
Revision April 20, 2018

MAX32660 USER GUIDE
User Guide

Maxim Integrated

support@maximintegrated.com

Preliminary

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | i

Table of Contents

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | ii

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | iii

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | iv

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | v

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | vi

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | vii

Table of Figures

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | viii

Table of Tables

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | ix

𝑓𝑃𝐶𝐿𝐾 = 48 𝑀𝐻𝑧

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | x

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | xi

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 1

1 Overview

The MAX32660 is an ultra-low power, cost effective highly integrated microcontroller designed for battery-powered devices
and wireless sensors. It combines a flexible and versatile power management unit with the powerful ARM® Cortex®-M4
processor with Floating Point Unit (FPU). The device enables designs with complex sensor processing without compromising
battery life. It also offers legacy designs an easy and cost optimal upgrade path from 8 or 16-bit microcontrollers. The
device integrates up to 256KB of flash memory and 96KB of SRAM to accommodate application and sensor code.

The device features four powerful and flexible power modes. It can operate from a single supply battery voltage, or a dual
supply typically provided by a PMIC. The I2C port supports standard, fast, fast-plus and high-speed modes operating up to
3400Kbps. The SPI ports can run up to 48MHz in both master and slave mode, and the UARTs can run up to 4Mbps. Three
general-purpose 32-bit timers, a watchdog timer, and a real-time clock are also provided. An I2S interface provides audio
streaming to a codec.

Figure 1-1: MAX32660 High Level Block Diagram

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 2

2 Memory, Register Mapping, and Access

2.1 Overview

The ARM Cortex-M4 architecture defines a standard memory space for unified code and data access. This memory space is
addressed in units of single bytes but is most typically accessed in 32-bit (4 byte) units. It may also be accessed, depending
on the implementation, in 8-bit (1 byte) or 16-bit (2 byte) widths. The total range of the memory space is 32-bits in width
(4GB addressable total), from addresses 0x0000 0000 to 0xFFFF FFFF.

It is important to note, however, that the architectural definition does not require the entire 4GB memory range to be
populated with addressable memory instances.

Figure 2-1: Code Memory Mapping

Reserved

0x1FFF_FFFF

0x2000_0000

0x2001_7FFF

0x2010_0000

0xFFFF_FFFF

I-
C

od
e

A
H

B
 B

u
s

M
as

te
r

S
ys

te
m

 A
H

B
 B

us
 M

as
te

r
(f

or
 c

od
e

 fe
tc

he
s)

Legend

ARM Cortex-M4 Defined Buses

MAX32650 Internal Memory Instances

(Cached)

0x3FFF_FFFF

0x6000_0000

0x9FFF_FFFF

Reserved

0xA000_0000

0x4000_0000

0x5FFF_FFFF

Internal Program/Data

Flash Memory

128KB

(16 pages)

SRAM 1MB

Reserved

Internal Program/Data

Flash Memory

128KB

(16 pages)

0x0000_0000

0x0001_FFFF

0x0002_0000

0x0003_FFFF

Reserved

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 3

Figure 2-2: Data Memory Map

0x0000_0000

Data Read Access to Code S pace

(Not cached)

0x0003_FFFF

Reserved

0x0004_0000

0x1FFF_FFFF

Read/Write A ccess To Data in

SRAM

(Not cached)

0x2000_0000

0x2001_7FFF

0x2001_8000

Reserved

0xFFFF_FFFF

D
-C

od
e

A
H

B
 B

u
s

M
as

te
r

S
ys

te
m

 A
H

B
 B

us
 M

as
te

r

Legend

ARM Cortex-M4 AHB Bus Masters

MAX 32660 Memory Spaces MAX 32660 AHB Bus Slaves

Undefined/Reserved

0x3FFF_FFFF

Reserved

Read/Write A ccess To Peripheral

Space (Not cached)

0x4000_0000

Internal Program/Data

Flash Memory

128KB

(16 pages)

SRAM 96KB

0x0001_FFFF

0x0000_0000

0x0002_0000

0x0003_FFFF

0x2000_0000

0x2001_7FFF

Global Control Registers

SI Registers

Function Control Registers

Reserved

Watchdog Timer 0

Reserved

RTC

Reserved

Power Sequencer

GPIO Port 0

Reserved

Timer (0,1,2)

Reserved

SPI1 /I2S

Reserved

I2C (0,1)

Reserved

Standard DMA

Reserved

Flash Controller

I-Cache Controller 0

Reserved

UART (0,1)

Reserved

SPI0

0x4000_0000

0x4000_0000

AHB-to-APB B ridge (APB

Register Modules)

0x4000_0400

0x4000_0800

0x4000_0C00

0x4000_3000

0x4000_3400

0x4000_6000

0x4000_6400

0x4000_6800

Reserved0x4000_6C00

0x4000_8000

0x4000_9000

0x4001_0000

0x4001_3000

0x4001_9000

0x4001_A000

0x4001_D000

0x4001_F000

0x4002_8000

0x4002_9000

0x4002_9400

0x4002_A000

0x4002_B000

0x4004_2000

0x4004_4000

0x4004_6000

0x4004_6FFF

MAX 32660 APB B us Register Modu le
S

ta
n

da
rd

 D
M

A
 B

u
s

M
as

te
r

MAX 32660-Specific AHB Bus Master

MAX 32660 Internal Memory Instances

Internal Program/Data

Flash Memory

128KB

(16 pages)

0x4004_7000

0x4004_6FFF

2.2 Standard Memory Regions

Many standard memory regions are defined for the ARM Cortex-M4 architecture; the use of many of these is optional for
the system integrator. At a minimum, the MAX32660, a Cortex-M4-based device, must contain some code and data
memory for application code and variable/stack use, as well as certain components which are part of the instantiated core.

2.2.1 Code Space

The code space area of memory is designed to contain the primary memory used for code execution by the device. This
memory area is defined from byte address range 0x0000 0000 to 0x1FFF FFFF (0.5GB maximum). Two different standard
core bus masters are used by the Cortex-M4 core and ARM debugger to access this memory area. The I-Code AHB bus
master is used for instruction decode fetching from code memory, while the D-Code AHB bus master is used for data
fetches from code memory. This is arranged so that data fetches avoid interfering with instruction execution.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 4

On the MAX32660, the code space memory area contains the main internal flash memory, which holds most of the
instruction code that will be executed on the device. The internal flash memory is mapped into both code and data space
from 0x0000 0000 to 0x0003 FFFF. This program memory area must also contain the default system vector table and the
initial settings for all system exception handlers and interrupt handlers. The reset vector for the device is 0x0000 0000.

The code space memory on the MAX32660 also contains the mapping for the flash information block, from 0x0004 0000 to
0x0004 1FFF. However, this mapping is generally only present during production test; it is disabled once the information
block has been loaded with valid data and the info block lockout option has been set. This memory is accessible for data
reads only and cannot be used for code execution.

2.2.2 SRAM Space

The SRAM area of memory is intended to contain the primary SRAM data memory of the device and is defined from byte
address range 0x2000 0000 to 0x3FFF FFFF (0.5GB maximum). This memory can be used for general purpose variable and
data storage, code execution, and the ARM Cortex-M4 stack.

On the MAX32660, this memory area contains the main system SRAM 96KB, which is mapped from 0x2000 0000 to
0x2001 7FFF.

The entirety of the SRAM memory space on the MAX32660 is contained within the dedicated ARM Cortex-M4 SRAM bit-
banding region from 0x2000 0000 to 0x200F FFFF (1MB maximum for bit-banding). This means that the CPU can access the
entire SRAM either using standard byte/word/doubleword access or using bit-banding operations. The bit-banding
mechanism allows any single bit of any given SRAM byte address location to be set, cleared, or read individually by reading
from or writing to a corresponding doubleword (32-bit wide) location in the bit-banding alias area.

The alias area for the SRAM bit-banding is located beginning at 0x2200 0000 and is a total of 32MB maximum, which allows
the entire 1MB bit banding area to be accessed. Each 32-bit (4 byte aligned) address location in the bit-banding alias area
translates into a single bit access (read or write) in the bit-banding primary area. Reading from the location performs a
single bit read, while writing either a 1 or 0 to the location performs a single bit set or clear

Note: The ARM Cortex-M4 core translates the access in the bit-banding alias area into the appropriate read cycle (for a
single bit read) or a read-modify- write cycle (for a single bit set or clear) of the bit-banding primary area. This means that
bit-banding is a core function (i.e., not a function of the SRAM memory interface layer or the AHB bus layer), and thus is only
applicable to accesses generated by the core itself. Reads/writes to the bit-banding alias area by other (non-ARM-core) bus
masters such as the Standard DMA AHB bus master will not trigger a bit-banding operation and will instead result in an AHB
bus error.

The SRAM area on the MAX32660 can be used to contain executable code. Code stored in the SRAM is accessed directly for
execution (using the system bus) and is not cached. The SRAM is also where the ARM Cortex-M4 stack must be located, as it
is the only general-purpose SRAM memory on the device. A valid stack location inside the SRAM must be set by the system
exception table (which is, by default, stored at the beginning of the internal flash memory). The MAX32660 specific AHB Bus
Masters can also access the SRAM to use as general storage or working space.

2.2.3 Peripheral Space

The peripheral space area of memory is intended for mapping of control registers, internal buffers/working space, and
other features needed for the firmware control of non-core peripherals. It is defined from byte address range 0x4000 0000
to 0x5FFF FFFF (0.5GB maximum). On the MAX32660, all device-specific module registers are mapped to this memory area,
as well as any local memory buffers or FIFOs which are required by modules.

As with the SRAM region, there is a dedicated 1MB area at the bottom of this memory region (from 0x4000 0000 to
0x400F FFFF) that is used for bit-banding operations by the ARM core. Four-byte-aligned read/write operations in the

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 5

peripheral bit-banding alias area (32MB in length, from 0x4200 0000 to 0x43FF FFFF) are translated by the core into
read/mask/shift or read/modify/write operation sequences to the appropriate byte location in the bit-banding area.

Note: The bit-banding operation within peripheral memory space is, like bit-banding function in SRAM space, a core
remapping function. As such, it is only applicable to operations performed directly by the ARM core. If another memory bus
master (such as the Standard DMA AHB master) accesses the peripheral bit-banding alias region, the bit-banding remapping
operation will not take place. In this case, the bit-banding alias region will appear to be a non-implemented memory area
(causing an AHB bus error).

On the MAX32660, access to the region that contains most peripheral registers (0x4000 0000 to 0x400F FFFF) goes from the
AHB bus through an AHB-to-APB bridge. This allows the peripheral modules to operate on the slower, easier to handle APB
bus matrix. This also ensures that peripherals with slower response times do not tie up bandwidth on the AHB bus, which
must necessarily have a faster response time since it handles main application instruction and data fetching.

Note: The APB bus supports 32-bit width access only. All access to the APB peripheral register area (0x4000 0000 to
0x400F FFFF) must be 32-bit width only with 32-bit (4 byte) alignment. Access using 8-bit or 16-bit width to this memory
region is not supported and will result in an AHB memory fault exception (returned by the AHB-to-APB bridge interface).

2.2.4 External RAM Space

The external RAM space area of memory is intended for use in mapping off-chip external memory and is defined from byte
address range 0x6000 0000 to 0x9FFF FFFF (1GB maximum). The MAX32660 does not implement this memory area.

2.2.5 External Device Space

The external device space area of memory is intended for use in mapping off-chip device control functions onto the AHB
bus. This memory space is defined from byte address range 0xA000 0000 to 0xDFFF FFFF (1GB maximum). The MAX32660
does not implement this memory area.

2.2.6 System Area (Private Peripheral Bus)

The system area (private peripheral bus) memory space contains register areas for functions that are only accessible by the
ARM core itself (and the ARM debugger, in certain instances). It is defined from byte address range 0xE000 0000 to
0xE00F FFFF. This APB bus is restricted and can only be accessed by the ARM core and core-internal functions. It cannot be
accessed by other modules which implement AHB memory masters, such as the Standard DMA.

In addition to being restricted to the core, application code is only allowed to access this area when running in the
privileged execution mode (as opposed to the standard user thread execution mode). This helps ensure that critical system
settings controlled in this area are not altered inadvertently or by errant code that should not have access to this area.

Core functions controlled by registers mapped to this area include the SysTick timer, debug and tracing functions, the NVIC
(interrupt handler) controller, and the Flash Breakpoint controller.

2.2.7 System Area (Vendor Defined)

The system area (vendor defined) memory space is reserved for vendor (system integrator) specific functions that are not
handled by another memory area. It is defined from byte address range 0xE010 0000 to 0xFFFF FFFF. The MAX32660 does
not implement this memory region.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 6

2.3 Device Memory Instances

This section details physical memory instances on the MAX32660 (including internal flash memory and SRAM instances)
that are accessible as standalone memory regions using either the AHB or APB bus matrix. Memory areas which are only
accessible via FIFO interfaces, or memory areas consisting of only a few registers for a peripheral, are not covered here.

2.3.1 Main Program Flash Memory

The main program flash memory is 256KB in size and consists of 32 logical pages of 8KB each.

2.3.2 Instruction Cache Memory

The internal flash memory instruction cache is 16KB in size and is used to cache instructions fetched using the I-Code bus.
This includes instructions fetched from the internal flash memory. Note that the cache is used for instruction fetches only.
Data fetches (including code literal values) from the internal flash memory do not use the instruction cache.

2.3.3 Information Block Flash Memory

The information block is a separate flash instance of 16KB. It is used to store trim settings (option configuration and analog
trim) as well as other nonvolatile device-specific information intended for use by firmware.

2.3.4 System SRAM

The system SRAM is 96KB in size and can be used for general purpose data storage, the ARM system stack, USB data
transfers (endpoints), and Standard DMA operations, as well as code execution if desired.

2.3.5 AHB Bus Matrix and AHB Bus Interfaces

This section details memory accessibility on the AHB bus matrix and the organization of AHB master and slave instances.

2.3.6 Core AHB Interface

2.3.6.1 I-Code

This AHB master is used by the ARM core for instruction fetching from memory instances located in code space from byte
addresses 0x0000 0000 to 0x1FFF FFFF. This bus master is used to fetch instructions from the internal flash memory.
Instructions fetched by this bus master are returned by the instruction cache, which in turn triggers a cache line fill cycle to
fetch instructions from the internal flash memory when a cache miss occurs.

2.3.6.2 D-Code

This AHB master is used by the ARM core for data fetches from memory instances located in code space from byte
addresses 0x0000 0000 to 0x1FFF FFFF. This bus master has access to the internal flash memory, and the information block
(if it has not been locked).

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 7

2.3.6.3 System

This AHB master is used by the ARM core for all instruction fetches and data read and write operations involving the SRAM.
The APB mapped peripherals (through the AHB-to-APB bridge) and AHB mapped peripheral and memory areas are also
accessed using this bus master.

2.3.7 AHB Master

2.3.7.1 Standard DMA

The Standard DMA bus master has access to all off-core memory areas accessible by the System bus. It does not have
access to the ARM Private Peripheral Bus area.

2.4 Peripheral Register Map

Table 2-1, below, contains the base address for each of the APB mapped peripherals. The base address for a given
peripheral is the start of the register map for the peripheral. For a given peripheral, the address for a register within the
peripheral is defined as the peripheral base address plus the registers offset.

Table 2-1: APB Peripheral Base Address Map

Peripheral Peripheral
Register Prefix

Base Address End Address

Global Control GCR_ 0x4000 0000 0x4000 03FF

System Interface SIR_ 0x4000 0400 0x4000 07FF

Function Control FCR_ 0x4000 0800 0x4000 0BFF

Watchdog Timer 0 WDT0_ 0x4000 3000 0x4000 33FF

Real-Time Clock RTC_ 0x4000 6000 0x4000 63FF

Power Sequencer PWRSEQ_ 0x4000 6800 0x4000 6BFF

GPIO Port 0 GPIO0_ 0x4000 8000 0x4000 8FFF

Timer 0 TMR0_ 0x4001 0000 0x4001 0FFF

Timer 1 TMR1_ 0x4001 1000 0x4001 1FFF

Timer 2 TMR2_ 0x4001 2000 0x4001 2FFF

SPIMSS SPIMSS_ 0x4001 9000 0x4001 9FFF

I2C 0 I2C0_ 0x4001 D000 0x4001 DFFF

I2C 1 I2C1_ 0x4001 E000 0x4001 EFFF

Standard DMA DMA_ 0x4002 8000 0x4002 8FFF

Flash Controller FLC_ 0x4002 9000 0x4002 93FF

I-Cache Controller ICC_ 0x4002 A000 0x4002 AFFF

UART 0 UART0_ 0x4004 2000 0x4004 2FFF

UART 1 UART1_ 0x4004 3000 0x4004 3FFF

SPI0 SPI0_ 0x4004 6000 0x4004 6FFF

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 8

3 System Clocks, Reset, and Power Management

The MAX32660 includes a High-Frequency Internal Oscillator (HIRC), an 8kHz nano-ring oscillator and support for an
external 32kHz crystal. Support for selectable core operating voltage is provided and the HIRC frequency is scaled based on
the specific core operating voltage range selected.

3.1 Core Operating Voltage Range Selection

The MAX32660 supports three selections for the core Operating Voltage Range(OVR). In single supply operation, changing
the OVR sets the output of the internal LDO regulator to the voltage shown in Table 3-1. For dual supply designs, setting the
OVR allows the MAX32660 to set an external PMIC to provide the required VCORE voltage dynamically. Changing the OVR
also reduces the output frequency of the High-frequency Internal Oscillator(HIRC), further reducing power consumption.

Changes to the OVR effect the access time of the internal flash memory and the application firmware must set the flash
wait states for each OVR setting as outlined in section Setting the Operating Voltage Range

Prior to setting the OVR, it is recommended to switch the system clock to the 32kHz oscillator or copy the OVR setup code
to RAM and execute the steps below while executing from RAM.

Set the operating voltage range to the required range as follows:

1. Set the Flash Wait State to a minimum value of 4, (GCR_MEM_CTRL.fws = 4).

a. Setting the Flash Wait State to the highest value ensures the change does not result in an issue reading from
the Flash after the OVR is changed.

2. Set the field PWRSEQ_LP_CTRL.ovr to either 0, 1 or 2 per Table 3-1 for the required OVR.
3. Set the Flash Controller Low Voltage Enable bit, FLC_CTRL.lve, to either 0 or 1 per Table 3-1.
4. Switch back to the High Frequency Internal Oscillator, HiRC, by setting GCR_CLK_CTRL.clksel to 0.
5. When the GCR_CLK_CTRL.clkrdy bit reads 0, the OVR is setup and the system is ready.

Flash Wait States for details on minimum flash wait states for the internal flash memory.

Changing the core operating voltage immediately reduces the output frequency of the High Frequency Internal Oscillator as
shown in Table 3-1, below. When operating the MAX32660 using dual external supplies requires special considerations and
must be handled carefully in the application firmware. Details of changing the OVR are described in the sections Single
Supply Operation and Dual Supply Operation.

Table 3-1: Operating Voltage Range Selection and the Effect on VCORE and fHIRC

PWRSEQ_LP_CTRL.ovr FLC_CTRL.lve VCORE Typical fHIRC

0 1 0.9 24

1 0 1 48

2 0 1.1 96

3.1.1 Single Supply Operation
3.1.2 If the MAX32660 is powered by a single supply connected via VDD, the operating voltage

range can easily be changed on the fly by the application firmware. Changing the OVR in
single supply mode changes the output of the internal LDO regulator to the VCORE Typical
values as shown in Table 3-1. It is recommended to set the flash wait state value to 4 prior
to changing the OVR for the device to ensure access to the internal flash memory during and
immediately after the OVR change takes effect. Once complete, the flash wait states can be

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 9

set to the minimum value for the selected OVR settings as shown in Table 3-2. Details of the
Setting the Operating Voltage Range

Prior to setting the OVR, it is recommended to switch the system clock to the 32kHz oscillator or copy the OVR setup code
to RAM and execute the steps below while executing from RAM.

Set the operating voltage range to the required range as follows:

6. Set the Flash Wait State to a minimum value of 4, (GCR_MEM_CTRL.fws = 4).

a. Setting the Flash Wait State to the highest value ensures the change does not result in an issue reading from
the Flash after the OVR is changed.

7. Set the field PWRSEQ_LP_CTRL.ovr to either 0, 1 or 2 per Table 3-1 for the required OVR.
8. Set the Flash Controller Low Voltage Enable bit, FLC_CTRL.lve, to either 0 or 1 per Table 3-1.
9. Switch back to the High Frequency Internal Oscillator, HiRC, by setting GCR_CLK_CTRL.clksel to 0.
10. When the GCR_CLK_CTRL.clkrdy bit reads 0, the OVR is setup and the system is ready.

Flash Wait States and the requirements related to the OVR setting are covered below.

3.1.3 Dual Supply Operation

In dual supply operation, after a reset, the application firmware must set the OVR to match the input voltage supplied on the
VCORE input pin. The flash wait states must also be adjusted by the application firmware after a reset event. The OVR settings
are stored in the Always on Domain (AoD) and are only reset during a Power On Reset sequence.

Note: Setting the OVR to a range higher than the VCORE input voltage may result in undesired behavior.

3.1.4 Setting the Operating Voltage Range

Prior to setting the OVR, it is recommended to switch the system clock to the 32kHz oscillator or copy the OVR setup code
to RAM and execute the steps below while executing from RAM.

Set the operating voltage range to the required range as follows:

11. Set the Flash Wait State to a minimum value of 4, (GCR_MEM_CTRL.fws = 4).

a. Setting the Flash Wait State to the highest value ensures the change does not result in an issue reading from
the Flash after the OVR is changed.

12. Set the field PWRSEQ_LP_CTRL.ovr to either 0, 1 or 2 per Table 3-1 for the required OVR.
13. Set the Flash Controller Low Voltage Enable bit, FLC_CTRL.lve, to either 0 or 1 per Table 3-1.
14. Switch back to the High Frequency Internal Oscillator, HiRC, by setting GCR_CLK_CTRL.clksel to 0.
15. When the GCR_CLK_CTRL.clkrdy bit reads 0, the OVR is setup and the system is ready.

3.1.5 Flash Wait States

On reset events, the MAX32660 sets the number of system clock cycles for accessing the internal flash memory. The reset
default for the number of flash wait states is 5 system clock cycles as set in the GCR_MEM_CTRL.fws field. The number of
flash wait states is determined by the system clock frequency and is dependent on the VCORE supply voltage. The default
reset OVR settings set the VCORE supply to 1.1V and from TABLE XX, below, the minimum number of flash wait states for a
system clock of 96MHz is 2.

The setting for the number of flash wait states effects performance and is critical it is set correctly based on the OVR
settings. If the setting for the flash wait states is below the minimum required for a given OVR setting and system clock
frequency flash fetches may fail and cause the device to execute incorrect program instructions. Set the number of flash

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 10

wait states using the field GCR_MEM_CTRL.fws per TABLE XX below. If setting the OVR to a setting that requires a higher
number of flash wait states, set the GCR_MEM_CTRL.fws field prior to changing the OVR settings.

