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ABSTRACT 
The world is full of physical interfaces that are inaccessible 
to blind people, from microwaves and information kiosks to 
thermostats and checkout terminals. Blind people cannot in­
dependently use such devices without at least first learning 
their layout, and usually only after labeling them with sighted 
assistance. We introduce VizLens —an accessible mobile ap­
plication and supporting backend that can robustly and inter­
actively help blind people use nearly any interface they en­
counter. VizLens users capture a photo of an inaccessible 
interface and send it to multiple crowd workers, who work 
in parallel to quickly label and describe elements of the inter­
face to make subsequent computer vision easier. The VizLens 
application helps users recapture the interface in the field of 
the camera, and uses computer vision to interactively describe 
the part of the interface beneath their finger (updating 8 times 
per second). We show that VizLens provides accurate and 
usable real-time feedback in a study with 10 blind partici­
pants, and our crowdsourcing labeling workflow was fast (8 
minutes), accurate (99.7%), and cheap ($1.15). We then ex­
plore extensions of VizLens that allow it to (i) adapt to state 
changes in dynamic interfaces, (ii) combine crowd labeling 
with OCR technology to handle dynamic displays, and (iii) 
benefit from head-mounted cameras. VizLens robustly solves 
a long-standing challenge in accessibility by deeply integrat­
ing crowdsourcing and computer vision, and foreshadows a 
future of increasingly powerful interactive applications that 
would be currently impossible with either alone. 
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INTRODUCTION 
The world is full of inaccessible physical interfaces. Mi­
crowaves, toasters and coffee machines help us prepare food; 
printers, fax machines, and copiers help us work; and check­
out terminals, public kiosks, and remote controls help us live 
our lives. Despite their importance, few are self-voicing or 
have tactile labels. As a result, blind people cannot easily use 
them. Generally, blind people rely on sighted assistance ei­
ther to use the interface or to label it with tactile markings. 
Tactile markings often cannot be added to interfaces on pub­
lic devices, such as those in an office kitchenette or check­
out kiosk at the grocery store, and static labels cannot make 
dynamic interfaces accessible. Sighted assistance may not 
always be available, and relying on co-located sighted assis­
tance reduces independence. 

Making physical interfaces accessible has been a long-
standing challenge in accessibility [11, 26]. Solutions have 
generally either involved (i) producing self-voicing devices, 
(ii) modifying the interfaces (e.g., adding tactile markers), or 
(iii) developing interface- or task-specific computer vision so­
lutions. Creating new devices that are accessible can work, 
but is unlikely to make it into all devices produced due to cost. 
The Internet of Things may help solve this problem eventu­
ally; as more and more devices are connected and can be con­
trolled remotely, the problem becomes one of digital accessi­
bility, which is easier to solve despite challenges. For exam­
ple, users may bring their own smartphone with an interface 
that is accessible to them, and use it to connect to the device 
[10, 32]. Computer vision approaches have been explored, 
but are usually brittle and specific to interfaces and tasks [11]. 
Given these significant challenges, we expect these solutions 
will neither make the bulk of new physical interfaces accessi­
ble going forward nor address the significant legacy problem 
in even the medium term. 

This paper introduces VizLens, a robust interactive screen 
reader for real-world interfaces (Figure 1). Just as digital 
screen readers were first implemented by interpreting the vi­
sual information the computer asks to display [31], VizLens 
works by interpreting the visual information of existing phys­
ical interfaces. To work robustly, it combines on-demand 
crowdsourcing and real-time computer vision. When a blind 
person encounters an inaccessible interface for the first time, 
he uses a smartphone to capture a picture of the device and 
then send it to the crowd. This picture then becomes a ref­
erence image. Within a few minutes, crowd workers mark 
the layout of the interface, annotate its elements (e.g., buttons 

http://dx.doi.org/10.1145/2984511.2984518
mailto:Permissions@acm.org
mailto:sumang}@andrew.cmu.edu
mailto:jbigham}@cs.cmu.edu


Figure 1. VizLens users take a picture of an interface they would like to use, it is interpreted quickly and robustly by multiple crowd workers in parallel, 
and then computer vision is able to give interactive feedback and guidance to users to help them use the interface. 

or other controls), and describes each element (Figure 1A). 
Later, when the person wants to use the interface, he opens 
the VizLens application, points it toward the interface, and 
hovers a finger over it. Computer vision matches the crowd-
labeled reference image to the image captured in real-time. 
Once it does, it can detect what element the user is pointing 
at and provide audio feedback or guidance (Figure 1B). With 
such instantaneous feedback, VizLens allows blind users to 
interactively explore and use inaccessible interfaces. 

In a user study, 10 participants effectively accessed other­
wise inaccessible interfaces on several appliances. Based on 
their feedback, we added functionality to adapt to interfaces 
that change state (common with touchscreen interfaces), read 
dynamic information with crowd-assisted Optical Character 
Recognition (OCR), and experimented with wearable cam­
eras as an alternative to the mobile phone camera. The com­
mon theme within VizLens is to trade off between the advan­
tages of humans and computer vision to create a system that 
is nearly as robust as a person in interpreting the user inter­
face and nearly as quick and low-cost as a computer vision 
system. The end result allows a long-standing accessibility 
problem to be solved in a way that is feasible to deploy today. 

This paper makes the following contributions: 

•	 We introduce VizLens, a system that combines on-demand 
crowdsourcing and real-time computer vision to make real-
world interfaces accessible. 

•	 In a study with 10 visually impaired participants, we show 
that VizLens can provide useful feedback and guidance in 
assisting them accomplish realistic tasks that involve oth­
erwise inaccessible visual information or interfaces. 

•	 We show that our crowdsourcing labeling workflow is fast 
(8 minutes), accurate (99.7%), and cheap ($1.15). Once 
the reference image is prepared, VizLens provides accu­
rate, real-time feedback across many different devices. 

•	 We produce VizLens v2, which adapts to state changes in 
dynamic interfaces, combines crowd labeling with OCR 
technology to handle dynamic displays, and benefits from 
head-mounted cameras. 

RELATED WORK 
Our work is related to prior work on (i) making visual in­
formation accessible with computer vision, and (ii) crowd-
powered systems for visual assistance. 



