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Abstract

A human computer interface glove was developed with the aim of translating sign language to
text & speech. The glove utilizes nine flex sensors, seven touch capacitive sensors, and an inertial
measurement unit to accurately capture hand gestures. All components were placed on the back side
of the glove providing the user with full range of motion, and not restricting the user from performing
other tasks while wearing the glove.

Machine learning algorithms were explored to perform classification of hand gestures. A
support vector machine was successfully implemented to classify static hand gestures in real-time. A
developer GUI application was created to sample sensor data; create and capture custom gestures;
classify hand gestures with a support vector machine and output text & speech; and a hand animation
to display the user’s hand gestures. All of the GUI features were developed with multi-threading
capabilities allowing real-time usage. The current results include translation of twenty-four letters and
the numbers 0-9 from sign language to text & speech.

Background

Integrating people from deaf & mute communities into modern society, especially the modern
workplace, is currently a major challenge. There is a major language barrier between users of
Sign-language (signers or signing people) and those who do not understand it (non-signing people).
Currently, the solution to this is to hire a Sign-language interpreter who will be present by the signer’s
side at all times. However, the employer often has to pay out of their pocket to hire this interpreter
which results in it being more expensive than hiring another employee who does not have any
communication barriers. Individuals who are deaf or mute are not only segregated in the modern
workplace but also in everyday life causing them to live in their own separate communities.
Worldwide there are 120 million deaf people who use Sign-language as their primary and most
important means of communication. There is no single form of Sign-language as it varies from region
to region; American Sign Language (ASL), British Sign Language (BSL), Indian Sign Language(ISL) are
just a few of the different forms. ASL is often referred to as the fourth most common language in the
United States [1].

There has been a rapid progression in medicine recently, leading to solutions for some deaf &
mute individuals. For instance, there have been improvements in hearing aids and cochlear implants
for the deaf and artificial voice-boxes for the mute with vocal cord damage. However, these solutions
do not come without disadvantages and costs. Cochlear implants have even caused a huge
controversy in the deaf community and many refuse to even consider such solutions. Therefore, we
believe society still requires an effective solution to remove the communication barrier between deaf
& mute individuals and non-signing people.

Our proposed solution and goal is to design a Human Computer Interface (HCI) device that can
translate sign language, specifically ASL, to text and speech providing any deaf & mute individuals
with the ability to effortlessly communicate with anyone. Sign language involves the use of gestures,
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mainly specific hand shapes and movements, instead of sound to convey words and sentences. The
idea is to design a device placed on a hand with sensors capable of capturing hand gestures and then
transmitting the information to a processing unit which performs the sign language translation. The
final product will also be able to efficiently teach sign language to any user since they would be able
to receive instant feedback. We hope to be able to improve the quality of life of deaf and mute
individuals with this device. During the development, we will also have the opportunity to learn a new
language. We believe there is great potential in a device with these capabilities and know that it has
far more applications in creating seamless gesture-based human-computer interfaces.

Current device solutions in the market are optic based such as LeapMotion. The disadvantage
of using optical sensors is the light requirements necessary for function, and the limited space of use.
Errors can arise from disturbances in the environment that obstruct the sensor’s operating space.
They are also not portable which is a necessity for sign language communication.

Design Requirements & Specifications

Our idea is to create a Human Computer Interface (HCI) wearable device that can translate sign
language, specifically ASL, to text and speech providing the deaf & mute with the ability to effortlessly
communicate with others. In order to accomplish the measurements for static gestures, we must
design the device such that it is able to:

@ Capture important hand gestures from the wearer of the device through various strategically
placed sensors. The sensors should be able to detect:

o Bending, Abduction, and Adduction of the Fingers. Extension and flexion of fingers must
be able to be categorized into at least 3 modes to determine letters. Bending sensors are
placed on the fingers and knuckles for more accurate classification but may be
accomplished with just one sensor per finger. The sensor must be able to detect a bending
range of 0-90° and have about a £5° accuracy.
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Figure 1: Motion of fingers (excluding thumb) [2]
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Figure 2: Motion of thumb [3]




o Roll, Pitch, and Yaw of the hand (ie. orientation of the hand). A precise measurement unit
is not required for letter recognition due to the limited modes of orientation. A +10°
should be acceptable for classification of the letters. A very accurate orientation
measurement is required however for advanced dynamic gestures as well as effective
human computer interfacing.
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Figure 3: Orientation and motion of hand

o Contact detection to accurately distinguish between similar gestures such as ‘6" and ‘W’.

o Position of the hand relative to a reference point on the body. Though not incorporated
into our final design, it was proposed that the reference point be located near the chest in
conjunction with the secondary left handed glove.