Table 3-2: Minimum Flash Wait State Setting for Each OVR Setting (fSYSCLK = fHiRC)

Core Operating Voltage Range Setting
Core Voltage

Range fHIRC

(MHz)

System Clock
Prescaler

System Clock
Minimum Flash Wait

State Setting

PWRSEQ_LP_CTRL.ovr FLC_CTRL.lve VCORE (V) GCR_CLK_CTRL.psc fSYSCLK (MHz) GCR_MEM_CTRL.fws

0 1 0.81 - 0.99 24
0 24 2

1 12 1

1 0 0.9 - 1.1 48
0 48 2

1 24 1

2 0 0.99 - 1.21 96

0 96 4

1 48 2

2 24 1

3.2 System Clocks

Figure 3-1, below, shows a high-level diagram of the MAX32660 clock tree.

Figure 3-1: Clock Tree Diagram

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 11

The selected System Oscillator (SYSOSC) is the clock source for most internal blocks. Select SYSOSC from the following clock
sources:

• High-Frequency Internal Oscillator (HIRC)

• 8kHz Internal Ultra-Low Power Nano-Ring Oscillator

• 32.768kHz External Crystal Oscillator

The selected SYSOSC is the input to the system oscillator prescaler to generate the System Clock (SYSCLK). The system
oscillator prescaler divides SYSOSC by a prescaler using the GCR_CLK_CTRL.psc field as shown in Equation 3-1.

Equation 3-1: System Clock Scaling

𝑆𝑌𝑆𝐶𝐿𝐾 =
𝑆𝑌𝑆𝑂𝑆𝐶

2𝑝𝑠𝑐

GCR_CLK_CTRL.psc is selectable from 0 to 7, resulting in divisors of 1, 2, 4, 8, 16, 32, 64 or 128.

SYSCLK drives the ARM Cortex-M4 with FPU and is used to generate the following internal clocks as shown below:

• Advanced High-Performance Bus (AHB) Clock

 𝐻𝐶𝐿𝐾 = 𝑆𝑌𝑆𝐶𝐿𝐾

• Advanced Peripheral Bus (APB) Clock,

 𝑃𝐶𝐿𝐾 = 𝑆𝑌𝑆𝐶𝐿𝐾
2⁄

There are additional internal clocks that are generated. These clocks are independent of SYSOSC and SYSCLK as follows:

• The RTC uses the 32.768kHz oscillator

All oscillators are reset to default at Power-On Reset and System Reset. Oscillator status is not reset at Soft Reset or
Peripheral Reset.

3.3 Oscillator Sources and Clock Switching

Before using any oscillator, the oscillator must first be enabled by setting its corresponding enable bit in the System Clock
Control Register, GCR_CLK_CTRL. Before setting any oscillator as SYSOSC, its corresponding oscillator ready bit in the
GCR_CLK_CTRL register must first be checked.

Once the corresponding oscillator ready bit is set, the oscillator can then be selected as SYSOSC by configuring the Clock
Source Select field (GCR_CLK_CTRL.clksel).

Any time firmware changes SYSOSC by changing GCR_CLK_CTRL.clksel, the Clock Ready bit GCR_CLK_CTRL.clkrdy is
automatically cleared to indicate that a SYSOSC switchover is in progress. When switchover is complete,
GCR_CLK_CTRL.clkrdy is automatically set to 1.

Immediately before entering any low-power mode, enable the SYSOSC to be used in that low-power mode.

3.3.1 High-Frequency Internal Oscillator

The MAX32660 is available with a High-Frequency Internal Oscillator. This is the default system oscillator.

The internal high-speed oscillator can be calibrated for greater accuracy using the external 32.768kHz oscillator as a
reference.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 12

This oscillator must be automatically powered down when in DEEPSLEEP mode by setting register bit
GCR_PM.hircmmpd = 1.

This oscillator is enabled at powerup, POR, and System Reset.

3.3.2 32.768kHz External Crystal Oscillator

This is a very low power internal oscillator that can be selected as SYSOSC. This oscillator can optionally use a 32.768kHz
input clock instead of an external crystal. The internal 32.768kHz clock is available as an output on GPIO 32KCAL.

This oscillator is the dedicated clock for the Real-Time Clock (RTC). If the RTC is enabled, the 32.768kHz external oscillator
must be enabled, independent of the selection of SYSOSC.

When this oscillator is active, an RTC alarm can wake this device from SLEEP or DEEPSLEEP mode if the GCR_PM.rtcwk_en is
set to 1 and the RTC alarm is configured.

The 32.768kHz oscillator is disabled on powerup.

3.3.3 8kHz Ultra-Low Power Nano-Ring Internal Oscillator

An ultra-low power internal 8kHz nano-ring oscillator is available and can be set as the System Oscillator (SYSOSC). This
oscillator is enabled at device powerup by hardware and cannot be disabled by application firmware.

3.4 System Oscillators Reset

On Power-On Reset (POR) and System Reset, all oscillator states are reset to their Reset default:

• The 96MHz, and 8kHz oscillators are enabled, while the 32.768kHz oscillator is disabled. Oscillator enables are not
reset by a Soft Reset or Peripheral Reset.

3.5 Operating Modes

The MAX32660 supports four operating modes:

• ACTIVE

• SLEEP

• DEEPSLEEP

• BACKUP

ACTIVE is the highest performance operating mode. SLEEP mode wakeup events include any external or internal interrupt,
RTC wakeup, and the Watchdog Interrupt. DEEPSLEEP and BACKUP mode wakeup events are limited to an enabled GPIO
interrupt or from the RTC wakeup event if enabled.

Each of the operating modes is described in detail in the following sections.

The ARM Cortex-M family of CPUs have two built-in low power modes, designated SLEEP and DEEPSLEEP. Implementation
of these low-power modes are specific to the microcontroller’s design. These modes are enabled using the System Control
Register (SCR). Write register bit SCR.deepsleep to select the low power mode as shown in the pseudocode below.

SCR.sleepdeep = 0; // SLEEP mode enabled
SCR.sleepdeep = 1; // DEEPSLEEP mode enabled

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 13

Once enabled, the device enters the enabled low power mode when either a WFI (Wait For Interrupt) or WFE (Wait For
Event) instruction is executed.

Immediately before entering any low-power mode, enable the SYSOSC to be used in that low-power mode. If the selected
SYSOSC is disabled in the selected low power mode, it will be enabled upon returning to ACTIVE mode.

Refer to the ARM Cortex-M4 core reference for more information on SCR.

3.5.1 ACTIVE Mode

This is the highest performance mode. All internal clocks, registers, memory, and peripherals are enabled. The CPU is
running and executing application code. All oscillators are available.

Dynamic clocking allows firmware to selectively enable or disable clocks and power to individual peripherals, providing the
optimal mix of high-performance and power conservation. Internal RAM that can be enabled, disabled, or placed in low-
power RAM Retention Mode include data SRAM memory blocks, on-chip cache, and on-chip FIFOs. Refer to RAM Low
Power Modes for details on RAM power mode control.

3.5.2 SLEEP Low Power Mode

This is a low power mode that suspends the CPU with a fast wakeup time to ACTIVE mode. In SLEEP mode, the
microcontroller remains in an ACTIVE state with the system clock disabled for the Cortex core. Code execution stops during
SLEEP mode. All enabled oscillators remain active and the RAM retains state if enabled. Refer to RAM Low Power Modes for
details on enabling and disabling RAM sector data retention.

SLEEP mode wakeup events include any external or internal interrupt.

The following pseudocode places the device in SLEEP mode:

SCR.sleepdeep = 0; // SLEEP mode enabled
WFI (or WFE); // Enter the low power mode enabled by SCR.sleepdeep

3.5.3 DEEPSLEEP Low Power Mode

In DEEPSLEEP mode all internal clocks are gated off including the system clock and the Watchdog Timer. The RTC continues
operation, if enabled, during DEEPSLEEP. The ARM Cortex state and all system and peripheral registers retain state during
DEEPSLEEP mode. RAM retains state per the RAM retention setting for each RAM sector. Set
PWRSEQ_LP_CTRL.ramret_sel[3:0] to 1 to enable data retention during DEEPSLEEP mode.

Wakeup from DEEPSLEEP only occurs from an external GPIO interrupt or from a RTC alarm, both of which must be enabled
separately.

All registers and RAM are retained. The GPIO pins retain their configured state in this mode.

The High Frequency Oscillator, HiRC, must be powered off when entering DEEPSLEEP mode. Set GCR_PM.hircmmpd = 1 to
enter DEEPSLEEP mode. The 8kHz and 32.768kHz oscillators are available. Additionally, the GCR_PM.mode field should be
set to 0 prior to entering DEEPSLEEP mode.

GCR_PMR.hircmmpd = 1; // Set HiRC to automatic power down for DEEPSLEEP
GCR_PMR.mode = 0; // Set mode field to ensure DEEPSLEEP mode is entered
SCR.sleepdeep = 1; // DEEPSLEEP mode enabled
WFI (or WFE); // Enter DEEPSLEEP mode

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 14

3.5.4 BACKUP Low Power Mode

This is the lowest power operating mode. All oscillators are disabled except for the 8kHz and the 32kHz oscillator. The ARM
Cortex state and all system and peripheral registers do not retain state except for the Real-Time Clock (RTC).

Only the RTC operates in BACKUP mode if enabled. RAM retention in BACKUP mode requires the Retention Regulator.
Enable the RAM Retention Regulator by setting the PWRSEQ_LP_CTRL.retreg_en field to 1. Enable each RAM sector
individually for data retention by setting the PWRSEQ_LP_CTRL.ramret_sel[3:0] fields to 1.

BACKUP mode supports the same wakeup sources as DEEPSLEEP mode.

Set GCR_PM.mode to 6 to immediately enter BACKUP mode.

3.6 Shutdown State

Shutdown State is not a low-power mode. It is intended to wipe all volatile memory from the device. In the Shutdown State,
internal logic gates off all internal power. There is no data, register, or RAM retention in this mode. All wakeup sources,
wakeup logic, and interrupts are disabled. The Always-on Domain (AoD) is disabled as well. The device only recovers
through a Power-On Reset (POR) which re-initializes the device.

Setting GCR_PM.mode = 7 results in the part immediately entering Shutdown State.

3.7 Device Resets

Four device resets are available:

• Peripheral Reset

• Soft Reset

• System Reset

• Power-On Reset

On completion of any of the four reset cycles, all peripherals are reset, HCLK and PCLK are operational, the CPU core
receives clocks and power, and the device enters ACTIVE mode. Program execution begins at the reset vector address.

Each peripheral in the MAX32660 can be reset individually by firmware using the GCR_RST0 and GCR_RST1 registers.

3.7.1 Peripheral Reset

This resets the all peripherals. The CPU retains its state. The GPIO, Watchdog Timers, RAM Retention, and General Control
Registers (GCR), including the clock configuration, are unaffected.

Initiate a Peripheral Reset by setting GCR_RST0.periph_rst to 1.

3.7.2 Soft Reset

This is the same as a Peripheral Reset except that it also resets the GPIO to its Power-On Reset state. All alternate functions
are tri-stated.

Initiate a Soft Reset by setting GCR_RST0.soft to 1.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 15

3.7.3 System Reset

This is the same as Soft Reset except it also resets all GCR, resetting the clocks to their default state. The CPU state is reset
as well as the watchdog timers. The AoD and RAM Retention are unaffected.

A watchdog timer reset event initiates a System Reset. To start a Peripheral Reset from firmware, set GCR_RST0.system = 1.

3.7.4 Power-On Reset

A POR resets everything in the device to its default state, as if power had been cycled to the device. Table 3-3 shows the
effects of the four reset types and the five power modes supported by the MAX32660.

Table 3-3: Reset and Low Power Mode Effects

Peripheral
Reset

Soft
Reset

System
Reset POR

ACTIVE
Mode

SLEEP
Mode

BACK-
GROUND

Mode
DEEP- SLEEP

Mode
BACKUP

Mode

GCR Reset No No Reset Reset N/A N/A N/A N/A N/A

8kHz Osc On On On On On On On On On

High Freq Osc - - On On Y Y Y Auto Off Off

PCLK On On On On On On On Off Off

HCLK On On On On On On On Off Off

CPU Clock On On On On On Off Off Off Off

VCORE On On On On On On On Off Off

CPU State
Retention On On Reset Reset N/A On On On Off

RTC Reset Reset Reset Reset Y Y Y Y Y

Standard DMA Reset Reset Reset Reset Y Y Off Off Off

Watchdog Timer - - Reset Reset Y Y Y Off Off

GPIO - Reset Reset Reset Y Y Y Y Y

Flash Controller,
ICC0 Cache Reset Reset Reset Reset Y Y Off Off Off

Other Peripherals Reset Reset Reset Reset Y Y Y Off Off

External Reset
Wakeup - - - - - Y Y Y Y

GPIO Wakeup - - - - - Y Y Y Y

RTC Wakeup - - - - - Y Y Y Y

AoD On Y Y Y Y On On On Auto Off

RAM Retention Y Y Y Reset Y Y Y Y Auto Off

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 16

Peripheral
Reset

Soft
Reset

System
Reset POR

ACTIVE
Mode

SLEEP
Mode

BACK-
GROUND

Mode
DEEP- SLEEP

Mode
BACKUP

Mode

Table key:
Y = Enabled, can be disabled by firmware
On = Enabled by hardware (Cannot be disabled)
Off = Disabled by hardware (Cannot be enabled)
Auto Off = Can either be left on, or automatically gated off when in this power mode.
- = No Effect
N/A = Not Applicable

Note: SLEEP, DEEPSLEEP, and BACKUP low-power modes wake-up directly to ACTIVE with no reset.
Note: The AoD includes the oscillator trim settings, the RTC, RAM retention, and Low Power Wakeup Control Registers.
Note: Only a Power-On Reset triggers a reset of the AoD.
Note: RAM Retention applies to data SRAM, cache, and all FIFOs.
Note: Peripheral, Soft, and System Resets are initiated by firmware though the GCR_RST0 register.
Note: A Watchdog Reset initiates a System Reset.

3.8 Instruction Cache Controller

ICC0 is the Instruction Cache Controller used for the internal Flash Memory. ICC0 includes a line buffer, tag RAM and a 16KB
2-way set associative Data RAM.

3.8.1 Enabling ICC0

Perform the following steps to enable ICC0 or ICC1.

• Set ICC0_CACHE_CTRL.enable to 1

• Read ICC0_CACHE_CTRL.ready until it returns 1

3.8.2 Disabling ICC0

Disable ICC0 by setting ICC0_CACHE_CTRL.enable to 0.

3.8.3 Flushing the ICC0 Cache

The System Configuration Register (GCR_SCON) includes a field for flushing ICC0. Setting GCR_SCON.ccache_flush to 1
performs a flush of ICC0’s 16KB Data Cache RAM and the tag RAM. Set the ICC0_INVALIDATE register to 1 to invalidate the
ICC0 cache and force a cache flush. Read the ICC0_CACHE_CTRL.ready field until it returns 1 to determine when the flush is
completed.

3.9 Instruction Cache Controller Registers

Refer to Table 2-1: APB Peripheral Base Address Map for the ICC0 Base Peripheral Address.

Table 3-4: Instruction Cache Controller Register Addresses and Descriptions

Offset Register Name Access Description

[0x0000] ICC0_CACHE_ID RO Cache ID Register

[0x0004] ICC0_MEM_SIZE R0 Cache Memory Size Register

[0x0100] ICC0_CACHE_CTRL R/W Clock Control Register

[0x0700] ICC0_INVALIDATE R/W Power Management Register

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 17

Table 3-5: ICC Cache ID Register

ICC Cache ID Register ICC0_CACHE_ID [0x0000]

Bits Name Access Reset Description

31:16 - RO - Reserved for Future Use
Do not modify this field.

15:10 cchid RO - Cache ID
Returns the Cache ID for this Cache instance.

9:6 partnum RO - Cache Part Number
Returns the part number indicator for this Cache instance.

5:0 relnum RO - Cache Release Number
Returns the release number for this Cache instance.

Table 3-6: ICC Memory Size Register

ICC Memory Size Register ICC0_MEM_SIZE [0x0004]

Bits Name Access Reset Description

31:16 memsz RO - Addressable Memory Size
Indicates the size of addressable memory by this cache controller instance in
128KB units.

15:0 cchsz RO - Cache Size
Returns the size of the cache RAM memory in 1KB units.

16: 16KB Cache RAM

Table 3-7: ICC Cache Control Register

ICC Cache Control Register ICC0_CACHE_CTRL [0x0100]

Bits Name Access Reset Description

31:16 - R/W - Reserved for Future Use
Do not modify this field.

16 ready RO - Ready
This field is cleared by hardware anytime the cache as a whole is invalidated
(including a Power On Reset event). Hardware automatically sets this field to 1
when the invalidate operation is complete and the cache is ready.

0: Cache Invalidate in process.
1: Cache is ready.

Note: While this field reads 0, the cache is bypassed and reads come directly from
the line fill buffer.

15:1 - R/W - Reserved for Future Use
Do not modify this field.

0 enable R/W 0 Enable
Set this field to 1 to enable the cache. Setting this field to 0 automatically
invalidates the cache contents. When this cache is disabled, reads are handled by
the line fill buffer.

0: Disable Cache
1: Enable Cache

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 18

Table 3-8: ICC Invalidate Register

ICC Invalidate Register ICC0_INVALIDATE [0x0700]

Bits Name Access Reset Description

31:0 - WO - Invalidate
Any write to this register of any value invalidates the cache.

3.10 RAM Memory Management

This device has many features for managing the on-chip RAM. The on-chip RAM includes data RAM, instruction and data
caches, and peripheral FIFOs.

3.10.1 On-Chip Cache Management

This device has an instruction cache controller for code or data from the internal flash. The cache can be enabled, disabled,
and zeroized and the cache clock can be disabled by placing it in Light Sleep.

Setting GCR_SCON.icc0_flush to 1 flushes the 16KB Cache Memory and the Tag RAM. .

3.10.2 RAM Zeroization

The GCR Memory Zeroize Control Register, GCR_MEM_ZC, allows clearing memory for firmware or security reasons.
Zeroization writes all zeros to memory.

The following RAM memories can be zeroized:

• Data RAM

 Data RAM is segmented into seven blocks, from Data RAM 0 to Data RAM 4.
 Each Data RAM block is zeroizable individually.

• Internal Flash cache

3.10.3 RAM Low Power Modes

RAM can be placed in a low power mode, referred to as Light Sleep, using register GCR_MEM_CTRL, Memory Clock Control.
Light Sleep gates off the clock to the RAM and makes the RAM unavailable for read/write operations. The RAM contents are
retained during Light Sleep mode. Light Sleep is available for the internal Data RAM blocks as well as for the ICC0 cache
RAM. Turning off Light Sleep mode for a memory enables Read/Write to that memory range.

RAM can also be shut down for power savings using the register PWRSEQ_LPMEMSD, RAM Shut Down Control. This
conserves power by gating off the power and clock to the RAM. This invalidates the contents of the RAM and the RAM is
not accessible until the RAM shutdown mode is disabled. When enabling a RAM partition from a shutdown state, the RAM
contents are cleared.

3.11 Global Control Registers (GCR)

Refer to the Peripheral Register Map section for the Global Control Register (GCR) Base Address.

The General Control Registers are only reset on a System Reset or Power-On Reset. A Soft Reset or Peripheral Reset does
not affect these registers.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 19

Table 3-9: Global Control Registers, Offsets and Descriptions

Register Name Offset Access Description

GCR_SCON [0x0000] R/W System Control Register

GCR_RST0 [0x0004] R/W Reset Register 0

GCR_CLK_CTRL [0x0008] R/W Clock Control Register

GCR_PM [0x000C] R/W Power Management Register

GCR_PCKDIV [0x0018] R/W Peripheral Clocks Divisor

GCR_PERCKCN0 [0x0024] R/W Peripheral Clocks Disable 0

GCR_MEM_CTRL [0x0028] R/W Memory Clock Control

GCR_MEM_ZCTRL [0x002C] R/W Memory Zeroize Register

GCR_SYS_STAT [0x0040] RO System Status Flags

GCR_RST1 [0x0044] R/W Reset Register 1

GCR_PCLK_DIS [0x0048] R/W Peripheral Clocks Disable 1

GCR_EVTEN [0x004C] R/W Event Enable Register

GCR_REV [0x0050] RO Revision Register

GCR_SYS_IE [0x0054] R/W System Status Interrupt Enable

Table 3-10: System Control Register

System Control Register GCR_SCON [0x0000]

Bits Name Access Reset Description

31:15 - RO - Reserved for Future Use
Do not modify this field.

14 swd_dis R/W See
Description

Serial Wire Debug Disable
0: JTAG SWD enabled.
1: JTAG SWD disabled.

Note: If the ARM ICE is unlocked (GCR_SYS_ST.icelock=0), the reset value for this
bit is 0. If the ARM ICE is locked (GCR_SYS_ST.icelock=1), the reset value for this
bit is 1 and is not writable.

13:7 - RO - Reserved for Future Use
Do not modify this field.

6 icc0_flush R/W1O 0 Instruction Cache Controller Flush
Write 1 to flush the internal Flash cache. This bit is cleared by hardware when the
flush is complete.

0: Flush not in process.
1: Write 1 to flush the code cache.

5 fpu_dis R/W 0 Floating Point Unit (FPU) Disable
Set this field to 1 to disable the Cortex-M4 Floating Point Unit.

0: FPU enabled.
1: FPU disabled.

4 flash_page_flip RO 0 Flash Page Flip Flag
Flips the bottom and top halves of the internal flash memory. This bit is
controlled by hardware. Firmware should not change the state of this bit during
normal operation. Any change to this bit flushes the instruction cache and the
data cache

0: Physical layout matches logical layout
1: Top and Bottom halves flipped.

3 - R/W - Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 20

System Control Register GCR_SCON [0x0000]

Bits Name Access Reset Description

2:1 sys_bys_arb R/W 1 System Bus Arbitration Architecture

This field selects the architecture used for arbitration of the system bus.
The default setting of 1 is round robin arbitration. Setting this field to 0
sets the arbitration to fixed-burst.

0b00: Round-Robin Arbitration
0b01: Fixed-Burst Arbitration
0x10: Reserved
0x11: Reserved

0 - RO - Reserved for Future Use
Do not modify this field.

Table 3-11: Reset 0 Register

Reset 0 Register GCR_RST0 [0x0004]

Bits Name Access Reset Description

31 system R/W1O 0 System Reset
This resets everything on the device except the AoD registers and the RAM retention. All
other registers, peripherals, the CPU core and the watchdog timer are reset. This field is
cleared by hardware when the reset is complete.

0: Reset complete.
1: Write 1 to perform a System Reset.

