

AS72651

Smart 6-Channel NIR Spectral ID Sensor with Electronic Shutter and 18-Channel AS7265x Master **Capability**

General Description

The AS72651 is a digital 6-channel multi-spectral sensor for spectral identification in the near IR light wavelengths, serving as master controller for the AS7265x chip-set. It has 6 independent on-device optical filters whose spectral response is defined in the NIR wavelengths from 600nm to 870nm with FWHM of 20nm. The AS72651, combined with the AS72652 (spectral response from 560nm to 940nm) and the AS72653 (spectral response from 410nm to 535nm) form an AS7265x 18-channel multi-spectral sensor chip-set from 410nm to 940nm.

Each AS7265x device has two integrated LED drivers with programmable current and can be timed for electronic shutter applications.

The device family integrates Gaussian filters into standard CMOS silicon via nano-optic deposited interference filter technology in LGA packages that also provide built-in apertures to control the light entering the sensor array.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of AS72651, Smart 6-Channel NIR Spectral ID Sensor with Electronic Shutter and 18-Channel AS7265x Master Capability are listed below:

Figure 1: **AS7265x Chip-Set Benefits and Features**

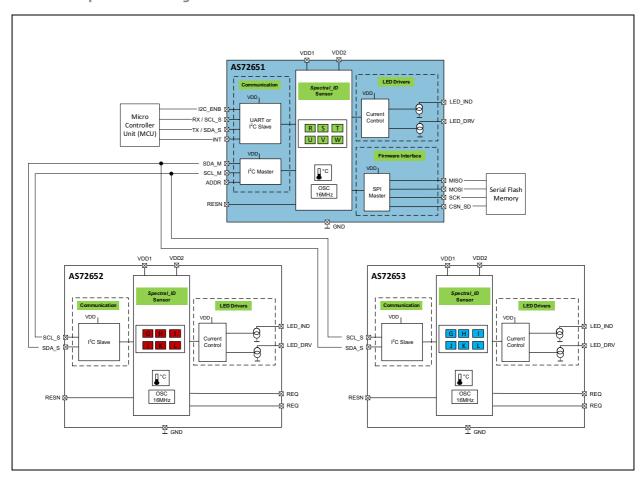
Benefits	Features		
Compact 18-channel spectrometry chip-set	Master device for 3 chip set delivering 18 visible and NIR channels from 410nm to 940nm each with 20nm FWHM		
solution	UART or I ² C slave digital Interface		
	Visible filter set realized by silicon interference filters		
	16-bit ADC with digital access		
No additional signal conditioning required	Programmable LED drivers		
	• 2.7V to 3.6V with I ² C interface		

Benefits	Features
Small, robust package, with built-in aperture	• 20-pin LGA package 4.5mm x 4.7mm x 2.5mm -40°C to 85°C temperature range

Applications

The AS72651 applications include:

- Product/Brand authentication
- Anti-counterfeiting
- Portable spectroscopy
- Product safety/adulteration detection
- Horticultural and specialty lighting
- Material analysis


Page 2ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Block Diagram

The functional blocks of this device are shown below:

Figure 2: AS7265x Chip-Set Block Diagram

Note(s):

1. Refer to the Application Diagram in Figure 52.

ams Datasheet Page 3
[v1-03] 2017-Oct-17
Document Feedback

Pin Assignments

The device pin assignments are described below.

Figure 3: Pin Diagram of AS72651 (Top View)

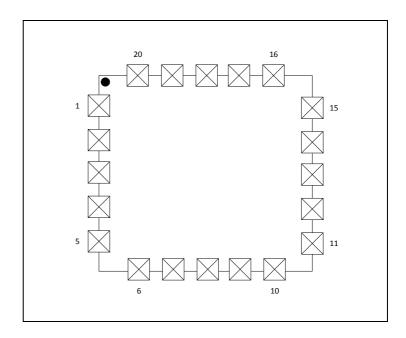


Figure 4: AS72651 Pin Description

Pin No.	Pin Name	Pin Type	Description
1	SDA_M	Digital Input and Output	I ² C master data for communicating with AS72652 and AS72653
2	RESN	Digital Input	Reset pin, active low (w/internal pull-up to VDD)
3	SCK	Digital Output	SPI serial clock
4	MOSI	Digital Input and Output	SPI MOSI
5	MISO	Digital Input and Output	SPI MISO
6	CSN_EE	Digital Output	Chip select for external EEPROM, active low
7	CSN_SD	Digital Output	Chip select for SD card interface, active low
8	I2C_ENB	Digital Input	Selects UART (low) or I ² C (high) operation
9	INT	Digital Output (open drain)	INT is active low
10	NC		Not functional. No connect

Page 4ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Pin No.	Pin Name	Pin Type	Description
11	RX / SCL_S	Digital Input	RX (UART) or SCL_S (I ² C slave) depending on I2C_ENB setting
12	TX / SDA_S	Digital Input and Output	TX (UART) or SDA_S (I ² C slave) depending on I2C_ENB setting
13	ADDR	Digital Output (open drain)	Sets address for AS72653
14	VDD2	Voltage Supply	Voltage supply
15	LED_DRV	Analog Output	LED driver output for driver LED, current sink
16	GND	Supply	Ground
17	VDD1	Voltage Supply	Voltage supply
18	LED_IND	Analog Output	LED driver output for indicator LED, current sink
19	NC		Not functional. No connect
20	SCL_M	Digital Output	I ² C master clock for communicating with AS72652 and AS72653

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings of AS72651 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The device is not designed for high energy UV (ultraviolet) environments, including upward looking outdoor applications, which could affect long term optical performance.

Figure 5:
Absolute Maximum Ratings of AS72651

Symbol	Parameter	Min	Max	Unit	Comments						
	Electrical Parameters										
V _{DD1_MAX}	Supply Voltage VDD1	-0.3	5	V	Pin VDD1 to GND						
V _{DD2_MAX}	Supply Voltage VDD2	-0.3	5	V	Pin VDD2 to GND						
V _{DD_IO}	Input/Output Pin Voltage	-0.3	VDD+0.3	V	Input/Output Pin to GND						
I _{SCR}	Input Current (latch-up immunity)	±	- 100	mA	JESD78D						
	Electrostatic Discharge										
ESD _{HBM}	ESD _{HBM} Electrostatic Discharge HBM ±1000			V	JS-001-2014						
ESD _{CDM}	Electrostatic Discharge CDM	=	±500	V JESD22-C101F							
	Temperature Ra	anges an	d Storage Co	nditions							
T _{STRG}	Storage Temperature Range	-40	85	°C							
T _{BODY}	Package Body Temperature		260	°C	IPC/JEDEC J-STD-020. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices"						
RH _{NC}	Relative Humidity (non-condensing)	5	85	%							
MSL	Moisture Sensitivity Level		3		Represents a 168 hour max. floor lifetime						

Page 6

Document Feedback

[v1-03] 2017-Oct-17

Electrical Characteristics

All limits are guaranteed with VDD = VDD1 = VDD2 = 3.3V, $T_{AMB} = 25^{\circ}\text{C}$. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

VDD1 and VDD2 should be sourced from the same power supply output.

Figure 6: Electrical Characteristics of AS72651

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
General Operating Conditions									
VDD1 /VDD2	Voltage Operating Supply	UART Interface	2.97	3.3	3.6	V			
VDD1 /VDD2	Voltage Operating Supply	I ² C Interface	2.7	3.3	3.6	V			
T _{AMB}	Operating Temperature		-40	25	85	°C			
I _{VDD}	Operating Current				5	mA			
		Internal RC Oscillator							
F _{OSC}	Internal RC Oscillator Frequency		15.7	16	16.3	MHz			
t _{JITTER} ⁽¹⁾	Internal Clock Jitter	@25°C			1.2	ns			
	,	Temperature Sensor		I	l				
D _{TEMP}	Absolute Accuracy of the Internal Temperature -8.5 Measurement			8.5	°C				
		Indicator LED	•	1	•				
I _{IND}	LED Current		1		8	mA			
I _{ACC}	Accuracy of Current		-30		30	%			
V _{LED}	Voltage Range of Connected LED	Vds of current sink	0.3		VDD	V			
		LED_DRV	•	1					
I _{LED1}	LED Current		12.5		100	mA			
I _{ACC}	Accuracy of Current		-10		10	%			
V _{LED}	Voltage Range of Connected LED	Vds of current sink	0.3		VDD	V			

ams Datasheet Page 7
[v1-03] 2017-Oct-17
Document Feedback

Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
	Digital Inputs and Outputs										
I _{IH} , I _{IL}	Logic Input Current	Vin=0V or VDD	-1		1	μΑ					
V _{IH}	CMOS Logic High Input		0.7* VDD		VDD	٧					
V _{IL}	CMOS Logic Low Input		0		0.3* VDD	٧					
V _{OH}	CMOS Logic High Output	I=1mA			VDD- 0.4	V					
V _{OL}	CMOS Logic Low Output	I=1mA			0.4	V					
t _{RISE} ⁽¹⁾	Current Rise Time	C(Pad)=30pF			5	ns					
t _{FALL} ⁽¹⁾	Current Fall Time	C(Pad)=30pF			5	ns					

Note(s):

1. Guaranteed, not tested in production.

Timing Characteristics

Figure 7: AS72651 I²C Slave Timing Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
	I ² C Interface									
f _{SCLK}	SCL Clock Frequency		0		400	kHz				
t _{BUF}	Bus Free Time Between a STOP and START		1.3			μs				
t _{HS:STA}	Hold Time (Repeated) START		0.6			μs				
t _{LOW}	LOW Period of SCL Clock		1.3			μs				
t _{HIGH}	HIGH Period of SCL Clock		0.6			μs				
t _{SU:STA}	Setup Time for a Repeated START		0.6			μs				
t _{HS:DAT}	Data Hold Time		0		0.9	μs				
t _{SU:DAT}	Data Setup Time		100			ns				
t _R	Rise Time of Both SDA and SCL		20		300	ns				
t _F	Fall Time of Both SDA and SCL		20		300	ns				
t _{SU:STO}	Setup Time for STOP Condition		0.6			μs				
C _B	Capacitive Load for Each Bus Line	CB - total capacitance of one bus line in pF			400	pF				
C _{I/O}	I/O Capacitance (SDA, SCL)				10	pF				

