<thead>
<tr>
<th>Directory</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>installation root</td>
<td>This directory contains the start.html page – the jump-start navigation page through the reference design.</td>
</tr>
<tr>
<td>doc</td>
<td>Project documentation.</td>
</tr>
<tr>
<td>hardware</td>
<td></td>
</tr>
<tr>
<td>avnet_embv_cores/src</td>
<td>Avnet IP-XACT cores</td>
</tr>
<tr>
<td>drivers</td>
<td>Standalone (bare-metal) drivers for logicBRICKS IP cores with documentation and examples.</td>
</tr>
<tr>
<td>logicbricks/lib</td>
<td>Evaluation logicBRICKS IP-XACT cores (zip archives).</td>
</tr>
<tr>
<td>logicbricks/src</td>
<td>Evaluation logicBRICKS IP-XACT extracted IP cores. IP cores' User’s Manuals are stored in doc subdirectories.</td>
</tr>
<tr>
<td>sw_services</td>
<td></td>
</tr>
<tr>
<td>design.h</td>
<td>Hardware description file used by platform, for more detail please click here.</td>
</tr>
<tr>
<td>software</td>
<td></td>
</tr>
<tr>
<td>apps</td>
<td>Application source files</td>
</tr>
<tr>
<td>libs</td>
<td>Libraries: logifdt_util, lpng, lvlib, opencv, visage, zlib</td>
</tr>
<tr>
<td>makeBin</td>
<td>Utility script for creating boot.bin file.</td>
</tr>
<tr>
<td>ready_for_download</td>
<td>Prepared binaries ready for download.</td>
</tr>
<tr>
<td>SDK_workspace</td>
<td>Xilinx SDK workspace folder for building bare-metal applications.</td>
</tr>
<tr>
<td>readme.html</td>
<td>Navigation page through the software files and instructions for building binaries.</td>
</tr>
<tr>
<td>vivado</td>
<td>This directory contains the complete Vivado project and files necessary for regenerating project from TCL scripts.</td>
</tr>
<tr>
<td>data</td>
<td>Design constraints files</td>
</tr>
<tr>
<td>fpga</td>
<td>MicroZED reference design bitstream.</td>
</tr>
<tr>
<td>scripts</td>
<td>TCL scripts to create block design from scratch.</td>
</tr>
<tr>
<td>project</td>
<td>Vivado project related directories.</td>
</tr>
<tr>
<td>srcs</td>
<td>Block design GUI script and HDL wrappers.</td>
</tr>
<tr>
<td>create_project.html</td>
<td>Instructions for building Vivado project from scratch.</td>
</tr>
</tbody>
</table>

Table 1: Explanation of Directories in logiREF-FACE-TRACK-EVK Reference Design
4 GETTING LOGICBRICKS EVALUATION LICENSES

Please note that the logiREF-FACE-TRACK-EVK reference design installation provides you with everything needed to run the provided demo applications or to use/change the provided software source code. However, if you wish to make any changes on the hardware design files, such as to remove, add or reconfigure some of the provided IP cores, you have to obtain evaluation IP licenses from Xylon.

The following pages describe the procedure for getting and licensing evaluation logicBRICKS IP cores that takes several minutes to complete. If you experience any troubles during this process, please contact Xylon Technical Support Service – support@logicbricks.com.

You must be logged in to the Xylon website using your logicBRICKS user name and password to get an access to evaluation logicBRICKS IP cores. Unregistered users will be re-directed to the User Login page. Paragraph 3.1 Registration Process explains this simple registration procedure.

Step 1 – Logged in users get the “My logicBRICKS” tab in the main www.logicbricks.com navigation menu. Click on it, and you will be directed to your main web page for communication with Xylon logicBRICKS – Figure 18. Please select the “Request Eval IP Core” tab in the left menu.

![Figure 18: Step 1 – My logicBRICKS Navigation Page](image)

Step 2 – Select the evaluation logicBRICKS IP core and click on “Obtain evaluation license key” link – Figure 19. If you are entitled to get the evaluation logicBRICKS IP core, you will be immediately asked (Figure 22) your Ethernet MAC ID number or Sun Host ID – as described in the Step 3.