Computer Vision for Accessibility 
A number of systems have been developed to help blind peo­
ple access visual information using computer vision. Spe­
cialized computer vision systems have been built to help blind 
people read the LCD panels on appliances [11, 26, 30]. These 
systems have tended to be fairly brittle, and have generally 
only targeted reading text and not actually using the interface. 
Because it uses crowdsourcing, VizLens can adapt fluidly to 
new interfaces it has not seen before. 

Several prior systems have been developed to help blind peo­
ple take better photographs, since acquiring a high-quality 
photograph is often a prerequisite for further computer vision 
processing [15, 25, 33, 35, 41]. One of the challenges with 
systems supporting “blind photography” is that it is often un­
clear what the user is trying to take a picture of. VizLens 
solves this problem by first having the crowd assist users in 
capturing a clear picture of the interface, which can then be 
recognized again later when the user is receiving assistance. 

Many systems have been developed to help blind people read 
visual text via OCR [36]. For instance, the KNFB Reader 
[18] is a popular application for iOS that helps users frame 
text in the camera’s view, and then reads text that is captured. 
Camera-based systems such as Access Lens ‘read’ physical 
documents and lets a blind person listen to and interact with 
them [17]. OCR can do reasonably well in providing access 
to text that is well-formatted, but recognizing text in the real 
world can be difficult1. Even detecting that text exists in natu­
ral photographs can be difficult [16]. VizLens reads text using 
OCR in display areas marked by the crowd. 

Recently, deep learning approaches have been applied to gen­
eral object recognition, in products such as Aipoly2 and Mi­
crosoft’s “Seeing AI”3 . These approaches can work rea­
sonably well, although can only recognize a preset number 
of objects (e.g., Aipoly recognizes approximately 1000 pre­
defined objects). VizLens may eventually be used to collect 
data about physical interfaces that could be used to train deep 
learning models capable of replicating its performance. 

Various projects have experimented with wearable computer 
vision approaches. Fingerreader [29] assists blind users with 
reading printed text on the go. One challenge that this ap­
proach has is that information beneath the fingertip can be oc­
cluded. This is a problem that VizLens does not have because 
it uses context to recognize occluded information based on its 
reference image. EyeRing similarly leverages a finger-worn 
camera to interpret immediate surroundings using computer 
vision [27]. OrCam is a product that uses a head-mounted 
camera to make available various computer vision applica­
tions targeting low vision people [28]. Foresee enables real-
world objects to be magnified using a wearable camera and 
head-mounted display [40]. The form factors of these all in­
troduce interesting opportunities that VizLens may eventually 

1http://www.meridianoutpost.com/resources/ 
articles/ocr-limitations.php 
2http://aipoly.com 
3This exists currently as an unreleased system; a blog post about 
it is here: https://blogs.microsoft.com/next/2016/03/30/decades-of­
computer-vision-research-one-swiss-army-knife/ 

support; all are fundamentally limited by the performance of 
underlying computer vision. 

Crowd-Powered Systems for Visual Assistance 
Crowd-powered systems have been developed for various ap­
plications, e.g., document editing and shortening [5], user in­
terface control [22], real-time captioning [21]. These systems 
operate quickly by both lowering the latency to recruit work­
ers [4, 6], and allowing workers to work synchronously to­
gether once recruited. At least two existing projects have ex­
plored the combination of computer vision and crowdsourc­
ing. Zensors [20] fuses real-time human intelligence from 
online crowd workers with automatic approaches to provide 
robust, adaptive, and readily deployable intelligent sensors. 
Tohme [14] combines machine learning, computer vision, 
and custom crowd interfaces to find curb ramps remotely in 
Google Street View scenes, which performs similarly in de­
tecting curb ramps compared to a manual labeling approach 
alone at a 13% reduction in time cost. VizLens is a crowd-
powered system for making physical interfaces accessible. 

A number of crowd-powered systems have been developed 
to make visual information accessible to blind people. One 
of the first projects in this space was VizWiz4, a system that 
lets blind people take a picture, speak a question, and get an­
swers back from the crowd within approximately 30 seconds 
[6]. More than 10,000 users have asked more than 100,000 
questions using VizWiz5. Users often ask questions about in­
terfaces [9], but it can be difficult to map the descriptions sent 
back, e.g., “the stop button is in the middle of the bottom row 
of buttons,” to actually using the interface. VizLens makes 
this much easier. 

Other systems provide more continuous support. For exam­
ple, Chorus:View [23] pairs a user with a group of crowd 
workers using a managed dialogue similar to [24] and a 
shared video stream. “Be My Eyes” matches users to a sin­
gle volunteer over a shared video stream [3]. These systems 
could more easily assist blind users with using an interface, 
but assisting in this way is likely to be cumbersome and slow. 
VizLens specializes on the important subset of visual assis­
tance tasks related to using physical interfaces and can assist 
with very low latency. 

Other systems have expanded the capabilities of VizWiz. For 
example, VizWiz::LocateIt [7] allows blind people to ask for 
assistance in finding a specific object. Users first send an 
overview picture and a description of the item of interest to 
crowd workers, who outline the object in the overview pic­
ture. Computer vision on the phone then helps direct users to 
the specific object. This is somewhat similar to VizLens in 
that the robust intelligence is handled by the crowd, whereas 
the interactive refinding task is handled by computer vision. 
VizLens extends this to multiple objects and explicitly gives 
feedback on what is beneath the user’s finger. 

RegionSpeak [42] enables spatial exploration of the layout 
of objects in a photograph using a touchscreen. Users send 
4The “Viz” prefix comes from how some tech-savvy blind people 
refer to one another, e.g., “are you viz?” 
5http://vizwiz.org/data/ 
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a photo (or multiple stitched photos), and the crowd labels 
all of the objects in the photo. Users can then explore the 
photo on a touchscreen. VizLens reuses some of these ideas 
in labeling all of the interface elements, although it extends 
RegionSpeak’s functionality into real-world detection of in­
terface elements that have been labeled. 

FORMATIVE STUDY 
We conducted several formative studies to better understand 
how blind people currently access and accommodate inacces­
sible interfaces. We first went to the home of a blind person, 
and observed how she cooked a meal and used home appli­
ances. We also conducted semi-structured interviews with 
six blind people (aged 34-73) about their appliances use and 
strategies for using inaccessible appliances. Using a Wizard-
of-Oz approach, we asked participants to hold a phone with 
one hand and move their finger around a microwave control 
panel. We observed via video chat and read aloud what button 
was underneath their finger. 