Figure 8: I²C Slave Timing Diagram

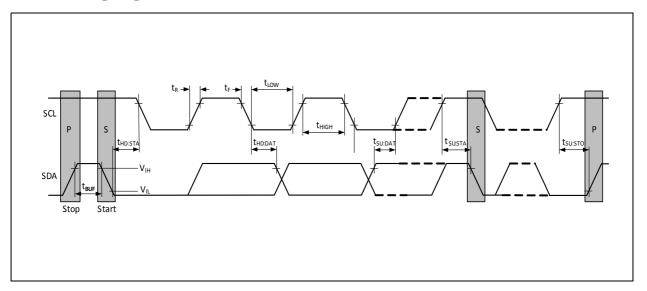


Figure 9: AS72651 SPI Timing Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
	SPI Interface									
f _{SCK}	Clock Frequency		0		16	MHz				
t _{SCK_H}	Clock High Time		40			ns				
t _{SCK_L}	Clock Low Time		40			ns				
t _{SCK_RISE}	SCK Rise Time		5			ns				
t _{SCK_FALL}	SCK Fall Time		5			ns				
t _{CSN_S}	CSN Setup Time	Time between CSN high-low transition to first SCK high transition	50			ns				
t _{CSN_H}	CSN Hold Time	Time between last SCK falling edge and CSN low-high transition	100			ns				
t _{CSN_DIS}	CSN Disable Time		100			ns				
t _{DO_S}	Data-Out Setup Time		5			ns				
t _{DO_H}	Data-Out Hold Time		5			ns				
t _{DI_V}	Data-In Valid		10			ns				

Page 10ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Figure 10: SPI Master Write Timing Diagram

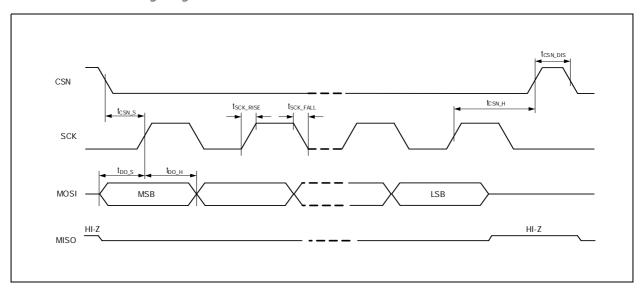
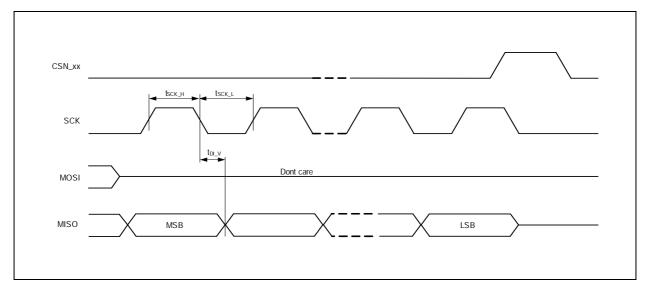



Figure 11: SPI Master Read Timing Diagram

ams Datasheet Page 11
[v1-03] 2017-Oct-17
Document Feedback

Typical Operating Characteristics

Optical Characteristics

All optical characteristics are optimized for diffused light.

Figure 12: AS7265x 18-Channel Spectral Responsivity

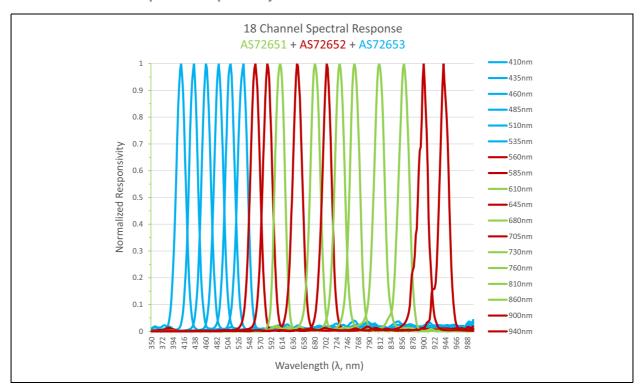
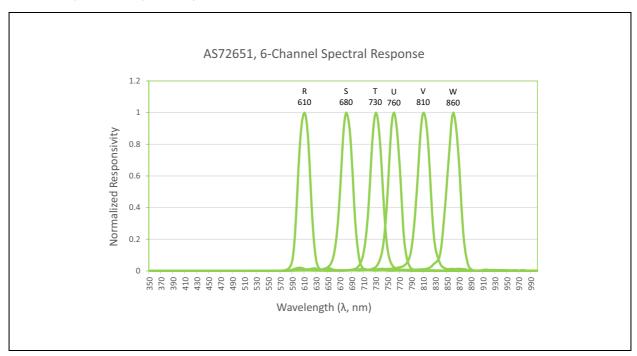



Figure 13: AS72651 Spectral Responsivity

Page 12

Document Feedback

[v1-03] 2017-Oct-17

Figure 14: Optical Characteristics of AS72651 (Pass Band) (1)

Symbol	Parameter	Test Conditions	Channel (nm)	Min	Тур	Max	Unit
R	Channel R	Incandescent ^{(2),(4)}	610		35 ^{(3),(4)}		counts/ (μW/cm ²)
S	Channel S	Incandescent ^{(2),(4)}	680		35 ^{(3),(4)}		counts/ (μW/cm ²)
Т	Channel T	Incandescent ^{(2),(4)}	730		35 ^{(3),(4)}		counts/ (μW/cm ²)
U	Channel U	Incandescent ^{(2),(4)}	760		35 ^{(3),(4)}		counts/ (μW/cm ²)
V	Channel V	Incandescent ^{(2),(4)}	810		35 ^{(3),(4)}		counts/ (μW/cm ²)
W	Channel W	Incandescent ^{(2),(4)}	860		35 ^{(3),(4)}		counts/ (μW/cm ²)
FWHM	Full Width Half Max		20		20		nm
Wacc	Wavelength Accuracy				±10		nm
dark	Dark Channel Counts	GAIN=64, T _{AMB} =25°C				5	counts
AFOV	Average Field of View				±20.5		deg

Note(s):

- 1. Calibration and measurements are made using diffused light.
- 2. Each channel is tested with GAIN = 16x, Integration Time (INT_T) = 166ms and VDD = VDD1 = VDD2 = 3.3V, T_{AMB} =25°C.
- 3. The accuracy of the channel counts/ μ W/cm² is $\pm 12\%$.
- 4. The light source is an incandescent light with an irradiance of $\sim 1500 \mu W/cm^2$ (300-1000nm). The energy at each channel (R, S, T, U, V, W) is calculated with a ±33nm bandwidth around the center wavelengths (610, 680, 730, 760, 810, 860nm).

ams Datasheet Page 13 **Document Feedback**

Figure 15: AS72652 Spectral Responsivity

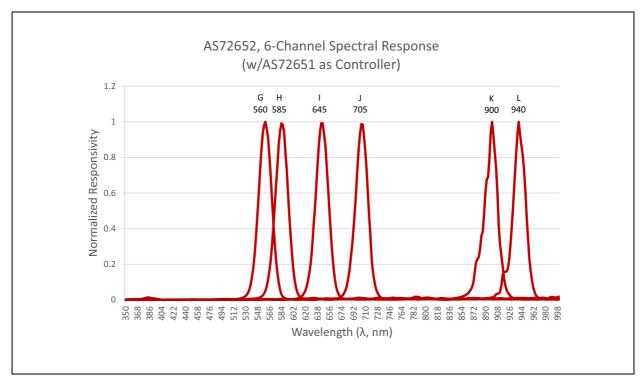
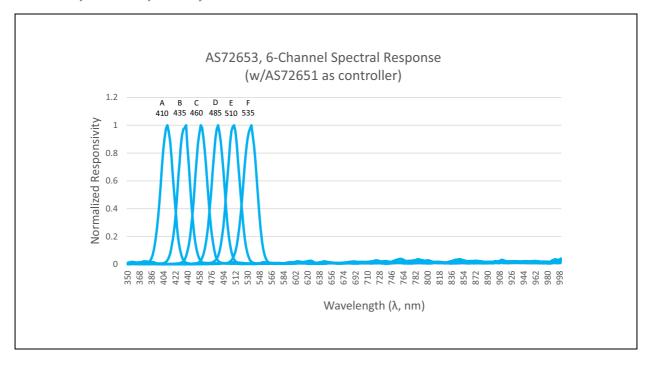


Figure 16:
Optical Characteristics of AS72652 (Pass Band) (1)

Symbol	Parameter	Conditions	Channel (nm)	Min	Тур	Max	Unit
G	Channel G	3300K White LED ⁽²⁾	560		35		counts/ (μW/cm ²)
Н	Channel H	3300K White LED ⁽²⁾	585		35		counts/ (μW/cm ²)
I	Channel I	3300K White LED ⁽²⁾	645		35		counts/ (μW/cm ²)
J	Channel J	3300K White LED ⁽²⁾	705		35		counts/ (μW/cm ²)
К	Channel K	Incandescent ⁽²⁾	900		35		counts/ (μW/cm ²)
L	Channel L	940nm LED	940		35		counts/ (μW/cm ²)
FWHM	Full Width Half Max		20		20		nm

Page 14ams DatasheetDocument Feedback[v1-03] 2017-Oct-17



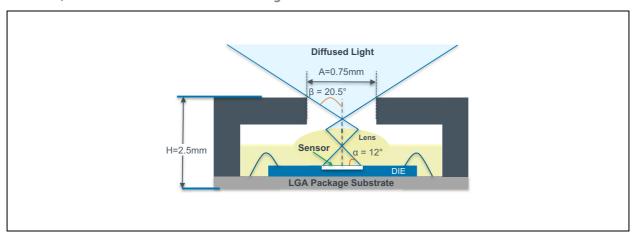
Symbol	Parameter	Conditions	Channel (nm)	Min	Тур	Max	Unit
Wacc	Wavelength Accuracy				±10		nm
dark	Dark Channel Counts	GAIN=64, T _{AMB} =25°C				5	counts
AFOV	Average Field of View				±20.5		deg

Note(s):

- 1. Calibration and measurements are made using diffused light.
- 2. Each channel is tested with GAIN = 16x, Integration Time (INT_T) = 166ms and VDD = VDD1 = VDD2 = 3.3V, T_{AMB} =25°C.

Figure 17: AS72653 Spectral Responsivity

ams Datasheet Page 15
[v1-03] 2017-Oct-17
Document Feedback


Figure 18:
Optical Characteristics of AS72653 (Pass Band)⁽¹⁾

Symbol	Parameter	Conditions	Channel (nm)	Min	Тур	Max	Unit
А	Channel A	400nm LED ⁽²⁾	410		35		counts/ (μW/cm ²)
В	Channel B	5700K White LED ⁽²⁾	435		35		counts/ (μW/cm ²)
С	Channel C	5700K White LED ⁽²⁾	460		35		counts/ (μW/cm ²)
D	Channel D	5700K White LED ⁽²⁾	485		35		counts/ (μW/cm ²)
E	Channel E	5700K White LED ⁽²⁾	510		35		counts/ (μW/cm ²)
F	Channel F	5700K White LED ⁽²⁾	535		35		counts/ (μW/cm ²)
FWHM	Full Width Half Max		20		20		nm
Wacc	Wavelength Accuracy				±10		nm
dark	Dark Channel Counts	GAIN=64, T _{AMB} =25°C				5	counts
AFOV	Average Field of View				±20.5		deg

Note(s):

- 1. Calibration and measurements are made using diffused light.
- 2. Each channel is tested with GAIN = 16x, Integration Time (INT_T) = 166ms and VDD = VDD1 = VDD2 = 3.3V, T_{AMB} =25°C.