Process the sensor measurements to accurately detect the performed hand gestures.

Develop an ASL software database and processing algorithm to determine the hand gesture
meaning and/or use a Machine Learning Algorithm to classify the hand gestures.

Reproducibility of at least 90% for all gestures

Utilize logic controls to determine when the user has completed signing a word and/or would
like to pause from gesturing.

Create the functionality for users to produce their own gestures and name them, as well as
tailor the classification set to the user based on their gesture accents.

Output text of the letter/number/word/phrase detected onto a computer in a GUI application
for real time feedback.

Utilize a text-to-speech algorithm or API to output the speech through a computer.

Operate comfortably on the hand and minimize disruption to the functionality of the hand



Figure 4: American Sign Language (ASL) Alphabet and Numbers [4]

Figure 4 above shows the scope of ASL gestures that our group has accomplished. The degree
of abduction is not relevant for the above gestures. It is identified that fingers and knuckles have a
few distinct modes that they operate in which are flexed, extended, and partially bent. Additionally,
the roll, pitch, and yaw of the hand also operates in a few modes as well which are:

i. the palm of the hand facing away from the body and fingers pointing upwards,
ii. the palm facing to the left and fingers pointing up,

iii. the palm facing to the left and fingers pointing forward, and

iv. the palm facing toward the body with the fingers pointing left.

Movement of the hand for letters ‘)’ and ‘Z’ are always from one mode to another. To
maintain accuracy of the system, we did not find sufficient static gestures for words that could
develop a coherent sentence and kept our scope to letters and numbers. The user is able to add
additional static gestures at their leisure to the machine learning database as long as the gesture has a
sensor reading that is determined to be in a different mode and they are able to reproduce the
gesture.
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Figure 5: Block diagram for our proposed HCI device for Sign-language translation

The block diagram for our device is shown above in Figure 5. An Inertial Measurement Unit
(IMU) is required for accelerometer and gyroscope readings which is placed on the back of the hand
to determine hand orientation and movement. 9 Flex sensors are used for detecting extension and
flexion. 7 Capacitive touch sensors are included for adduction and abduction. These sensors are fed to
a microcontroller which is connected to a laptop via USB. On the computer, arduino software is used
to relay serial port information into the main program that operates a GUI, gesture classification
algorithm, text to speech, hand model visual feedback, and other controls. Sensor readings are
displayed on the GUi and the interpretation of hand movements are shown on a hand model that
mimics hand orientation and finger movement. The gestures are converted their respective text and
displayed on the screen in sequential order before forming a complete word and delivering speech.

With the scope of this project defined above, it is important to note the scope that would be
required for commercialization (i.e. outside the scope of this project). The commercial version will
need to have a sleek design with fast response time, low-production cost, a system for updates to be
installed onto the glove, and a calibration process for different users. Achieving these goals requires
customized components, for example replacing the microcontroller with a custom-designed circuit
that has an ASIC and possibly a small microcontroller used in combination. It also requires heavy
optimization of the classification and translation algorithms. Given the timeframe of this project, we
chose to put these features out of our scope and we will pursue them after achieving the goals of this
project.

Hardware Implementation

To realize the design requirements, several hardware components were considered during
prototyping. Much of the hardware was selected due to their ease of use, cost, and accuracy. The
Teensy 3.2 microcontroller was selected for its various advantages in size, power, and price. Most
importantly, it had the required number of analog inputs for the sensors, despite having to access the
bottom side of the device. The flex sensors selected are the Spectra Symbol 2.2” due to their market
availability and documentation. The alternative flex sensor size is 4.5” but to optimize accuracy, we
decided to place two flex sensors on each fingers except the pinky at the knuckle joint and on the
phalanges. In fact, testing showed that flexion and extension was captured to +5° accuracy. Touch
capacitive sensors were simply created with copper tape by taking advantage of the built in touch

6



sense analog pins of the teensy and the user’s hand as the capacitor. The BNOO55 IMU was selected
for convenience as it produces the computation necessary for linear acceleration and gyroscopic
measurements. The roll, pitch and yaw measurements were found to be roughly £2° accuracy which is
far beyond sufficient for our sign language requirements. Another selling point was the availability of
a magnetometer that could be used for absolute positioning and the potential for relative positioning.
We were able to calculate euler angles through the quaternion measurements to solve the problem of
gimbal lock.