We extracted the following key insights, which we used in the 
design of VizLens: 

•	 Participants felt that interfaces were becoming even less ac­
cessible, especially as touchpads replace physical buttons. 
However, participants did not generally have problems lo­
cating the control area of the appliances, but have problems 
with finding the specific buttons contained within it. 

•	 Participants often resorted to asking for help, such as a 
friend or stranger: frequently seeking help created a per­
ceived social burden. Furthermore, participants worried 
that someone may not be available when they are most 
needed. Thus, it is important to find alternate solutions 
that can increase the independence of the visually impaired 
people in their daily lives. 

•	 Labeling interfaces with Braille seems a straightforward 
solution but means only environments that have been aug­
mented are accessible. Furthermore, fewer than 10 percent 
blind people in the United States read Braille [1]. 

•	 Participants found it difficult to aim the phone’s camera 
at the control panel correctly. In an actual system, such 
difficulty might result in loss of tracking, thus interrupting 
the tasks and potentially causing confusion and frustration. 

•	 Providing feedback with the right details, at the right time 
and frequency is crucial. For example, participants found 
it confusing when there was no feedback when their fin­
ger was outside of the control panel, or not pointing at a 
particular button. However, inserting feedback in these sit­
uations brings up several design challenges, e.g., the gran­
ularity and frequency of feedback. 

VIZLENS 
VizLens is an accessible mobile application for iOS and a 
supporting backend. VizLens users capture a photo of an in­
accessible interface and send it to multiple crowd workers, 
who work in parallel to quickly label and describe elements 
of the interface to make subsequent computer vision easier. 
The VizLens application helps users recapture the interface 

in the field of the camera, and uses computer vision to match 
new camera input to previously obtained crowd-labeled ref­
erence images to recognize and inform the user of the control 
he intends to use by providing feedback and guidance. 

Implementation 
VizLens consists of three components: (i) mobile application, 
(ii) web server, and (iii) computer vision server. 

Mobile App 
The iOS VizLens app allows users to add new interfaces (take 
a picture of the interface and name it), select a previously 
added interface to get interactive feedback, and select an el­
ement on a previously added interface to be guided to its lo­
cation. The VizLens app was designed to work well with the 
VoiceOver screen reader on iOS. 

Web Server 
The PHP and Python web server handles image uploads, as­
signs tasks to Amazon Mechanical Turk workers for segment­
ing and labeling, hosts the worker interface, manages results 
in a database and responds to requests from the mobile app. 
The worker interfaces are implemented using HTML, CSS, 
and Javascript. 

Computer Vision Server 
The computer vision pipeline is implemented using C++ and 
the OpenCV Library. The computer vision server connects 
to the database to fetch the latest image, process it, and write 
results back to the database. Running real-time computer vi­
sion is computationally expensive. To reduce delay, VizLens 
uses OpenCV with CUDA running on GPU for object local­
ization. Both the computer vision server and the web server 
are hosted on an Amazon Web Services EC2 g2.2xlarge in­
stance6, with a high-performance NVIDIA GRID K520 GPU, 
including 1,536 CUDA cores and 4GB of video memory. 

Overall Performance 
Making VizLens interactive requires processing images at in­
teractive speed. In the initial setup [13], VizLens image pro­
cessing was run on a laptop with 3GHz i7 CPU, which could 
process 1280 × 720 resolution video at only 0.5 fps. Re­
ceiving feedback only once every 2 seconds was too slow, 
thus we moved processing to a remote AWS EC2 GPU in­
stance, which achieves 10 fps for image processing. Even 
with network latency (on wifi) and the phone’s image acquisi­
tion and uploading speed, VizLens still runs at approximately 
8fps with 200ms latency. 

Initial Crowdsourced Segmenting and Labeling 
The first time a user encounters an interface, he uses VizLens 
to take a photo of the interface (Figure 2b), provide a name 
for it, and send the image to be processed and pushed to the 
crowd for manual labeling. This image is called the “refer­
ence image.” In order to make the reference image most use­
ful for computer vision algorithms, VizLens uses a two-step 
workflow to label the area of the image that contains the in­
terface and then label the individual visual elements. 

6https://aws.amazon.com/ec2/instance-types/#g2 
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Figure 2. VizLens mobile app interfaces. (a) App’s main screen, listing all available interfaces and status, as well as Add Interface and Settings options. 
(b) Interface for Add Interface, where the user can take a photo and denote a name for it. (c) When user selects an interface, he can start to get feedback. 
(d) When selecting a visual element, the app start providing guidance. (e) a virtual interface layout that users can explore directly on the touchscreen. 

Step 1: Segmenting Interface Region 
In step 1 (Figure 3a), crowd workers are asked whether the in­
terface of the object is complete and clear in the photo. If the 
majority of workers agree that the photo contains a clear view 
of the complete interface, it proceeds to the next step; other­
wise the user is prompted to take another photo (Figure 2a). 
Once an acceptable image is captured, crowd workers draw 
a bounding box around the interface, which will be cropped 
in the backend server and used for recognition later. In this 
step, the crowd workers are also asked to indicate the approx­
imate number of visual elements, which will make it easier to 
distribute tasks and calculate compensation for the next step. 

Step 2: Labeling Visual Elements 
In step 2, crowd workers are instructed to draw bounding 
boxes around all of the individual visual elements (e.g., but­
tons) within the interface area (Figure 3b); and provide a 
text annotation for each element (such as labeling buttons as 
‘baked potato’, ‘start/pause’). Similar to RegionSpeak [42], 
VizLens has multiple workers label in parallel to complete 
all of the visual element within a very short time, even if the 
interface is cluttered with visual elements (although we are 
currently not as aggressive in recruiting workers). 

The workers interface shows labeled elements to other work­
ers as they are completed. Over time, this allows the workers 
to completely label all of the elements. An initial challenge 
was that workers tended to label the interface in the same or­
der at the same time, e.g., from top to bottom. This resulted 
in redundant labels that increased the time required to com­
pletely label the interface. We cannot simply queue all the 
labeling tasks because we do not know a priori where the el­
ements are. To encourage workers to label different buttons, 
we added an arrow that points to a random location (e.g., up 
arrow in Figure 3b). Even though the arrow is placed ran­

domly, it effectively directs workers toward different parts of 
the interface, encouraging them to work in different orders 
and reducing redundant work. 