Figure 19: AS72651, AS72652 and AS72653 LGA Average Field of View

Page 16ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Detailed Description

AS7265x 18 Channel Spectral_ID Detector Overview

Each of the three AS7265x Spectral_ID devices are next-generation digital 6-channel spectral sensor devices. Each of the 6-channels has a Gaussian filter characteristic with a full width half maximum (FWHM) bandwidth of 20nm. The filters use an interference topology design which enables temperature stability with minimal drift over time or temperature. Filter accuracy will be affected by the angle of incidence which itself is limited by integrated aperture and internal micro-lens structure. The aperture-limited average field of view is $\pm 20.5^{\circ}$ to deliver specified accuracy.

Each device contains an analog-to-digital converter (16-bit resolution ADC) which integrates the current from each channel's photodiode. Upon completion of the conversion cycle, the integrated result is transferred to the corresponding data registers. The transfers are double-buffered to ensure data integrity is maintained.

The external MCU interface control via I²C registers or AT commands, transparently controls the AS72652 and/or AS72653.

A serial flash EPROM is a required operating companion for this device and enables factory calibration/normalization of the filters. Supported device types are noted in Ordering Information at the end of this document. Required operating code can be downloaded at download.ams.com.

Channel Data Conversion of the AS7265x Devices

All three of these 6-channels devices use conversion implemented via two photodiode banks in each device. Refer to the two figures below. Bank 1 consists of register data from 4 of the 6 photodiodes, with 2 registers zeroed and Bank 2 consists of data from a different set of 4 of the 6 photodiodes, with 2 different registers zeroed. Spectral conversion requires the integration time (IT in ms) set to complete. If both photodiode banks are required to complete the conversion, the 2nd bank requires an additional IT ms. Minimum IT for a single bank conversion is 2.8 ms. If data is required from all 6 photodiodes then the device must perform 2 full conversions (2 x Integration Time).

This spectral data conversion process operates continuously, new data is available after each IT ms period.

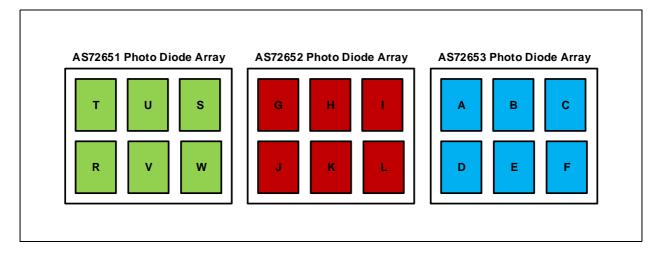
ams Datasheet Page 17
[v1-03] 2017-Oct-17 Document Feedback

The conversion process is controlled with BANK Mode settings in the AS72651 as follows:

BANK Mode 0 Registers:

AS72651 data will be in S, T, U & V registers (R & W will be zero) AS72652 data will be in G, H, K & I registers (J & L will be zero) AS72653 data will be in A, B, E & C registers (D & F will be zero)

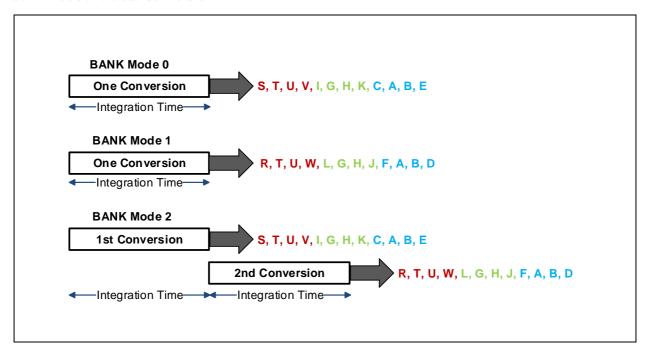
BANK Mode 1 Registers:


AS72651 data will be in R, T, U & W registers (S & V will be zero) AS72652 data will be in G, H, J & L registers (I & K will be zero) AS72653 data will be in F, A, B & D registers (C & E will be zero)

BANK Mode 2 Registers:

AS72651 data will be in S, T, U, V, R & W registers AS72652 data will be in G, H, K, I, J & L registers AS72653 data will be in A, B, C, D, E & F registers

For BANK Mode 2, care should be taken to assure prompt interrupt servicing so integration values from both banks are all derived from the same spectral conversion cycle.


Figure 20: AS7265x Photo Diode Arrays

Page 18
Document Feedback
[v1-03] 2017-Oct-17

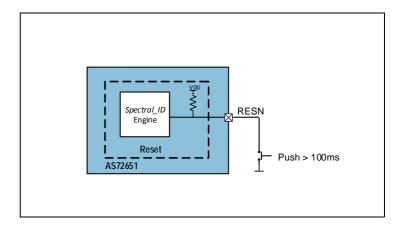
Figure 21:
Bank Mode and Data Conversion

RC Oscillator

The timing generation circuit consists of on-chip 16MHz, temperature compensated oscillators, which provide the individual master clocks of the AS7625x devices

Temperature Sensor

The AS7265x internal temperature sensors are constantly measuring on-chip temperature to enable temperature compensation procedures, and can be read via I²C registers or AT commands in the AS72651.


ams Datasheet Page 19
[v1-03] 2017-Oct-17 Document Feedback

Reset

Pulling down the RESN pin for longer than 100ms resets the AS72651 which proceed to reset the AS72562 and the same RESN signal shown below can be used directly to reset the AS72653.

Figure 22: Reset Circuit

AS7265x LED_IND Controls

There are LED_IND pins on all AS7265x devices. An LED connected to LED_IND can be used as a general power indicator and will automatically be used to indicate a Flash firmware update is occurring.

During a firmware update of the AS72651 via an external SD card the indicator LED starts flashing (500ms pulses). When programming is completed the device re-starts and the indicator LED stops flashing. The LED_IND can then be setup as needed. Each AS7265x LED_IND source can be turned on/off via AT commands or I²C register control, and LED_IND sink current is programmable to 1mA, 2mA, 4mA or 8mA. This LED_IND control can also be used in applications just like the LED_DRV control (described below), if the lower current sink of the LED_IND control is appropriate.

Electronic Shutter with AS7265x LED_DRV Driver Control

There are LED_DRV pins on all AS7265x devices. The LED_DRV pin can be used to control external LED sources as needed for sensor applications. LED_DRV can sink a programmable current of 12.5mA, 25mA, 50mA or 100mA. The control can be turned on/off via I²C registers or AT commands, and as such it provides the AS7265x device with an electronic shutter.

Page 20
Document Feedback
[v1-03] 2017-Oct-17

Interrupt Operation

Interrupt operation is only needed for AS72651 as it transparently controls data collection from the AS72652 (if used) or AS72653 (if used).

If BANK is set in the AS72651 to Mode 0 or Mode 1, data is ready after the 1st integration time. If BANK is set to Mode 2, data is ready after two integration times.

For interrupt operation using I²C registers, if interrupts are enabled and data is ready, the INT pin is set low and DATA_RDY is set to 1. The INT line is released (returns high) when the control register is read. DATA_RDY is cleared to 0 when any of the sensor registers are read. For multi-byte sensor data (2 or 4 bytes), after the 1st byte is read the remaining bytes are shadow protected in case an integration cycle completes just after the 1st byte is read. The sensors continue to gather information at the rate of the integration time, hence if the sensor registers are not read when the interrupt line goes low, it will stay low and the next cycle's sensor data will be available in the registers at the end of the next integration cycle.

For interrupt operation using AT Commands, if interrupts are enabled and data is ready the INT pin is set low and is released (returns high) after any sensor data is read.

Required Flash Memory

Serial flash EPROM is a required operating companion for this device, and enables the I²C and UART interfaces, as well as enabling calibrated data results. Supported device types are noted in Ordering Information at the end of this document. Required operating code can be downloaded at download.ams.com.

I²C Slave Interface

If selected by the I2C_ENB pin setting, interface and control can be accomplished through an I²C compatible slave interface to a set of registers that provide access to device control functions and output data. These registers on the AS72651 are, in reality, implemented as *virtual* registers in software. The actual I²C slave hardware registers number only three and are described in the table below. The steps necessary to access the virtual registers defined in the following are explained in pseudocode for external I²C master writes and reads below.

I²C Feature List

- Fast mode (400kHz) and standard mode (100kHz) support.
- 7+1-bit addressing mode.
- Write format: Byte.
- Read format: Byte.

ams Datasheet Page 21
[v1-03] 2017-Oct-17 Document Feedback

• SDA input delay and SCL spike filtering by integrated RC-components.

Figure 23: I²C Slave Device Address and Physical Registers

Entity	Description	Note
Device Slave Address	8-bit slave address	Byte = 1001001x (device address = 49 hex) • x= 1 for Master Read (byte = 93 hex) • x= 0 for Master Write (byte = 92 hex)
STATUS Register	I ² C slave interface STATUS register. Read-only.	Register Address = 0x00 Bit 1: TX_VALID • 0 - New data may be written to WRITE register • 1 -WRITE register occupied. Do NOT write. Bit 0: RX_VALID • 0 -No data is ready to be read in READ register. • 1 -Data byte available in READ register.
WRITE Register	I ² C slave interface WRITE register. Write-only.	Register Address = 0x01 • 8-Bits of data written by the I ² C Master intended for receipt by the I ² C slave. Used for both <i>virtual</i> register addresses and write data.
READ Register	I ² C slave interface READ register. Read-only.	Register Address = 0x02 • 8-Bits of data to be read by the I ² C Master.

I²C Virtual Register Write Access

I²C Virtual Resister Byte Write, detailed below, shows the pseudocode necessary to write virtual registers on the AS72651. Note that, because the actual registers of interest are realized as virtual registers, a means of indicating whether there is a pending read or write operation of a given virtual register is needed. To convey this information, the most significant bit of the virtual register address is used as a marker. If it is 1, then a write is pending, otherwise the slave is expecting a virtual read operation. The pseudocode illustrates the proper technique for polling of the I²C slave status register to ensure the slave is ready for each transaction.