Ideally, a PCB would be the most organized and compact way of implementing the circuit
board. Instead, it was accomplished using a perfboard for its thin thickness and dimensions. Since the
bottom side of the teensy was required for additional analog pins, careful planning of the perfboard
allowed us to fit the circuit in an agreeable manner on the hand. Space was left to add in the
requested HC-06 bluetooth module which did not arrive in time for incorporation onto the device. A
colour-coded wiring paradigm was used to help identify components.

The right handed glove selected was an ordinary cotton glove that is widely available. It was
important that the glove was skin tight to improve flex sensor accuracy while maintaining a level of
comfort so that it could be worn for extended periods of time. The glove’s size was optimal for one
group member but could be worn by all for testing purposes. Discussions were made to purchase a
higher tech glove that is more comfortable to the user such as those for arthritis patients. To get
around the touch sense requirements, slits were cut at certain fingertips so that they could make
contact with the copper foils. It was also discussed that a material such as those used on touch screen
gloves could be an adequate replacement for our fingertips. Our intention initially was to make the
glove aesthetically pleasing but due to time limitations we kept the design and wiring used in the
latest prototype. Initial prototypes used velcro to keep the breadboard circuit on the back of the hand
and held the flex sensors with strands of sew. It was envisioned that pockets across the fingers would
be used to hold the flex sensors in place while allowing enough space for flexion. The final decision
was to use double sided tape to secure the sensors while sewing any extra pockets of air down that
could prove to be an issue.



Touch Capacitive Sensors
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Figure 5: Location of hardware components on the right hand.

Figure 5 shows the approximate locations of the hardware on the device. The sensors must be
placed in a way as to not make contact with each other causing short circuits which and disruption of
measurement readings. Electrical tape was necessary to provide insulation for our sensors. Flex
sensors cover the knuckles and phalanges of all the fingers except the pinky as they are the joints
most relevant for finger flexion. The accelerometer and gyroscope had to be placed either on the back
of the hand or the palm to follow the hand’s reference plane. Since our device was connected via USB
to the computer, it was optimal to have the female USB port point away from the rest of the hand as
to not obstruct movement and sensor placement.

Hand Gesture Classification

To translate the hand gestures to letters and numbers, the data from the sensors needs to be
mapped to its corresponding letter or number in sign language. This was accomplished using a
machine learning algorithm. The reason for using machine learning for classification, as opposed to
conditional (if/else) statements, is that it gives the user the ability to tailor the gesture classification to
their unique style of signing. The user can train the machine learning classifier by showing it examples
of different gestures, and saving each gesture with the corresponding letter or number attached.

To implement the machine learning there are 3 important considerations: features, targets,
and the type of classifier used. What follows is a discussion of the implementation of these
considerations for this project.



Features & Targets

In machine learning, features are the set of independent variables extracted from the raw
data. The linear combination of all the features is known as the feature space. Features are the inputs
to the classifier whereas targets are the decision output. In this project, the features are extracted
from the hardware sensor inputs and the targets are the letters/numbers in sign language.

On the glove, there are 23 inputs from the hardware sensors:
- Analog values from 9 flex sensors
- Analog values from 7 touch sensors
- 4 quaternion values from the gyroscope
3 orthogonal acceleration values from the accelerometer

The raw data needs to be preprocessed to turn it into a set of useful features. A useful feature
is one in which there is considerable difference between the clusters of data, so that the machine can
easily separate one state from another. For example, it should easily determine whether the touch
sensor is being touched or not. Secondly, the whole feature space should be laid out so that there is a
large difference between all the target clusters. In this way the classifier will choose the correct target
(letter/number) based on the features with high accuracy.

This strategic laying out of the feature space is accomplished using feature scaling. Features
can be scaled by multiplying them by a scalar value to give them a certain level of importance in the
classifier. A higher scaling value results in more importance being given to that feature.

The sensor inputs from the glove were preprocessed as follows:

- Analog values from flex sensors were linearly mapped to angles in degrees, based on the
bending of the finger joint. The joint bending angles typically lie in the range 0°-90°. These
joint-bending angles provide 9 features for the feature space.

- Analog values from touch sensors were mapped to 0 or 1, where 1 means the touch sensor is
being touched by the user. However, the difference between 0 and 1 is very small which
means the classifier will give this feature very little importance. Hence, feature scaling was
implemented here with a scale factor of 1000. The classifier receives a value of 0 for when the
touch sensor is at rest, and 1000 for when the sensor is being touched. This provides 7 more
features for the feature space.