If the evaluation logicBRICKS IP cores’ list looks differently from the one shown on Figure 19, for example as the list presented by the Figure 20, please fill in and submit the request form (Figure 21), and allow us some time to process your request. Scroll down to get to the request form.
For instructions on how to find your Ethernet MAC or host ID, please visit:

Figure 19: Step 2 – Selecting logicBRICKS IP Core for Licensing

Figure 20: Step 2 – A List of Already Activated logicBRICKS IP Licenses

Figure 21: Step 1 – Licensing logicBRICKS Evaluation IP Cores

Step 3 – Evaluation logicBRICKS IP licenses are tied to your Ethernet MAC address or Sun Host ID (Figure 22), and can be used on a single working station only. Fill in this address and click on the “Request License Key” button. You should get the confirmation message – Figure 23. If you do not get the confirmation message, please contact Xylon technical support – support@logicbricks.com.
Step 4 – You will get an e-mail with the license key (file) and full instructions for setting up the license key and downloading the logicBRICKS IP core. Please follow the provided instructions.

Figure 22: Step 3 – Licensing logicBRICKS Evaluation IP Cores

Figure 23: Step 3 – Confirmation Message

Figure 24: Step 4 – E-mail with logicBRICKS License and Download Instructions
5 LOGIREF-FACE-TRACK-EVK DESIGN

Figure 25 shows the simplified block diagram of the logiREF-FACE-TRACK-EVK reference design. The VITA Receiver IP core from Avnet Electronics Marketing receives the video data from the ON Semiconductor PYTHON-1300 camera module (LVDS data) and provides raw Bayer video data and video sync signals at its outputs. The logiBAYER IP core converts camera sensor video from Bayer color space to YUV.

The design utilizes two instances of Xylon logiWIN Versatile Video Input frame grabbing IP core. One logiWIN IP core does a full resolution frame grabbing, formats and stores the video for the display. The other logiWIN IP core scales the video input to the resolution required by the logiFDT tracking engine and, as it is requested by the face tracking software, generates the single-channel video containing only the Y (luminance) component of the YUV video input. Xylon’s logiCVC-ML...
Compact Multilayer Video Controller IP core displays the camera video overlaid by graphically presented face tracking results.

The logiWIN frame grabbers store the video in video frame buffers implemented in an external DDR3 memory. The logiWIN is AXI4 bus protocol compliant and can be easily connected to Zynq-7000 AP SoC memory controller. The logiWIN IP cores are synchronized with the logiCVC-ML Compact Multilayer Video Controller and the logiFDT Face Detector and Tracker. The IP core enables easy implementation of the multiple buffering video storage method that assures a flicker-free video output.

The memory subsystem is an essential part of any video and graphics based system. It must ensure enough storage space for video buffers, GUI elements and application code, as well as a fast interface to assure enough memory bandwidth for a smooth and uninterrupted SoC operation. The MicroZed board includes two 16-bit DDR3 memories connected as one 1GB 32-bit memory module. The memory is connected to the hard memory controller in the Zynq-7000 AP SoC Processor Subsystem (PS).

The logiCVC-ML Compact Multilayer Video Controller IP core drives a common PC monitor through the ADV7511 – High-Definition Multimedia Interface (HDMI®) transmitter available on the MicroZed Embedded Vision Carrier Card Kit. The logiCVC-ML automatically handles the full HD graphics background layer and the video overlay.

5.1 Design Customization

The provided reference design can be customized in different ways. Please note that any changes in the provided reference design require evaluation IP licenses for logicBRICKS IP cores. The licensing process is described in the chapter 4 GETTING LOGICBRICKS EVALUATION LICENSES.

Possible design changes include:

- Change logicBRICKS IP settings, i.e. number of graphics layers controlled by the logiCVC-ML display controller IP core, sizing of the video window, etc.
- Add or remove logicBRICKS IP cores, i.e. add the ISP pipeline to improve video quality, or add graphics accelerators to speed up the GUI interface and offload the processing system, etc.
- Add your own or third-party IP cores to various combinations of logicBRICKS IP cores
- ...
5.2 Memory Layout

![Memory Layout Diagram]

Figure 26: logiREF-FACE-TRACK-EVK Memory Layout

<table>
<thead>
<tr>
<th>IP Core</th>
<th>Memory Access [MB]</th>
<th>Memory Stride [pixels]</th>
<th>Display Memory [HxV pixels]</th>
</tr>
</thead>
<tbody>
<tr>
<td>logiCVC</td>
<td>448 – 434</td>
<td>2048</td>
<td>up to 1920x1080</td>
</tr>
<tr>
<td>logiWIN_0</td>
<td>12.5</td>
<td>2048</td>
<td>1280x800</td>
</tr>
<tr>
<td>logiWIN_1</td>
<td>6.25</td>
<td>2048</td>
<td>1280x800</td>
</tr>
<tr>
<td>logiFDT</td>
<td>1024</td>
<td>2048</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: logicBRICKS IP Cores’ Memory Addressing
5.3 Restoring Full SoC Design from Xylon Deliverables

Xylon provides all necessary design files and TCL scripts to enable full Vivado Design Suite 2014.3 project restore. Full guidelines can be found in the [vivado/create_project.html](http://example.com/vivado/create_project.html) file.