Page 22

Document Feedback

[v1-03] 2017-Oct-17

I²C Virtual Register Byte Write

Pseudocode

Poll I²C slave STATUS register;

If TX_VALID bit is 0, a write can be performed on the interface;

Send a virtual register address and set the MSB of the register address to 1 to indicate the pending write;

Poll I²C slave STATUS register;

If TX_VALID bit is 0, the virtual register address for the write has been received and the data may now be written; Write the data.

Sample Code:

```
#define I2C_AS72XX_SLAVE_STATUS_REG
                                           0x00
#define I2C_AS72XX_SLAVE_WRITE_REG
                                           0x01
#define I2C_AS72XX_SLAVE_READ_REG
                                           0x02
#define I2C_AS72XX_SLAVE_TX_VALID
                                           0x02
#define I2C_AS72XX_SLAVE_RX_VALID
                                           0x01
void i2cm_AS72xx_write(uint8_t virtualReg, uint8_t d)
        volatile uint8_tstatus;
        while (1)
                 // Read slave I<sup>2</sup>C status to see if the write buffer is ready.
                 status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);
                 if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)
                          // No inbound TX pending at slave. Okay to write now.
                          break;
        // Send the virtual register address (setting bit 7 to indicate a pending write).
        i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, (virtualReg | 0x80));
        while (1)
                 // Read the slave I<sup>2</sup>C status to see if the write buffer is ready.
                 status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);
                 if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)
                          // No inbound TX pending at slave. Okay to write data now.
                          break;
        // Send the data to complete the operation.
        i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, d);
```

I²C Virtual Register Read access

I²C Virtual Register Byte Read, detailed below, shows the pseudocode necessary to read virtual registers on the AS72651. Note that in this case, reading a virtual register, the register address is not modified.

I²C Virtual Register Byte Read

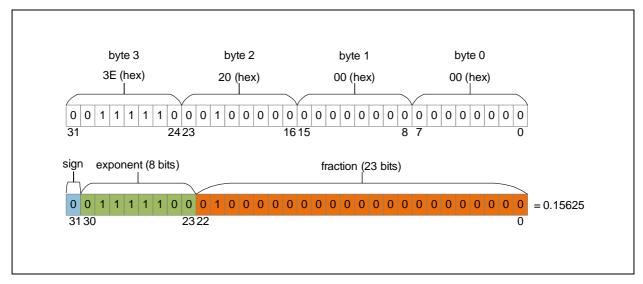
Pseudocode

```
Poll I<sup>2</sup>C slave STATUS register;
If TX_VALID bit is 0, the virtual register address for the read may be written;
Send a virtual register address;
Poll I<sup>2</sup>C slave STATUS register;
If RX_VALID bit is 1, the read data is ready;
Read the data.
                                                  Sample Code
uint8_t i2cm_AS72xx_read(uint8_t virtualReg)
         volatile uint8_t status, d;
         while (1)
         {
                  // Read slave I<sup>2</sup>C status to see if the read buffer is ready.
                  status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);
                  if ((status & I2C_AS72XX_SLAVE_TX_VALID) == 0)
                            // No inbound TX pending at slave. Okay to write now.
         }
         // Send the virtual register address (setting bit 7 to indicate a pending write).
         i2cm_write(I2C_AS72XX_SLAVE_WRITE_REG, virtualReg);
         while (1)
                  // Read the slave I<sup>2</sup>C status to see if our read data is available.
                  status = i2cm_read(I2C_AS72XX_SLAVE_STATUS_REG);
                  if ((status & I2C_AS72XX_SLAVE_RX_VALID)!= 0)
                            // Read data is ready.
                            break;
         // Read the data to complete the operation.
         d = i2cm_read(I2C_AS72XX_SLAVE_READ_REG);
         return d:s
```

Page 24

Document Feedback

[v1-03] 2017-Oct-17



The details of the i2cm read() and i2cm write() functions in previous figures are dependent upon the nature and implementation of the external I²C master device.

4-Byte Floating-Point (FP) Registers

Several 4 byte registers (hex) are used by the AS72651. Here is an example of how these registers are used to represent floating point data (based on the IEEE 754 standard).

Figure 24: **Example of the IEEE 754 Standard**

The floating point (FP) value assumed by 32 bit binary32 data with a biased exponent e (the 8 bit unsigned integer) and a 23 **bit fraction** is (for the above example):

(EQ1) FPvalue =
$$(-1)^{\text{sign}} \cdot \left(1 + \sum_{i=1}^{23} b_{23-i} \cdot 2^{-i}\right) \cdot 2^{(e-127)}$$

FPvalue =
$$(-1)^0 \cdot \left(1 + \sum_{i-1}^{23} b_{23-i} \cdot 2^{-i}\right) \cdot 2^{(124-127)}$$

FPvalue =
$$1 \cdot (1 + 2^{-2}) \cdot 2^{-3} = 0.15625$$

ams Datasheet Page 25 [v1-03] 2017-Oct-17 **Document Feedback**

I²C Virtual Register Set

The figure below provides a summary of the AS72651 I²C register set for the AS72651 which serves as the master interface of the 3 device AS7265x set. Figures after that provide additional register details. All register data is hex, and all multi-byte entities are Big Endian (most significant byte is situated at the lowest register address).

Multiple byte registers (2 byte integer, or, 4 byte floating point) must be read in the order of ascending register addresses (low to high) and if capable of being written to, must also be written in the order ascending register addresses.

Figure 25: AS72651 I²C Master Device Virtual Register Set Overview

Addr	Name	<d7></d7>	<d6></d6>	<d5> <d4></d4></d5>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>	
			Ver	sion Registers					
0x00: 0x01	AS72651_HW_ Version	AS72651 Hardware Version							
0x02: 0x03	AS72652_HW_ Version	AS72652 Hardware Version							
0x04: 0x05	AS72653_HW_ Version		AS72653 Hardware Version						
0x06: 0x07	AS72651_FW_ Version			AS72651 Fi	rmware Ve	ersion			
			Cor	ntrol Registers					
0x0C/ 0x8C	Control_Setup	RST	INT	GAIN	Ва	nk	DATA_ RDY	RSVD	
0x0F/ 0x8F	INT_T	Integration Time							
0x12	AS72651_ Device_Temp			AS72651 Internal	Device Te	mperatur	e		
0x13	AS72652_ Device_Temp			AS72652 Internal	Device Te	mperatur	e		
0x14	AS72653_ Device_Temp			AS72653 Internal	Device Te	mperatur	e		
0x15/ 0x95	AS72651_LED_ Control	RS	VD	ICL_DRV	LED DRV	ICL_	_IND	LED_IND	
0x16/ 0x96	AS72652_LED_ Control	RS	VD	ICL_DRV	LED DRV	ICL_	_IND	LED_IND	
0x17/ 0x97	AS72653_LED_ Control	RS	VD	ICL_DRV	LED DRV	ICL_	_IND	LED_IND	
0x3F: 0xBF	I2C_CAL_SEL			RSVD			V	/alue	

Page 26

Document Feedback

[v1-03] 2017-Oct-17

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
		Sensor R	aw Data F	 Registers	(from the	 : AS72651	1)		
0x18	R_High		Channel R High Data Byte						
0x19	R_Low	Channel R Low Data Byte							
0x1A	S_High		Channel S High Data Byte						
0x1B	S_Low			(Channel S	Low Data	Byte		
0x1C	T_High			C	hannel T I	High Data	Byte		
0x1D	T_Low			(Channel T	Low Data	Byte		
0x1E	U_High			C	hannel U	High Data	Byte		
0x1F	U_Low		Channel U Low Data Byte						
0x20	V_High		Channel V High Data Byte						
0x21	V_Low			(Channel V	Low Data	Byte		
0x22	W_High			С	hannel W	High Data	a Byte		
0x23	W_Low			C	hannel W	Low Data	Byte		
Sen	sor Calibrated Data	a Register	s (From t	he AS726	51. Befor	e reading	set I2C_C	CAL_SEL=	0x00)
0x40: 0x43	R_Cal			Channel	R Calibrate	ed Data (fl	oating po	int)	
0x44: 0x47	S_Cal			Channel	S Calibrate	ed Data (fl	oating po	int)	
0x48: 0x4B	T_Cal			Channel [*]	T Calibrate	ed Data (fl	oating po	int)	
0x4C: 0x4F	U_Cal			Channel I	J Calibrate	ed Data (fl	oating po	int)	
0x50: 0x53	V_Cal			Channel '	V Calibrate	ed Data (fl	oating po	int)	
0x54: 0x57	W_Cal			Channel \	W Calibrat	ed Data (f	loating po	int)	

Addr	Name	<d7> <d6> <d5> <d4> <d3> <d2> <d1> <d0></d0></d1></d2></d3></d4></d5></d6></d7>						
		Sensor Raw Data Registers (from the AS72652)						
0x24	G_High	Channel G High Data Byte						
0x25	G_Low	Channel G Low Data Byte						
0x26	H_High	Channel H High Data Byte						
0x27	H_Low	Channel H Low Data Byte						
0x28	I_High	Channel I High Data Byte						
0x29	I_Low	Channel I Low Data Byte						
0x2A	J_High	Channel J High Data Byte						
0x2B	J_Low	Channel J Low Data Byte						
0x2C	K_High	Channel K High Data Byte						
0x2D	K_Low	Channel K Low Data Byte						
0x2E	L_High	Channel L High Data Byte						
0x2F	L_Low	Channel L Low Data Byte						
Sen	sor Calibrated Da	ta Registers (From the AS72652. Before reading set I2C_CAL_SEL=0x01)						
0x40: 0x43	G_Cal	Channel G Calibrated Data (floating point)						
0x44: 0x47	H_Cal	Channel H Calibrated Data (floating point)						
0x48: 0x4B	I_Cal	Channel I Calibrated Data (floating point)						
0x4C: 0x4F	J_Cal	Channel J Calibrated Data (floating point)						
0x50: 0x53	K_Cal	Channel K Calibrated Data (floating point)						
0x54: 0x57	L_Cal	Channel L Calibrated Data (floating point)						