- The quaternions from the gyroscope indicate the direction in which the user’s hand is
pointing. For gesturing letters and numbers in ASL it is not necessary to know the precise
direction in which the hand is pointing. All that is necessary is to know whether the hand is
pointing up, forward/sideways, or down. These would be assigned values of +1, -1, and 0
respectively. Again, the differences between these values is too small so feature scaling will be
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implemented with a scaling factor of 100. Hence, the classifier receives a value of 100 when
the hand points up, -100 when the hand points forward/sideways, and 0 when the hand
points down. This provides 1 important feature for the workspace.

- The acceleration readings from the accelerometer are not necessary for discerning ASL
gestures, because all the gestures for letter and numbers are static and don’t involve
movement of the hand. So the acceleration values are not sent to the classifier. However, it is
important to know the acceleration in order to determine whether the hand is moving or
stationary, in order to discern between when the user is holding a sign gesture as opposed to
transitioning between signs. Hence, the acceleration values will be compared against a
threshold value, using an if/else statement, to determine whether or not the program should
try to classify the gesture at that specific moment.

The above features give a total of 9+7+1=17 features for the feature space. The classifier must
take these features and assign them to the alphabet and numbers. The alphabet and numbers
combined give a total of 26+10=36 targets for the classifier to resolve. Graphically, this is represented
by 36 clusters of data in a 17-dimensional feature space. An appropriate classification algorithm is
needed for this layout of the data.

Classifier Type

To classify the gestures, the classifier needs to accurately and quickly separate the target
clusters based on the provided features. Additionally, it should be flexible enough so that it can mould
to any user’s style of sign language. For high speed of classification, the classifier should have low
computational intensity. For high accuracy and for flexibility, it needs to have a method of separating
clusters that is universally applicable no matter where the gesture clusters are in the feature space.

To summarise the above points, the classifier should be simple in implementation while
providing a complex target separation with high accuracy. For these reasons, a Support Vector
Machine (SVM) approach was taken for classifying the hand gestures. SVM separates the target
clusters using a linearized hyperplane, as shown in Figure 6. The hyperplane is placed to provide
maximum margin between the support vectors; support vectors are the data points at edge of each
target cluster. Since the separation is linear, SVM performs very fast. Also, because the feature space
is large (17 dimensions!) for only 36 targets, it will provide high accuracy and flexibility with a low risk
of overfitting the data.
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Figure 6: Target cluster separation using SVM hyperplane [5]

The SVM is implemented on the gestures in pseudo-realtime; that is, the program is
constantly classifying the user’s hand gesture after certain time periods and under certain conditions.
The steps for this operation are outlined below:

Collect a set of samples from all the sensors using a moving time window.

Calculate the mean of the sensor values in this time window.

Preprocessing and feature scaling of the sensor data to turn it into feature space.

If the hand is not moving (mean acceleration is less than the threshold), then use the SVM
classifier to predict the hand gesture. {Else, go to step 1}.

Output the letter/number corresponding to the output from the classifier.

6. Small time delay, then go to step 1.

A wnpeE

i

Software Implementation

Teensyduino

The Teensy 3.2 microcontroller has the ability to use Arduino code and libraries. As a result,
“Teensyduino” was used to implement the code on the Teensy to perform sensor data collection and
processing. Since this project does not involve electrophysiological signals, a sampling rate of 50Hz
was selected for all sensor data (quaternions, linear acceleration, flex sensors, and touch capacitive
sensors). The sampling rate could be increased but this is a reasonable starting point for the sensor
data that is required.

As mentioned in the hardware implementation, the flex sensors involve a simple voltage
divider circuit. Each flex sensor was tested individually for linearity between finger bending and
voltage output. The linearity was good enough to create a linear mapping from 0°-90° of finger
flexion. Each flex sensor was individually mapped for best performance. The output voltage from the
flex sensor circuit (represented as a decimal corresponding to the 12bit ADC output) was measured
for 0°-90° bending on each joint. Teensyduino allows the use of “analogRead()” to read the voltage
output from the flex sensor circuit which is performed every 20ms.

11



Another reason the Teensy 3.2 microcontroller was chosen was due to the built-in “Touch
Pins”. After wiring a piece of copper foil to the pin, the internal pull-up resistance and pin capacitance
allow using “touchRead()” to calculate the capacitance through an RC time constant calculation .
When not touched, the value was less than 400 and would jump to 6000 when fully touched. Note
that the units for these values were not tested because the only necessary information was whether
the sensor was touched or not touched. A threshold value of 2000 was used to distinguish between
the two states.