The `logiFDT_EVK.xpr` file from your installation directory is the Vivado Design Suite project file that opens the project. Open this file with the Vivado and explore the design – Figure 27.

In order to re-implement or change the provided reference design, please go to Xylon’s web site [www.logicbricks.com](http://example.com/www.logicbricks.com) and acquire evaluation licenses for the logicBRICKS IP cores (see chapter 4 GETTING LOGICBRICKS EVALUATION LICENSES).

![Vivado Block Design Diagram – logiREF-FACE-TRACK-EVK Project](image)

To access logicBRICKS IP cores’ user’s manuals, double-click on the specific IP core’s to open the GUI, and click on the Documentation icon to open the document. LogicBRICKS User’s Manuals contain all necessary information about the IP cores’ features, architecture, registers, modes of operation, etc.
6 QUICK START

6.1 Set Up the MicroZed Embedded Vision Kit for Use with the Face Tracking demo from the SD Card

Xylon provides the demo binaries in the `software/ready-for-download` directory of the delivery. In order to quickly run the precompiled Xylon demo, please copy the contents of the `software/ready-for-download` directory to the root directory on the FAT32 formatted SD card and use it with the hardware kit. The programmed SD card’s root folder should look as shown by the Figure 28.

![Figure 28: The Content of Properly Programmed SD Card](image)

Set up your MicroZed Embedded Vision Kit as follows:

- Plug the programmed SD card into the micro SD card connector J6 on the MicroZed board
- Select the MicroZed configuration mode by setting up JP1-JP3 jumpers as shown on Figure 27. The presented setup selects the SD card as the boot device.
- Plug the MicroZed board into the Carrier Card board, as shown on Figure 30
- Attach the On Semiconductor PYTHON-1300 camera module to the MicroZed Carrier Card, as shown on Figure 31
- Connect the Full HD (1920x1080) PC monitor and the Carrier Card (HDMI OUT CONN3) by the HDMI video cable
- Connect the 5VDC power supply to the Carrier Card

![Figure 29: The MicroZed Board Jumpers Settings](image)

![Figure 30: The MicroZed Board Plugged In the Carrier Card](image)

![Figure 31: The PYTHON-1300 Camera Module Plugged In the Carrier Card](image)

6.2 Running the Precompiled Demo from the SD Card Image

To quickly start the precompiled Face Detection and Tracking demo, make sure that you have the SD card with the precompiled image plugged in the board’s slot, and all jumpers setup as described in the previous paragraph.

The demo supports two tracking modes: single face tracking and detection of multiple faces. To switch between these modes, please push the SW1 push-button on the MicroZed board.
7 SOFTWARE DOCUMENTATION

7.1 logiFDT SDK Documentation

User’s Manuals and additional reference manuals that describe the operation of the logiFDT software part are provided in the convenient HTML format. Please open the documentation from VisageSDK_doc.

![Figure 32: logiFDT SDK Software Documentation – The Start Page](image)

7.2 logiFDT Tracking Configuration

For the face, the MPEG-4 specification defines 66 low-level Face Animation Parameters (FAPs) and two high-level FAPs. The low-level FAPs are based on the study of minimal facial actions and are closely related to muscle actions. They represent a complete set of basic facial actions, and therefore allow the representation of most natural facial expressions. Exaggerated values permit the definition of actions that are normally not possible for humans, but could be desirable for cartoon-like characters.
To change the profile of the face tracker, please exchange the head.cfg (in the SD card root directory) file with one of the three provided Face Tracker configuration files and restart the kit. The provided profile configuration files are:

- head_high.cfg (high profile configuration file)
- head_mid.cfg (mid profile configuration file)
- head_low.cfg (low profile configuration file)

Figure 33: MPEG-4 FAB Standard Defined Facial Feature Points

Red dots on Figure 33 mark the facial features tracked by the logiFDT setup with the delivered High-Profile configuration.
Figure 34: logiFDT Tracked Points in the Low-Profile Configuration
8 REVISION HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Approved by</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00.a</td>
<td>December 9, 2014</td>
<td>G. Galic</td>
<td>G. Galic</td>
<td>Initial</td>
</tr>
</tbody>
</table>

visage I SDK™ Face Track tracking engine is sourced from Technology Partner Visage Technologies AB.