Page 28ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
Addi	Ivallie								\D0 >
	I	Sensor	Raw Data		(from the				
0x30	A_High		Channel A High Data Byte						
0x31	A_Low			(Channel A	Low Data	Byte		
0x32	B_High			(Channel B	High Data	Byte		
0x33	B_Low			(Channel B	Low Data	Byte		
0x34	C_High			C	Channel C	High Data	Byte		
0x35	C_Low			(Channel C	Low Data	Byte		
0x36	D_High			C	hannel D	High Data	Byte		
0x37	D_Low		Channel D Low Data Byte						
0x38	E_High	Channel E High Data Byte							
0x39	E_Low			(Channel E	Low Data	Byte		
0x3A	F_High			(Channel F I	High Data	Byte		
0x3B	F_Low			(Channel F	Low Data	Byte		
Sens	sor Calibrated Dat	a Registe	rs (From t	the AS726	553. Befor	e reading	g set I2C_0	CAL_SEL=	0x02)
0x40: 0x43	A_Cal			Channel	A Calibrate	ed Data (fl	oating poi	int)	
0x44: 0x47	B_Cal			Channel	B Calibrate	ed Data (fl	oating poi	int)	
0x48: 0x4B	C_Cal			Channel	C Calibrate	ed Data (fl	oating poi	int)	
0x4C: 0x4F	D_Cal			Channel	D Calibrate	ed Data (fl	oating poi	int)	
0x50: 0x53	E_Cal			Channel	E Calibrate	ed Data (fl	oating poi	nt)	
0x54: 0x57	F_Cal			Channel	F Calibrate	ed Data (fl	oating poi	int)	

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
Firmware Update Registers									
0x60/ 0xE0	FW_UPDATE_ CONTROL	Firmware Update Control							
0x61/ 0xE1	FWBC_HIGH	Firmware Byte Count, High Byte							
0x62/ 0xE2	FWBC_HIGH	Firmware Byte Count, Low Byte							
0x63/ 0xE3	FWLOAD				Firmwar	e Downlo	ad		

Page 30ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Detailed Register Descriptions

Figure 26: **AS72651 HW Version Registers**

Add	dr: 0x00		,	AS72651_HW_Version
Bit	Bit Name	Default	Access	Bit Description
7:0	Device Type		R	Device type number
Add	dr: 0x01		,	AS72651_HW_Version
Add Bit	dr: 0x01 Bit Name	Default	Access	AS72651_HW_Version Bit Description

Figure 27: **AS72652 HW Version Registers**

Add	dr: 0x02	AS72652_HW_Version			
Bit	Bit Name	Default	Access	Bit Description	
7:0	Device Type		R	Device type number	
Ado	dr: 0x03		Д	S72652_HW_Version	
Add Bit	dr: 0x03 Bit Name	Default	Access	S72652_HW_Version Bit Description	

Figure 28: **AS72653 HW Version Registers**

Add	dr: 0x04	AS72653_HW_Version			
Bit	Bit Name	Default	Access Bit Description		
7:0	Device Type		R	Device type number	
Add	dr: 0x05		,	AS72653_HW_Version	
Add Bit	dr: 0x05 Bit Name	Default	Access	AS72653_HW_Version Bit Description	

ams Datasheet Page 31 [v1-03] 2017-Oct-17 Document Feedback

Figure 29: AS72651 FW Version Registers

Ad	ldr: 0x06		AS7	2651_FW_Version		
Bit	Bit Name	Default	Access	Bit Description		
7:6	Minor Version		R	Minor version [1:0]		
5:0	Sub Version		R	Sub version		
Ad	ldr: 0x07		AS7	72651_FW_Version		
Bit	Bit Name	Default	Access	Bit Description		
7:4	Major Version		R	Major version		
	Minor Version		R	Minor version [5:2]		

Figure 30: Control Setup Register

Addr: 0	x0C/0x8C			Control_Setup
Bit	Bit Name	Default	Access	Bit Description
7	RST	0	R/W	Set to 1 for soft reset, goes to 0 automatically after the reset
6	INT	0	R/W	Enable interrupt pin output (INT), 1: Enable, 0: Disable
5:4	GAIN	0	R/W	Sensor channel gain setting (all channels) 'b00=1x; 'b01=3.7x; 'b10=16x; 'b11=64x;
3:2	BANK	10	R/W	Data conversion type (continuous) 'b00=Mode 0; 'b01=Mode 1; 'b10=Mode 2; 'b11= reserved
1	DATA_RDY	0	R/W	1: Data ready to read, sets INT active if interrupt is enabled. Can be polled if not using INT.
0	RSVD	0	R	Reserved. Unused

Page 32ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Figure 31: Integration Time Register

Addr: 0x0F/0x8F		INT_T		
Bit	Bit Name	Default	Access	Bit Description
7:0	INT_T	0xFF	R/W	Integration time = <value> * 2.8ms (applies to all channels)</value>

Figure 32: AS72651 Device Temperature Register

Addr: 0x12		AS72651_Device_Temp			
Bit	Bit Name	Default Access		Bit Description	
7:0	Device_Temp		R	Device temperature data byte (°C)	

Figure 33: AS72652 Device Temperature Register

Addr: 0x13		AS72652_Device_Temp			
Bit	Bit Name	Default Access		Bit Description	
7:0	Device_Temp		R	Device temperature data byte (°C)	

Figure 34: AS72653 Device Temperature Register

Addr: 0x14		AS72653_Device_Temp			
Bit	Bit Name	Default Access		Bit Description	
7:0	Device_Temp		R	Device temperature data byte (°C)	

ams Datasheet Page 33
[v1-03] 2017-Oct-17
Document Feedback

Figure 35: AS72651 LED Control Register

Addr: 0	Addr: 0x15/0x95		AS72651_LED Control			
Bit	Bit Name	Default	Access	Bit Description		
7:6	RSVD	0	R	Reserved		
5:4	ICL_DRV	00	R/W	LED_DRV current limit 'b00=12.5mA; 'b01=25mA; 'b10=50mA; 'b11=100mA;		
3	LED_DRV	0	R/W	Enable LED_DRV 1: Enabled; 0: Disabled		
2:1	ICL_IND	00	R/W	LED_IND current limit 'b00=1mA; 'b01=2mA; 'b10=4mA; 'b11=8mA;		
0	LED_IND	0	R/W	Enable LED_IND 1: Enabled; 0: Disabled		

Figure 36: AS72652 LED Control Register

Addr: 0	Addr: 0x16/0x96		AS72652_LED Control			
Bit	Bit Name	Default	Access	Bit Description		
7:6	RSVD	0	R	Reserved		
5:4	ICL_DRV	00	R/W	LED_DRV current limit 'b00=12.5mA; 'b01=25mA; 'b10=50mA; 'b11=100mA;		
3	LED_DRV	0	R/W	Enable LED_DRV 1: Enabled; 0: Disabled		
2:1	ICL_IND	00	R/W	LED_IND current limit 'b00=1mA; 'b01=2mA; 'b10=4mA; 'b11=8mA;		
0	LED_IND	0	R/W	Enable LED_IND 1: Enabled; 0: Disabled		

Page 34ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Figure 37: AS72653 LED Control Register

Addr: 0	Addr: 0x17/0x97		AS72653_LED Control			
Bit	Bit Name	Default Access		Bit Description		
7:6	RSVD	0	R	Reserved		
5:4	ICL_DRV	00	R/W	LED_DRV current limit 'b00=12.5mA; 'b01=25mA; 'b10=50mA; 'b11=100mA;		
3	LED_DRV	0	R/W	Enable LED_DRV 1: Enabled; 0: Disabled		
2:1	ICL_IND	00	R/W	LED_IND current limit 'b00=1mA; 'b01=2mA; 'b10=4mA; 'b11=8mA;		
0	LED_IND	0	R/W	Enable LED_IND 1: Enabled; 0: Disabled		

Figure 38: I²C Calibration Select Register

Addr: 0x3F/0xBF		I2C_Calibration_Select		
Bit	Bit Name	Default	Access	Bit Description
7:2	RSVD			Reserved, do not use.
1:0	SEL_VALUE	00	R/W	Used to access the calibrated data values. Set to one of these values before reading the Calibrated Data from the selected device: 00=AS72651, 01=AS72652, 10=AS72652, 11=reserved, do not use.

ams Datasheet Page 35
[v1-03] 2017-Oct-17
Document Feedback

Figure 39: AS72651 Sensor Raw Data Registers

Addr	Addr: 0x18			R_High		
Bit	Bit Name	Default	Access	Bit Description		
7:0	R_High		R	Channel R High Data Byte		
Addr	Addr: 0x19		R_Low			
Bit	Bit Name	Default	Access	Bit Description		
7:0	R_Low		R	Channel R Low Data Byte		
Addr	: 0x1A			S_High		
Bit	Bit Name	Default	Access	Bit Description		
7:0	S_High		R	Channel S High Data Byte		
Addr	: 0x1B			S_Low		
Bit	Bit Name	Default	Access	Bit Description		
7:0	S_Low		R	Channel S Low Data Byte		
Addr	Addr: 0x1C		T_High			
Bit	Bit Name	Default	Access	Bit Description		
7:0	T_High		R	Channel T High Data Byte		
Addr	: 0x1D	T_Low				
Bit	Bit Name	Default	Access	Bit Description		
7:0	T_Low		R	Channel T Low Data Byte		
Addr	Addr: 0x1E		U_High			
Bit	Bit Name	Default	Access	Bit Description		
7:0	U_High		R	Channel U High Data Byte		
Addr	Addr: 0x1F		U_Low			
Bit	Bit Name	Default	Access	Bit Description		
7:0	U_Low		R	Channel U Low Data Byte		

Page 36ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Addr	:: 0x20			V_High
Bit	Bit Name	Default	Access	Bit Description
7:0	V_High		R	Channel V High Data Byte
Addr	: 0x21			V_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	V_Low		R	Channel V Low Data Byte
Addr	: 0x22			W_High
Bit	Bit Name	Default	Access	Bit Description
Bit 7:0	Bit Name W_High	Default	Access R	Bit Description Channel W High Data Byte
7:0		Default		·
7:0	W_High	Default Default		Channel W High Data Byte

ams Datasheet Page 37
[v1-03] 2017-Oct-17 Document Feedback

Figure 40: AS72651 Sensor Calibrated Data Registers (note that the I2C_CAL_SEL register must be set to 0x00 to read these)

Addr: 0	x40:0x43			R_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	R_Cal		R	Channel R Calibrated Data (floating point)
Addr: 0	x44:0x47			S_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	S_Cal		R	Channel S Calibrated Data (floating point)
Addr: 0	x48:0x4B			T_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	T_Cal		R	Channel T Calibrated Data (floating point)
Addr: 0	x4C:0x4F			U_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	U_Cal		R	Channel U Calibrated Data (floating point)
Addr: 0	x50:0x53			V_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	V_Cal		R	Channel V Calibrated Data (floating point)
Addr: 0	x54:0x57			W_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	W_Cal		R	Channel W Calibrated Data (floating point)

Page 38ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Figure 41: AS72652 Sensor Raw Data Registers