The Adafruit BNOO55 class library was used to interact with the IMU as it involved a lot of
tedious register reading and writing. The class was modified to include a method for reading some
settings and the IMU mode. The absolute IMU orientation mode (called NDOF mode) uses the
magnetometer to find the Earth’s magnetic North and set that to the yaw=0 orientation. However, in
order to easily sync the orientation of the hand model animation and the glove, the IMU mode was
changed to relative orientation. The relative orientation mode (called IMU mode) sets the “0”
orientation to the initial orientation of the glove when it is powered on. As a result, the user can start
with their hand flat and pointing into the screen to easy sync with the animation. The IMU has its own
processor to perform sensor fusion of the accelerometer, gyroscope, and magnetometer for better
accuracy and less drift. In the relative orientation mode, the IMU outputs data at 100Hz. The appendix
shows more details about the various outputs of the IMU.

The serial output begins with initialization and debug data for the Teensy and IMU. After that,
all of the sensor data (IMU calibration data, quaternions, linear acceleration, 9 flex sensor values, 7
touch capacitor values) is printed to serial output every 20ms. Note that quaternions were chosen
over Euler Angles to prevent an issue known as gimbal lock. The Euler angles were calculated through
the quaternions if required (such as for the hand animation which will be discussed below). The figure
below shows a snapshot of the serial output.

fdev/ttyACMO

Quaternions 95.97 7.51 -17.32 -0.04
Calibration @ 3 1 0

lacceleration 6.0 6.0 6.0
FingerDegrees: -3 -10 -6 -24 -57
KnuckleDegrees: -23 -13 -5 -7
TouchSensors: 669 840 667 915 781 629 767
Quaternions 98.97 7.31 -12.32 -0.04
Calibration ¢ 3 1 0
incceleration 0.0 -0.8 8.0
FingerDegrees: -3 -13 -6 -25 -46
Knucklebegrees: -22 -11 -5 -7
TouchSensors: 669 540 668 918 780 629 707

Figure 7: Output from Teensy in the serial monitor

Python

In the early stages of design, Processing was used to create a hand model animation. This
animation allowed very fast and intuitive debugging of the quaternions and Euler angles. However, it
quickly became apparent that Processing would not be useful to perform any other features such as
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gesture classification. As a result, the hand model animation was migrated over to Python so all
features could be in the same programming language.

The goal was to not only implement software for real-time classification of sign language, but
to also create a developer application. This developer application would allow the user (or developer)
to easily view all sensor data and hopefully allow easy development for new applications of the HCI
glove. In the end, a fully functional developer GUI application was created which will be discussed
later in this section.

Since the project consists of 1,904 lines of Python code (not including some additional Python
scripts and the mouse + game control scripts), the appendix will contain only a brief description of
each of the files and functions/classes contained within those files. To view the full code, a link to a
GitHub page will be provided.

Console Application

To begin, HandsOn.pseudoMain(delay, debugFlag,ttsFlag) is a console menu application that
was created to perform capturing of hand gesture data to a file, reading a training file and fitting an
SVM, real-time gesture classification, and text-to-speech output. To perform everything in real-time,
the program required multi-threading. Therefore, HandsOn.pseudoMain(delay,debugFlag,ttsFlag),
HandsOn.parseSerialHandData(ser), and Animation.py were all designed to run in their own threads
using the Python Thread class. The diagram below shows the general layout of the console
application.

handAnimation parse Serial pseudoMain

Start Console Menu
User Input
> <Gapus>— oo ]

pseudoMain thread

parseSerial thread
Start Scene

getHandData

Read Serial Lines
from Teensy

parseData
Data Processing

< Train? > trainSVM

g

Update deque

textToSpeech

-
< Eat? ,;ﬂ\
U v/

|—»< Ciassiyi >
‘\..‘_’/’

Figure 8: Console Application Software Diagram

Serial Data Parser & Collections.Deque

HandsOn.parseSerialHandData(ser) opens a serial communication port from the Teensy, reads
each line, and parses the line to assign each item to the appropriate variables. Note that the Teensy
sends a block of sensor data information every 20ms thus the Python program must be efficient in
data collection. Also, each thread requires the usage of some of these variables at the same time.
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Therefore, “Collections.deque” structures were utilized for the real-time moving window data
collection. It was decided that a 500ms moving window was sufficient for accurate data although it
could be reduced to speed up the sign-language translation. A “Collections.deque” structure was
created for each sensor and each variable from the IMU. They allow O(1) moving window data
collection due to the ability to instantly add a new element to the end of the list and remove the
oldest one. They are also thread-safe which allows all 3 threads to use them at the same time. The
“share_var.py” file instantiates these deque structures and some global variables to be used by all
threads. Although global variables are bad practice, structures and classes to contain these variables
kept causing errors with the multithreading and was not worth debugging for the purpose of this
capstone project.