The VizLens backend monitors the progress of labeling, in­
cluding aggregating overlapping labels, and counting the 
number of visual elements already labeled. Two bounding 
boxes are detected to be overlapping with each other if each 
one of the center points lies within the other. Once it reaches 
the expected number of visual elements from step 1, the in­
terface will show an option for finishing labeling this image 
(the bottom option in Figure 3b). Once agreement is reached, 
this image then becomes the reference image (Figure 4a). 

In the future, this labeling step could use automatic tech­
niques as a first pass, e.g., OCR or automatic button detection, 
in order to save crowd workers’ time. Over time, the data col­
lected as people use VizLens may allows robust recognizers 
to be trained. We do not expect automatic approaches to work 
perfectly in the near term, which is why we use the crowd. 

After initial segmenting and labeling by the crowd, VizLens 
relies on computer vision. The reason computer vision is 
likely to work robustly now is that the problem has been sim­
plified from the general problem (any interface in any con­
text) to a much more specific one (this interface in a similar 
context, e.g., lighting condition, placement, etc). This hyper-
local context argument is similar to that used to explain why 
computer vision worked better than expected in Zensors [20]. 

Retrieving Visual Elements 
The core function of VizLens is to speak a description of the 
part of the interface that is beneath the user’s finger. To do 
this, VizLens needs to be able to (i) find the interface in the 
input images, (ii) detect their finger, and (iii) retrieve and out­
put the correct information based on the finger location. 



Figure 3. Crowd segmenting and labeling interfaces of VizLens: (a) 
crowd workers rate the quality of the initial photo of the interface, seg­
ment the interface area, and specify the number of visual elements on the 
interface, (b) other crowd workers then label individual visual elements 
on the interface in parallel. 

Figure 4. Real-time recognition and control using VizLens. Recogni­
tion result, showing (a) reference image and (b) input image. (c) Input 
image warped to reference image’s frame allowing the coordinates of 
the elements previously labeled to be retrieved. (d) Result of skin color 
thresholding, and (e) calculated fingertip location. 

Refinding the Desired Interface 
Using the reference image obtained earlier, VizLens can first 
localize the interface in the input video stream in real-time. It 
uses SURF (Speeded-Up Robust Features) [2] feature detec­
tor with hessian threshold set to 400 to compute key points 
and feature vectors in both the reference (Figure 4a) and 
the input image (Figure 4b). Note that the reference image 
can be pre-computed once in advance to improve processing 
speed. The feature vectors are then matched using brute-force 
matcher with normalization type of L2 norms, which is the 
preferable choice for SURF descriptors. By filtering matches 
and finding the perspective transformation between the two 
images using RANSAC (Random Sample Consensus), Viz-
Lens is able to localize the reference image of the interface 
in the input image. In Figure 4b, the green bounding box is 
identified by transforming the corners of the reference image 
to corresponding points in the input image. 

Fingertip Detection 
VizLens then transforms the input image to the reference im­
age frame using a warp function (Figure 4c), adjusts the light­
ing of the warped image to match the reference image, and 
detects the fingertip’s location using skin color thresholding 
[34]. After performing Gaussian Blur with a 3-by-3 kernel to 
smooth the image and transforming it to HSV (Hue, Satura­
tion, Value) color space, it uses a set of thresholds to segment 
the skin parts from the image (for [H, S, V] values respec­
tively, the lower thresholds are [0, 90, 60], and upper thresh­
olds [20, 150, 255]). Then it uses morphological operations 
i.e. eroding and dilating to filter out noises from the threshold 
image (Figure 4d). Then, VizLens uses the largest contour of 
the convex hull to detect the fingertip’s location (Figure 4e). 
VizLens requires the user to use one finger to hover over the 
button, therefore the system recognizes the topmost fingertip 
location in the image if multiple exists. This approach also 
reduces the size of the image to process to only the reference 
image interface, reducing processing time. 



Figure 5. (a) Defining interaction point relative to the detected fingertip 
location. (b) Rules for assigning feedback based on button layout. 

Information Lookup 
Note that for interaction purposes, the topmost fingertip loca­
tion is normally not the exact location of the finger pad that 
is used to, e.g., press a button. Considering that most control 
buttons are designed to be similar in size with a finger width 
for ease of use, VizLens defines an “interaction point” by 
adding a fraction of the average button size to the y-position 
of the computed fingertip location (Figure 5a). 

Then by looking up the coordinates of the interaction point in 
the database of the reference image’s labeled visual elements, 
VizLens provides real-time feedback or guidance. To do this 
quickly, instead of looking up in the database every frame, 
we pre-compute a hash table of the resolution of the reference 
image associating pixel locations with feedback according to 
the following rules (Figure 5b): 

•	 If the interaction point is within a button, assign that but­
ton’s label, e.g., power level; 

•	 If the interaction point is within two buttons at the same 
time, assign the button’s label whose center is closer to the 
interaction point; 

•	 If the interaction point is not in any button, check its dis­
tance to the two closest buttons (d1, d2; d1 <= d2). If both 
are larger than a threshold (e.g., average button size), as­
sign an empty string; 

•	 If only the closest distance (d1) is within the threshold, as­
sign “near” and the button’s label, e.g., near power level; 

•	 If both distances (d1 and d2) are within the threshold, as­
sign the two button labels separate by “and” with the closer 
one to start, e.g., power level and time cook. 

Providing Feedback and Guidance 
Providing Feedback 
After identifying the visual element, VizLens triggers the 
VoiceOver screen reader on iOS to read its description (Fig­
ure 2c). In our formative studies, participants found it hard 
to keep track of the feedback when their finger was moving 
quickly on the interface. Therefore, if the finger movement 
speed is over a threshold (e.g., 1.5 buttons per second), Viz-
Lens will not confuse the user by providing feedback. 

Pilot users were confused when the system did not provide 
any feedback, which happened when the object was not found 
or when no finger was on the interface. Providing no feedback 

was confusing, while having it repeat “no object” or “no fin­
ger” could get annoying. Pilot users also found it annoying 
when VizLens repeated the same label over and over again. 
Based on this feedback, we decided to only announce the in­
structions every second when it is not changing. On the other 
hand, a different instruction is immediately announced. As an 
option in the mobile app, users can select between announc­
ing feedback using polite or interrupt mode. In polite mode, 
a new label will be announced only after the current one fin­
ishes. However, in interrupt mode, once a new label comes 
in, it will announce it right away and cut off the current one. 
As another preference option, besides saying “no object” or 
“no finger”, VizLens also applies sonification techniques and 
uses low and high pitch sound as earcons [8] to identify a lack 
of object in view and a lack of finger while object is in view. 