Refer to the Device Resets section for additional information.

30 periph R/W1O 0 Peripheral Reset
Write 1 to perform a System Peripheral Reset. All peripherals are reset except for the
GPIO and Watchdog Timer.

0: Reset complete.
1: Write 1 to perform the Peripheral reset.

Refer to the Device Resets section for additional information.

29 soft R/W1O 0 Soft Reset
Write 1 to perform a Soft Reset. A soft reset performs a Peripheral Reset and also resets
the GPIO peripheral.

0: Reset complete.
1: Write 1 to perform the Soft Reset.

Refer to the Device Resets section for additional information.

28:18 - RO - Reserved for Future Use
Do not modify this field.

17 rtc R/W1O 0 RTC Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral
reset is complete.

0: Reset complete.
1: Write 1 to reset the Real-Time Clock.

16 i2c0 R/W1O 0 I2C0 Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset the I2C0 peripheral.

15 - RO 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 21

Reset 0 Register GCR_RST0 [0x0004]

Bits Name Access Reset Description

14 spi1 R/W1O 0 SPI1 Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset the SPI1 peripheral.

13 spi0 R/W1O 0 SPI0 Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset the SPI0 peripheral.

12 uart1 R/W1O 0 UART1 Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset the UART1 peripheral.

11 uart0 R/W1O 0 UART0 Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset the UART0 peripheral.

10:8 - RO 0 Reserved for Future Use
Do not modify this field.

7 timer2 R/W1O 0 Timer2 Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset Timer 2 (TMR2).

6 timer1 R/W1O 0 Timer1 Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset Timer 1 (TMR1).

5 timer0 R/W1O 0 Timer0 Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset Timer 0 (TMR0).

4:3 - RO 0 Reserved for Future Use
Do not modify this field.

2 gpio0 R/W1O 0 GPIO0 Reset
Write 1 to reset the GPIO. This field is cleared by hardware when the peripheral is reset.

0: Reset complete.
1: Write 1 to reset the GPIO.

1 wdt0 R/W1O 0 Watchdog Timer 0 Reset
Write 1 to reset Watchdog Timer 0 (WDT0). This field is cleared by hardware when the
peripheral is reset.

0: Reset complete.
1: Write 1 to reset Watchdog Timer 0 (WDT0).

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 22

Reset 0 Register GCR_RST0 [0x0004]

Bits Name Access Reset Description

0 dma R/W1O 0 Standard DMA Reset
Write 1 to reset the peripheral. This field is cleared by hardware when the peripheral is
reset.

0: Reset complete.
1: Write 1 to reset the Standard DMA (DMA).

Table 3-12: System Clock Control Register

System Clock Control Register GCR_CLK_CTRL [0x0008]

Bits Name Access Reset Description

31:30 - RO 0b11 Reserved for Future Use
Do not modify this field.

29 lirc8k_rdy RO 0 8kHz Internal Oscillator Ready Status
On POR or System Reset this field reads 0 until the 8kHz low-frequency oscillator is
ready for use.

0: Not ready or not enabled.
1: Oscillator ready.

28:27 - RO 0 Reserved for Future Use
Do not modify this field.

26 hirc_rdy RO 1 High-Frequency Internal Oscillator Ready
On POR or System Reset this field reads 0 until the HIRC oscillator is ready. If the HIRC
is disabled (GCR_CLK_CTRL.hirc_en =0) and firmware enables it
(GCR_CLK_CTRL.hirc_en = 1), reading this field will return 0 until the HIRC is ready for
use.

0: Oscillator not ready or not enabled.
1: Oscillator ready.

25 x32k_rdy RO 1 32.768kHz External Oscillator Ready Status
On POR or System Reset this field reads 1 until the oscillator is ready. This field is set to
1 by hardware if the GCR_CLK_CTRL.x32k_en bit is set to 0.

0: Oscillator not ready.
1: Oscillator ready.

24:19 - RO - Reserved for Future Use
Do not modify this field.

18 hirc_en R/W 1 High-Frequency Internal Oscillator (HIRC) Enable
Write 0 to disable the internal HIRC. When this field is set to 0, hardware automatically
clears the GCR_CLK_CTRL.hirc_rdy bit.

0: Set to 0 to disable the HIRC.
1: Set to 1 to enable the HIRC.

17 x32k_en R/W 0 32.768kHz External Oscillator Enable
Write 1 to enable the 32kHz external oscillator. After setting this field to 1, hardware
automatically clears GCR_CLK_CTRL.x32k_rdy = 0. When the GCR_CLK_CTRL.x32k_rdy
bit reads 1, the 32.768kHz oscillator is ready.

0: Disable the 32kHz oscillator (POR default).
1: Enable the 32kHz oscillator.

16:14 - RO - Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 23

System Clock Control Register GCR_CLK_CTRL [0x0008]

Bits Name Access Reset Description

13 clkrdy R/W 0 System Oscillator Clock Source Ready
When the System Oscillator source is modified by changing the GCR_CLK_CTRL.clksel
field, the clkrdy field reads 0 until the switchover completes. This field is set to 1 by
hardware when the selected clock source is ready.

0: The selected System Oscillator is not ready for use.
1: The selected clock source (GCR_CLK_CTRL.clksel) is the active System Oscillator.

12 - RO - Reserved for Future Use
Do not modify this field.

11:9 clksel R/W 0 System Oscillator Source Select
Selects the system oscillator (SYSOSC) source used to generate the system clock
(SYSCLK). Modifying this field immediately clears the clkrdy field.

0: High-Frequency Internal Oscillator (HIRC)
1: Reserved for Future Use
2: Reserved for Future Use
3: 8kHz Low-Frequency Internal Oscillator
4: Reserved for Future Use
5: Reserved for Future Use
6: 32.768kHz External Oscillator
7: Reserved for Future Use

8:6 psc R/W 0 System Oscillator Prescaler
Sets the divider for generating the System Clock (SYSCLK) from the selected System
Oscillator (SYSOSC) as shown in the following equation:

𝑓𝑆𝑌𝑆𝐶𝐿𝐾 =
𝑓𝑆𝑌𝑆𝑂𝑆𝐶

2𝑝𝑠𝑐

5:0 - R/W 8 Reserved for Future Use
Do not modify this field.

Table 3-13: Power Management Register

Power Management Register GCR_PM [0x000C]

Bits Name Access Reset Description

31:16 - RO 0 Reserved for Future Use
Do not modify this field.

15 hircmmpd R/W 0 96MHz DEEPSLEEP Auto Off
When set, the High-Frequency Internal Oscillator is automatically powered off when in
DEEPSLEEP mode. This field must be set to 1 prior to entering DEEPSLEEP mode for the
MAX32660 family of parts.

1: 96MHz Oscillator is powered off in DEEPSLEEP mode.

Note: This field must be set to 1 prior to entering DEEPSLEEP mode for the MAX32660
family of parts. If this field is not set to 1, the device will not enter DEEPSLEEP.

14:6 - R/W 0 Reserved for Future Use
Do not modify this field.

5 rtcwk_en R/W 0 RTC Alarm Wakeup Enable
When this field is set to 1, If the RTC is configured to generate a wakeup alarm, an RTC
wakeup event causes the MAX32660 to exit all low power modes and transition
directly to ACTIVE mode. Refer to section 8.2.3 RTC Wakeup From DEEPSLEEP/BACKUP
Power Modes for details on enabling the RTC as a wakeup source.

0: Wakeup from RTC disabled, regardless of the RTC alarm configuration.
1: Wakeup from RTC alarm enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 24

Power Management Register GCR_PM [0x000C]

Bits Name Access Reset Description

4 gpiowk_en R/W 0 GPIO Wakeup Enable
When enabled, activity on any GPIO pin configured for wakeup causes an exit from
SLEEP and DEEPSLEEP low power modes and transitions directly to ACTIVE mode.

0: Wakeup from GPIO disabled.
1: Wakeup from GPIO enabled.

3 - RO 0 Reserved for Future Use
Do not modify this field.

2:0 mode R/W 0 Operating Mode
Configures the current operating mode for the device.

0: ACTIVE mode
4: BACKUP Low Power Mode
6: Shutdown Mode

All other values are Reserved for Future Use.

Table 3-14: Peripheral Clock Divisor Register

Peripheral Clocks Divisor Register GCR_PCKDIV [0x0018]

Bits Name Access Reset Description

31:2 - R/W 0 Reserved for Future Use
Do not modify this field.

1:0 aoncd R/W 0 Always-on Domain (AoD) Clock Divisor
0: 𝑃𝐶𝐿𝐾

4⁄

1: 𝑃𝐶𝐿𝐾
8⁄

2: 𝑃𝐶𝐿𝐾
16⁄

3: 𝑃𝐶𝐿𝐾
32⁄

Table 3-15: Peripheral Clock Disable 0 Register

Peripheral Clocks Disable 0 Register GCR_PERCKCN0 [0x0024]

Bits Name Access Reset Description

31:29 - R/W 0 Reserved for Future Use
Do not modify this field.

28 i2c1d R/W 0 I2C1 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

27:18 - R/W 0 Reserved for Future Use
Do not modify this field.

17 timer2d R/W 0 Timer2 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

16 timer1d R/W 0 Timer1 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 25

Peripheral Clocks Disable 0 Register GCR_PERCKCN0 [0x0024]

Bits Name Access Reset Description

15 timer0d R/W 0 Timer0 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

14 - R/W 0 Reserved for Future Use
Do not modify this field.

13 i2c0d R/W 0 I2C0 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

12:11 - RO - Reserved for Future Use
Do not modify this field.

10 uart1d R/W 0 UART1 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

9 uart0d R/W 0 UART0 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

8 - R/W 0 Reserved for Future Use
Do not modify this field.

7 spi1d R/W 0 SPI1 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

6 spi0d R/W 0 SPI0 Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

5 dmad R/W 0 Standard DMA Clock Disable
Write 1 to disable, set to 0 to enable.

0: Peripheral Enabled
1: Peripheral Disabled

4:1 - R/W 0 Reserved for Future Use
Do not modify this field.

0 gpio0d R/W 0 GPIO0 Port and Pad Logic Clock Disable
Write 1 to disable, set to 0 to enable. Disabling the GPIO Port and Pad Logic gates off the
clock from the GPIO Port and the individual GPIO pads.

0: Peripheral Enabled
1: Peripheral Disabled

Table 3-16: Memory Clock Control Register

Memory Clock Control Register GCR_MEM_CTRL [0x0028]

Bits Name Access Reset Description

31:13 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 26

Memory Clock Control Register GCR_MEM_CTRL [0x0028]

Bits Name Access Reset Description

12 icache_ls R/W 0 ICC0 Cache RAM Light Sleep Enable
Set this field to 1 to enable Light Sleep mode for the Internal Cache Controller’s 16KB
RAM. In Light Sleep mode, the Cache RAM contents are retained but the Cache Memory
cannot be read.

0: ICC0 Cache RAM is Active.
1: ICC0 Cache RAM is in Light Sleep mode.

Note: Any reset event that results in a Cache RAM reset will reset the Cache RAM
regardless of the state of this field.

11 ram3_ret 0 System RAM 3 Data Retention Enable
Set this field to 1 to enable Data Retention for System RAM 3
(0x2001 0000 - 0x2001 7FFF). In Light Sleep mode, the System RAM contents are retained
but the Data Memory cannot be read.

0: System RAM 3 is Active.
1: System RAM 3 is in Light Sleep mode.

Note: Any reset event that results in RAM reset will reset the RAM regardless of the state
of this field.
Note: To put RAM in a shutdown mode that removes all power from the RAM and reset
the RAM contents, use the register PWRSEQ_LPMEMSD “Low Power Mode RAM Shut
Down Control”.

10 ram2_ret 0 System RAM 2 Data Retention Enable
Set this field to 1 to enable Data Retention for System RAM 2
(0x2000 8000 - 0x2000 FFFF). In Light Sleep mode, the System RAM contents are retained
but the Data Memory cannot be read.

0: System RAM 2 is Active.
1: System RAM 2 is in Light Sleep mode.

Note: Any reset event that results in RAM reset will reset the RAM regardless of the state
of this field.
Note: To put RAM in a shutdown mode that removes all power from the RAM and reset
the RAM contents, use the register PWRSEQ_LPMEMSD “Low Power Mode RAM Shut
Down Control”.

9 ram1_ret 0 System RAM 1 Data Retention Enable
Set this field to 1 to enable Data Retention for System RAM 1
(0x2000 4000 - 0x2000 7FFF). When data retention is enabled, the RAM contents are
maintained.

0: System RAM 1 is Active.
1: System RAM 1 is in Light Sleep mode.

Note: Any reset event that results in RAM reset will reset the RAM regardless of the state
of this field.
Note: To put RAM in a shutdown mode that removes all power from the RAM and reset
the RAM contents, use the register PWRSEQ_LPMEMSD “Low Power Mode RAM Shut
Down Control”.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 27

Memory Clock Control Register GCR_MEM_CTRL [0x0028]

Bits Name Access Reset Description

8 ram0_ret 0 System RAM 0 Data Retention Enable
Set this field to 1 to enable Data Retention for System RAM 0
(0x2000 0000 - 0x2000 3FFF). In Light Sleep mode, the System RAM contents are retained
but the Data Memory cannot be read.

0: System RAM 0 is Active.
1: System RAM 0 is in Light Sleep mode.

Note: Any reset event that results in RAM reset will reset the RAM regardless of the state
of this field.
Note: To put RAM in a shutdown mode that removes all power from the RAM and reset
the RAM contents, use the register PWRSEQ_LPMEMSD “Low Power Mode RAM Shut
Down Control”.

7:3 - R/W 0 Reserved for Future Use
Do not modify this field.

2:0 fws R/W 5 Flash Wait States
Number of wait-states (system clock cycles) for internal flash read access. Refer to
section Flash Wait States for details on the number of required Flash Wait States at
different operating frequencies.

0: Reserved for Future Use.
1: 1 Wait State (1 System Clock)
2: 2 Wait States
3: 3 Wait States
4: 4 Wait States (Minimum value for HIRC=System Clock=96MHz)
5: 5 Wait States (Reset default)
6: 6 Wait States
7: 7 Wait States

Table 3-17: Memory Zeroization Control Register

Memory Zeroization Control Register GCR_MEM_ZCTRL [0x002C]

Bits Name Access Reset Description

31:2 - RO 0 Reserved for Future Use
Do not modify this field.

1 icache_zero R/W1O 0 Internal Cache Data and Tag RAM Zeroization
Write 1 to clear the Internal Cache Controller’s 16KB data cache and the associated
Tag RAM. The bit is set to 0 by hardware when the operation is complete.

0: Operation complete
1: Zeroize memory

0 sram_zero R/W1O 0 System Data RAM Zeroization
Write 1 to clear the contents of the Internal Data RAM, all ranges. The bit is set to
0 by hardware when the operation is complete.

0: Operation complete
1: Zeroize memory

Table 3-18: System Status Flag Register

System Status Flag Register GCR_SYS_STAT [0x0040]

Bits Name Access Reset Description

31:1 - RO 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 28

System Status Flag Register GCR_SYS_STAT [0x0040]

Bits Name Access Reset Description

0 icelock RO 0 ARM ICE Lock Status Flag
This field is set in the factory and if set to 1 disables JTAG SWD access to the device.

0: ARM ICE is unlocked and JTAG debug may be enabled using GCR_SCON.swd_dis field.
1: ARM ICE is locked (disabled), JTAG SWD is disabled and the GCR_SCON.swd_dis is

read-only.

Table 3-19: Reset Register 1

Reset Register 1 GCR_RST1 [0x0044]

Bits Name Access Reset Description

31:1 - R/W1O 0 Reserved for Future Use
Do not modify this field.

0 i2c1 R/W1O 0 I2C1 Reset
Write 1 to reset the peripheral state and reset the peripheral registers. When complete
this field will read 0.

Table 3-20: Peripheral Clock Disable Register 1

Peripheral Clock Disable Register 1 GCR_PCLK_DIS [0x0048]

Bits Name Access Reset Description

31:4 - R/W 0 Reserved for Future Use
Do not modify this field.

3 flcd R/W 0 Flash Controller Disable
Write 1 to disable the clock to the Flash Controller.

0: Flash Controller Clock Enabled
1: Flash Controller Clock Disabled.

2:0 - R/W 0 Reserved for Future Use
Do not modify this field.

Table 3-21: Event Enable Register

Event Enable Register GCR_EVTEN [0x004C]

Bits Name Access Reset Description

31:2 - RO - Reserved for Future Use
Do not modify this field.

1 rx_evt R/W 0 RX Event Enabled
Set this field to 1 to enable generation of an RXEV event to wake the CPU from a Wait
for Event (WFE) sleep state.

0: RX Event is disable.
1: RX Event is enabled.

0 dmaevent R/W 0 DMA CTZ Event Wake-Up Enable
When set, when a DMA block transfer is completed and the DMA counter
DMAn_CNT.cnt = 0, a CTZ DMA event occurs which generates an RXEV to wake-up the
device from a low power mode entered with a WFE instruction.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 29

Table 3-22: Revision Register

Revision Register GCR_REV [0x0050]

Bits Name Access Reset Description

31:16 - RO - Reserved for Future Use
Do not modify this field.

15:0 revision RO N/A Maxim Integrated Chip Revision
This field reads the chip revision id (A1), ascii encoded.
Revision ‘A1’: 0x4131

Table 3-23: System Status Interrupt Enable Register

System Status Interrupt Enable GCR_SYS_IE [0x0054]

Bits Name Access Reset Description

31:1 - RO - Reserved for Future Use
Do not modify this field.

0 iceulie R/W 0 ARM ICE Unlocked Interrupt Enable
Set this bit to enable a PWRSEQ IRQ if the ARM ICE is unlocked.

0: Interrupt disabled
1: Interrupt enabled

3.12 System Initialization Registers

Refer to the Peripheral Register Map section for the System Initialization Register (SIR) Base Address.

Table 3-24: System Initialization Registers, Offsets and Descriptions

Register Name Offset Access Description

SIR_STAT [0x0000] RO System Initialization Status Register

SIR_ADDR_ER [0x0004] RO System Initialization Address Error Register

Table 3-25: Function Control Register 0

System Initialization Status Register SIR_STAT [0x0000]

Bits Name Access Reset Description

31:2 - RO - Reserved for Future Use
Do Not Modify

1 cfg_err RO See
Description

Configuration Error Flag
This field is set by hardware during reset if an error in the device configuration is
detected.

0: Filter disabled
1: Filter enabled

0 cfg_valid RO See
Description

Configuration Valid Flag
This field is set to 1 by hardware during reset if the device configuration is valid.

0: Configuration Invalid
1: Configuration Valid

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 30

Table 3-26: System Initialization Address Error Register

System Initialization Status Register SIR_ADDR_ER [0x0000]

Bits Name Access Reset Description

31:0 addr RO - Configuration Error Address
If the SIR_STAT.cfg_err field is set to 1. The value in this register is the address of
the configuration failure in the information block.

3.13 Function Control Registers

Refer to the Peripheral Register Map section for the Function Control Register (FCR) Base Address.

Table 3-27: Function Control Registers, Offsets and Descriptions

Register Name Offset Access Description

FCR_REG0 [0x0000] R/W Function Control Register 0

Table 3-28: Function Control Register 0

Function Control Register 0 FCR_REG0 [0x0000]

Bits Name Access Reset Description

31:24 - RO - Reserved for Future Use
Do Not Modify

23 i2c1_scl_filter_en R/W 0 I2C1 SCL Filter Enable
0: Filter disabled
1: Filter enabled

22 i2c1_sda_filter_en R/W 0 I2C1 SDA Filter Enable
0: Filter disabled
1: Filter enabled

21 i2c0_scl_filter_en R/W 0 I2C0 SCL Filter Enable
0: Filter disabled
1: Filter enabled

20 i2c0_sda_filter_en R/W 0 I2C0 SDA Filter Enable
0: Filter disabled
1: Filter enabled

19:0 - R/W - Reserved for Future Use
Do Not Modify

3.14 Power Supply Monitoring

MAX32660 has a power monitor that monitors the external supply voltages during operation. The following power supplies
are monitored:

• VCORE (VCORE) Supply Voltage, CPU Core

• VDD (VDD) Supply Voltage

Each of these supplies has a dedicated power monitor setting in the Power Sequencer Low Power Voltage Control Register,
PWRSEQ_LP_CTRL. When the corresponding power monitor is enabled, the input voltage pin is constantly monitored. If the
voltage drops below the trigger threshold, all registers and peripherals in that power domain are reset. This improves
reliability and safety by guarding against a low voltage condition corrupting the contents of the registers and the device
state. Disabling a power monitor risks data corruption of internal registers and corruption of the device state should the
input voltage drop below the safe minimum value.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 31

VCORE has a power fail monitor. When enabled, if the power supply drops below the power fail reset voltage the entire
device goes into a Power-On Reset.

Refer to the MAX32660 datasheet for the trigger threshold value and power fail reset voltage. When the power supply
monitor is tripped, a Power Fail Warning Interrupt is triggered.

3.15 Power Sequencer Registers

Refer to the Peripheral Register Map section for the Power Sequencer Register (PWRSEQ) Base Address.

Table 3-29: Power Sequencer Low Power Control Registers, Offsets, Access and Descriptions

Register Name Offset Access Reset Description

PWRSEQ_LP_CTRL [0x0000] R/W POR Low Power Voltage Control Register

PWRSEQ_LP_WAKEFL [0x0004] R/W POR Low Power Mode Wakeup Flags for GPIO0

PWRSEQ_LPWK_EN [0x0008] R/W POR GPIO0 Wakeup Enable

PWRSEQ_LPMEMSD [0x0040] R/W POR RAM Shut Down Control

Table 3-30: Low Power Voltage Control Register

Low Power Voltage Control Register PWRSEQ_LP_CTRL [0x0000]

Bits Name Access Reset Description

31:26 - R/W 0 Reserved for Future Use
Do not modify this field.

25 vddio_por_dis R/W 0 VDDIO Power-On-Reset Monitor Disable
Set this field to 1 to disable the VDDIO POR monitor.

0: VDDIO POR Enabled
1: VDDIO POR Disabled

24:21 - R/W 0 Reserved for Future Use
Do not modify this field.

20 vcore_svm_dis R/W 0 VCORE Supply Voltage Monitor Disable
Set this field to 1 to disable the VCORE SVM.

0: VCORE SVM Enabled
1: VCORE SVM Disabled

19:17 - R/W 0 Reserved for Future Use
Do not modify this field.

16 ldo_dis R/W See
Description

LDO Disable
This field initializes to 1 on a Power-On Reset until the hardware determines if an
external power source is connected to the VCORE pin. If no power supply is
connected, this bit is set to 0 by the hardware. If a power supply is connected to
VCORE, the bit remains set to 1.
Set this field to 1 to manually disable the LDO.

0: LDO Enabled.
1: LDO Disabled. Default after a POR.