Tools.py for Data Processing and File 10

The “Tools.py” file contains multiple functions for processing & organizing the hand sensor
data along with any additional functions required. The appendix contains a full list of all functions in
the file with a description of the inputs, outputs, and usage of each function. It contains
Tools.printHandDataToFile(fileName,str_handldentifier) which writes the moving window mean of
the flex sensor and touch capacitive sensors as well as a number specifying the orientation of the
hand to a specified. This data is saved with a user-input gesture label so that the file can be used as a
training file for the machine learning algorithm. This allows multiple training files so each user can
have their own calibrated data, as well as creating custom gestures and labels. The means are
calculated using Tools.DequeMean(deq) and Tools.DequeMeanlList(degList). Tools.ListToCSstr(list)
then converts these lists to comma separated strings that can be easily printed to file in an organized
format. Tools.readHandDataFromFile(fileName) reads and parses the hand data from a file into an nx1
list of targets and nxm list of m features for each target. Currently the number of features is 17 (9 flex
sensor means, 7 touch capacitor means, and one number corresponding to an orientation).

Tools.py for Quaternions

Some hand gestures are similar in terms of finger positions but differ in their orientation.
Sending the quaternions to the machine learning algorithm would not be useful as it contains 4 values
that are separated by the SVM hyperplane. As a result, we performed some quaternion math to
determine the exact orientation of the hand and assign that to a single number that classifies its
orientation. Quaternions consist of 4 numbers which can be thought of as a 3D vector (x,y,z) along
with the amount of rotation about that vector (w). Quaternion multiplication is given by (1.1). In order
to determine the exact orientation of the hand, a vector corresponding to the direction the
hand/glove is pointing needs to be rotated by the quaternion. Since we are starting with the glove
pointing in the computer screen, this corresponds to the vector To perform the quaternion rotation
of this vector, it must be post-multiplied by the quaternion, and pre-multiplied by the conjugate () of
the quaternion as shown by (1.2). This quaternion math implemented by Tools.q_mult(ql,q2),
Tools.qv_mult(ql,v1), and Tools.q_conjugate(q). The direction is assigned by Tools.QuatToDir(gW, gX,

qyY, qZ).
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Hand Animation

The hand animation was migrated to Python and implemented using OpenGL and Pygame. It
consists of multiple rectangular prisms placed at specific coordinates to create a hand model. Each
finger consists of two rectangular prisms (except the pinky) which allows the flex sensor values to be
used directly on each rectangular prism to animate the finger bending. The touch capacitive sensors
cause the appropriate finger to glow. Finally, the quaternions are converted into Euler angles to allow
3D rotation of the frame to visualize the hand orientation. The animation runs at 30fps and runs in its
own thread.

Machine Learning

A support vector machine was used with one-vs-all classifiers. This was implemented using the
scikit-learn library in Python which contains modules for multiple different types of machine learning
algorithms. Specifically, the svm.SVC module was utilized with the C=100, kernel="rbf’, and
gamma=0.0001. These parameters were determined by inputting a training file and cross-validation
file into a script that sweeps combinations of these parameters and outputs the ones with the best
accuracy. However, that script determined the best parameter as C=1. The C controls the soft-margin
parameter with a lower value allowing the hyperplane to contain more ‘errors’ which can be useful to
allow the SVM to ignore/minimize the effect of outliers. However, we noticed this was causing issues
with the wrong letter being classified when two gestures were fairly similar. As a result, we increased
it to 100 which provides much better results.

The user must first train the SVM by specifying the training file. The program reads and parses
the training file as explained in the Tools for Data Processing and File 10 section. During real-time
classification, a delay parameter (with default delay of 0.5s) was added to prevent classifying the
same gesture multiple times by accident. The linear acceleration is examined by Tools.isMoving() and
Tools.LinAccelMoving() to determine if the user is moving. In that case, the program waits until the
user has stopped moving before attempting to classify the static hand gesture. In the future, this
feature could be used to determine when to use dynamic gesture classification (ex. with Hidden
Markov Models) or use the SVM for static gesture classification.

Text-to-Speech
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The text-to-speech was accomplished using the python module “pyttsx”. The predicted letters
are saved until the user puts his hand down to indicate that the word has been spelled out. The
text-to-speech is then performed on that word before continuing the classification.