Addr	: 0x24			G_High
Bit	Bit Name	Default	Access	Bit Description
7:0	G_High		R	Channel G High Data Byte
Addr	: 0x25			G_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	G_Low		R	Channel G Low Data Byte
Addr	: 0x26			H_High
Bit	Bit Name	Default	Access	Bit Description
7:0	H_High		R	Channel H High Data Byte
Addr	: 0x27			H_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	H_Low		R	Channel H Low Data Byte
Addr	: 0x28			I_High
Bit	Bit Name	Default	Access	Bit Description
7:0	I_High		R	Channel I High Data Byte
Addr	: 0x29			I_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	I_Low		R	Channel I Low Data Byte
Addr	: 0x2A			J_High
Bit	Bit Name	Default	Access	Bit Description
7:0	J_High		R	Channel J High Data Byte
Addr	: 0x2B			J_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	J_Low		R	Channel J Low Data Byte

ams Datasheet Page 39
[v1-03] 2017-Oct-17 Document Feedback

Addr	: 0x2C			K_High
Bit	Bit Name	Default	Access	Bit Description
7:0	K_High		R	Channel K High Data Byte
Addr	: 0x2D			K_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	K_Low		R	Channel K Low Data Byte
Addr	: 0x2E			L_High
Bit	Bit Name	Default	Access	Bit Description
7:0	L_High		R	Channel L High Data Byte
Addr	: 0x2F			L_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	L_Low		R	Channel L Low Data Byte

Page 40ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Figure 42: AS72652 Sensor Calibrated Data Registers (note that the I2C_CAL_SEL register must be set to 0x01 to read these)

Addr: 0	x40:0x43			G_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	G_Cal		R	Channel G Calibrated Data (floating point)
Addr: 0	x44:0x47			H_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	H_Cal		R	Channel H Calibrated Data (floating point)
Addr: 0	x48:0x4B			I_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	I_Cal		R	Channel I Calibrated Data (floating point)
Addr: 0	x4C:0x4F			J_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	J_Cal		R	Channel J Calibrated Data (floating point)
Addr: 0	x50:0x53			K_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	K_Cal		R	Channel K Calibrated Data (floating point)
Addr: 0	x54:0x57			L_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	L_Cal		R	Channel L Calibrated Data (floating point)

ams Datasheet Page 41
[v1-03] 2017-Oct-17 Document Feedback

Figure 43: AS72653 Sensor Raw Data Registers

Addr	: 0x30			A_High
Bit	Bit Name	Default	Access	Bit Description
7:0	A_High		R	Channel A High Data Byte
Addr	: 0x31			A_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	A_Low		R	Channel A Low Data Byte
Addr	: 0x32			B_High
Bit	Bit Name	Default	Access	Bit Description
7:0	B_High		R	Channel B High Data Byte
Addr	: 0x33			B_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	B_Low		R	Channel B Low Data Byte
Addr	: 0x34			C_High
Bit	Bit Name	Default	Access	Bit Description
7:0	C_High		R	Channel C High Data Byte
Addr	: 0x35			C_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	C_Low		R	Channel C Low Data Byte
Addr	: 0x36			D_High
Bit	Bit Name	Default	Access	Bit Description
7:0	D_High		R	Channel D High Data Byte
Addr	: 0x37			D_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	D_Low		R	Channel D Low Data Byte

Page 42ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Addr	: 0x38			E_High
Bit	Bit Name	Default	Access	Bit Description
7:0	E_High		R	Channel E High Data Byte
Addr	: 0x39			E_Low
Bit	Bit Name	Default	Access	Bit Description
7:0	E_Low		R	Channel E Low Data Byte
Addr	: 0x3A			F_High
Addr Bit	: 0x3A Bit Name	Default	Access	F_High Bit Description
		Default	Access R	
Bit 7:0	Bit Name	Default		Bit Description
Bit 7:0	Bit Name F_High	Default Default		Bit Description Channel F High Data Byte

ams Datasheet Page 43
[v1-03] 2017-Oct-17 Document Feedback

Figure 44: AS72653 Sensor Calibrated Data Registers (note that the I2C_CAL_SEL register must be set to 0x02 to read these)

Addr: 0	x40:0x43			A_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	A_Cal		R	Channel A Calibrated Data (floating point)
Addr: 0	x44:0x47			B_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	B_Cal		R	Channel B Calibrated Data (floating point)
Addr: 0	x48:0x4B			C_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	C_Cal		R	Channel C Calibrated Data (floating point)
Addr: 0	x4C:0x4F			D_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	D_Cal		R	Channel D Calibrated Data (floating point)
Addr: 0	x50:0x53			E_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	E_Cal		R	Channel E Calibrated Data (floating point)
Addr: 0	x54:0x57			F_Cal
Bit	Bit Name	Default	Access	Bit Description
31:0	F_Cal		R	Channel F Calibrated Data (floating point)

Page 44ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

AS72651 I²C Firmware (FW) Update Procedure

- In the FW Update Control register set the Start_XFR bit to 1.
- Write 56K of data to the FW Download register starting with the first byte in the ams file, then proceed the end of the ams 56K file with consecutive writes.
- If desired read the FW Byte Count registers to see which byte is expected to be written next into the FW Download register.
- When the download file is completely written, confirm the action by using the FW Update Control register bit XFR_ 56K (should =1 if 56K has been downloaded).
- In the FW Update Control register, set the Toggle bit to 1
 which will reboot the AS72651 with the new FW after
 checking the new FW for correct CRC. If the CRC is incorrect
 the toggle bit will not change and the new FW will not be
 used.

Figure 45: Firmware Byte Count High Byte

Addr	: 0x60/0xE0			Control_Setup
Bit	Bit Name	Default	Access	Bit Description
7	Start_XFR	0	R/W	Set to 1 to start firmware update
6	Kill_XFR	0	R/W	Set to 1 to stop firmware update.
5	XFR_56K	0	R	Set to 1 when 56K bytes have been downloaded.
4	Reserved			Reserved, do not use.
3	Toggle	0	R/W	Set to 1 to toggle firmware image partition.
2:0	Reserved			Reserved, do not use.

ams Datasheet Page 45
[v1-03] 2017-Oct-17
Document Feedback

Figure 46: Firmware Byte Count, High Byte

Addr	: 0x61/0xE1		Firm	ware Byte Count, High Byte
Bit	Bit Name	Default	Access	Bit Description
7:0	FWBC_HIGH		R	Firmware byte address to be downloaded next, High Byte

Figure 47: Firmware Byte Count, Low Byte

Addr	: 0x62/0xE2		Fir	mware Byte Count, Low Byte
Bit	Bit Name	Default	Access	Bit Description
7:0	FWBC_LOW		R	Firmware byte address to be downloaded next, Low Byte

Figure 48: Firmware Download

Addr	: 0x63/0xE3			Firmware Download
Bit	Bit Name	Default	Access	Bit Description
7:0	FWLOAD		R/W	Firmware byte to be downloaded

Page 46ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

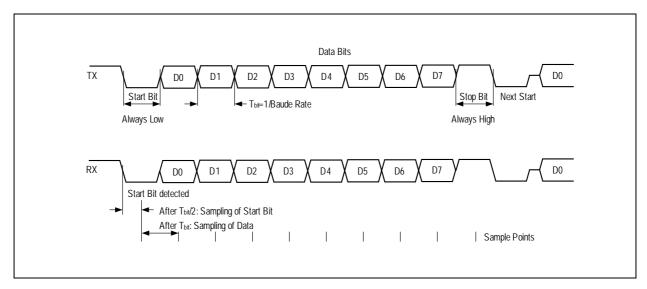
UART Command Interface

If selected by the I2C_ENB pin setting, the UART module implements the TX and RX signals as defined in the RS-232 / V.24 standard communication protocol. Serial flash EPROM is a required operating companion device to enable the UART command interface.

UART Feature List

- Full duplex operation (independent serial receive and transmit registers).
- Factory set to 115.2k Baud
- Supports serial frames with 8 Data Bits, no Parity and 1 Stop Bit.

Operation


Transmission

If data is available in the transmit FIFO, it will be moved into the output shift register and the data will be transmitted at the configured Baud Rate, starting with a Start Bit (logic zero) and followed by a Stop Bit (logic one).

Reception

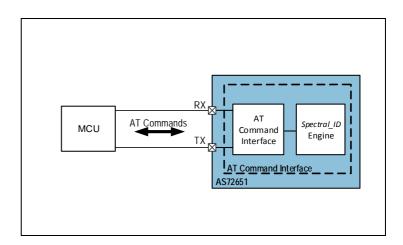
At any time, with the receiver being idle, if a falling edge of a start bit is detected on the input, a byte will be received and stored in the receive FIFO. The following Stop Bit will be checked to be logic one.

Figure 49: UART Protocol

ams Datasheet Page 47
[v1-03] 2017-Oct-17 Document Feedback

AT Command Interface

The microprocessor interface to control the AS72651 Spectral_ID sensor(s) is via AT Commands across the UART interface. The AS72651 provides a text-based serial command interface borrowed from the "AT Command" model used in early Hayes modems.


For example:

Read DATA value: ATDATA \rightarrow <data>OK

Set the gain of the sensor to 1x: ATGAIN= $0 \rightarrow OK$

The AT Command Interface, shown below provides access to the *Spectral_ID* engine's control and configuration functions.

Figure 50: AT Command Interface Block Diagram

In the AT Commands figure below, numeric values may be specified with no leading prefix, in which case they will be interpreted as decimals, or with a leading "0x" to indicate that they are hexadecimal numbers, or with a leading "b" to indicate that they are binary numbers. The commands are loosely grouped into functional areas. Texts appearing between angle brackets ('<'and '>') are commands or response arguments. A carriage return character, a linefeed character, or both may terminate commands and responses. Note that any command that encounters an error will generate the "ERROR" response shown, for example, in the NOP command at the top of the first table, but has been omitted elsewhere in the interest of readability and clarity.

Note(s): The Figure 51 shows the complete list of all AS7265x AT commands.