Providing Guidance 
In our formative studies, participants wanted to know the di­
rection to a button when unfamiliar with an interface. Viz-
Lens allows a user to specify a target in the app through 
speech or selection in a list of available visual elements, and 
then provides guidance to it (Figure 2d). 

The path of navigation follows the Manhattan Distance [37] 
between the current interaction point to the target location, 
which means only vertically and horizontally. In order to 
avoid frequent change of directions, VizLens guides the user 
to first move vertically along the y-axis (i.e., up and down), 
and once settled within a threshold, it proceeds to horizontal 
directions (i.e., left and right). VizLens repeats the instruction 
every second. Many participants overshot the target in our pi­
lot studies. To address this problem, VizLens defines coarse 
and fine control areas, and the system will notify the user to 
move slowly when finger is near the target (e.g., within 1.5 
button sizes from the center of the target). When the finger is 
on the button, VizLens reads out the button label. 

USER EVALUATION 
The goal of our user study was to evaluate how VizLens per­
forms in assisting visually impaired people accomplish real­
istic tasks that involve otherwise inaccessible interfaces. We 
evaluated it deeply on one appliance (an inaccessible mi­
crowave), with more shallow evaluations across many other 
devices. Further evaluation of its components is presented in 
the next section (“Technical Evaluation”). 

The microwave we chose was a Hamilton Beach 1.1 Cu Ft 
Microwave. The buttons on this microwave are flat and pro­
vide little (if any) tactile feedback. It contains some familiar 
buttons (0-9), and many that are likely to be less familiar (e.g., 
time defrost, baked potato). 

Apparatus and Participants 
The VizLens iOS app was used in the study, installed on an 
iPhone 5c, runing iOS 9.2.1. For this particular evaluation, all 
the images were labeled by the experimenter as introducing 
the crowd would result in compound factors. The quality of 
the crowd’s labeling was evaluated in a separate study. 

We first conducted a pilot study with two visually impaired 
users to finalize the tasks, number of tasks, and fine-tuned 



Table 1. Participant demographics for our user evaluation with 10 visually impaired users. 
ID Gender Age Occupation Vision Level Smartphone Use 
P1 Female 33 AT consultant Blind, since birth iPhone, 4 years 
P2 Male 37 Tech teacher for blind Blind, since birth iPhone, 3 years 
P3 Female 47 Sales Light perception, tunnel vision Android, 5 years 
P4 Male 24 Software developer Blind, since birth iPhone, 5 years 
P5 Male 34 AT specialist Light perception, since birth iPhone, 5 years 
P6 Male 21 Student Light/color perception iPhone, 5 years 
P7 Male 40 Digital AT consultant Blind, since birth iPhone, 2.5 years 
P8 Male 31 Scriptor, AT instructor Light/color perception, since birth iPhone, 5 years 
P9 Male 26 AT instructor Light perception, since birth iPhone, 5 years 
P10 Male 29 Project manager Blind, later on Mostly iPhone, 10 years 

Figure 6. User study setup. A printer’s interface is printed out on paper 
and used for training. The microwave interface was used for controlled 
testing, followed by more exploratory use of other interfaces nearby 
(e.g., remote control, thermostat, vending machine). The study was con­
ducted in a hotel room and was video and audio recorded. 

some parameters in our system. We then recruited 10 
visually-impaired users (2 female, age 21-47). The demo­
graphics of our participants are shown in Table 1. 

Design 
Our study consisted of an initial training phase, followed by 
a series of task using the microwave. There were two condi­
tions in completing the tasks: (i) feedback - where the partic­
ipants were provided with audio feedback of what is under­
neath their finger on the interface; and (ii) guidance - where 
audio directions were provided for them to move their fin­
ger to a specific target. After each condition, we conducted a 
semi-structured interview collecting subjective feedback for 
the methods. The order of conditions was counterbalanced 
for all participants. The study took about one hour and the 
participants were compensated for $50. The whole study was 
video and audio recorded for further analysis, and the study 
set up is shown in Figure 6. 

Tasks 
Following a brief introduction of the study and demographic 
questions, we first used a printer’s interface printed on paper 
to familiarize the participants with the iOS app. In this train­
ing phase, we also asked for the participant’s preferences on 
the polite/interrupt and sound/word settings. Then, partici­
pants were asked to take 10 photos of the microwave control 
panel, with feedback provided after each one to simulate the 

Figure 7. Visualization of user study tasks and identification results. 
(a) Locating tasks highlighted in orange. (b) Simulating cooking tasks 
highlighted in green and blue, and sequences shown with line and dashed 
arrows. (c) Identification errors visualized on the interface, where all 
errors are happening on the top region of the control panel. 

crowd feedback for image quality. These images are used for 
evaluating the crowd-based labeling in a separate study. 

Next, for each of the two conditions, participants were asked 
to complete five locating tasks and two simulating cooking 
tasks. For locating tasks, the participant was asked to locate a 
button with the assistance of the VizLens app, and then push 
to trigger the button. As shown in Figure 7a, the 10 buttons 
were selected so that they covered different areas on the con­
trol panel. For simulating cooking tasks, we designed more 
realistic tasks that involved a series of button presses. For ex­
ample, a multi-button cooking task would require pressing a 
configure button (e.g., weight defrost, time defrost, or time 
cook), followed by setting a time duration by pressing the 
number pads (e.g., 2, 1, 0 for two minutes and 10 seconds, 
or two pounds and 10 oz), and finally pressing the ‘Start’ 
button. The specific tasks used are visualized in Figure 7b. 
For both locating and simulating cooking tasks, we measured 



completion rate and time for successfully completing a task. 
After each condition, participants were asked a few subjective 
questions about that condition. 

After the two conditions, we conducted a controlled test for 
identifying individual buttons. Participants were guided by 
the experimenter to rest his/her finger on each button of the 
interface. The system recognizes the button and the accu­
racy was recorded. Finally, we ended the study with a final 
semi-structured interview asking for the participant’s com­
ments and suggestions on the VizLens system. 

Results 
We detailed our user study results and performed t-tests to 
compare participant’s task completion rate and time for the 
two methods. We also summarized users’ feedback and pref­
erences that informed our next design iteration of VizLens. 