Python GUI Application

The next step was to create the developer GUI application to easily display all sensor data,
display the hand animation, capture gestures, train classifiers, and classify in real-time. The GUI was
created with PyQt5 which allows using the Qt Creator framework to design the GUI layout and
convert it to Python code. Note that this only allowed easily designing the button and window
placements. The functionality still had to be coded. The console application was designed to be
modular which allowed many of the functions to be reused in the GUI application. The figure below
illustrates the various features of the GUI. The GUI itself can be seen in the Results & Discussion
section.

“HandsOn_GUI_Layout.py” contains the python code for the GUI layout with buttons,
displays, layout windows, etc. “HandsOn_GUI_main.py” contains the classes and methods for the
functionality of the GUI: DevApp, SerialParse, ClassifyRealTime, HandAnimation. To perform
multi-threading, each thread required its own class which inherits from the QThread class. One of the
major difficulties with the GUI was creating “SIGNALS” and “SLOTS” to communicate between the
threads and the main GUI. However, in the end we managed to create separate threads for the GUI,
serial parsing of hand data, real-time classification, and the hand animation. The appendix contains a
description of each of the classes and methods with the entire code provided in the GitHub
repository.
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Figure 9: GUI Application Software Diagram
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Results & Discussion

Hardware Prototypes

The first major component of the project was to create the hardware based on our design.
The hardware prototypes are shown in Figure 10. The first prototype was made on a breadboard to
test out the accuracy of the flex sensors, accuracy of the IMU measurements and user comfort while
wearing the glove. The flex sensor and IMU readouts were very accurate, and the glove was light and
comfortable despite the breadboard on the back of the hand. It was confirmed that a smaller form
factor of this prototype would be viable for consumer use.

The second prototype included the capacitive touch sensors, which were added to the Teensy
by accessing the surface mount solder pads on the underside of the microcontroller; this was not
possible with the breadboard version. The flex sensor and IMU readouts were very accurate as before,
and the glove was even more comfortable due to the light perfboard, thinner glove, and holes for the
fingertips. Furthermore, the touch sensors were highly responsive with a large dynamic range
between being at rest and being touched.

Figure 10: (Left) Breadboard prototype, (Right) Final perfboard soldered prototype

Sensor lJitter

When viewing the OpenGL hand animation, it was visibly clear that the flex sensor values had
a high frequency noise component causing the animated fingers to jitter on screen. This can be
attributed to micromotions of the user’s hand as well as the thermal noise that can be observed in
any resistor. The jitters were approximately £5° in magnitude, which wouldn’t affect the sign language
classification. Furthermore, the program averages the readings over a moving window of 25 samples
and the noise is zero mean, so the improvement in SNR from averaging is:
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SNR avg _
SNR

20 x log(25) = 28.0dB

Hence there were no issues with noise in the sensor data. However, the smoothness of the
hand animation is an important concern for user-experience. The solution is to add capacitors in
parallel with the flex sensors, thus making a passive lowpass filter that attenuates the noise. This was
not feasible with the limited space on the perfboard, but it will be implemented in the PCB based
prototype using surface mount capacitors.

Classification Accuracy

Figure 11 shows the capabilities of HandsOn as demoed on poster day. Based on this sample
of letter classification, an estimate of the accuracy can be made. Out of all the words shown, there is
one mistake in classification in the third row: it says “REX” instead of “RED” because the classifier
outputted X instead of D that time. All the other words in the screenshot are correct, and there are a
total of 48 letters. The accuracy is then:

Classifier accuracy = j—; x 100 =97.9%
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Figure 11: HandsOn GUI showing sign language classification on poster day

Classifier Training

An important consideration for achieving high accuracy of the classifier is the amount of
training required. There is a tradeoff between number of training sets and classifier accuracy, and it is
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important from the user-experience perspective that high accuracy can be achieved with minimal
training. For the demo shown in Figure 11, the number of training sets for each letter was 5. For 26
letters, this equals 26x5=130 total sets. Hence the time needed for training is:

Time per training set = num of samples x sampling period = 25 x 20ms = 500ms
Miscellaneous time spent (user typing in letter and clicking mouse button) = 3s

Training time = 130 x (0.5s + 35) = 4555 = 7.58 min

Hence it would take the user around 7.5 minutes to set up the glove for their specific style of
signing, to achieve approximately 98% classification accuracy. This is quite a remarkable result for a
small training time, mostly due to the large number of dimensions in the feature space. However,
modern apps and devices are very competitive in speed and user experience so it is desirable to
improve these statistics for maximum user satisfaction. This can possibly be accomplished using a
large database of training sets from thousands of users and pre-training the classifier on that
database. Alternatively, there can be an adaptive training algorithm that automatically improves itself
every time the user makes a gesture.