Page 48
Document Feedback
[v1-03] 2017-Oct-17

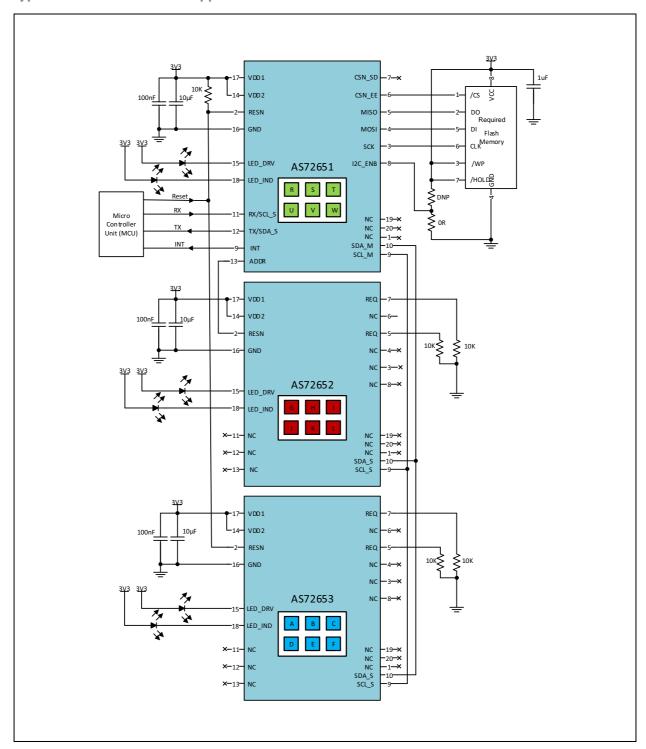
Figure 51: **AS7265x AT Commands**

Commands	Response	Description/Parameters		
Spectral Data per Channel				
ATCDATA	<r_value>, <s_value>, <t_value>, <u_value>, <v_value>, <u_value>, <u_value>, <u_value>, <i_value>, <i_value>, <i_value>, <h_value>, <l_value>, <l_value>, <d_value>, <c_value>, <c_value>, <c_value>, <f_value>, <b_value>, <b_value>, <b_value>, <b_value>, <b_value>, <b_value>, <b_value>, <b_value>, <b_value>, <b_value>,</b_value></b_value></b_value></b_value></b_value></b_value></b_value></b_value></b_value></b_value></f_value></c_value></c_value></c_value></d_value></l_value></l_value></h_value></i_value></i_value></i_value></u_value></u_value></u_value></v_value></u_value></t_value></s_value></r_value>	Read calibrated channel in order of device. Read R, S, T, U, V & W data for the AS72651. Returns comma-separated 16 bit floating point values. Read J, I, G, H, K & L data for the AS72652. Returns comma-separated 16 bit floating point values. Returns all zero data if device not present. Read D, C, A, B, E & F data for the AS72653. Returns comma-separated 16 bit floating point values. Returns all zero data if device not present.		
	<u> </u>	Sensor Configuration		
ATINTTIME= <value></value>	OK OK OK	Set integration time for all devices AS72651, AS72652, AS72653. Value should be in the range [1255], with integration time = <value> * 2.8ms. (default value = 255)</value>		
ATINTTIME	<value> OK <value> OK <value> OK</value></value></value>	Read sensor integration time (same for all devices) integration time = <value> * 2.8ms.</value>		
ATGAIN= <value></value>	OK OK OK	Set gain for all devices AS72651, AS72652, AS72653: 0=1x, 1=3.7x, 2=16x, 3=64x (default value = 0)		
ATGAIN	<value>OK <value>OK <value>OK</value></value></value>	Read all gain setting for all devices, returning 0, 1, 2, or 3 as defined immediately above.		
ATTEMP	<value1><value2> <value3>OK</value3></value2></value1>	Read internal temperature in the order of AS72651, AS72652, AS72653 in celsius		
ATTCSMD= <value></value>	ОК	Set Sensor Mode 0 = BANK Mode 0; 1 = BANK Mode 1; 2 = BANK Mode 2; (default value = 2)		
ATTCSMD	<value> OK</value>	Read Sensor Mode, see above		

Page 49 ams Datasheet [v1-03] 2017-Oct-17 **Document Feedback**

Commands	Response	Description/Parameters		
	LED Driver Controls			
ATLED0= <value></value>	ОК	Sets AS72651 LED_IND: 100=ON, 0=OFF (default value = 0)		
ATLED0	<100 0>OK	Reads AS72651 LED_IND setting: 100=ON, 0=OFF		
ATLED1= <value></value>	ОК	Sets AS72651 LED_DRV: 100=ON, 0=OFF (default value = 0)		
ATLED1	<100 0>OK	Reads AS72651 LED_DRV setting: 100=ON, 0=OFF		
ATLED2= <value></value>	ОК	Sets AS72652 LED_IND: 100=ON, 0=OFF (default value = 0)		
ATLED2	<100 0>OK	Reads AS72652 LED_IND setting: 100=ON, 0=OFF		
ATLED3= <value></value>	ОК	Sets AS72652 LED_DRV: 100=ON, 0=OFF (default value = 0)		
ATLED3	<100 0>OK	Reads AS72652 LED_DRV setting: 100=ON, 0=OFF		
ATLED4= <value></value>	ОК	Sets AS72653 LED_IND: 100=ON, 0=OFF (default value = 0)		
ATLED4	<100 0>OK	Reads AS72653 LED_IND setting: 100=ON, 0=OFF		
ATLED5= <value></value>	ОК	Sets AS72653 LED_DRV: 100=ON, 0=OFF (default value = 0)		
ATLED5	<100 0>OK	Reads AS72653 LED_DRV setting: 100=ON, 0=OFF		
ATLEDC= <value></value>	ОК	Sets LED_IND and LED_DRV current for the AS72651 LED_IND: bits 3:0; LED_DRV: 7:4 bits LED_IND: 'b00=1mA; 'b01=2mA; 'b10=4mA; 'b11=8mA LED_DRV: 'b00=12.5mA; 'b01=25mA; 'b10=50mA; 'b11=100mA (default value = 'b00)		
ATLEDC	<value>OK</value>	Reads LED_IND and LED_DRV settings as shown above		
ATLEDD= <value></value>	ОК	Sets LED_IND and LED_DRV current for the AS72652 LED_IND: bits 3:0; LED_DRV: 7:4 bits LED_IND: 'b00=1mA; 'b01=2mA; 'b10=4mA; 'b11=8mA LED_DRV: 'b00=12.5mA; 'b01=25mA; 'b10=50mA; 'b11=100mA (default value = 'b00)		
ATLEDD	<value>OK</value>	Reads the AS72652 LED_IND and LED_DRV settings as shown above		
ATLEDE= <value></value>	ОК	Sets LED_IND and LED_DRV current for the AS72653 LED_IND: bits 3:0; LED_DRV: 7:4 bits LED_IND: 'b00=1mA; 'b01=2mA; 'b10=4mA; 'b11=8mA LED_DRV: 'b00=12.5mA; 'b01=25mA; 'b10=50mA; 'b11=100mA (default value = 'b00)		
ATLEDE	<value>OK</value>	Reads the AS72653 LED_IND and LED_DRV settings as shown above		

Page 50ams DatasheetDocument Feedback[v1-03] 2017-Oct-17


Commands	Response	Description/Parameters	
Miscellaneous System Commands			
AT	$OK \rightarrow Success$ $ERROR \rightarrow Failure$	NOP	
ATRST	None	Software Reset – no response	
ATVERSW	<SWversion# $>$ OK ERROR \rightarrow Failure	Returns the system software version number	
ATVERHW	<hbody><hwversion#>OKERROR → Failure</hwversion#></hbody>	Returns the system hardware revision and product ID, with bits 7:4 containing the part ID, and bits 3:0 yielding the chip revision value.	
ATPRES	<value>OK</value>	0 Only AS72651 present 1 AS72651,AS72652 present 2 AS72651,AS72653 present 3 AS72651,AS72652 and AS72653 present	
ATINTRP= <value></value>	ОК	Enables AS72651 interrupt operation; 1=ON, 0=OFF	
ATINTRP	<100 0>OK	Reads AS72651 Interrupt mode; 1=ON, 0=OFF	
		Firmware Update	
ATFWU= <value></value>	ОК	<value>= 16-bit checksum. Initializes the firmware update process. Number of bytes that follow are always 56k bytes</value>	
ATFW= <value></value>	ОК	Download new firmware Up to 7 bytes represented as hex chars with no leading or trailing 0x. Repeat command till all 56k bytes of firmware are downloaded	
ATFWA	ОК	Causes target address for FW updates to advance. Should be called after every successful "OK" returned after "ATFW=< <i>value</i> >" command usage.	
ATFWS	ОК	Causes the active image to switch between the two possible current images and then resets the IC	

ams Datasheet Page 51
[v1-03] 2017-Oct-17
Document Feedback

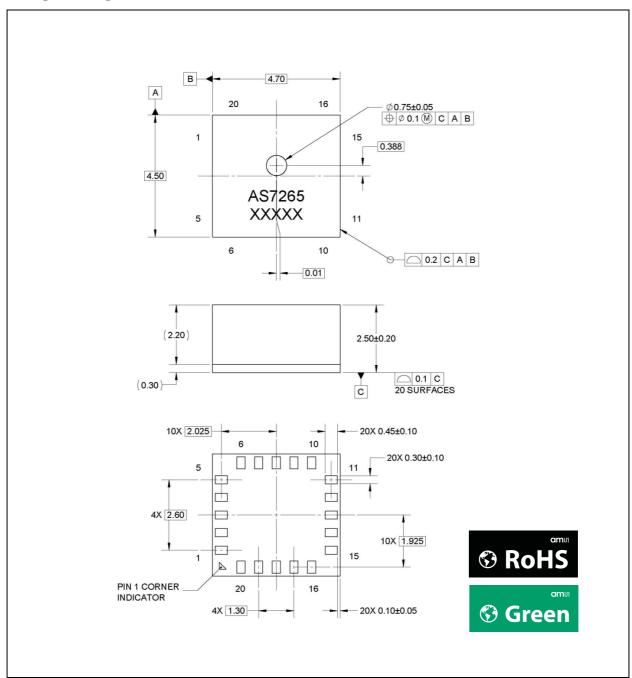
Application Information

Figure 52:
Typical AS7265x 18-Channel Application Circuit

Note(s):

- 1. For each AS7265x device, orientation of the device aperture to any light source(s) will determine spectral content to be measured. For example with the proper orientation, sensors on the AS72651 can be used to measure light from the LEDs on the AS72652 and/or AS76253
- 2. The AS72651 is required while the AS72652 and AS72653 are both optional for a total solution of 6, 12 or 18 channels.

Page 52


Document Feedback

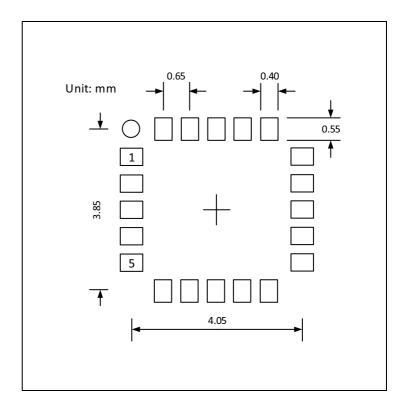
[v1-03] 2017-Oct-17

Package Drawings & Markings

Figure 53: **Package Drawing**

Note(s):

- 1. All dimensions are in millimeters.
- 2. XXXXX = tracecode.
- 3. Unless otherwise specified tolerances are: Angular (±.5°), Two Place Decimal (±.1), Three Place Decimal (±.05).
- 4. Contact finish is Au.
- 5. This package contains no lead (Pb).
- 6. This drawing is subject to change without notice.