Identification Tasks 
For identification tasks, only 10 of a total of 250 buttons were 
falsely identified across 10 participants, resulting in an ac­
curacy of 96.0%. When taking a deeper look at the errors, 
all errors are happening on the top region of the control panel 
(Figure 7c). This is most likely because when interacting with 
buttons on the top region, the user’s hand covers most of inter­
face, making the object localization harder with fewer SURF 
features points left in the image. Furthermore, our user study 
demonstrated that VizLens works robustly in various lighting 
and skin color conditions, as shown in Figure 8. To further 
improve the robustness of the variety of skin color and light­
ing conditions, we could add a pre-calibration step for indi­
vidual users in new environments. 

Figure 8. VizLens works robustly across various skin colors and lighting 
conditions. These are images from participants that were processed by 
computer vision and successfully identified the finger locations. 

Locating Tasks 
For locating tasks, participants successfully completed 41/50 
(M = 82.0%, SD = 0.175) tasks under 200 seconds in feed­
back condition, which is significantly lower than 49/50 (M = 
98.0%, SD = 0.063) for guidance, t(9) = −2.753, p = 0.022 
(two-tailed). However, there was no significant difference 
for average task completion time between feedback (M = 
52.5, SD = 52.6) and guidance (M = 54.4, SD = 40.4), 
t(88) = −0.198, p = 0.843 (two-tailed). The difference in 
task completion rate is most likely because for guidance it 

is more independent of the user’s mental model of the inter­
face. While for feedback, it is hard to find a random button. 
Therefore, we hypothesized that it is easier to find function 
buttons (e.g., power level, baked potato) using guidance than 
feedback mode, while it is easier to find number buttons (i.e., 
0 - 9) using feedback than guidance. 

To validate our hypothesis, we took a deeper look into the 
data. For number buttons, with all tasks successfully com­
pleted for both conditions, the average task completion time 
for feedback (M = 27.8, SD = 17.6) was shorter than for 
guidance (M = 36.3, SD = 17.0), though this is not statis­
tically significant, t(9) = −1.138, p = 0.142 (one-tailed). 
We think this is because using feedback mode, when the 
users found a number, they also knew the general location 
of other number buttons, making them easier to find. How­
ever, for guidance mode, it is harder for participants to take 
advantage of their mental model of the interface with the 
directional instructions. For all other buttons, even though 
there were no significant differences in task completion time 
between feedback (M = 60.4, SD = 57.7) and guidance 
(M = 59.1, SD = 43.4), t(68) = 0.910, p = 0.910 
(two-tailed), the task completion rate for feedback was sig­
nificantly lower (31/40, M = 77.5%, SD = 0.219) com­
pared with (39/40, M = 97.5%, SD = 0.079) in guidance, 
t(9) = −2.753, p = 0.011 (one-tailed). 

Figure 9 shows the time breakdown for feedback and guid­
ance modes. In feedback mode, users aim the camera and 
search for the button repetitively, and press once they reach 
the button. In guidance mode, users first select a button from 
the list in the VizLens app, aim the camera, follow instruc­
tions to the button, and press. One challenge we observed 
is that sometimes VizLens would give correct feedback of a 
button’s label, but users could not push it because their finger 
was not directly on the center of the button. This could be 
confusing, although users generally resolved it eventually. 

Simulating Cooking Tasks 
For simulating cooking tasks, there was no significant differ­
ence in task completion rate between feedback (18/20, M = 
90.0%, SD = 0.211) and guidance (20/20, M = 100%), 
t(9) = −1.500, p = 0.168 (two-tailed), as well as in average 
task completion time between feedback (M = 102.3, SD = 
93.6) and guidance (M = 120.4, SD = 64.8), t(36) = 
−0.698, p = 0.490 (two-tailed). 

Subjective Feedback 
During training, we asked for participant preferences on po­
lite/interrupt and sound/word settings. 6 out of 10 participants 
preferred interrupt mode than polite mode, due to its instan­
taneous feedback. For sound/word setting, half the users pre­
ferred using words, while the other half preferred earcons. 
The users who preferred using words mentioned that the two 
earcons for “no object” and “no finger” were not distinctive 
enough for them to easily differentiate between the two. 

We asked the participants to rate and compare the two method 
based on learnability, comfort, usefulness, and satisfaction 
(Figure 10). Several participants expressed their frustration 
with aiming and keeping good framing of the camera. Sev­



Figure 9. Time breakdown for feedback and guidance modes. For feedback, users aim the camera and search for the button repetitively, and press once 
they reach the button. For guidance, users first select a button in the list, aim the camera, then follow the instructions to the button, and press. 

Figure 10. Answers to Likert scale questions indicating that participants 
found VizLens useful (1, 2, 3) and wanted to continue using it (4). 

eral participants tried to get a general idea of the button layout 
from the linear button list (Figure 2c) and suggested to show 
the layout of the buttons of the interface on the touchscreen, 
so that they can explore and build a mental model first, and 
then use the system’s feedback to locate the button they want 
to use, similar to RegionSpeak [42]. We address most of this 
feedback in VizLens v2 presented later. Overall, participants 
were excited about the potential of VizLens and several asked 
when the app can be available for download. One participant 
mentioned that when living alone and got a new appliance, 
he had to wait and ask someone to help put dots on it. Using 
VizLens, he could get oriented by himself and start using it 
right away, which is a big advantage. 

TECHNICAL EVALUATION 
We conducted a multi-part technical evaluation in order to 
understand how each component of VizLens performs across 
a range of interfaces. 

Crowdsourcing Performance 
We evaluated our crowdsourcing interfaces with the 120 im­
ages taken by the blind participants in the user studies just 
described. First, the experimenters manually labeled these 
images as ground truth. For each image, each segmenta­
tion step was completed by a different worker (Figure 3a). 
For image quality, an agreement of three workers was re­
quired. If the image was determined to be complete and clear, 
2 × (N umberof Buttons) of HITs were created for the la­
beling step (Figure 3b) so that multiple crowd workers could 
work in parallel. Once a worker agreed with the system that 
the interface is completely labeled, this crowdsourcing seg­
menting and labeling process is completed. 

A total of 251 crowd workers participated in this evaluation, 
providing 2,147 answers overall. For the 68 out of 120 im­
ages that failed the quality qualifications, it took an average of 

134 seconds (SD = 86) for VizLens to provide this feedback. 
All of the feedback was correct. Each segmenting task paid 
$0.15, which required ∼40 seconds of work ($13.5/hour). 
Each image costs an average of $0.50 (SD = 0.09). 

For the 52 out of 120 images that were complete and clear, it 
took an average of 481 seconds (SD = 207) before the Viz-
Lens interface was ready to be used, including time to upload 
the photo, workers to pick up the HITs, complete the tasks, 
and the system to aggregate labels. 99.7% (SD = 1.3%) 
of the buttons were correctly labeled. Each labeling task paid 
$0.02, which required less than 10 seconds of work ($9/hour). 
Each interface costs an average of $1.15 (SD = 0.12). We be­
lieve more aggressive recruiting of crowd workers could lead 
to even shorter latencies, but this was not our focus. 

Interface Robustness 
Similar to the identification tasks in the user evaluation, we 
conducted a controlled test for identifying individual buttons 
on another set of interfaces (Figure 11) to see when it suc­
ceeds and fails. For the thermostat, remote control, laser cut­
ter, toaster and printer, VizLens successfully recognized all 
buttons. For the vending machine, button A on the top left 
failed, possibly also because of the hand covering a large por­
tion of the interface. For the copier and water machine, even 
though all buttons were successfully recognized eventually, 
there were a lot of false-identifications initially caused by the 
buttons that confused with the skin color in HSV color space. 
To adapt for these situations, applying background subtrac­
tion method or pre-calibration of skin color for fingertip de­
tection might improve performance. VizLens failed the fridge 
interface completely, mainly because there are very few fea­
tures points that can be used for matching for the object local­
ization algorithm. Similar for identification results in the user 
studies, where all errors happened near the top of the control 
panel, the requirement for feature points for object localiza­
tion and matching is a limitation of VizLens. One possibility 
to adapt to interfaces with few feature points is to attach fidu­
cial markers with specific patterns to introduce feature points 
into the field of view [12]. This would require modifying the 
interface, but, as opposed to labeling it, would not require the 
markers to be positioned in any particular place and could be 
done independently by a blind person. 

VIZLENS VERSION 2 
Based on participant feedback in our user evaluation, we de­
veloped VizLens v2. Specifically, we focus on providing bet­
ter feedback and learning of the interfaces. 



Figure 11. VizLens works robustly with a wide range of interfaces, 
including microwaves, printers, copiers, water machines, thermostats, 
laser cutters, toasters, remote controls, vending machines, etc. 

For VizLens to work properly it is important to inform and 
help the users aim the camera centrally at the interface. With­
out this feature, we found the users could ‘get lost’ —they 
were unaware that the interface was out of view and still kept 
trying to use the system. Our improved design helps users 
better aim the camera in these situations: once the interface 
is found, VizLens automatically detects whether the center of 
the interface is inside the camera frame; and if not, it provides 
feedback such as “Move phone to up right” to help the user 
adjust the camera angle. 

To help users familiarize themselves with an interface, we im­
plemented a simulated version with visual elements laid out 
on the touchscreen for the user to explore and make selection 
(Figure 2e), similar to RegionSpeak [42]. The normalized 
dimensions of the interface image as well as each element’s 
dimensions, location and label make it possible to simulate 
buttons on the screen that react to users’ touch, thus helping 
them get a spatial sense of where these elements are located. 

We also made minor function and accessibility improvements 
such as vibrating the phone when the finger reaches the tar­
get in guidance mode, making the earcons more distinctive, 
supporting standard gestures for back, and using the volume 
buttons for taking photos when adding a new interface. 

We also explored functional extensions of VizLens that allow 
it to (i) adapt to state changes in dynamic interfaces, (ii) com­
bine crowd labeling with OCR technology to handle dynamic 
displays, and (iii) benefit from head-mounted cameras. 

VizLens::State Detection 
Many interfaces include dynamic components that cannot be 
handled by the original version of VizLens, such as an LCD 
screen on a microwave, or the dynamic interface on self-
service checkout counter. As an initial attempt to solve this 
problem, we implemented a state detection algorithm to de­
tect system state based on previously labeled screens. For the 
example of a dynamic coffeemaker, sighted volunteers first go 
through each screen of the interface and take photos. Crowd 
workers will label each interface separately. Then when the 

Figure 12. VizLens::State Detection detects screen state and adapts to it. 
In this example, VizLens figures out which of six states this fancy coffee 
machine is in, and provides feedback or guidance specific to that screen. 

Figure 13. VizLens::LCD Display Reader applies OCR to recognize dig­
its on the portion of the interface that is an LCD screen. (a) Separated 
dynamic and static regions. (b) Image sharpening using unsharp mask­
ing. (c) Intensity-based thresholding. (d) Morphological filtering and 
small blob elimination. (e) Selective color inversion. 

blind user accesses the interface, instead of only performing 
object localization for one reference image, our system will 
first need to find the matching reference image given the cur­
rent input state. This is achieved by computing SURF key-
points and descriptors for each interface state reference im­
age, performing matches and finding homographies between 
the video image with all reference images, and selecting the 
one with the most inliers as the current state. After that, the 
system can start providing feedback and guidance for visual 
elements for that specific screen. As a demo in our submis­
sion video, we show VizLens helping a user navigate the six 
screens of a coffeemaker with a dynamic screen (Figure 12). 

VizLens::LCD Display Reader 
VizLens v2 also supports access to LCD displays via OCR. 
We first configured our crowd labeling interface and asked 
crowd workers to crop and identify dynamic and static re­
gions separately (Figure 13a). This both improves computa­
tional efficiency and reduces the possibility of interference 
from background noises, making it faster and more accu­
rate for later processing and recognition. After acquiring the 
cropped LCD panel from the input image, we applied several 
image processing techniques, including first image sharpen­
ing using unsharp masking [39] for enhanced image quality 
(Figure 13b) and intensity-based thresholding to filter out the 
bright text (Figure 13c). We then performed morphologi­
cal filtering to join the separate segments of 7-segment dis­
plays (which are commonly used in physical interfaces) to 
form contiguous characters, which is necessary since OCR 
assumes individual segments correspond to individual char­
acters. For the dilation’s kernel, we used height > 2×width 



Figure 14. We migrated VizLens to run on Google Glass, which has the 
advantage of leaving the user’s hand free, easier to keep image framing 
stable, and naturally indicating the field of interest. 

to prevent adjacent characters from merging while forming 
single characters. Next, we applied small blob elimination 
to filter out noise (Figure 13d), and selective color invertion 
to create black text on a white background, which OCR per­
forms better on (Figure 13e). Then, we performed OCR on 
the output image using the Tesseract Open Source OCR En­
gine [38]. When OCR fails to get an output, our system dy­
namically adjusts the threshold for intensity thresholding for 
several iterations. 