Conclusion & Future Improvements

Our group had very high aspirations for this HCI glove. As a result, there are many future
improvements that have already been considered. There are already plans to continue working on
this project to see how far it can go. Hopefully, it will have some marketable value — whether that is as
a sign language product or as a general HCI product.

One of the major improvements to the glove would be aesthetics. For the purpose of the
capstone project, we only had time to focus on the functionality of the glove. However, aesthetics are
a major part of marketing of the glove and an area that can be significantly improved. One of the first
steps would be to create a PCB to replace the perfboard and minimize the number of wires. Also,
conductive thread could be used to wire the flex sensors and touch capacitive sensors although the
effectiveness of this thread still needs to be tested.

Another major improvement would be to reduce the cost. The bulk of the cost was due to the
flex sensors. The flex sensor technology is the same as the ones used in the Nintendo Power glove but
it still costs $12/sensor for a total of $108 per glove. There are a few guides for custom-made flex
sensors, some of which are fabric-based. These would allow easy integration into the glove and would
be aesthetically pleasing. The disadvantage is that it likely has reduced accuracy/resolution and
linearity.

The glove was meant to be wireless to prevent any movement restriction so that would be a
must in the next iteration of the device. Bluetooth and battery are fairly straightforward additions.
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Absolute position information is the next step in this project — and probably the most
challenging. The easiest way to obtain absolute position information with accuracy is to use an
optical-based approach. However, the whole idea was to create an alternative to optical such that the
glove can be used without having to face a camera, and could be used as a portable device. Finding
the position from the accelerometer is an option, but it contains drift error due to the double
integration that accumulated very quickly. There are ways to compensate/minimize the drift error
which need to be explored. The glove would constantly have to be recalibrated to a known position
thus could be annoying to the user if it occurred too often.

Once absolute position information is obtained, gestures involving movement can be
explored. SVMs are not useful for these types of gestures but we could use another form of machine
learning. In our research thus far, Hidden Markov Models (HMMs) seem to be a reasonable starting
point to explore classification of dynamic gestures. Another glove could then be created to allow
classification of any word or phrase in ASL.

Before investing the time and money into such a massive continuation of the project, it would
be important to gather feedback from the deaf and mute communities on the device. It may be
possible that they would not prefer to have such a device. In that case, a greater emphasis could be
placed on creating a general purpose device to be applied to gaming, and design (3D modelling, CAD
software, etc.).

As demonstrated in the Results & Discussion, as well as on ECES Expo day, the goals for this
project were clearly met. The device accurately classified ASL letters and numbers and performed
text-to-speech on the spelled word. There are many plans to continue improving the device with the
goal of hopefully entering the market one day.

20



References

[1] Harington, Tom. "Sign Language Tags: Deaf, Faq ." ASL: Ranking and Number of Users. N.p., 1
May 2010. Web. 19 Oct. 2015.
<http://libguides.gallaudet.edu/content.php?pid=114804&sid=991835>.

[2] Motion of fingers (excluding thumb). Digital Image.
<http://www.outlanderanatomy.com/wp-content/uploads/2015/06/finger-movements-KLS-edited.jp

g>

[3] Motion of thumb. Digital Image.
<https://www.studyblue.com/notes/note/n/anatomy-exam/deck/4771081>

[4] Finger Spelling. Digital Image.
<http://www.lifeprint.com/asl101/fingerspelling/images/abc1280x960.png>

[5] “What is the relation between the number of Support Vectors and training data and classifiers
performance?,” Stack Overflow.
http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-
vectors-and-training-data-and

[6] Sheet, Data. "BNOQ055 Intelligent 9-axis Absolute Orientation Sensor." (n.d.): n. pag. Bosch, Nov.
2014. Web. Dec. 2015. <https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf>

21


http://libguides.gallaudet.edu/content.php?pid=114804&sid=991835
http://www.outlanderanatomy.com/wp-content/uploads/2015/06/finger-movements-KLS-edited.jpg
http://www.outlanderanatomy.com/wp-content/uploads/2015/06/finger-movements-KLS-edited.jpg
https://www.studyblue.com/notes/note/n/anatomy-exam/deck/4771081
http://www.lifeprint.com/asl101/fingerspelling/images/abc1280x960.png
http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and
http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and
https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf