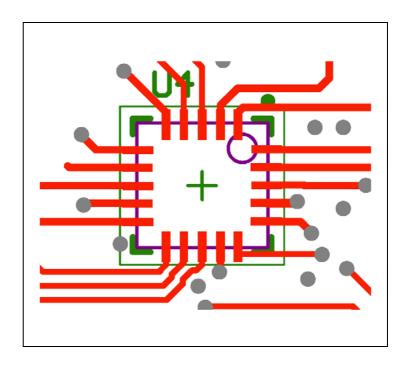

ams Datasheet Page 53 **Document Feedback**

PCB Pad Layout

Suggested PCB pad layout guidelines for the LGA device are shown. Flash Gold is recommended as a surface finish for the landing pads.

Figure 54:
Recommended PCB Pad Layout (Top View)

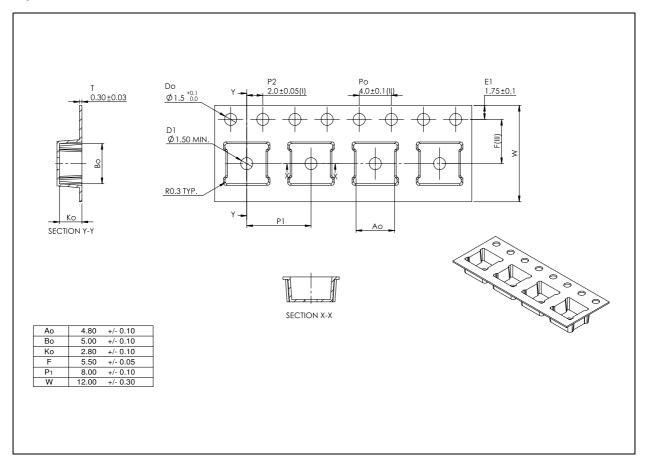
Note(s):


- 1. Unless otherwise specified, all dimensions are in millimeters.
- 2. Add 0.05mm all around the nominal lead width and length for the PCB pad land pattern.
- 3. This drawing is subject to change without notice.

Page 54ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

In order to prevent interference, avoid trace routing feedthroughs with exposure directly under the AS7265x devices. An example routing is illustrated in the Figure 55.

Figure 55: Typical Layout Routing



ams Datasheet Page 55
[v1-03] 2017-Oct-17
Document Feedback

Mechanical Data

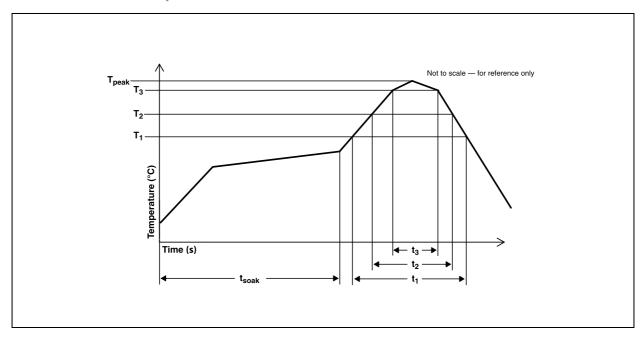
Figure 56: Tape & Reel Information

Note(s):

- 1. All dimensions in millimeters unless of otherwise stated.
- 2. Measured from centreline of sprocket hole to centreline of pocket.
- 3. Cumulative tolerance of 10 sprocket holes is ± 0.20 .
- 4. Measured from centreline of sprocket hole to centreline of pocket.
- 5. Other material available.

Page 56ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Soldering & Storage Information


Soldering Information

The module has been tested and has demonstrated an ability to be reflow soldered to a PCB substrate. The solder reflow profile describes the expected maximum heat exposure of components during the solder reflow process of product on a PCB. Temperature is measured on top of component. The components should be limited to a maximum of three passes through this solder reflow profile.

Figure 57: Solder Reflow Profile

Parameter	Reference	Device
Average temperature gradient in preheating		2.5°C/s
Soak time	t _{SOAK}	2 to 3 minutes
Time above 217°C(T ₁)	t ₁	Max 60s
Time above 230°C(T ₂)	t ₂	Max 50s
Time above T _{peak} - 10°C(T ₃)	t ₃	Max 10s
Peak temperature in reflow	T _{peak}	260°C
Temperature gradient in cooling		Max -5°C/s

Figure 58: Solder Reflow Profile Graph

ams Datasheet Page 57
[v1-03] 2017-Oct-17
Document Feedback

Manufacturing Process Considerations

The AS72651 package is compatible with standard reflow no-clean and cleaning processes including aqueous, solvent or ultrasonic techniques. However, as an open-aperture device, precautions must be taken to avoid particulate or solvent contamination as a result of any manufacturing processes, including pick and place, reflow, cleaning, integration assembly and/or testing. Temporary covering of the aperture is allowed. To avoid degradation of accuracy or performance in the end product, care should be taken that any temporary covering and associated sealants/debris are thoroughly removed prior to any optical testing or final packaging.

Storage Information

Moisture Sensitivity

Optical characteristics of the device can be adversely affected during the soldering process by the release and vaporization of moisture that has been previously absorbed into the package. To ensure the package contains the smallest amount of absorbed moisture possible, each device is baked prior to being dry packed for shipping.

Devices are dry packed in a sealed aluminized envelope called a moisture-barrier bag with silica gel to protect them from ambient moisture during shipping, handling, and storage before use.

Shelf Life

The calculated shelf life of the device in an unopened moisture barrier bag is 12 months from the date code on the bag when stored under the following conditions:

· Shelf Life: 12 months

• Ambient Temperature: <40°C

• Relative Humidity: <90%

Rebaking of the devices will be required if the devices exceed the 12 month shelf life or the Humidity Indicator Card shows that the devices were exposed to conditions beyond the allowable moisture region.

Page 58

Document Feedback

[v1-03] 2017-Oct-17

Floor Life

The module has been assigned a moisture sensitivity level of MSL 3. As a result, the floor life of devices removed from the moisture barrier bag is 168 hours from the time the bag was opened, provided that the devices are stored under the following conditions:

Floor Life: 168 hours

Ambient Temperature: <30°C

Relative Humidity: <60%

If the floor life or the temperature/humidity conditions have been exceeded, the devices must be rebaked prior to solder reflow or dry packing.

Rebaking Instructions

When the shelf life or floor life limits have been exceeded, rebake at 50°C for 12 hours.

ams Datasheet Page 59
[v1-03] 2017-Oct-17 Document Feedback

Ordering & Contact Information

Figure 59: Ordering Information

Ordering Code	Package	Marking	Description	Delivery Form	Delivery Quantity
AS72651-BLGT	20-pin LGA	AS7265	Smart 6-Channel NIR Spectral_ID Sensor with Electronic Shutter and 18-Channel AS7265x Master Capability	Tape & Reel	2000 pcs/reel
AS72652-BLGT	20-pin LGA	AS7266	Smart 6-Channel NIR Spectral_ID Sensor with Electronic Shutter	Tape & Reel	2000 pcs/reel
AS72653-BLGT	20-pin LGA	AS7267	Smart 6-Channel Spectral_ID Sensor with Electronic Shutter	Tape & Reel	2000 pcs/reel

Note(s):

- 1. The AS72651 is required for operation of either the AS72652 or AS72653.
- 2. A required companion serial flash memory is required for functionality and should be ordered from the flash memory supplier or their authorized channels. Selected device types must be ams verified and at the time of writing include Adesto Technologies AT25SF041-SSHD-B, or Macronix MX25L4006EM1I-12G. Visit the **ams** download page for your AS72xx device at download.ams.com and consult current firmware release notes for currently supported devices. More details and alternative flash memories please see the User Guide for Flash Updating.
- 3. AS72651 flash memory software is available from ams.

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at:

www.ams.com/Technical-Support

Provide feedback about this document at:

www.ams.com/Document-Feedback

For further information and requests, e-mail us at:

ams_sales@ams.com

 $For \ sales \ of fices, \ distributors \ and \ representatives, \ please \ visit:$

www.ams.com/contact

Headquarters

ams AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

Page 60

Document Feedback

[v1-03] 2017-Oct-17

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

ams Datasheet Page 61 **Document Feedback**

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Page 62

Document Feedback

[v1-03] 2017-Oct-17

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

ams Datasheet Page 63
[v1-03] 2017-Oct-17
Document Feedback

Revision Information

Changes from 1-02 (2017-Jun-12) to current revision 1-03 (2017-Oct-17)	Page
Updated text under AS7265x 18 Channel Spectral_ID Detector Overview	17
Added Required Flash Memory section	21
Updated text under UART Command Interface	47
Added note above Figure 51	48
Updated Figure 51	49
Updated Figure 52	52
Updated notes under Figure 59	60

Note(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

Page 64ams DatasheetDocument Feedback[v1-03] 2017-Oct-17

Content Guide

- 1 General Description
- 1 Key Benefits & Features
- 2 Applications
- 3 Block Diagram
- 4 Pin Assignments
- **6** Absolute Maximum Ratings
- 7 Electrical Characteristics
- 9 Timing Characteristics

12 Typical Operating Characteristics

- 12 Optical Characteristics
- 17 Detailed Description
- 17 AS7265x 18 Channel Spectral_ID Detector Overview
- 17 Channel Data Conversion of the AS7265x Devices
- 19 RC Oscillator
- 19 Temperature Sensor
- 20 Reset
- 20 AS7265x LED_IND Controls
- 20 Electronic Shutter with AS7265x LED_DRV Driver Control
- 21 Interrupt Operation
- 21 Required Flash Memory
- 21 I²C Slave Interface
- 21 I²C Feature List
- 22 I²C Virtual Register Write Access
- 23 I²C Virtual Register Byte Write
- 24 I²C Virtual Register Byte Read
- 25 4-Byte Floating-Point (FP) Registers
- 26 I²C Virtual Register Set
- 31 Detailed Register Descriptions
- 45 AS72651 I2C Firmware (FW) Update Procedure
- 47 UART Command Interface
- 47 UART Feature List
- 47 Operation
- 48 AT Command Interface
- 53 Application Information
- 54 Package Drawings & Markings
- 55 PCB Pad Layout
- 57 Mechanical Data

ams Datasheet Page 65
[v1-03] 2017-Oct-17
Document Feedback

- 58 Soldering & Storage Information
- 58 Soldering Information
- 59 Manufacturing Process Considerations
- 59 Storage Information
- 59 Moisture Sensitivity
- 60 Rebaking Instructions
- 61 Ordering & Contact Information
- 62 RoHS Compliant & ams Green Statement
- 63 Copyrights & Disclaimer
- 64 Document Status
- 65 Revision Information

Page 66ams DatasheetDocument Feedback[v1-03] 2017-Oct-17