VizLens::Wearable Cameras 
56.7% of the images took by the blind participants for crowd 
evaluation failed the quality qualifications, which suggests 
there is a strong need to assist blind people in taking pho­
tos. In our user evaluation, several participants also ex­
pressed their frustration with aiming and especially keeping 
good framing of the camera. Wearable cameras such as the 
Google Glass have the advantage of leaving the user’s hand 
free, easier to keep image framing stable, and naturally in­
dicating the field of interest. We have ported the VizLens 
mobile app to Google Glass platform (Figure 14), and pilot 
tested with several participants. Our initial results show that 
participants were generally able to take better framed pho­
tos with the head-mounted camera, suggesting that wearable 
cameras may address some of the aiming challenges. 

DISCUSSION AND FUTURE WORK 
VizLens enables access and exploration of inaccessible in­
terfaces by providing accurate and usable real-time feedback 
and guidance. While VizLens is not the first system to com­
bine crowdsourcing and computer vision, we believe its ro­
bustness and focus on interactive tasks differentiate it from 
prior work in this area. This paper targets making physical 
interfaces of the type found on electronic appliances accessi­
ble. VizLens might be extended to other tasks that involve the 
presentation and interaction with spatial information. For in­
stance, VizLens could be useful in helping blind users access 
inaccessible figures or maps [19]. 

Even after access to the content of an interface is available, 
designing good feedback remains challenging. In compar­
ing feedback and guidance in our user studies, we found that 
some visual elements are laid out in a way that promotes 
“wayfinding”, e.g., number pads, when feedback is better; 
while some are less intuitive, e.g., the functional buttons, and 

in these cases guidance is better. We could ask crowd workers 
to provide more structural information of the interface, and 
dynamically adjust between the two modes when navigating 
their finger on the interface. Note that we tried to merge the 
two methods together by providing feedback and guidance 
at the same time, e.g., “time cook and kitchen timer, up”. 
However, it was difficult for users to deal with so much infor­
mation, especially when the user is also focusing on moving 
their finger to locate certain button. VizLens opens up new 
opportunities and relevance for the design of audio feedback 
to support interaction with otherwise inaccessible interfaces. 

Our crowdsourcing evaluation results show that our crowd-
sourced segmenting and labeling workflow was fast (8 min­
utes), accurate (99.7%), and cheap ($1.15) for a very visually 
cluttered microwave interface with 25 buttons, demonstrating 
the practicality of VizLens in the real world. If VizLens were 
a product, a full time staff might reasonably be employed to 
provide interface labeling. It is likely possible that we could 
push the initial latency of creating the reference image down 
to a minute or two [42], although it is unclear how important 
this will be in practice, given that feedback from computer 
vision is nearly instantaneous once labeled. Future work may 
look to have the crowd provide more information regarding 
the interface for various information need, such as details of 
usage of each visual element rather than only a label, struc­
tural information, dynamic and static components, etc. 

Built-in quality control (e.g., checking that the size and aspect 
ratio of the button bounding box is reasonable, spell checking 
text labels, etc.) and redundancy mechanisms in VizLens im­
prove the quality of answers. For the vision-based system 
components, refinding the desired interface and fingertip de­
tection would not be affected by errors of crowd labeling. On 
the other hand, the information lookup might be affected if 
the boundary of the button is smaller or larger than its ac­
tual size, (e.g., if the button is labeled to be larger, the region 
where the system will read the buttons label in feedback mode 
will increase). The system can adapt to some of this, for ex­
ample, in Figure 5b, the second rule on the left column shows 
that this labeling deviation can be fixed by the lookup rules. 
Furthermore, once the blind users finger is on the button, he 
or she can generally push around to activate it. 

An immediate future goal is to deploy VizLens to see how 
it performs over time in the everyday lives of blind users. 
Supporting such a deployment will require substantial engi­
neering in order to scale the backend system. Currently the 
computer vision is run remotely because it needs a relatively 
high-power GPU in order to perform at interactive speeds. 
Yet, we expect before long the necessary computing power 
will be available on consumer phones. Over time, we expect 
data collected from deployments will allow the training of 
general models of physical interfaces, which may reduce or 
eventually eliminate crowd labeling. 

We also plan to explore tighter integration between the end 
user, crowd, and computer vision. We imagine algorithms 
will monitor and predict the performance of the computer 
vision techniques. When the input images cause uncertain 
recognition results, it will provide the user with the option to 



‘ask the crowd’. This approach will inevitably take a longer 
wait time but the returned crowd-labeled image can be added 
to the library of reference images and improve the robustness 
of the recognition. If a similar situation occurs in the future, 
this new reference image could be a close match and the an­
swers can be directly obtained from its labels. Collectively, 
these reference images can also benefit a broader range of 
users when it comes to interfaces in publicly shared spaces. 
When a blind user enters an unfamiliar office building and 
tries to use an interface, he can simply benefit from the refer­
ence images previously collected by someone else. When the 
images are geo-tagged, they can also help visually impaired 
users locate the interfaces they wish to use. 

Finally, the large number of images collected as the user op­
erates the interface could be used to improve the system over 
time. Using information of where the user pushes the button 
can help with determining more accurate location of the fin­
gertip and fix errors over time. Furthermore, usage informa­
tion can be collected to learn about the common functionali­
ties accessed, and used to inform a new user of usage patterns. 

CONCLUSION 
We have presented VizLens, an accessible mobile applica­
tion and supporting backend that can robustly and interac­
tively help blind people use inaccessible interfaces in the real 
world. We introduced the design of the system and its tech­
nical architecture, evaluated it in a user study with 10 blind 
participants, and evaluated each component separately to un­
derstand its limitations. Based on feedback from these stud­
ies, we developed VizLens v2, which improved on the user 
interface and explored how VizLens might adapt to chang­
ing or dynamic interfaces. VizLens introduces a workflow 
that leverages the strengths of the end user (knowledge of the 
problem and context, and access to the interface), the crowd 
(sight and general intelligence), and computer vision (speed 
and scalability), and tightly integrates them to robustly solve 
a long-standing challenge in accessibility. 
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