15:13 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 32

Low Power Voltage Control Register PWRSEQ_LP_CTRL [0x0000]

Bits Name Access Reset Description

12 vcore_por_dis R/W 1 VCORE POR Disable for DEEPSLEEP and BACKUP Mode
Setting this bit to 1 blocks the Power-On-Reset signal to the core when the device is
in DEEPSLEEP and BACKUP mode operation. Disconnecting the POR signal from the
core during DEEPSLEEP and BACKUP modes prevents the core from detecting a POR
event while the device is in DEEPSLEEP or BACKUP mode.

0: POR signal is connected to the core during DEEPSLEEP and BACKUP mode.
1: POR signal is not connected to the core during DEEPSLEEP and BACKUP mode.

11 bg_off R/W 1 Band Gap Disable for DEEPSLEEP and BACKUP Mode
Setting this field to 1 powers off the Bandgap during DEEPSLEEP and BACKUP mode.

0: System Bandgap (SVM) is on in DEEPSLEEP and BACKUP modes
1: System Bandgap (SVM) is off in DEEPSLEEP and BACKUP modes.

10 fast_wk_en R/W 0 Fast Wakeup Enable for DEEPSLEEP Mode
Set to 1 to enable fast wakeup from DEEPSLEEP mode. When enabled, the system
exits DEEPSLEEP mode faster by:

• Bypassing the 8kHz RO warmup

• Reducing the warmup time for the High-Frequency Internal Oscillator.

• Reducing the warmup time for the LDO.

0: Fast Wakeup Mode Disabled
1: Fast Wakeup Mode Enabled

9 - R/W 0 Reserved for Future Use

8 retreg_en R/W 1 RAM Retention Regulator Enable for BACKUP Mode
This field selects the source used to retain the RAM contents during BACKUP mode
operation. Setting this field to 0 sets the VDD supply for RAM retention during
BACKUP mode and disables the RAM retention regulator.

0: RAM retention regulator disabled, the VDD supply is used to retain the state of
the internal SRAM as configured by the PWRSEQ_LP_CTRL.ramret_sel[3:0]
fields.

1: RAM retention regulator enabled. RAM retention in BACKUP mode is configured
with the PWRSEQ_LP_CTRL.ramret_sel[3:0] fields.

7 - R/W 0 Reserved for Future Use
Do not modify this field.

6 vcore_det_bypass R/W 0 Bypass VCORE External Supply Detection
Set this field to 1 if the system runs from a single supply only and VCORE is not
connected to an external supply. Bypassing the hardware detection of an external
supply on VCORE enables a faster wakeup time.

0: VCORE External Supply Detection Enabled.
1: VCORE External Supply Detection Disabled.

Note: This field must always be set to 0 if an external supply is connected to VCORE.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 33

Low Power Voltage Control Register PWRSEQ_LP_CTRL [0x0000]

Bits Name Access Reset Description

5-4 ovr R/W 2 Output Voltage Range for Internal Regulator
Set these bits to control the output voltage of the internal regulator allowing
selection of the internal core operating voltage and the frequency of the internal
high speed oscillator. On Power-On-Reset, this field defaults to 1.1V output ± 10%
with the 𝑓𝐼𝑁𝑇_𝐶𝐿𝐾 = 96𝑀𝐻𝑧.

Note: If VCORE is connected to an external supply voltage, this field should be
modified only to set it to match the input voltage on VCORE.

Dual Supply Operation:
0b11: Reserved for Future Use
0b10: VCORE = 1.1V, fINTCLK=96MHz
0b01: VCORE = 1.0V, fINTCLK=48MHz
0b00: VCORE = 0.9V, fINTCLK=24MHz

Single Supply Operation (VCORE=GND)
0b11: Reserved for Future Use
0b10: VLDO = 1.1V, fINTCLK=96MHz
0b01: VLDO = 1.0V, fINTCLK=48MHz
0b00: VLDO = 0.9V, fINTCLK=24MHz

3 ramret_sel3 R/W 0 System RAM 3 Data Retention Enable
Set this field to 1 to enable Data Retention for System RAM 3, address range of
0x2001 0000 to 0x2001 7FFF.

0: Data retention for System RAM 3 address space disabled.
1: Data retention for System RAM 3 address space enabled.

2 ramret_sel2 R/W 0 System RAM 2 Data Retention Enable
Set this field to 1 to enable Data Retention for System RAM 2, address range of
0x2000 8000 to 0x2000 FFFF.

0: Data retention for System RAM 2 address space disabled.
1: Data retention for System RAM 2 address space enabled.

1 ramret_sel1 R/W 0 System RAM 1 Data Retention Enable
Set this field to 1 to enable Data Retention for System RAM 1, address range of
0x2000 4000 to 0x2000 7FFF.

0: Data retention for System RAM 1 address space disabled.
1: Data retention for System RAM 1 address space enabled.

0 ramret_sel0 R/W 0 System RAM 0 Data Retention Enable
Set this field to 1 to enable Data Retention for System RAM 0, address range of
0x2000 0000 to 0x2000 3FFF.

0: Data retention for System RAM 0 address space disabled.
1: Data retention for System RAM 0 address space enabled.

Table 3-31: Low Power Mode Wakeup Flags for GPIO0

Low Power Mode GPIO Wakeup Flags Register PWRSEQ_LP_WAKEFL [0x0004]

Bits Name Access Reset Description

31:14 - R/W1C 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 34

Low Power Mode GPIO Wakeup Flags Register PWRSEQ_LP_WAKEFL [0x0004]

Bits Name Access Reset Description

13:0 wakest R/W1C 0 GPIO Pin Wakeup Status Flag
When a GPIO pin transitions from low-to-high or high-to-low, the
corresponding bit in this field is set.
If the corresponding interrupt enable bit is set in PWRSEQ_LPWK_EN register
and GCR_PM.gpiowk_en bit is set to 1, a PWRSEQ IRQ is generated to wake up
the device from all low power modes to ACTIVE mode.

Note: To enable the device to wake up from a low power mode on a GPIO pin
transition, first set the GCR GPIO wakeup enable field to 1
(GCR_PM.gpiowk_en = 1).

Table 3-32: Low Power Wakeup Enable for GPIO0 Register

Low Power Mode Wakeup Enable for GPIO0 PWRSEQ_LPWK_EN [0x0008]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 wakeen R/W 0 GPIO Pin Wakeup Interrupt Enable
Write 1 to a bit to enable the corresponding GPIO0 pin to generate a PWRSEQ
IRQ to wake up the device from any low power mode to ACTIVE mode. Set the
GCR_PM.gpiowk_en bit to 1 to enable GPIO wake up events.
A wake up occurs on any low-to-high or high-to-low transition on the
corresponding GPIO0 pin.

Note: To enable the device to wake up from a low power mode on a GPIO pin
transition, first set the global GPIO wakeup enable field,
(GCR_PM.gpiowk_en = 1).

Table 3-33: RAM Shut Down Register

Low-Power Memory Shutdown Register PWRSEQ_LPMEMSD [0x0040]

Bits Name Access Reset Description

31:4 - RO - Reserved for Future Use
Do not modify this field.

3 sram3_off R/W 0 System RAM 3 (0x2001 0000 - 0x2001 7FFF) Shut Down
Write 1 to shut down power to System RAM 3 memory range.

0: System RAM 3 Powered On (Enabled)
1: System RAM 3 Powered Off (Disabled)

2 sram2_off R/W 0 System RAM 2 (0x2000 7FFF - 0x2000 FFFF) Shut Down
Write 1 to shut down power to System RAM 2 memory range.

0: System RAM 2 Powered On (Enabled)
1: System RAM 2 Powered Off (Disabled)

1 sram1_off R/W 0 System RAM 1 (0x2000 3FFF - 0x2000 7FFF) Shut Down
Write 1 to shut down power to System RAM 1 memory range.

0: System RAM 1 Powered On (Enabled)
1: System RAM 1 Powered Off (Disabled)

0 sram0_off R/W 0 System RAM 0 (0x2000 0000 – 0x2000 3FFF) Shut Down
Write 1 to shut down power to System RAM 0 memory range.

0: System RAM 0 Powered On (Enabled)
1: System RAM 0 Powered Off (Disabled)

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 35

4 Flash Controller

The MAX32660’s Flash Controller is a peripheral that manages read, write, and erase accesses to the internal flash.

Features

• Up to 256KB total internal flash memory

 32 pages
 8,192 bytes per page
 2,048 words by 128 bits per page

• 128-bit data reads

• 32-bit or 128-bit write support

• Page erase and mass erase support

• Write Protection

4.1 Overview

The MAX32660 contains 256KB of internal flash memory for storing user application and data. The internal flash memory is
programmable via the JTAG debug interface (in-system) or directly with user application code (in-application).

The flash is organized as an array of pages. Each page is 8,192 bytes per page. Table 4-1, below, shows the start address and
end address for the internal flash memory. The internal flash memory is mapped with a start address of 0x0000 0000 and
an end address of 0x0003 FFFF for a total of 256KB.

Table 4-1: Internal Flash Memory Organization

Page Number Size in Bytes Start Address End Address

1 8,192 0x0000 0000 0x0000 1FFF

2 8,192 0x0000 2000 0x0000 3FFF

3 8,192 0x0000 4000 0x0000 5FFF

4 8,192 0x0000 6000 0x0000 7FFF

5 8,192 0x0000 8000 0x0000 9FFF

… … … …

8 8,192 0x0000 E000 0x0000 FFFF

9 8,192 0x0001 0000 0x0001 1FFF

… … … …

31 8,192 0x0003 C000 0x0003 DFFF

32 8,192 0x0003 E000 0x0003 FFFF

4.2 Usage

The Flash Controller manages write and erase operations for internal flash memory and provides a lock mechanism to
prevent unintentional writes to the internal flash. In-application and in-system programming, page erase and mass erase
operations are supported.

4.2.1 Clock Configuration

The Flash Controller requires a 1MHz peripheral clock for operation. The input clock to the Flash Controller block is the
system clock, 𝑓𝑆𝑌𝑆𝐶𝐿𝐾 . Use the Flash Controller clock divisor to generate 𝑓𝐹𝐿𝐶_𝐶𝐿𝐾 = 1𝑀𝐻𝑧, as shown in Equation 4-1,

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 36

below. For the 96MHz Relaxation Oscillator as the system clock, the FLC_CLKDIV.clkdiv field should be set to 96 (0x60). If
another clock source is set as the system clock, this field must be adjusted to meet the target 1MHz for fFLC_CLK.

Equation 4-1: Flash Controller Clock Frequency

𝑓𝐹𝐿𝐶_𝐶𝐿𝐾 =
𝑓𝑆𝑌𝑆𝐶𝐿𝐾

𝐹𝐿𝐶_𝐶𝐿𝐾𝐷𝐼𝑉. 𝑐𝑙𝑘𝑑𝑖𝑣
= 1𝑀𝐻𝑧

4.2.2 Lock Protection

The Flash Controller provides a locking mechanism to prevent accidental writes and erases. All write and erase operations
require the FLC_CTRL.unlock field be set to 0x2 prior to starting the operation. Writing any other value to this field,
FLC_CTRL.unlock, results in the flash remaining locked.

Note: If a write, page erase or mass erase operation is started and the unlock code was not set to 0x2, the flash controller
hardware sets the access fail flag, FLC_INTR.access_fail, to indicate an access violation occurred.

4.2.3 Flash Write Width

The flash controller supports write widths of either 32-bits or 128-bits. Selection of the flash write width is controlled with
the FLC_CTRL.width field and defaults to 128-bit width on all forms of reset. Setting FLC_CTRL.width to 1 selects 32-bit write
widths.

In 128-bit width mode, the target address bits FLC_ADDR[3:0] are ignored resulting in 128-bit alignment. In 32-bit width
mode, the target address bits FLC_ADDR[1:0] are ignored for 32-bit address alignment. If the desired target address is not
128-bit aligned (FLC_ADDR[3:2] ≠ 0), 32-bit width mode is required.

Table 4-2: Valid Addresses for 32-bit and 128-bit Internal Flash Writes

 FLC_ADDR[31:0]

Bit Number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit Write 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x x x x x x x x x x x x 0 0

128-bit Write 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x x x x x x x x x x 0 0 0 0

4.2.4 Flash Write

Perform the following steps to write to the internal flash memory:

1. If desired, enable flash controller interrupts by setting the FLC_INTR.access_fail_ie and FLC_INTR.done_ie bits.
2. Set the write field, FLC_CTRL.width, as described in Flash Write Width.
3. Set the FLC_ADDR register to a valid target address. Reference Table 4-2.
4. Set the data register or registers.

a. For 32-bit write width, set FLC_DATA0 to the data to write.
b. For 128-bit write width, set FLC_DATA3, FLC_DATA2, FLC_DATA1, and FLC_DATA0 to the data to write.

FLC_DATA3 is the most significant word and FLC_DATA0 is the least significant word.

5. Set FLC_CTRL.unlock to 0x2 to unlock the internal flash.
6. Read the FLC_CTRL.busy bit until it returns 0.
7. Start the flash write, set FLC_CTRL.write to 1 and this field is automatically cleared by the Flash Controller when

the write operation is finished.
8. FLC_INTR.done is set by hardware when the write completes and if an error occurred, the FLC_INTR.access_fail flag

is set. These bits generate a flash IRQ if the interrupt enable bits are set.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 37

4.2.5 Page Erase

Perform the following to erase a page of internal flash memory:

1. If desired, enable flash controller interrupts by setting the FLC_INTR.access_fail_ie and FLC_INTR.done_ie bits.
2. Set the FLC_ADDR register to a page address to erase. FLC_ADDR[12:0] are ignored by the Flash Controller to

ensure the address is page aligned. Refer to Table 4-3 for the valid page aligned addresses for the internal flash
memory.

3. Set FLC_CTRL.unlock to 0x2 to unlock the internal flash.
4. Read the FLC_CTRL.busy bit until it returns 0.
5. Set FLC_CTRL.erase_code to 0x55 for page erase.
6. Set FLC_CTRL.page_erase to 1 to start the page erase operation.
7. The FLC_CTRL.busy bit is set by the flash controller while the page erase is in progress and the

FLC_CTRL.page_erase and FLC_CTRL.busy are cleared by the flash controller when the page erase is complete.
8. FLC_INTR.done is set by hardware when the page erase completes and if an error occurred, the

FLC_INTR.access_fail flag is set. These bits generate a flash IRQ if the interrupt enable bits are set.

Table 4-3: Page Boundary Address Range for Page Erase Operations

 FLC_ADDR[31:0]

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page Aligned
Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0

4.2.6 Mass Erase

Mass erase clears the internal flash memory. This operation requires the JTAG debug port to be enabled to perform the
operation. If the JTAG debug port is not enabled a mass erase operation cannot be performed. Perform the following steps
to mass erase the internal flash:

16. Set FLC_CTRL.unlock to 0x2 to unlock the internal flash.
17. Read the FLC_CTRL.busy bit until it returns 0.
18. Set FLC_CTRL.erase_code to 0xAA for mass erase.
19. Set FLC_CTRL.mass_erase to 1 to start the mass erase operation.
20. The FLC_CTRL.busy bit is set by the flash controller while the mass erase is in progress and the

FLC_CTRL.mass_erase and FLC_CTRL.busy are cleared by the flash controller when the mass erase is complete.
21. FLC_INTR.done is set by the flash controller when the mass erase completes. If an error occurred, the

FLC_INTR.access_fail flag is set. These bits generate a flash controller IRQ if the interrupt enable bits are set.

Note: Mass erase requires the JTAG debug port to be enabled, if the JTAG debug port is disabled on the device an access fail
error is generated (FLC_INTR.access_fail = 1).

4.3 Flash Controller Registers

Table 4-4: Flash Controller Registers, Offsets, Access and Descriptions

Register Name Offset Access Description

FLC_ADDR [0x0000] R/W Flash Controller Address Pointer Register

FLC_CLKDIV [0x0004] R/W Flash Controller Clock Divisor Register

FLC_CTRL [0x0008] R/W Flash Controller Control Register

FLC_INTR [0x0024] R/W1C Flash Controller Interrupt Register

FLC_DATA0 [0x0030] R/W Flash Controller Data Register 0

FLC_DATA1 [0x0034] R/W Flash Controller Data Register 1

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 38

Register Name Offset Access Description

FLC_DATA2 [0x0038] R/W Flash Controller Data Register 2

FLC_DATA3 [0x003C] R/W Flash Controller Data Register 3

Table 4-3. Flash Controller Address Pointer Register

Flash Address Register FLC_ADDR [0x00]

Bits Name Access Reset Description

31:0 addr R\W 0 Flash Address
This field contains the target address for a write operation. A valid internal
flash memory address is required for all write operations. The reset default
is always address 0x00000000.

Table 4-4. Flash Controller Clock Divisor Register

Flash Controller Clock Divisor Register FLC_CLKDIV [0x04]

Bits Name Access Reset Description

31:8 - RO - Reserved for Future Use
Do not modify.

7:0 clkdiv R\W 0x60 Flash Controller Clock Divisor
The system clock is divided by the value in this field to generate the FLC
peripheral clock, fFLC_CLK. The FLC peripheral clock must equal 1MHz. The
default on all forms of reset is 96 (0x60), resulting in fFLC_CLK = 1MHz. If the
OVR is changed, this field must be updated to match the divisor for the
HIRC oscillator to achieve fFLC_CLK = 1MHz.

Table 4-5. Flash Controller Control Register

Flash Controller Control Register FLC_CTRL [0x08]

Bits Name Access Reset Description

31:28 unlock_code R\W 0 Flash Unlock
Write the unlock code, 0x2, prior to any flash write or erase operation to
unlock the Flash. Writing any other value to this field locks the internal
flash.

0x2: Flash unlock code

27:26 - RO - Reserved for Future Use
Do not modify.

25 lve R/W 1 Low Voltage Enable
Set this field to 1 to enable low voltage operation for the flash memory.
Refer to 3.1 Core Operating Voltage Range Selection for detailed usage
information on this setting.

0: Low voltage operation disabled (Default).
1: Low voltage operation enabled.

Note: The PWRSEQ_LP_CTRL.ovr field must be set to 0b00 prior to setting
this field to 1.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 39

Flash Controller Control Register FLC_CTRL [0x08]

Bits Name Access Reset Description

24 busy RO 0 Flash Busy Flag
When this field is set, writes to all flash registers are ignored except for the
FLC_INTR register.

Note: If the Flash Controller is busy (FLC_CTRL.busy = 1), reads, writes and
erase operations are not allowed and result in an access failure
(FLC_INTR.access_fail = 1).

0: Flash idle
1: Flash busy

23:16 - RO 0 Reserved for Future Use
Do not modify this field.

15:8 erase_code R\W 0 Erase Code
Prior to an erase operation this field must be set to 0x55 for a page erase
or 0xAA for a mass erase. The flash must be unlocked prior to setting the
erase code.
This field is automatically cleared after the erase operation is complete.

0x00: Erase disabled.
0x55: Page erase code.
0xAA: Enable mass erase via the JTAG debug port.

7:5 - R\W 0 Reserved for Future Use
Do not modify this field.

4 width R\W 0 Data Width Select
This field sets the data width of a write to the flash page. The Flash
Controller supports either 32-bit wide writes or 128-bit wide writes.

0: 128-bit transactions (FLC_DATA3 - FLC_DATA0)
1: 32-bit transactions (FLC_DATA0 only)

3 - R\W 0 Reserved for Future Use
Do not modify this field.

2 page_erase R\W1O 0 Page Erase
Write a 1 to this field to initiate a page erase at the address in
FLC_ADDR.addr. The flash must be unlocked prior to attempting a page
erase, see FLC_CTRL.unlock for details.
The Flash Controller hardware clears this bit when a page erase operation
is complete.

0: No page erase operation in process or page erase is complete.
1: Write a 1 to initiate a page erase. If this field reads 1, a page erase

operation is in progress.

Note: This field is protected and cannot be set to 0 by application code.

1 mass_erase R\W1O 0 Mass Erase
Write a 1 to this field to initiate a mass erase of the internal flash memory.
The flash must be unlocked prior to attempting a mass erase, see
FLC_CTRL.unlock for details.
The Flash Controller hardware clears this bit when the mass erase
operation completes.

0: No operation
1: Initiate mass erase

Note: This field is protected and cannot be set to 0 by application code.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 40

Flash Controller Control Register FLC_CTRL [0x08]

Bits Name Access Reset Description

0 write R\W1O 0 Write
If this field reads 0, no write operation is pending for the flash. To initiate a
write operation, set this bit to 1 and the Flash Controller will write to the
address set in the FLC_ADDR register.

0: No write operation in process or write operation complete.
1: Write 1 to initiate a write operation. If this field reads 1, a write

operation is in progress.

Note: This field is protected and cannot be set to 0 by application code.

Table 4-5: Flash Controller Interrupt Register

Flash Controller Interrupt Register FLC_INTR [0x24]

Bits Name Access Reset Description

31:10 - R\W 0 Reserved for Future Use
Do not modify.

9 access_fail_ie R\W 0 Flash Access Fail Interrupt Enable
Set this bit to 1 to enable interrupts on flash access failures.

0: Disabled
1: Enabled

8 done_ie R\W 0 Flash Operation Complete Interrupt Enable
Set this bit to 1 to enable interrupts on flash operations complete.

0: Disabled
1: Enabled

7:2 - RO 0 Reserved for Future Use
Do not modify.

1 access_fail R\W0C 0 Flash Access Fail Interrupt Flag
This bit is set when an attempt is made to write to the flash while the flash
is busy or locked. Only hardware can set this bit to 1. Writing a 1 to this bit
has no effect. This bit is cleared by writing a 0.

0: No access failure has occurred.
1: Access failure occurred.

0 done R\W1C 0 Flash Operation Complete Interrupt Flag
This flag is automatically set by hardware after a flash write or erase
operation completes.

0: Operation not complete or not in process.
1: Flash operation complete.

Table 4-6: Flash Controller Data Register 0

Flash Controller Data Register 0 FLC_DATA0 [0x30]

Bits Name Access Reset Description

31:0 data0 R\W 0 Flash Data 0
Flash data for bits 31:0.

Table 4-7: Flash Controller Data Register 1

Flash Controller Data Register 1 FLC_DATA1 [0x34]

Bits Name Access Reset Description

31:0 data1 R\W 0 Flash Data 1
Flash data for bits 63:32

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 41

Table 4-8: Flash Controller Data Register 2

Flash Controller Data Register 2 FLC_DATA2 [0x38]

Bits Name Access Reset Description

31:0 data2 R\W 0 Flash Data 2
Flash data for bits 95:64

Table 4-9: Flash Controller Data Register 3

Flash Controller Data Register 3 FLC_DATA3 [0x3C]

Bits Name Access Reset Description

31:0 data3 R\W 0 Flash Data 3
Flash data for bits 127:96.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 42

5 General-Purpose I/O and Alternate Function Pins

The general-purpose I/O (GPIO) pins share both a firmware-controlled I/O mode and up to three peripheral alternate
functions. Each pin is individually enabled for GPIO or peripheral alternate function 1 (AF1), alternate function 2 (AF2) or
alternate function 3 (AF3). Configuring a pin for an alternate function supersedes its use as a firmware-controlled GPIO,
however the input data is always readable via the GPIO input register if the GPIO input is enabled.

Multiplexing between the alternate functions and the I/O function is often static in an application; set at initialization and
dedicated as either an alternate function or GPIO. If needed, dynamic multiplexing between AF1, AF2, AF3 and I/O mode is
supported. Dynamic multiplexing must be managed by the application firmware and the application must manage the AFs
and GPIO to ensure each is set up properly when switching from a peripheral to the I/O function. Refer to MAX32660 Data
Sheet Electrical Characteristics Table for information on the GPIO pin behavior based on the configurations described in this
document.

In GPIO mode each I/O pin supports interrupt function that can be independently enabled, and configured as a level
triggered interrupt, a rising edge, falling edge or both rising and falling edge interrupt. All GPIO share the same interrupt
vector. Some packages do not have all the GPIO available.

The GPIO are all bidirectional digital I/O that include:

• Input Mode Features

 Standard CMOS or Schmitt Hysteresis
 Input data from the input data register (GPIO0_IN) or to a peripheral (alternate function)
 Input state selectable for floating (tri-state) or weak pull-up/pull-down

• Output Mode Features

 Output data from the output data register (GPIO0_OUT) in GPIO mode
 Output data driven from peripheral if an Alternate Function is selected
 Standard GPIO

▪ Four drive strength modes
▪ Slow or Fast slew rate selection

 GPIO with I2C as an Alternate Function

▪ Two drive strength modes

• Selectable weak pull-up resistor, weak pull-down resistor or tri-state mode for Standard GPIO pins

• Selectable weak pull-down or tri-state mode for GPIO pins with I2C as an Alternate Function

• Wake from low power modes on rising edge, falling edge or both on the I/O pins

5.1 General Description

The MAX32660 provides up to 14 GPIO pins in the 20-TQFN package and up to 10 GPIO pins in the 16-WLP. Each GPIO pin
maps to a GPIO port. For the MAX32660 all GPIO pins are grouped in GPIO port 0 (GPIO0). Table 5-1 and Table 5-2, below,
show the GPIO and the assigned AF1, AF2 and AF3 for the 16-WLP and 20-TQFN packages of the MAX32660.

A dedicated interrupt vector is assigned for GPIO port 0 and is detailed in the section Interrupt.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 43

Table 5-1: GPIO Port, Pin Name and Alternate Function Matrix, 16-WLP

16-WLP

GPIO Port[bit] GPIO Alternate Function 1 Alternate Function 2 Alternate Function 3

GPIO0[0] P0.0 SWDIO1 SPI_MISO (I2S_SDI)2 UART1_TX1

GPIO0[1] P0.1 SWDCLK1 SPI1_MOSI (I2S_SDO)2 UART1_RX1

GPIO0[2]3 P0.2 I2C1_SCL SPI1_SCK (I2S_BCLK)2 32KCAL

GPIO0[3]3 P0.3 I2C1_SDA SPI1_SS0 (I2S_LRCLK)2 TMR0

GPIO0[4] P0.4 SPI0_MISO UART0_TX -

GPIO0[5] P0.5 SPI0_MOSI UART0_RX -

GPIO0[6] P0.6 SPI0_SCK UART0_CTS UART1_TX1

GPIO0[7] P0.7 SPI0_SS0 UART0_RTS UART1_RX1

GPIO0[8]3 P0.8 I2C0_SCL SWDIO1 -

GPIO0[9]3 P0.9 I2C0_SDA SWDCLK1 -

Table 5-2: GPIO Port, Pin Name and Alternate Function Matrix, 20-TQFN

20-TQFN

GPIO Port[bit] GPIO Alternate Function 1 Alternate Function 2 Alternate Function 3

GPIO0[0] P0.0 SWDIO1, SPI1_MISO (I2S_SDI)1,2 UART1_TX1

GPIO0[1] P0.1 SWDCLK1 SPI1_MOSI (I2S_SDO)1,2 UART1_RX1

GPIO0[2]3 P0.2 I2C1_SCL SPI1_SCK (I2S_BCLK)1,2 32KCAL

GPIO0[3]3 P0.3 I2C1_SDA SPI1_SS0 (I2S_LRCLK)1,2 TMR0

GPIO0[4] P0.4 SPI0_MISO UART0_TX -

GPIO0[5] P0.5 SPI0_MOSI UART0_RX -

GPIO0[6] P0.6 SPI0_SCK UART0_CTS UART1_TX1

GPIO0[7] P0.7 SPI0_SS0 UART0_RTS UART1_RX1

GPIO0[8]3 P0.8 I2C0_SCL SWDIO1 -

GPIO0[9]3 P0.9 I2C0_SDA SWDCLK1 -

GPIO0[10] P0.10 SPI1_MISO (I2S_SDI)1,2 UART1_TX1

GPIO0[11] P0.11 SPI1_MOSI_ (I2S_SDO)1,2 UART1_RX1

GPIO0[12] P0.12 SPI1_SCK (I2S_BCLK)1,2 UART1_CTS

GPIO0[13] P0.13 SPI1_SS0 (I2S_LRCLK)1,2 UART1_RTS

1 This alternate function signal is mappable to more than one GPIO pin but there is only one instance of this peripheral in the MAX32660.
2 I2S_BCLK, I2S_LRCLK, I2S_SDK, I2S_SDO when the I2S function is enabled.
3 GPIO with I2C as an Alternate Function do not support slew rate control and only support two output drive strength modes.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 44

5.2 Power-On-Reset Configuration

During a power-on-reset event all I/O default to GPIO mode as inputs floating except the SWD JTAG pins P0.0 and P0.1. The
SWD JTAG pins always default to Alternate Function 1 enabled and the SWD JTAG is enabled.

Following a POR event GPIO[2:13] are configured with the following default settings:

• GPIO mode enabled

 GPIO0_AF0_SEL[pin] = 1
 GPIO0_AF1_SEL[pin] = 0

• Pull-up/Pull-down disabled, I/O in Hi-Z mode

 GPIO0_PULL_EN[pin] = 0

• Output mode disabled

 GPIO0_OUT_EN[pin] = 0

• Interrupt disabled

 GPIO0_INT_EN[pin] = 0

Note: On parts without a SWD JTAG port, the SWD JTAG port is still available for boundary scan testing, however, the SWD
JTAG port is hardware disabled. To use the SWD JTAG pins in I/O mode, set the desired GPIO pins for SWD alternate function
and set the JTAG SWD disable field to 1 (GCR_SCON.swd_dis = 1).

5.2.1 I/O Mode and Alternate Function Selection

Each I/O pin supports standard GPIO mode or one of up to three Alternate Function modes. The alternate functions
assigned to each I/O pin are shown in the pin description table for the specific package. See Table 5-1 for the 16-WLP, and
Table 5-2 for the 20-TQFN.

5.2.2 Input mode configuration

Perform the following steps to configure a pin or pins for input mode:

1. Set the pin for I/O mode
a. GPIO0_AF0_SEL[pin] = 1
b. GPIO0_AF1_SEL[pin] = 0

2. Configure the pin for pull-up, pull-down, or high-impedance mode. Refer to GPIO_PULL_SEL register for pull-up
and pull-down selection
a. GPIO with I2C as an alternate function (GPIO[9:8] and GPIO[3:2]) only support high-impedance mode or a

weak pull-down resistor.
b. Set GPIO0_PULL_EN[pin] to 1 to enable the pull resistor or clear the bit to set the input to high impedance

mode.
3. Read the input state of the pin using the GPIO0_IN[pin] field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 45

5.2.3 Output Mode Configuration

Perform the following steps to configure a pin for output mode:

1. Set the pin for I/O mode.
a. GPIO0_AF0_SEL[pin] = 1GPIO0_AF1_SEL[pin] = 0
b. Enable the output buffer for the pin by setting GPIO0_OUT_EN[pin] to 1.

2. Set the output drive strength using the GPIO0_DS1_SEL [pin] and GPIO0_DS0_SEL[pin] bits. Refer to the GPIO Drive
Strength for configuration details and the modes supported. Reference the MAX32660 datasheet for the electrical
characteristics for the drive strength modes.

3. Set the output high or low using the GPIO0_OUT[pin] bit.

5.2.4 GPIO Drive Strength

Each I/O pin supports multiple selections for drive strength. Standard GPIO pins are configured for the supported modes
using the GPIO0_DS1_SEL and GPIO0_DS0_SEL registers as shown in Table 5-3, below.

For GPIO with I2C as an Alternate Function, Table 5-4 shows the drive strength setting options.

Table 5-3: Standard GPIO Drive Strength Selection

Drive Strength
VDD = 1.62V

Drive Strength
VDD = 3.63V

GPIO_DS1_SEL[pin] GPIO_DS0_SEL[pin]

1mA 2mA 0 0

2mA 4mA 0 1

4mA 8mA 1 0

8mA 12mA 1 1

Table 5-4: GPIO with I2C Alternate Function Drive Strength Selection

Drive Strength
VDD = 1.62V

Drive Strength
VDD = 3.63V

GPIO_DS0_SEL[pin]

2mA 4mA 0

10mA 20mA 1

Note: The drive strength currents shown are targets only. Refer to the MAX32660 Data Sheet Electrical Characteristics table
for details of the VOL_GPIO, VOH_GPIO, VOL_I2C and VOH_I2C parameters.

5.3 Alternate Function Configuration

Table 5-5, below, shows the alternate function selection matrix. Write the GPIO0_AF0_SEL and GPIO0_AF1_SEL fields as
shown in the table to select the desired alternate function.

Table 5-5: GPIO Mode and Alternate Function Selection

GPIO MODE GPIO0_AF1_SEL[pin] GPIO0_AF0_SEL[pin]

I/O 0 1

Alternate Function 1 0 0

Alternate Function 2 1 0

Alternate Function 3 1 1

Note: Each Alternate Function for a given peripheral is independently selectable. Mixing functions assigned to AF1, AF2 or
AF3 is supported as long as all of the peripheral’s required functions are enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 46

5.4 Configuring GPIO (External) Interrupts

Each GPIO supports external interrupt events when the GPIO is configured for I/O mode and the input mode is enabled. If
the GPIO is configured as a peripheral alternate function, the interrupts are peripheral controlled. GPIO interrupts can be
enabled for any number of GPIO on each GPIO port. The following procedure details the steps for enabling Active mode
interrupt events for a GPIO pin:

1. Disable interrupts by setting the GPIO0_INT_EN[pin] field to 0. This will prevent any new interrupts on the pin
from triggering but will not clear previously triggered (pending) interrupts. The application can disable all
interrupts for GPIO by writing 0 to GPIO0_INT_EN[13:0]. To maintain previously enabled interrupts, read the
GPIO0_INT_EN register and save the value to memory prior to setting the register to 0.

2. Clear pending interrupts by writing 1 to the GPIO0_INT_FL[pin] bit.
3. Set GPIO0_INT_MODE[pin] to select either level (0) or edge triggered (1) interrupts.

a. For level triggered interrupts, the interrupt triggers on an input high or low.
i. GPIO0_INT_POL[pin] = 1: Input high triggers interrupt.
ii. GPIO0_INT_POL[pin] = 0: Input low triggers interrupt.

b. For edge triggered interrupts, the interrupt triggers on an edge event.
i. GPIO0_INT_POL[pin] = 0: Input rising edge triggers interrupt.
ii. GPIO0_INT_POL[pin] = 1: Input falling edge triggers interrupt.

c. Optionally set GPIO0_INT_DUAL_EDGE[pin] to 1 to trigger on both the rising and falling edges of the input
signal.

4. Set GPIO0_INT_EN[pin] to 1 to enable the interrupt for the pin.

5.4.1 Interrupts

The GPIO pins generate interrupts if the pin is configured for I/O mode and the interrupt is enabled for the pin
(GPIO0_INT_EN[pin] = 1). See Table 5-5 for details on configuring a pin for I/O mode.

Table 5-6: GPIO Port Interrupt Vector Mapping

GPIO Interrupt Source
GPIO Interrupt Flag

Register
Device Specific Interrupt

Vector Number
GPIO Interrupt Vector

GPIO0[13:0] GPIO0_INT_FL 40 GPIO0_IRQHandler

To handle GPIO interrupts in your interrupt vector handler, complete the following steps:

1. Read the GPIO0_INT_FL register to determine the GPIO pin that triggered the interrupt. The bit position that reads
1 indicates the pin that resulted in the interrupt event. If multiple bits are set, each of them indicates an interrupt
event occurred on the respective pin.

2. Complete interrupt tasks associated with the interrupt source pin (application defined).
3. Clear the interrupt flag in the GPIO0_INT_FL register by writing 1 to the GPIO0_INT_FL bit positions that triggered

the interrupt. This also clears and rearms the edge detectors for edge triggered interrupts.
4. Return from the interrupt vector handler.

5.4.2 Using GPIO for Wakeup from Low Power Modes

Low power modes support wakeup from external edge triggered interrupts on the GPIO ports. Level triggered interrupts are
not supported for wakeup because the system clock must be active to detect levels.

For wake-up interrupts on the GPIO a single interrupt vector, GPIOWAKE_IRQHandler, is assigned for all the GPIO pins.
When the wakeup event occurs, the application software must interrogate the GPIO0_INT_FL register to determine which
external pin caused the wake-up event.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 47

Table 5-7: GPIO Wakeup Interrupt Vector

GPIO Wake Interrupt
Source

GPIO Wake Interrupt
Status Register

Device Specific Interrupt
Vector Number

GPIO Wakeup
Interrupt Vector

GPIO0[0:13] GPIO0_INT_FL 70 GPIOWAKE_IRQHandler

Enable low power mode wakeup (SLEEP, DEEPSLEEP and BACKUP) from an external GPIO event by completing the following
steps:

1. Set the polarity (rising or falling edge) by writing to the GPIO0_INT_POL[pin] field. The wakeup functionality uses
rising and falling edge detection circuitry that operates asynchronously and does not require an active clock. Dual-
edge mode is also an option to accomplish edge detection wakeup.

2. Clear pending interrupt flags by writing 0xFF to the GPIO0_INT_FL register.
3. Activate the GPIO wakeup function by writing 1 to GPIO0_WAKE_EN[pin].
4. Configure the power manager to use the GPIO as a wakeup source by writing to the appropriate Global Control

register (GCR).

5.5 GPIO Registers

Refer to the Peripheral Register Map section for the GPIO Port 0 base address.

Table 5-8: GPIO Port 0 Registers

Offset Register Name Access Description

[0x0000] GPIO0_AF0_SEL R/W I/O and Alternate Function 1 Select Register

[0x000C] GPIO0_OUT_EN R/W Output Enable Register

[0x0018] GPIO0_OUT R/W Output Register

[0x0024] GPIO0_IN RO Input Register

[0x0028] GPIO0_INT_MODE R/W Interrupt Mode Register

[0x002C] GPIO0_INT_POL R/W Interrupt Polarity Select Register

[0x0034] GPIO0_INT_EN R/W Interrupt Enable Register

[0x0040] GPIO0_INT_FL R/W1C Interrupt Flag Register

[0x004C] GPIO0_WAKE_EN R/W Wakeup Enable Register

[0x005C] GPIO0_INT_DUAL_EDGE R/W Dual Edge Select Interrupt Register

[0x0060] GPIO0_PULL_EN R/W Input Pullup/Pulldown Select Register

[0x0068] GPIO0_AF1_SEL R/W Alternate Function 2/3 Select Register

[0x00A8] GPIO0_INHYS_EN R/W Input Hysteresis Enable Register

[0x00AC] GPIO0_SR_SEL R/W Slew Rate Select Register

[0x00B0] GPIO0_DS0_SEL R/W Drive Strength Select 0 Register

[0x00B4] GPIO0_DS1_SEL R/W Drive Strength Select 1 Register

[0x00B8] GPIO_PULL_SEL R/W Pullup/Pulldown Enable Register

5.6 GPIO Port 0 Register Details

Table 5-9: GPIO Alternate Function 0 Select Register

GPIO Alternate Function 0 Select Register GPIO0_AF0_SEL [0x0000]

Bits Name Access Reset Description

31:14 - R/W 1 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 48

GPIO Alternate Function 0 Select Register GPIO0_AF0_SEL [0x0000]

Bits Name Access Reset Description

13:2 R/W 1 GPIO Alternate Function 0 Mode Select
If JTAG debug is available on the part, this pin defaults to the JTAG alternate
function (TCK/SWCLK) on all forms of reset.

0: Alternate function JTAG TCK/SWCLK enabled (default).
1: GPIO enabled

1 - R/W 0 GPIO Alternate Function 0 Mode Select
If JTAG debug is available on the part, this pin defaults to the JTAG alternate
function (TMS/SWDIO) on all forms of reset.

0: Alternate function JTAG TMS/SWDIO enabled (default).
1: GPIO enabled

0 - R/W 0 GPIO Enable
If JTAG debug is available on the part, this pin defaults to the JTAG alternate
function (TDO) on all forms of reset.

0: Alternate function JTAG TDO enabled (default).
1: GPIO enabled

Table 5-10: GPIO Output Enable Register

Output Enable Register GPIO0_OUT_EN [0x000C]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:2 - R/W 0 GPIO Output Enable
Setting a bit to 1 enables the output driver for the respective pin.

0: Output mode disabled, output driver disabled.
1: Output mode enabled, output driver enabled.

1 - R/W 1 GPIO Output Enable
This bit is set to 1 on POR and is used for the SWDIO alternate function with the
output driver enabled.

0: Output mode disabled, output driver disabled.
1: Output mode enabled, output driver enabled.

0 - R/W 0 GPIO Output Enable
This bit is set to 0 on POR and is used for the SWDCLK alternate function with the
output driver disabled. Setting this bit to 1 enables the output driver for the pin.

0: Output mode disabled, output driver disabled.
1: Output mode enabled, output driver enabled.

Table 5-11: GPIO Output Register

GPIO Output Register GPIO0_OUT [0x0018]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - R/W 0 GPIO Output Level
Set the corresponding output pin high or low.

0: Drive the corresponding output pin low (logic 0).
1: Drive the corresponding output pin high (logic 1).

Note: This bit is ignored if the corresponding bit position in the GPIO0_OUT_EN
register is not set or if the pin is configured for an alternate function.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 49

Table 5-12: GPIO Input Register

GPIO Input Register GPIO0_IN [0x0024]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - RO - GPIO Input Level
Read the state of the corresponding input pin. The input state is always readable
for a pin regardless of the pin’s configuration as an output or alternate function.

0: Input pin low (logic 0)
1: Input pin high (logic 1)

Table 5-13: GPIO Port Interrupt Mode Register

GPIO Port Interrupt Mode Register GPIO0_INT_MODE [0x0028]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - R/W 0 GPIO Interrupt Mode
Interrupt mode selection bit for the corresponding GPIO pin.

0: Level triggered interrupt for corresponding GPIO pin.
1: Edge triggered interrupt for corresponding GPIO pin.

Note: This bit has no effect unless the corresponding bit in the GPIO0_INT_EN
register is set.

Table 5-14: GPIO Port Interrupt Polarity Registers

GPIO Port Interrupt Polarity Register GPIO0_INT_POL [0x002C]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - R/W 0 GPIO Interrupt Polarity
Interrupt polarity selection bit for the corresponding GPIO pin.

Level triggered mode (GPIO0_INT_MODE = 0):
0: Input low (logic 0) triggers interrupt.
1: Input high (logic 1) triggers interrupt.

Edge triggered mode (GPIO0_INT_MODE = 1):
0: Falling edge triggers interrupt
1: Rising edge triggers interrupt.

Note: This bit has no effect unless the corresponding bit in the GPIO0_INT_EN
register is set.

Table 5-15: GPIO Port Interrupt Enable Registers

GPIO Port Interrupt Enable Register GPIO0_INT_EN [0x0034]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 50

GPIO Port Interrupt Enable Register GPIO0_INT_EN [0x0034]

Bits Name Access Reset Description

13:0 - R/W 0 GPIO Interrupt Enable
Enable or Disable the interrupt for the corresponding GPIO pin.

0: GPIO interrupt disabled.
1: GPIO interrupt enabled.

Note: Disabling a GPIO interrupt does not clear pending interrupts for the
associated pin. Use the GPIO0_INT_CLR register to clear pending interrupts.

Table 5-16: GPIO Interrupt Flag Register

GPIO Interrupt Flag Register GPIO0_INT_FL [0x0040]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - RO 0 GPIO Interrupt Status
An interrupt is pending for the associated GPIO pin when this bit reads 1.

0: No interrupt pending for associated GPIO pin.
1: GPIO interrupt pending for associated GPIO pin.

Note: Write a 1 to the corresponding bit in the GPIO0_INT_CLR register to clear
the interrupt pending status flag.

Table 5-17: GPIO Wakeup Enable Registers

GPIO Wakeup Enable Register GPIO0_WAKE_EN [0x004C]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - R/W 0 GPIO Wakeup Enable
Enable the I/O as a wakeup from low power modes (SLEEP, DEEPSLEEP, BACKUP).

0: GPIO is not enabled as a wakeup source from low power modes.
1: GPIO is enabled as a wakeup source from low power modes.

Table 5-18: GPIO Interrupt Dual Edge Mode Registers

GPIO Interrupt Dual Edge Mode Register GPIO0_INT_DUAL_EDGE [0x005C]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - R/W 0 GPIO Interrupt Dual-Edge Mode Select
Setting this bit selects dual edge mode triggered interrupts (rising and falling edge
triggered) if the associated GPIO0_INT_MODE bit is set to edge triggered. When
dual edge mode is set and the interrupt mode is edge-triggered, the associated
polarity (GPIO0_INT_POL) setting has no effect.

0: Dual edge detection mode interrupts disabled.
1: Dual edge detection mode interrupts enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 51

Table 5-19: GPIO Pullup/Pulldown Enable Register

GPIO Port Pullup Pulldown Selection 0 Register GPIO0_PULL_EN [0x0060]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:10 - R/W 0 GPIO Pull Up/Pull Down Enable
Setting this bit to 1 enables either the weak pull-up or weak pull-down resistor on
the respective pin. The selection for pull-up or pull-down resistor is set using the
GPIO_PULL_SEL register.

9:8 - R/W 0 GPIO Pull Down Enable
Setting this bit to 1 enables the weak pull-down resistor on the respective I/O pin.
GPIO with I2C as an alternate function do not support a weak pull-up resistor. If
either of the GPIO_PULL_SEL[9:8] bits are set to 1, setting the same bit in this
register has no effect.

0: Pull down resistor disable.
1: Pull down resistor enabled if respective bit in GPIO_PULL_SEL register is set to

0. No effect if respective bit in GPIO_PULL_SEL register is set to 1.

Table 5-20: GPIO Alternate Function Select Register

GPIO Alternate Function Select Register GPIO0_AF1_SEL [0x0068]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - R/W 0 GPIO Alternate Function 1 Mode Select
This bit combined with the corresponding bit in the GPIO0_AF0_SEL register set
the I/O pin to GPIO mode or to Alternate Function 1, 2, or 3. Refer to Table 5-5:
GPIO Mode and Alternate Function Selection for details on selection.

Table 5-21: GPIO Input Hysteresis Enable Register

GPIO Input Hysteresis Enable Register GPIO0_INHYS_EN [0x00A8]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:0 - R/W 0 GPIO Input Hysteresis Enable
Setting a bit to 1 enables a Schmitt input to introduce hysteresis for better noise
immunity on the respective bit’s port pin.

0: Input pin uses a standard CMOS input.
1: Schmitt input enabled.

Table 5-22: GPIO Slew Rate Enable Register

GPIO Slew Rate Select Register GPIO0_SR_SEL [0x00AC]

Bits Name Access Reset Description

31: 14 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 52

GPIO Slew Rate Select Register GPIO0_SR_SEL [0x00AC]

Bits Name Access Reset Description

13:10 - R/W 0 GPIO Slew Rate Mode
Selects between fast and slow slew rate for the respective I/O pin. Setting a bit to
1 enables slow slew rate for the respective I/O pin.

0: Fast slew rate selected.
1: Slow slew rate selected.

Note: Refer to the MAX32660 datasheet for detailed electrical characteristics of
the fast and slow slew rates.

9:8 - R/W 0 Reserved for Future Use
Do not modify this field.

Note: I/O pins with I2C as an alternate function do not support slew rate selection.

7:4 - R/W 0 GPIO Slew Rate Mode
Selects between fast and slow slew rate for the respective I/O pin. Setting a bit to
1 enables slow slew rate for the respective I/O pin.

0: Fast slew rate selected.
1: Slow slew rate selected.

Note: Refer to the MAX32660 datasheet for detailed electrical characteristics of
the fast and slow slew rates.

3:2 - R/W 0 Reserved for Future Use
Do not modify this field.

Note: I/O pins with I2C as an alternate function do not support slew rate selection.

1:0 - R/W 0 GPIO Slew Rate Mode
Selects between fast and slow slew rate for the respective I/O pin. Setting a bit to
1 enables slow slew rate for the respective I/O pin.

0: Fast slew rate selected.
1: Slow slew rate selected.

Note: Refer to the MAX32660 datasheet for detailed electrical characteristics of
the fast and slow slew rates.

Table 5-23: GPIO Drive Strength 0 Select Register

GPIO Drive Strength 0 Select Register GPIO0_DS0_SEL [0x00B0]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:10 - R/W 0 GPIO Drive Strength 0 Select
The output drive strength supports four modes. The mode selection is set using the
combination of the GPIO0_DS1_SEL and GPIO0_DS0_SEL bits for the associated GPIO
pin. Refer to the GPIO Drive Strength section, above, for the selection options on
these I/O pins.

Refer to the symbols VOL_GPIO and VOH_GPIO in the MAX32660 Data Sheet Electrical
Characteristics table for details of the drive strengths for these I/O pins.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 53

GPIO Drive Strength 0 Select Register GPIO0_DS0_SEL [0x00B0]

Bits Name Access Reset Description

9:8 - R/W 0 GPIO Drive Strength Select
Selection of high drive strength or low drive strength for the I/O pin. Pins with I2C as
an alternate function only support two drive strength options.

0: Low output drive strength selected.
1: High output drive strength selected.

Refer to VOL_I2C and VOH_I2C in the MAX32660 Data Sheet Electrical Characteristics
table for details of the drive strengths for these I/O pins.

7:4 - R/W 0 GPIO Drive Strength 0 Select
The output drive strength supports four modes. The mode selection is set using the
combination of the GPIO0_DS1_SEL and GPIO0_DS0_SEL bits for the associated GPIO
pin. Refer to the GPIO Drive Strength section, above, for the selection options on
these I/O pins.

Refer to the symbols VOL_GPIO and VOH_GPIO in the MAX32660 Data Sheet Electrical
Characteristics table for details of the drive strengths for these I/O pins.

3:2 - R/W 0 GPIO Drive Strength Select
Selection of high drive strength or low drive strength for the I/O pin. Pins with I2C as
an alternate function only support two drive strength options.

0: Low output drive strength selected.
1: High output drive strength selected.

Refer to VOL_I2C and VOH_I2C in the MAX32660 Data Sheet Electrical Characteristics
table for details of the drive strengths for these I/O pins.

1:0 - R/W 0 GPIO Drive Strength 0 Select
The output drive strength supports four modes. The mode selection is set using the
combination of the GPIO0_DS1_SEL and GPIO0_DS0_SEL bits for the associated GPIO
pin. Refer to the GPIO Drive Strength section, above, for the selection options on
these I/O pins.

Refer to the symbols VOL_GPIO and VOH_GPIO in the MAX32660 Data Sheet Electrical
Characteristics table for details of the drive strengths for these I/O pins.

Table 5-24: GPIO Drive Strength 1 Select Register

GPIO Drive Strength 1 Select Register GPIO0_DS1_SEL [0x00B4]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:10 - R/W 0 GPIO Drive Strength 1 Select
The output drive strength supports four modes. The mode selection is set using
the combination of the GPIO0_DS1_SEL and GPIO0_DS0_SEL bits for the
associated GPIO pin. Refer to the GPIO Drive Strength section, above, for details
on the selection options.

Refer to the symbols VOL_GPIO and VOH_GPIO in the MAX32660 Data Sheet Electrical
Characteristics table for details of the drive strengths for these I/O pins.

9:8 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 54

GPIO Drive Strength 1 Select Register GPIO0_DS1_SEL [0x00B4]

Bits Name Access Reset Description

7:4 - R/W 0 GPIO Drive Strength 1 Select
The output drive strength supports four modes. The mode selection is set using
the combination of the GPIO0_DS1_SEL and GPIO0_DS0_SEL bits for the
associated GPIO pin. Refer to the GPIO Drive Strength section, above, for the
selection options on these I/O pins.

Refer to the symbols VOL_GPIO and VOH_GPIO in the MAX32660 Data Sheet Electrical
Characteristics table for details of the drive strengths for these I/O pins.

3:2 - R/W 0 Reserved for Future Use
Do not modify this field.

1:0 - R/W 0 GPIO Drive Strength 1 Select
The output drive strength supports four modes. The mode selection is set using
the combination of the GPIO0_DS1_SEL and GPIO0_DS0_SEL bits for the
associated GPIO pin. Refer to the GPIO Drive Strength section, above, for the
selection options on these I/O pins.

Refer to the symbols VOL_GPIO and VOH_GPIO in the MAX32660 Data Sheet Electrical
Characteristics table for details of the drive strengths for these I/O pins.

Table 5-25: GPIO Pullup/Pulldown Select Register

GPIO Pullup/Pulldown Select Register GPIO_PULL_SEL [0x00B8]

Bits Name Access Reset Description

31:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:10 - R/W 0 Pullup/Pulldown Resistor Select
Selects either a weak pull-up or weak pull-down resistor for the respective I/O
pin.

0: Pull-down resistor selected
1: Pull-up resistor selected

Refer to the MAX32660 Data Sheet Electrical Characteristics table for details of
the pull-up/pull-down resistors for the respective I/O pins.

9:8 - R/W 0 Pulldown Resistor Select
This bit should always be set to 0. The I/O pins with I2C as an alternate function
only a weak pull-down resistor.

0: Pull-down resistor selected
1: Invalid

Refer to the MAX32660 Data Sheet Electrical Characteristics table for details of
the pull-up/pull-down resistors for the respective I/O pins.

7:4 - R/W 0 Pullup/Pulldown Resistor Select
Selects either a weak pull-up or weak pull-down resistor for the respective I/O
pin.

0: Pull-down resistor selected
1: Pull-up resistor selected

Refer to the MAX32660 Data Sheet Electrical Characteristics table for details of
the pull-up/pull-down resistors for the respective I/O pins.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 55

GPIO Pullup/Pulldown Select Register GPIO_PULL_SEL [0x00B8]

Bits Name Access Reset Description

3:2 - R/W 0 Pulldown Resistor Select
This bit should always be set to 0. The I/O pins with I2C as an alternate function
only a weak pull-down resistor.

0: Pull-down resistor selected
1: Invalid

Refer to the MAX32660 Data Sheet Electrical Characteristics table for details of
the pull-up/pull-down resistors for the respective I/O pins.

1:0 - R/W 0 Pullup/Pulldown Resistor Select
Selects either a weak pull-up or weak pull-down resistor for the respective I/O
pin.

0: Pull-down resistor selected
1: Pull-up resistor selected

Refer to the MAX32660 Data Sheet Electrical Characteristics table for details of
the pull-up/pull-down resistors for the respective I/O pins.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 56

6 DMA Controller

The Direct Memory Access controller (DMAC) is a hardware feature that moves data blocks from peripheral to memory,
memory to peripheral, and memory to memory. This data movement reduces the processor load significantly.

Figure 6-1 provides a high-level overview of the major DMA Controller components.

Figure 6-1: DMAC Block Diagram

A
H

B

A
P

B
 M

A
ST

ER
 I/

F

DMA FIFO
8 x 32

INT0 – INT15

A
P

B
 S

LA
V

E
I/

F

DMAC
REGISTERS

DMAC
LOGIC

UART0 RX/TX

UART1 RX/TX

I2C0 RX/TX

I2C1 RX/TX

SPI1 RX/TX

SPI0 RX/TX

All direct memory access (DMA) transactions consist of an advanced high-performance bus (AHB) burst read from the
source into the DMA FIFO followed by an AHB burst write from the DMA FIFO to the destination.

6.1 DMA channel operation

The DMA Controller has 16 channels. Each channel is governed by the registers shown in Table 6-1.

Table 6-1: DMA Channel Registers

Register Description

DMAn_DST Destination register

DMAn_CFG Configuration register

DMAn_STAT Status register

DMAn_SRC Source register

DMAn_CNT Count register

In addition, each channel has a set of reload registers, shown in Table 6-2, that are used to chain DMA buffers when a
count-to-zero (CTZ) condition occurs.

Table 6-2: Channel Reload Registers

Register Description

DMAn_DST_RLD Destination reload register

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 57

Register Description

DMAn_SRC_RLD Source reload register

DMAn_CNT_RLD Count reload register

Using these eight registers provides each channel with the following features:

• Full 32-bit source and destination addresses with 24-bit (16 Mbytes) address increment capability

• Up to 16 Mbytes for each DMA buffer

• Programmable burst size

• Programmable priority

• Interrupt upon CTZ

• Abort on error

6.2 DMA Channel Arbitration and DMA Bursts

DMAC contains an internal arbiter that allows enabled channels to access the AHB and move data. A DMA channel is
enabled using the DMAn_CFG.chen bit.

When disabling a channel, poll the DMAn_STAT.ch_st bit to determine if the channel is truly disabled. In general,
DMAn_STAT.ch_st follows the setting of the DMAn_CFG.chen bit. However, the DMAn_STAT.ch_st bit is automatically
cleared under the following conditions:

• Bus error (cleared immediately)

• CTZ when the DMAn_CFG.rlden = 0 (cleared at the end of the AHB R/W burst)

• DMAn_STAT.chen bit transitions to 0 (cleared at the end of the AHB R/W burst)

Whenever the DMAn_STAT.ch_st bit transitions from 1 to 0, the corresponding DMAn_CFG.chen bit is also cleared. During
an AHB read/write burst, attempting to disable an active channel is delayed until burst completion.

Once a channel is programmed and enabled, it generates a request to the arbiter immediately (for
memory-to-memory DMA) or whenever its associated peripheral requests DMA (for memory-to-peripheral or peripheral-
to-memory DMA).

The arbiter grants requests to a single channel at a time. Granting is done based on priority—a higher priority request is
always granted. Within a given priority level, requests are granted on a round-robin basis.

When a channel’s request is granted, it runs a DMA transfer. Once the DMA transfer completes, the channel relinquishes its
grant.

Only an error condition can interrupt an ongoing data transfer.

DMAn_CFG.reqsel determines which request is used to initiate a DMA burst. In the case of a memory-to-memory transfer,
the channel is treated as always requesting DMA access. The DMAn_CFG.priority field determines the DMA channel priority.

6.3 DMA Source and Destination Addressing

For memory addresses, the DMAn_SRC and DMAn_DST registers are used to program the addresses of the source and
destination. For peripherals, however, the address is fixed based on the settings of the DMAn_CFG.reqsel bit.

Table 6-3 shows how the source and destination addresses as well as the address increment controls are constructed based
on the DMAn_CFG.reqsel bit (shown in the Request Select column).

“Programmable” in the SRCINC or DSTINC columns indicates that the bits are programmable and set according to the
DMAn_CFG.srcinc and the DMAn_CFG.dstinc bits, respectively. If there is a 0 in the column, then the bit is forced to 0.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 58

Table 6-3: Source and Destination Address Definition

Request Select Transfer Source Address SRCINC Destination Address DSTINC

0x0 Mem-to-Mem DMAn_SRC Programmable DMAn_DST Programmable

0x1 SPI0 RX DMAn_SRC 0 DMAn_DST Programmable

0x2 SPI1 RX DMAn_SRC 0 DMAn_DST Programmable

0x4 UART0 RX DMAn_SRC 0 DMAn_DST Programmable

0x5 UART1 RX DMAn_SRC 0 DMAn_DST Programmable

0x7 I2C0 RX DMAn_SRC 0 DMAn_DST Programmable

0x8 I2C1 RX DMAn_SRC 0 DMAn_DST Programmable

0x21 SPI0 TX DMAn_SRC Programmable DMAn_DST 0

0x22 SPI1 TX DMAn_SRC Programmable DMAn_DST 0

0x24 UART0 TX DMAn_SRC Programmable DMAn_DST 0

0x25 UART1 TX DMAn_SRC Programmable DMAn_DST 0

0x27 I2C0 TX DMAn_SRC Programmable DMAn_DST 0

0x28 I2C1 TX DMAn_SRC Programmable DMAn_DST 0

6.4 Data Movement from Source to DMA FIFO

Table 6-4 shows the register and bit fields used to control the movement of data into DMA FIFO. The source is a peripheral
or memory.

Table 6-4: Data movement from source to DMA FIFO

Register/Bit Field Description Comments

DMAn_SRC Source address If the increment enable is set, this increments on every read cycle of the burst.

DMAn_CNT Number of bytes to transfer
before a CTZ condition occurs

This register is decremented on each read of the burst.

DMAn_CFG.brst Burst size (1-32) This determines the maximum number of bytes moved during the burst read.

DMAn_CFG.srcwd Source width This determines the maximum data width used during each read of the AHB
burst (byte, two bytes, or four bytes). The actual AHB width might be less if
DMAn_CNT is not great enough to supply all of the needed bytes.

DMAn_CFG.srcinc Source increment enable This increments DMAn_SRC.

6.5 Data Movement from the DMA FIFO to Destination

Table 6-5 shows the register and bit fields used to control the burst movement of data out of the DMA FIFO. The
destination is a peripheral or memory.

Table 6-5: Data movement from the DMA FIFO to destination

Register/Bit Field Description Comments

DMAn_DST Destination address If the increment enable is set, this increments on every write cycle of
the burst.

DMAn_CFG.brst Burst size (1-32) This determines the maximum number of bytes moved during a
single AHB read/write burst.

DMAn_CFG.dstwd Destination width This determines the maximum data width used during each write of
the AHB burst (one byte, two bytes, or four bytes).

DMAn_CFG.dstinc Destination increment enable Increments DMAn_DST.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 59

6.6 Count-To-Zero Condition

When an AHB channel burst completes, DMAC checks whether DMAn_CNT is decremented to 0. If it is, then a CTZ condition
exists.

At this point, there are two possible responses depending on the value of the DMAn_CFG.rlden bit:

1. If DMAn_CFG.rlden = 1, then the DMAn_SRC, DMAn_DST, and DMAn_CNT registers are loaded from the reload
registers, and the channel remains active and continues operating using the newly-loaded address/count values
and the previously programmed configuration values.

2. If DMAn_CFG.rlden = 0, then the channel is disabled, and the DMAn_STAT.ch_st bit is cleared.

6.7 Chaining Buffers

Use reload registers to chain buffers. Chaining buffers reduces the DMA ISR response time and allows DMA to service
requests without intermediate processing from the CPU.

To configure a channel for buffer chaining, initialize the following registers:

• DMAn_CFG

• DMAn_SRC

• DMAn_DST

• DMAn_CNT

• DMAn_SRC_RLD

• DMAn_DST_RLD

• DMAn_CNT_RLD

When the DMAn_CNT_RLD register is written, the DMAn_CNT_RLD.rlden bit must not be set. In addition, any writes to the
DMAn_CFG register prior to initialization must not set the DMAn_CFG.chen and DMAn_CFG.rlden bits. After all registers are
initialized, the last operation involves writing to the DMAn_CFG.chen and DMAn_CFG.rlden bits. This starts the DMA.

Set the DMAn_CFG.ctzien bit in the register to receive an interrupt after each buffer is accessed. In addition, set the
DMAn_CFG.chdien bit to provide an interrupt in case of a bus error.

Caution: Setting the DMAn_CFG.chen and the DMAn_CFG.rlden bits separately risks a race condition. The condition occurs
between a DMA completion interrupt service routine initializing the reload registers for the third buffer before the software
initialization of these registers for the second buffer.

When the first DMA transfer completes (based on the DMAn_CNT.cnt bit value), a CTZ interrupt occurs, and the
DMAn_SRC, DMAn_DST, and DMAn_CNT registers are reloaded from the corresponding reload registers.

The DMAn_STAT register indicates that the reload and CTZ events occurred. In this case, DMAn_STAT.ch_st = 1 indicating
that the DMA is now busy with the second DMA transfer defined in the reload registers. If DMAn_STAT.ch_st = 0, then the
initial and second DMA transfers have completed. If there are additional buffers to chain, the interrupt service routine
initializes the DMAn_SRC_RLD, DMAn_DST_RLD, and DMAn_CNT_RLD registers and sets the DMAn_CNT_RLD.rlden bit. The
interrupt service routine does not write to the DMAn_CFG, DMAn_SRC, DMAn_DST, and DMAn_CNT registers, just the
reload registers.

To prevent improper operation, program the address bits before setting the DMAn_CFG.chen and DMAn_CNT_RLD.rlden
bits.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 60

6.8 DMA Interrupts

Enable interrupts for each channel by setting DMA_INT_EN.chien. When an interrupt is pending, the corresponding
DMA_INT_FL.ipend = 1. The DMA_INT_FL.ipend field is read-only, to clear the interrupt use the DMAn_STAT register and
write a 1 to the field that indicates the cause of the interrupt.

A channel interrupt (DMAn_STAT.ipend = 1) is caused by:

DMAn_CFG.ctzien = 1

If enabled, all CTZ occurrences set the DMAn_STAT.ipend bit.

DMAn_CFG.chdien = 1

If enabled, any clearing of the DMAn_STAT.ch_st bit sets the DMAn_STAT.ipend bit. Examine the DMAn_STAT register to
determine which reasons caused the disable. The DMAn_CFG.chdien bit also enables the DMAn_STAT.to_st bit. The
DMAn_STAT.to_st bit does not clear the DMAn_STAT.ch_st bit.

To clear the channel interrupt, write 1 to the cause of the interrupt (the DMAn_STAT.ctz_st, DMAn_STAT.rld_st,
DMAn_STAT.bus_err, or DMAn_STAT.to_st bits).

When running in normal mode without buffer chaining (DMAn_CFG.rlden = 0), set the DMAn_CFG.chdien bit only. An
interrupt is generated upon DMA completion or an error condition (bus error or time-out error).

When running in buffer chaining mode (DMAn_CFG.rlden = 1), set both the DMAn_CFG.chdien and DMAn_CFG.ctzien bits.
The CTZ interrupts occur on completion of each DMA (count reaches zero and reload occurs). The setting of
DMAn_CFG.chdien ensures that an error condition generates an interrupt. If DMAn_CFG.ctzien = 0, then the only interrupt
occurs when the DMA completes and DMAn_CFG.rlden = 0 (final DMA).

6.9 Channel Time-outs

Each channel can optionally generate an interrupt when its associated request line is inactive for a given period of time. An
example use of this feature is to determine an idle UART receive channel. Each channel has a dedicated 10-bit timer
allowing use of a different timeout value.

6.10 10-bit Timer

Use the settings in the DMAn_CFG register to control each channel’s 10-bit timer. Scale the input clock for the timer using
the DMAn_CFG.pssel field. The options available are:

• 𝑓𝐻𝐶𝐿𝐾 256⁄
• 𝑓𝐻𝐶𝐿𝐾 64K⁄
• 𝑓𝐻𝐶𝐿𝐾 16M⁄

Note: HCLK is the AHB interface clock that enables the memory system to run at a different frequency than the system clock,
the cache controller, and the event monitor.

The DMAn_CFG.tosel field sets the time the 10-bit timer counts until generating an interrupt.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 61

The 10-bit timer resets whenever any of the following conditions occur:

• The DMA request line programmed for the channel is activated.

• The channel is disabled for any reason (DMAn_STAT.ch_st = 0).

To disable the 10-bit timer, set the DMAn_CFG.pssel field to 0.

Normally, the 10-bit timer starts as soon as the channel is enabled and the DMAn_CFG.pssel field are non-zero. However, if
DMAn_CFG.reqwait = 1, then the timer starts counting only after the first DMA request is received from the peripheral.

To calculate the time-out period, use Equation 6-1, below.

Equation 6-1: Timeout Equation for Standard DMA

𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 𝑇𝐻𝐶𝐿𝐾 × 𝑁𝑝𝑠𝑠𝑒𝑙 × 𝑁𝑡𝑜𝑠𝑒𝑙

For example, if THCLK = 1/90MHz, Npssel = 0x2 → 65536 timer prescalar, and Ntosel = 0x3 → 32 clocks, then the time-out

calculation is:

Equation 6-2:Standard DMA Timeout Example Calculation

𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = (
1

90,000,000
) × 65,536 × 32 = 23.3𝑚𝑠

6.11 Channel and Register Access Restrictions

Writing to any register while a channel is disabled is supported, but there are certain restrictions when a channel is enabled.
The DMAn_STAT.ch_st bit indicates whether the channel is enabled or not.

Because an active channel might be in the middle of an AHB read/write burst, do not write to the DMAn_SRC, DMAn_DST,
or DMAn_CNT registers while a channel is active (DMAn_STAT.ch_st = 1).

To disable any DMA channel, clear the DMAn_CFG.chen bit. Then, poll the DMAn_STAT.ch_st bit to verify that the channel is
disabled.

6.12 Memory-to-Memory DMA

Memory-to-memory transfers are completed as if the request is always active. This means that the DMA channel generates
an almost constant request for the bus until its transfer is complete. For this reason, assign a lower priority to channels
executing memory-to-memory transfers to prevent starvation of other DMA channels.

6.13 Standard DMA Registers

Refer to the Peripheral Register Map section for the Standard DMA peripheral base address.

6.13.1 DMA Control Registers

Table 6-6: Standard DMA Control Registers, Offsets, Access and Descriptions

Offset Register Access Description

[0x0000] DMA_INT_EN R/W DMA Control register

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 62

Offset Register Access Description

[0x0004] DMA_INT_FL RO DMA Interrupt Status register

6.13.2 DMA Control Register Details

Table 6-7: DMA Interrupt Enable Register

DMA Interrupt Enable Register DMA_INT_EN [0x0000]

Bits Name Access Reset Description

31:16 - RO 0 Reserved for Future Use

15:0 chien R/W 0 Channel Interrupt Enable
Each bit in this field enables the corresponding channel interrupt.

0: Channel interrupt disabled
1: Channel interrupt enabled

Table 6-8: DMA Interrupt Flag Register

DMA Interrupt Flag Register DMA_INT_FL [0x0004]

Bits Name Access Reset Description

31:16 - RO 0 Reserved for Future Use
Do not modify.

15:0 ipend RO 0 Channel Interrupt
Each bit in this field represents an interrupt for the corresponding channel.
To clear an interrupt, clear the corresponding active interrupt bit in the
DMAn_ST register. An interrupt bit in this field is set only if the
corresponding interrupt enable field is set in the DMAn_CFG register.

0: No interrupt
1: Interrupt pending

6.14 Standard DMA Channel Registers

Each DMA channel has a set of associated Configuration Registers. Table 6-10 shows the addresses of these associated
registers with respect to the channel base address. Because the registers are identical for all channels, only registers
associated with DMA Channel 0 are shown in Table 6-10. The base address for channel 0 is 0x40028100 using the Standard
DMA peripheral base address of 0x4002 8000 from Peripheral Register Map table and the DMA Channel 0 Offset of
[0x0100] from Table 6-9.

6.14.1 Standard DMA Channel Register Address Offsets for DMA Channel 0 to 15

Table 6-9: Standard DMA Channel 0 to Channel 15 Offsets

Offset DMA Channel Access Description

[0x0100] 0 R/W DMA Channel 0

[0x0120] 1 R/W DMA Channel 1

[0x0140] 2 R/W DMA Channel 2

[0x0160] 3 R/W DMA Channel 3

[0x0180] 4 R/W DMA Channel 4

[0x0200] 5 R/W DMA Channel 5

[0x0220] 6 R/W DMA Channel 6

[0x0240] 7 R/W DMA Channel 7

[0x0260] 8 R/W DMA Channel 8

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 63

Offset DMA Channel Access Description

[0x0280] 9 R/W DMA Channel 9

[0x0300] 10 R/W DMA Channel 10

[0x0320] 11 R/W DMA Channel 11

[0x0340] 12 R/W DMA Channel 12

[0x0360] 13 R/W DMA Channel 13

[0x0380] 14 R/W DMA Channel 14

[0x0400] 15 R/W DMA Channel 15

6.14.2 DMA Channel Register Details

Table 6-10: DMAn Channel Registers, Offsets, Access and Descriptions

Register Address Access Description

DMAn_CFG [0x0000] R/W DMA Channel Configuration Register

DMAn_STAT [0x0004] R/W DMA Channel Status Register

DMAn_SRC [0x0008] R/W DMA Channel Source Register

DMAn_DST [0x000C] R/W DMA Channel Destination Register

DMAn_CNT [0x0010] R/W DMA Channel Count Register

DMAn_SRC_RLD [0x0014] R/W DMA Channel Source Reload Register

DMAn_DST_RLD [0x0018] R/W DMA Channel Destination Reload Register

DMAn_CNT_RLD [0x001C] R/W DMA Channel Count Reload Register

Table 6-11: DMA Configuration Register

DMA Configuration Register DMAn_CFG [0x0100]

Bits Name Access Reset Description

31 ctzien R/W 0 CTZ Interrupt Enable
When enabled, the DMA_INT_FL.ipend bit is set to 1 whenever a CTZ event
occurs.

0: Interrupt disabled
1: Interrupt enabled

30 chdien R/W 0 Channel Disable Interrupt Enable
When enabled, the DMA_INT_FL.ipend bit is set to 1 whenever the
DMAn_STAT.ch_st bit changes from 1 to 0.

0: Interrupt disabled
1: Interrupt enabled

29 - RO 0 Reserved for Future Use
Do not modify.

28:24 brst R/W 0 Burst Size
The number of bytes transferred into and out of the DMA FIFO in a single
burst.

0b00000: 1 byte
0b00001: 2 bytes
0b00010: 3 bytes
...
0b11111: 32 bytes

23 - RO 0 Reserved for Future Use
Do not modify.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 64

DMA Configuration Register DMAn_CFG [0x0100]

Bits Name Access Reset Description

22 distinc R/W 0 Destination Increment Enable
This bit enables the automatic increment of the DMAn_DST register upon
every AHB transaction. This bit is forced to 0 for a DMA transmit to
peripherals.

0: Increment disabled
1: Increment enabled

21:20 dstwd R/W 0 Destination Width
Indicates the width of each AHB transaction to the destination peripheral or
memory (the actual width might be less than this if there are insufficient
bytes in the DMA FIFO for the full width).

0b00: Byte
0b01: Two bytes
0b10: Four bytes
0b11: Reserved (Byte width if set)

19 - RO 0 Reserved for Future Use
Do not modify.

18 srinc R/W 0 Source Increment Enable
This bit enables the automatic increment of the DMAn_SRC register upon
every AHB transaction. This bit is forced to 0 for a DMA receive from
peripherals.

0: Increment disabled
1: Increment enabled

17:16 srcwd R/W 0 Source Width
Indicates the width of each AHB transaction from the source peripheral or
memory. The actual width might be less than this if the DMAn_CNT register
indicates a smaller value.

00: Byte
01: Two bytes
10: Four bytes
11: Reserved (byte width if set)

15:14 pssel R/W 0 Pre-Scale Select
Selects the Pre-Scale divider for timer clock input.

00: Disable timer
01: hclk / 256
10: hclk / 64k
11: hclk / 16M

13:11 tosel R/W 0 Time-Out Select
Selects the number of prescaler clocks seen by the channel timer before a
time-out condition is generated for this channel.

000: 3-4
001: 7-8
010: 15-16
011: 31-32
100: 63-64
101: 127-128
110: 255-256
111: 511-512

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 65

DMA Configuration Register DMAn_CFG [0x0100]

Bits Name Access Reset Description

10 reqwait R/W 0 Request Wait Enable
When enabled, delay the timeout timer start until after the first DMA
transaction occurs.

0: Start timer normally
1: Delay timer start

9:4 reqsel R/W 0 Request Select
Select DMA request line for this channel. If memory to memory is selected,
then the channel operates as if the request is always active.

3:2 pri R/W 0 DMA priority
00: Highest priority
11: Lowest priority

1 rlden R/W 0 Reload Enable
Setting this bit to 1 allows reloading the DMAn_SRC, DMAn_DST, and
DMAn_CNT registers with their corresponding reload registers upon CTZ.

Note: This bit is also writeable in the DMAn_CNT_RLD register.

0 chen R/W 0 Channel Enable
This bit is automatically cleared when DMAn_STAT.ch_st changes from 1 to
0.

0: Disable this channel
1: Enable this channel

Table 6-12: DMA Status Register

DMA Status Register DMAn_STAT [0x0104]

Bits Name Access Reset Description

31:7 - RO 0 Reserved for Future Use
Do not modify.

6 to_st R/W1C 0 Time-Out Status
Reading this bit indicates the following:

0: No time out
1: A time out has occurred

Write 1 to clear this bit.

5 - RO 0 Reserved for Future Use
Do not modify.

4 bus_err R/W1C 0 Bus Error
If this bit reads 1, an AHB abort occurred and the channel was disabled by
hardware.
Reading this bit indicates the following:

0: No error found
1: An AHB bus error occurred

Write 1 to clear this bit.

3 rld_st R/W1C 0 Reload Status

2 ctz_st R/W1C 0 CTZ Status
Read:

0: CTZ has not occurred
1: CTZ has occurred

Write:
0: No effect
1: Write 1 to clear

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 66

DMA Status Register DMAn_STAT [0x0104]

Bits Name Access Reset Description

1 ipend RO 0 Channel Interrupt.
0: No interrupt
1: Interrupt pending

0 ch_st RO 0 Channel Status
This bit is used to indicate when it is safe to change the configuration,
address, and count registers for the channel.
Whenever this bit is cleared by hardware, the DMAn_CFG.chen bit is also
cleared.

0: Channel disabled
1: Channel enabled

Table 6-13: DMA Source Register

DMA Source Register DMAn_SRC [0x0108]

Bits Name Access Reset Description

31:0 src R/W 0 Source Device Address
For peripheral transfers, the actual address field is either ignored or forced
to zero because peripherals only have one location to read/write data based
on the request select chosen.
If DMAn_CFG.srcinc = 1, then this register is incremented on each AHB
transfer cycle by one, two, or four bytes depending on the data width.
If DMAn_CFG.srcinc = 0, this register remains constant.

If a CTZ condition occurs while DMAn_CFG.rlden = 1, then this register is
reloaded with the contents of the DMAn_SRC_RLD register.

Table 6-14: DMA Destination Register

DMA Destination Register DMAn_DST [0x010C]

Bits Name Access Reset Description

31:0 dst R/W 0 Destination Device Address
For peripheral transfers, the actual address field is either ignored or forced
to zero because peripherals only have one location to read/write data
based on the request select chosen.
If DMAn_CFG.dstinc = 1, then this register is incremented on every AHB
transfer cycle by one, two, or four bytes depending on the data width.
If a CTZ condition occurs while DMAn_CFG.rlden = 1, then this register is
reloaded with the contents of the DMAn_DST_RLD register.

Table 6-15: DMA Count Register

DMA Count Register DMAn_CNT [0x0110]

Bits Name Access Reset Description

31:24 - RO 0 Reserved for Future Use
Do not modify.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 67

DMA Count Register DMAn_CNT [0x0110]

Bits Name Access Reset Description

23:0 cnt R/W 0 DMA Counter
Load this register with the number of bytes to transfer.
This counter decreases on every AHB access to DMA FIFO. The decrement is
one, two, or four bytes depending on the data width.
When the counter reaches 0, a CTZ condition is triggered.
If a CTZ condition occurs while DMAn_CFG.rlden = 1, then this register is
reloaded with the contents of the DMAn_CNT_RLD register.

0x000000: 0 Byte
0x000001: 1 Byte
0x000002: 2 Bytes
…
0xFFFFFF:16,777,215 Bytes

Table 6-16: DMA Source Reload Register

DMA Source Reload Register DMAn_SRC_RLD [0x0114]

Bits Name Access Reset Description

31 - RO 0 Reserved for Future Use
Do not modify.

30:0 src_rld R/W 0 Source Address Reload Value
If DMAn_CFG.rlden = 1, then the value of this register is loaded into
DMAn_SRC upon a CTZ condition.

Table 6-17: DMA Destination Reload Register

DMA Destination Reload Register DMAn_DST_RLD [0x0118]

Bits Name Access Reset Description

31 - RO 0 Reserved for Future Use
Do not modify.

30:0 dst_rld R/W 0 Destination Address Reload Value
If DMAn_CFG.rlden = 1, then the value of this register is loaded into
DMAn_DST upon a CTZ condition.

Table 6-18: DMA Count Reload Register

DMA Count Reload Register DMAn_CNT_RLD [0x011C]

Bits Name Access Reset Description

31 rlden R/W 0 Reload Enable.
Enables automatic loading of the DMAn_SRC, DMAn_DST, and DMAn_CNT
registers when a CTZ event occurs.
Set this bit after the address reload registers are programmed.
This bit is automatically cleared to 0 when reload occurs.

Note: This bit is also seen in the DMAn_CFG register.
0: Reload disabled
1: Reload enabled

30:24 - RO 0 Reserved for Future Use
Do not modify.

23:0 cnt_rld R/W 0 Count Reload Value.
If DMAn_CNT_RLD.rlden = 1, then the value of this register is loaded into
DMAn_CNT upon a CTZ condition.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 68

7 UART

The MAX32660 microcontroller provides up to two industry-standard UART ports which can communicate with external
devices using standard serial communications protocols. The UARTs are full-duplex Universal Asynchronous
Receiver/Transmitter (UART) serial ports. Both UARTs, UART0 and UART1, support identical functionality and registers
unless specifically noted otherwise. For simplicity, the UARTs are referenced in the documentation as UARTn where n = 0 or
1. The registers for each UART are documented showing an offset address, which is identical for each UART instance. To
access a specific UART’s control register, the UART’s control register offset is added to the specific UART’s base peripheral
address.

Features:

• Flexible baud rate generation up to 4Mbps

• Programmable character size, 5, 6, 7, or 8-bits

• Stop bit settings of 1, 1.5, or 2-bits

• Parity settings of even, odd, mark (always 1), space (always 0), and no parity

• Automatic parity error detection with selectable parity bias

• Automatic framing error detection

• Separate 32-byte deep transmit and receive FIFOs

• Flexible interrupt conditions

• Hardware flow control for RTS and CTS

• Null modem support

• Break generation and detection

• Wakeup from DEEPSLEEP on UART edge with no character loss

• RX Timeout detection

7.1 UART Frame Characters

Character sizes of 5 to 8 bits are supported. The field UARTn_CTRL0.charsize is used to select the character size.

Stop bit support includes 1, 1.5, and 2 stop bits selected with the register field UARTn_CTRL0.

Parity support includes even, odd, mark, space or none. For no parity, set field UARTn_CTRL0.parity_en to 0. For all other
parity options, select one of the four parity options using the UARTn_CTRL0.parity_mode field and enable parity
(UARTn_CTRL0.parity_en=1). Parity can be based on the number of 1 bits or 0 bits in the receive characters as set in the
register bit UARTn_CTRL0.parity_lvl.

Break frames are transmitted by setting the field UARTn_CTRL0.break to 1. A break sets all bits in the frame to 0.

When a break frame is received, two interrupts are available, UARTn_INT_FL.break is set to 1 when the first received break
character is received and UARTn_INT_FL.last_break is set when the last break character is received. This prevents the
system from being overloaded with multiple interrupts that could occur after the first break character and up to the Nth
break character received.

Note: A break character does not set the frame error flag because breaks are not valid UART characters.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 69

7.2 UART Interrupts

Interrupts can be generated for the following conditions:

• The Transmit FIFO is half-empty

• The Receive FIFO level is over a programmed threshold

• The Receive FIFO is overrun, which means the Receive FIFO is full but is still receiving data

• Any CTS state change. During Hardware Flow Control, this interrupt is generated either because:

 CTS is deasserted, which tells the UART to pause transmitting data
 CTS is asserted, which tells the UART to resume transmitting data

• A Receive Parity Error occurred

• A Receive Frame Error occurred, which means START or STOP bits were not detected

• A Receive Timeout condition occurred, which means the RX FIFO has not received a character for a set time

• First and Last BREAK characters

7.3 UART Bit Rate Calculation

The UART peripheral clock, 𝑓𝑃𝐶𝐿𝐾 , is used as the input clock to the UART bit rate generator. The following fields are used to
set the target bit rate for the UART.

• UARTn_BAUD0.clk_div selects the bit rate clock divisor.

• UARTn_BAUD0.ibaud sets the integer portion of the bit rate divisor.

• UARTn_BAUD1.dbaud sets the decimal portion of the bit rate divisor.

Equation 7-1, Equation 7-2, and Equation 7-3 are used to determine the values for each of the bit rate fields required to
achieve a target bit rate for the UART.

Equation 7-1: UART Bit Rate Divisor Equation

𝐷𝐼𝑉 =
𝑓𝑈𝐴𝑅𝑇_𝐵𝐼𝑇_𝑅𝐴𝑇𝐸_𝐶𝐿𝐾

(𝐶𝑙𝑜𝑐𝑘 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 × 𝑇𝑎𝑟𝑔𝑒𝑡 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒)

Note: UARTn_BAUD0.clkdiv should be set to the highest value that results in ⌊𝐷𝐼𝑉⌋ ≥ 1 to achieve the highest accuracy for
the target bit rate.

Equation 7-2: Bit Rate Integer Calculation

𝑈𝐴𝑅𝑇𝑛_𝐵𝐴𝑈𝐷0. 𝑖𝑏𝑎𝑢𝑑 = ⌊𝐷𝐼𝑉⌋

Equation 7-3: Bit Rate Remainder Calculation

 𝑈𝐴𝑅𝑇𝑛_𝐵𝐴𝑈𝐷1. 𝑑𝑏𝑎𝑢𝑑 = (𝐷𝐼𝑉 − 𝑈𝐴𝑅𝑇𝑛_𝐵𝐴𝑈𝐷0. 𝑖𝑏𝑎𝑢𝑑) × 128

7.3.1 Example Baud Rate Calculation:

𝑇𝑎𝑟𝑔𝑒𝑡 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒 = 1,843,200 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (1.8 𝑀𝑏𝑝𝑠)

𝑓𝐵𝐼𝑇_𝑅𝐴𝑇𝐸_𝐶𝐿𝐾 = 𝑓𝑃𝐶𝐿𝐾 = 48 𝑀𝐻𝑧

𝐷𝐼𝑉 =
48,000,000

(𝐶𝑙𝑜𝑐𝑘 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 × 1,843,200)
, 𝑤ℎ𝑒𝑟𝑒 𝐶𝑙𝑜𝑐𝑘 𝐷𝑖𝑣𝑖𝑑𝑒𝑟 = 2(7−𝑐𝑙𝑘𝑑𝑖𝑣)

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 70

Table 7-1: Example Baud Rate Calculation Results, Target Bit Rate = 1.8Mbps, 𝑓𝑃𝐶𝐿𝐾 = 48 𝑀𝐻𝑧

UARTn_BAUD0
clkdiv

Clock Divider DIV

4 8 3.256

3 16 1.628

2 32 0.814

1 64 0.407

0 128 0.203

Table 7-1, above, shows the DIV result for each of the UARTn_BAUD0.clkdiv field settings. With the Clock Divider set to 8 or
16, the resulting DIV value is greater than 1. Setting the clock divider to 16 will generate the most accurate target bit rate
because it is the largest value that results in DIV ≥ 1. Using 16 for Clock Divider, UARTn_BAUD0.clkdiv = 3),

UARTn_BAUD0.ibaud is 1, which is the integer portion of the 1.628 DIV calculation. The dbaud field calculation based on
UARTn_BAUD0.clkdiv = 3, UARTn_BAUD0.ibaud = 1 and DIV = 1.628 is:

Equation 7-4: UART dbaud Example Calculation

𝑈𝐴𝑅𝑇𝑛_𝐵𝐴𝑈𝐷1. 𝑑𝑏𝑎𝑢𝑑 = (1.628 − 1) × 128 → 80.384

The resulting field settings for the example 1,843,200 bps rate are:

UARTn_BAUD0.clkdiv = 3
UARTn_BAUD0.ibaud = 1
UARTn_BAUD1.dbaud = 80

7.4 UART DMA Using the TX and RX FIFOs

Each UART has a 32-byte TX FIFO with a dedicated DMA channel and a 32-byte RX FIFO with a dedicated DMA channel. The
DMA channels are configured using the DMA Configuration Register, UARTn_DMA. The RX FIFO DMA channel and TX FIFO
DMA channels operate independently, and each can be enabled or disabled individually. Enable the RX FIFO DMA channel
by setting UARTn_DMA.rxdma_en to 1 and enable the TX FIFO DMA channel by setting the UARTn_DMA.txdma_en to 1.
DMA transfers are automatically triggered based on the number of bytes in the RX or TX FIFO as described in the following
two sections.

7.4.1 RX FIFO DMA Operation

UARTn_DMA.rxdma_lvl configures the number of entries in the RX FIFO that triggers a DMA transfer from the RX FIFO to
system RAM. If the number of entries in the RX FIFO is more than the configured value, a DMA transfer is triggered from the
RX FIFO to system RAM. If UARTn_DMA.rxdma_lvl=0 then a transfer is triggered when there is one byte in the FIFO.

Note: The RX DMA level must be set to a value less than 32 to avoid an RX FIFO overrun condition that results in loss of
received data.

7.4.2 TX FIFO DMA Operation

UARTn_DMA.txdma_lvl sets the number of entries (level) in the TX FIFO that will trigger a DMA transfer from system RAM
to the TX FIFO. If the number of entries (level) in the TX FIFO falls below this value a TX DMA transfer is automatically
triggered from System RAM to the TX FIFO.

Note: The TX DMA level must be set to a value greater than 1 to avoid stalling the UART transfer.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 71

7.5 Flushing the UART FIFOs

The FIFOs can be flushed independently by setting UARTn_CTRL0.rxflush to 1 for the RX FIFO and UARTn_CTRL0.txflush. to 1
for the TX FIFO. The TX FIFO and RX FIFO are automatically flushed if the UART is disabled by clearing the
UARTn_CTRL0.enable field (UARTn_CTRL0.enable = 0).

7.6 Hardware Flow Control

When hardware flow control is enabled, the CTS (Clear-to-send) and RTS (Request-to-Send) external signals are directly
managed by hardware without CPU intervention. RTS and CTS are active when flow control is enabled by setting the
register bit UARTn_CTRL0.flowctl=1. The polarity of the CTS/RTS signals are configured with register bit
UARTn_CTRL0.flowpol and can be active low or active high.

In operation, the host UART that wants to transmit data asserts its RTS output pin, and waits for its CTS input pin to be
asserted. If CTS is asserted, then the host UART begins transmitting data to the slave UART. If during the transmission the
host UART notices CTS is deasserted, the host UART finishes transmitting the current character and then pauses to wait for
CTS to return to an asserted level before transmitting more data.

If this UART is receiving data, and the RX FIFO reaches the level set in the 6-bit register field UARTn_CTRL1.rts_fifo_lvl, then
the RTS signal of this UART is deasserted, informing the transmitting UART to stop sending data to this UART to prevent
data overflow. Transmission resumes when the level of the RX FIFO drops below UARTn_CTRL1.rts_fifo_lvl, which
automatically asserts RTS.

7.7 UART Registers

Refer to the Peripheral Register Map section for the UART0 and UART1 Base Addresses.

Table 7-2: UART Registers, Offset Addresses and Descriptions

Register Name Offset Access Description

UARTn_CTRL0 [0x0000] R/W UARTn Control 0 Register

UARTn_CTRL1 [0x0004] R/W UARTn Control 1 Register

UARTn_STAT [0x0008] RO UARTn Status Register

UARTn_INT_EN [0x000C] R/W UARTn Interrupt Enable Register

UARTn_INT_FL [0x0010] R/1 UARTn Interrupt Flag Register

UARTn_BAUD0 [0x0014] R/W UARTn Baud Rate Integer Register

UARTn_BAUD1 [0x0018] R/W UARTn Baud Rate Decimal Register

UARTn_FIFO [0x001C] R/W UARTn FIFO Read/Write Register

UARTn_DMA [0x0020] R/W UARTn DMA Configuration Register

UARTn_TXFIFO [0x0024] RO UARTn TX FIFO Register

Table 7-3: UART Control 0 Register

UART Control 0 Register UARTn_CTRL0 [0x0000]

Bits Name Access Reset Description

31:24 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 72

UART Control 0 Register UARTn_CTRL0 [0x0000]

Bits Name Access Reset Description

23:16 to_cnt R/W 0 RX Timeout Frame Count
If the RX FIFO contains data, a RX Timeout condition occurs if the time for the
number of frames in this register passes without the FIFO receiving any new
data. If a timeout occurs, the hardware sets the receive timeout flag to 1
(UARTn_INT_FL.rxto = 1).

15 clk_sel R/W 0 Bit Rate Clock Source Select
Selects the bit rate clock, 𝑓UART_𝐵𝐼𝑇_𝑅𝐴𝑇𝐸_𝐶𝐿𝐾

0: Peripheral Clock, 𝑓𝑈𝐴𝑅𝑇_𝐵𝐼𝑇_𝑅𝐴𝑇𝐸_𝐶𝐿𝐾 = 𝑓𝑃𝐶𝐿𝐾
1: Reserved for Future Use

14 break R/W 0 Transmit BREAK Frame
Set this field to 1 to send a BREAK frame. A BREAK frame transmits a character
with all bits set to 0.

0: Normal UART operation.
1: Transmit BREAK frame.

13 nullmod 0 Null Modem Support
0: Normal operation for RTS/CTS and TXD/RXD
1: Null Modem Mode: RTS/CTS swapped, TXD/RXD swapped

12 flowpol R/W 0 RTS/CTS Polarity
0: RTS/CTS asserted is 0
1: RTS/CTS asserted is 1

11 flow R/W 0 Hardware Flow Control Enable
0: Hardware flow control disabled.
1: Hardware RTS/CTS flow control enabled.

10 stop R/W 0 STOP Bit Mode Select
0: 1 STOP bit.
1: 1.5 STOP bits for 5-bit character size or 2 STOP bits for all other character

sizes

9:8 size R/W 0 Character Size
Set the number of data bits per frame.

0: 5 data bits
1: 6 data bits
2: 7 data bits
3: 8 data bits

7 bitacc R/W 0 Frame or Bit Accuracy Select
This field selects between either Frame Accuracy or Bit Accuracy for transmitting
data.
Frame Accuracy: Individual frame bit durations may be varied by hardware to
meet the target frame period.
Bit accuracy: Bit width is fixed by hardware. The frame accuracy of data
transmitted may be reduced if bit accuracy is prioritized.

0: Frame accuracy.
1: Bit accuracy.

Note: A frame includes the start, stop, all data bits, and parity bit/bits for the
character being transmitted.

6 rxflush R/W1O 0 Receive FIFO Flush
Write 1 to flush the receive FIFO
Cleared to 0 by hardware when flush is completed

5 txflush R/W1O 0 Transmit FIFO Flush
Write 1 to flush the Transmit FIFO
Cleared to 0 by hardware when flush is completed

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 73

UART Control 0 Register UARTn_CTRL0 [0x0000]

Bits Name Access Reset Description

4 parity_lvl R/W 0 Parity Level Select
0: Parity is based on number of 0 bits in the character.
1: Parity is based on number of 1 bits in the character.

3:2 parity_mode R/W 0 Parity Mode Select
0: Even parity
1: Odd Parity
2: Mark parity
3: Space parity

1 parity_en R/W 0 Parity Enable
0: No parity
1: Parity enabled as charsize+1 bit

0 enable R/W 0 UART Enable
0: UART disabled. FIFOs are flushed, bit rate generator is off.
1: UART Enabled, bit rate generator is active.

Table 7-4: UART Control 1 Register

UART Control 1 Register UARTn_CTRL1 [0x0004]

Bits Name Access Reset Description

31:22 0 R/W 0 Reserved for Future Use
Do not modify this field.

21:16 rts_fifo_lvl R/W 0 RTS RX FIFO Threshold Level
When the RX FIFO level is equal to or greater than this level, assert
RTS output signal to inform the transmitting UART to stop sending
data to this UART.
Valid values are from 0 to 32.

15:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:8 tx_fifo_lvl R/W 0 TX FIFO Threshold Level
When the TX FIFO level is less than or equal to this level the
UARTn_INT_FL.tx_fifo_lvl interrupt flag is set.
Valid values are from 0 to 32.

7:6 - R/W 0 Reserved for Future Use
Do not modify this field.

5:0 rx_fifo_lvl R/W 0 RX FIFO Threshold Level
When the RX FIFO reaches this level or higher the
UARTn_INT_FL.rx_fifo_lvl interrupt flag is set.
Valid values are from 0 to 32.

Table 7-5: UART Status Register

UART Status Register UARTn_STAT [0x0008]

Bits Name Access Reset Description

31:25 - RO 0 Reserved for Future Use
Do not modify this field.

24 rx_to RO 0 RX Timeout
This field is set to 1 when a receive timeout occurs. This field is set by hardware
when the condition occurs and is automatically cleared when the condition is no
longer valid.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 74

UART Status Register UARTn_STAT [0x0008]

Bits Name Access Reset Description

23:22 - RO 0 Reserved for Future Use
Do not modify this field.

21:16 tx_num RO 0 Number of Bytes in the TX FIFO
Read this field to determine the number of bytes in the transmit FIFO.

15:14 - RO 0 Reserved for Future Use
Do not modify this field.

13:8 rx_num RO 0 Number of Byes in RX FIFO
Read this field to determine the number of bytes in the receive FIFO.

7 tx_full RO 0 TX FIFO Full Status Flag
This field reads 1 when the TX FIFO is full. This field is set by hardware when the
condition occurs and is automatically cleared when the condition is no longer
valid.

0: TX FIFO is not full.
1: TX FIFO is full.

6 tx_empty RO 1 TX FIFO Empty Flag
This field reads 1 when the TX FIFO is empty. This field is set by hardware when
the condition occurs and is automatically cleared when the condition is no longer
valid.

0: TX FIFO is not empty, tx_num > 0.
1: TX FIFO is empty.

5 rx_full RO 0 RX FIFO Full Flag
This field reads 1 when then RX FIFO is full. This field is set by hardware when the
condition occurs and is automatically cleared when the condition is no longer
valid.

0: RX FIFO is not full.
1: RX FIFO is full.

4 rx_empty RO 1 RX FIFO Empty Flag
This flag reads 1 when the RX FIFO is empty.

3 break RO 0 Break Flag
This field is set when a break condition occurs.

0: BREAK not received.
1: BREAK condition received.

2 parity RO 0 Parity Bit State
This field returns the state of the parity bit.

0: Parity bit is 0.
1: Parity bit is 1.

1 rx_busy RO 0 RX Busy
This field reads 1 when the UART is receiving data.

0: UART is not actively receiving data.
1: UART is actively receiving data.

0 tx_busy RO 0 TX Busy
This field reads 1 when the UART is transmitting data.

0: UART is not actively transmitting data.
1: UART is transmitting data.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 75

Table 7-6: UART Interrupt Enable Register

UART Interrupt Enable Register UARTn_INT_EN [0x000C]

Bits Name Access Reset Description

31:10 - R/W 0 Reserved for Future Use
Do not modify this field.

9 last_break R/W 0 Last Break Interrupt Enable
When the UART receives a series of BREAK frames, this enables an
interrupt when the last BREAK frame is received.

8 rx_to R/W 0 RX Timeout Interrupt Enable
Enable the receive timeout interrupt.

7 break R/W 0 Received BREAK Interrupt Enable
Enables the BREAK interrupt for the first BREAK received on the
UART.

6 tx_fifo_lvl R/W 0 TX FIFO Threshold Level Interrupt Enable
Enables the tx_fifo_lvl interrupt when the number of entries in the TX
FIFO >= UARTn_CTRL1.tx_fifo_lvl

5 tx_fifo_ae R/W 0 TX FIFO One Byte Remaining Interrupt Enable

4 rx_fifo_lvl R/W 0 RX FIFO Threshold Level Interrupt Enable
Enables interrupt when number of entries in RX FIFO >=
UARTn_CTRL1.rx_fifo_lvl

3 rx_overrun R/W 0 RX FIFO Overrun Interrupt Enable
Enables an interrupt when a write is made to a full RX FIFO

2 cts R/W 0 CTS State Change Interrupt Enable
Enable the CTS level change interrupt event. This is aso called
Modem Status Interrupt.

1 rx_parity_error R/W 0 RX Parity Error Interrupt Enable

0 rx_frame_error R/W 0 RX Frame Error Interrupt Enable

Table 7-7: UART Interrupt Flags Register

UART Interrupt Flags Register UARTn_INT_FL [0x0010]

Bits Name Access Reset Description

31:10 - RO 0 Reserved for Future Use
Do not modify this field.

9 last_break R/W1C 0 Last Break Interrupt Flag
When the UART receives a series of BREAK frames, this flag is set when the
last BREAK frame is received. Write 1 to clear this field.

0: Last BREAK condition has not occurred.
1: Last BREAK condition has occurred.

8 rx_to R/W1C 0 Receive Frame Timeout Interrupt Flag
This field is set when a receive frame timeout occurs. Write 1 to clear this
field.

0: Receive frame timeout has not occurred.
1: A receive frame timeout was detected by the UART.

7 break R/W1C 0 Received Break Interrupt Flag
When the UART receives a series of BREAK frames, this flag is set when the
first BREAK frame is received. Write 1 to clear this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 76

UART Interrupt Flags Register UARTn_INT_FL [0x0010]

Bits Name Access Reset Description

6 tx_fifo_lvl R/W1C 0 Transmit FIFO Threshold Interrupt Flag
Set when number of entries in in the Transmit FIFO is greater than or equal
to the Transmit FIFO level set in UARTn_CTRL1.tx_fifo_lvl.
Write 1 to clear.

5 tx_fifo_ae R/W1C 0 Transmit FIFO Almost Empty Interrupt Flag
This field is set when there is one byte remaining in the Transmit FIFO.
Write 1 to clear.

4 rx_fifo_lvl R/W1C 0 RX FIFO Threshold Interrupt Flag
Set when number of entries in the RX FIFO is equal to or greater than the RX
FIFO threshold level as set in the UARTn_CTRL1.rx_fifo_lvl field. Data must
be read from the RX FIFO to reduce the level below the threshold to
guarantee this interrupt does not occur again after clearing the flag. Write 1
to clear this field.

0: The number of bytes in the RX FIFO is below the threshold level.
1: The number of bytes in the RX FIFO is equal to or greater than the

threshold level.

3 rx_ovr R/W1C 0 RX FIFO Overrun Interrupt Flag
This field is set if the receive FIFO is full and an additional byte is received
resulting in a FIFO overrun condition. If this field is set at least one byte of
received data has been lost. Write 1 to clear.

0: RX FIFO overrun has not occurred.
1: RX FIFO overrun occurred.

2 cts R/W1C 0 CTS Interrupt Flag
Also called Modem Status Interrupt

1 parity R/W1C 0 Receive Parity Error Status Flag
Set if a parity error is detected. This flag applies to data received only. Write
1 to clear.

0: Parity error has not been detected.
1: Parity error detected.

0 frame R/W1C 0 Frame Error Status Flag
Set if a frame error occurs while receiving data. Write 1 to clear.

Table 7-8: UART Rate Integer Register

UART Baud Rate Integer Register UARTn_BAUD0 [0x0014]

Bits Name Access Reset Description

31:17 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 77

UART Baud Rate Integer Register UARTn_BAUD0 [0x0014]

Bits Name Access Reset Description

18:16 clkdiv R/W 0b000 Bit Rate Clock Divisor
This field is used to divide the bit rate clock by the selected Clock Divider value.

clkdiv Clock Divider Value

0b000 128

0b001 64

0b010 32

0b011 16

0b100 8

0b101 - 0b111 Reserved for Future Use

Refer to the UART Bit Rate Calculation section for details of determining this
field’s value for a given UART bit rate.

15:12 - R/W 0 Reserved for Future Use
Do not modify this field.

11:0 ibaud R/W 0 Integer Portion of Baud Rate Divisor
This field contains the integer value of the bit rate divisor. Refer to the UART Bit
Rate Calculation section for details of determining this field’s value for a given
UART bit rate.

Table 7-9: UART Baud Rate Decimal Register

UART Baud Rate Decimal Register UARTn_BAUD1 [0x0018]

Bits Name Access Reset Description

31:12 - R/W 0 Reserved for Future Use
Do not modify this field.

11:0 dbaud R/W 0 Decimal Portion of Baud Rate Divisor
This field contains the remainder portion of the bit rate divisor. Refer to the UART Bit
Rate Calculation section for details of determining this field’s value for a given UART
bit rate.

Table 7-10: UART FIFO Register

UART FIFO Register UARTn_FIFO [0x001C]

Bits Name Access Reset Description

31:8 - R/W 0 Reserved for Future Use
Do not modify this field.

7:0 fifo R/W N/A UART FIFO Register
Reading this field reads data from the RX FIFO and writes to this field write to the TX
FIFO.

Table 7-11: UART DMA Configuration Register

UART DMA Configuration Register UARTn_DMA [0x0020]

Bits Name Access Reset Description

31:22 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 78

UART DMA Configuration Register UARTn_DMA [0x0020]

Bits Name Access Reset Description

21:16 rxdma_lvl R/W 0 RX FIFO Level DMA Trigger
If the RX FIFO level is greater than this value, the DMA channel transfers data
from the RX FIFO into memory. DMA transfers continue until the RX FIFO is
empty. To avoid an RX FIFO overrun, do not set this value to 32.
Values above 32 are reserved for future use.

15:14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:8 txdma_lvl R/W 0 TX FIFO Level DMA Trigger
If the TX FIFO level is less than this value, the DMA channel transfers data
from memory into the TX FIFO. DMA transfers continue until the TX FIFO is
full. To avoid stalling a UART transmission, do not set this value to 1 or 0.
Values above 32 are reserved for future use.

7:2 - R/W 0 Reserved for Future Use
Do not modify this field.

1 rxdma_en R/W 0 RX FIFO DMA Channel Enable
0: RX DMA is disabled
1: RX DMA is enabled

0 txdma_en R/W 0 TX FIFO DMA Channel Enable
0: TX DMA is disabled
1: TX DMA is enabled

Table 7-12: UART TX FIFO Data Output Register

UART TX FIFO Data Output Register UARTn_TXFIFO [0x0024]

Bits Name Access Reset Description

31:8 - R/W 0 Reserved for Future Use
Do not modify this field.

7:0 data RO 0 TX FIFO Data Output Peek Register
Reads from this register return the next character available for
transmission at the end of the TX FIFO. If no data is available, 0x00 is
returned.
Reads from this register do not affect the TX FIFO state.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 79

8 Real-Time Clock (RTC)

8.1 Overview

The Real-Time Clock (RTC) is a binary timer that keeps the time of day and provides time-of-day and sub-second alarm
functionality in the form of RTC system interrupts. The RTC time base is created using a 32.768kHz crystal connected
between the 32KIN and 32KOUT pins on the MAX32660. See the MAX32660 datasheet for detailed connection and pin
information related to the 32KIN and 32KOUT pins.

In the RTC, two registers combine to create a 40-bit counter representing time with 1/256 second resolution. The
RTC_SSEC.rtss field contains the least significant 8 bits and represents the sub-second count. The RTC_SEC.rts field contains
the most significant 32 bits and represents the seconds count. The RTC_SEC.rts field increments on each rollover of the
RTC_SSEC.rtss field. Together the 40 bits represent time in seconds up to approximately 136 years.

A programmable time-of-day alarm is usable with the 32-bit seconds counter to provide a single event/alarm timer. You
must disable the RTC to write the counter registers. When the RTC counter is started, the RTC counts continuously unless it
is disabled, and reads of the counter registers do not affect the count. Digital trim is available for applications requiring
higher accuracy.

A separate 32-bit auto-reload sub-second alarm counter register (RTC_RSSA) generates interval alarms. Incremented at
256Hz, this counter has a granularity of 3.9 msec, with a maximum interval of approximately 16,777,216 seconds.

The RTC operates in the always-on domain. Once enabled, it continues counting as long as the RTC is enabled and the VRTC
supply remains within the acceptable range given in the datasheet. The RTC increments the RTC_TRIM.vrtc_tmr field every
32 seconds when the RTC is enabled and operating.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 80

Figure 8-1. RTC Block Diagram

8.2 RTC Alarm Functions

The RTC provides time-of–day and sub-second interval alarm functions. The time-of-day alarm is implemented by matching
the count values in the counter register with the value stored in the alarm register. The sub-second interval alarm provides
an auto-reload timer that is driven by the trimmed RTC clock source.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 81

8.2.1 Time-of-Day Alarm

Program the RTC Time-of-Day Alarm register (RTC_RAS) to configure the time-of-day-alarm. The alarm triggers when the
value stored in RTC_RAS matches the lower 20 bits of the RTC_SEC.rts seconds count register. This allows programming the
time-of-day-alarm to any future value between 1 second and 12 days relative to the current time with a resolution of 1
second. You must disable the time-of-day alarm before changing the RTC_RAS.tod field.

When the alarm occurs, hardware sets the Time-of-Day Alarm Interrupt Flag (RTC_CTRL.alarm_tod_fl) to 1.

Setting the RTC_CTRL.alarm_tod_fl bit to 1 in software results in an interrupt request to the processor if the Alarm
Time-of-Day Interrupt Enable (RTC_CTRL.alarm_tod_en) bit is set to 1, and the RTC’s system interrupt enable is set.

8.2.2 Sub-Second Alarm

The RTC_RSSA and RTC_CTRL.alarm_ss_en field control the sub-second alarm. Writing RTC_RSSA sets the starting value for
the sub-second alarm counter. Writing the Sub-Second Alarm Enable (RTC_CTRL.alarm_ss_en) bit to 1 enables the
sub-second alarm. Once enabled, the sub-second alarm begins up-counting from the RTC_RSSA value. When the counter
rolls over from 0xFFFF FFFF to 0x0000 0000, hardware sets the RTC_CTRL.alarm_ss_fl bit triggering the alarm. At the same
time, hardware also reloads the counter with the value previously written to RTC_RSSA.rssa. A 256Hz clock drives the
sub-second alarm allowing a maximum interval of 16,777,216 seconds with a resolution of approximately 3.9 msec.

 You must disable the sub-second interval alarm, RTC_CTRL.alarm_ss_en, prior to changing the interval alarm value,
RTC_RSSA.

The delay (uncertainty) associated with enabling the sub-second alarm is up to one period of the sub-second clock,
approximately 3.9 msec based on 256Hz RTC clock input to the register. This uncertainty is propagated to the first interval
alarm. Thereafter, if the interval alarm remains enabled, the alarm triggers after each sub-second interval as defined
without the first alarm uncertainty because the sub-second alarm is an auto-reload timer. Enabling the sub-second alarm
with with the sub-second alarm register set to 0 (RTC_RSSA.rssa = 0) results in the maximum sub-second alarm interval.

8.2.3 RTC Wakeup From DEEPSLEEP/BACKUP Power Modes

The RTC alarms are an optional wakeup source for the MAX32660 during DEEPSLEEP/BACKUP mode. Perform the following
steps to use the RTC as a DEEPSLEEP/BACKUP wakeup source:

1. Configure the RTC Time-of-Day Alarm for the required number of seconds.
2. Create a RTC IRQ handler function and register the address of the RTC IRQ handler using the NVIC.
3. Enable the RTC time of day interrupt enable, (RTC_CTRL.alarm_tod_en = 1).
4. Enable the System wakeup for the RTC by setting the GCR_PM.rtcwk_en field to 1.
5. Enter the desired low power mode. Refer to section Operating Modes for details on entering DEEPSLEEP or

BACKUP mode.

8.3 RTC Register Access

Restricted access to specific registers prevents software reading from or writing to the RTC registers while they are updated
by the RTC hardware.

8.3.1 RTC Register Write Protection

The RTC_CTRL.busy bit is a read-only status bit controlled by hardware and set when any of the following conditions occur:

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 82

• System Reset.

• Software writes to the RTC_SEC register or RTC trim registers.

• Software modifies the RTC_CTRL.enable, RTC_CTRL.alarm_tod_en, or RTC_CTRL.alarm_ss_en bits.

When the RTC_CTRL.busy bit is set by hardware, writes to the above RTC control bits and count registers are blocked by
hardware. The RTC_CTRL.busy bit remains active until the register or bit is synchronized by hardware. The synchronization
by hardware occurs on the next rising edge of the 32kHz clock. The RTC_CTRL.busy bit is set for a maximum of one 4kHz
clock, approximately 250μs. Therefore, a software write is not complete until hardware clears the RTC_CTRL.busy bit
indicating that a 32kHz synchronized version of the registers and bit are in place.

Once the RTC_CTRL.busy bit is cleared to 0, additional writes are completed as permitted by individual count or alarm-
enable bits.

8.3.2 RTC Register Read Protection

The Ready (RTC_CTRL.ready) bit indicates when the RTC count registers contain valid data. Hardware clears the
RTC_CTRL.ready bit approximately one 4kHz clock before the ripple occurs through the RTC counter registers (RTC_SEC and
RTC_SSEC) and is set once again immediately after the ripple occurs. The period of the RTC_CTRL.ready bit set/clear activity
is approximately 3.9 msec, providing a large window during which the RTC count registers are readable. Software can clear
the RTC_CTRL.ready bit at any time and the bit remains clear until set by hardware when the next ripple occurs. A separate
Ready Enable (RTC_CTRL.ready_int_en) bit is provided to generate an interrupt when hardware sets the RTC_CTRL.ready
bit. You can use this interrupt to signal the start of a new RTC read window.

8.3.3 RTC Count Register Access

The RTC count registers (RTC_SEC and RTC_SSEC) are readable when the RTC_CTRL.ready bit is set to 1. Data read from
these registers when RTC_CTRL.ready is 0 is invalid. To write the RTC count registers, set the RTC Enable (RTC_CTRL.enable)
bit to 0. Clearing the RTC_CTRL.enable bit is permitted only when the Write Enable (RTC_CTRL.write_en) bit is set to 1 and is
governed by the RTC_CTRL.busy bit signaling process (that is, the RTC_CTRL.busy bit is 0). Writes to each RTC count register
must occur only when the RTC_CTRL.busy bit reads 0.

8.3.4 RTC Alarm Register Access

The RTC alarm registers (RTC_RAS and RTC_RSSA) are readable at any time. To write to an alarm register, disable the
corresponding alarm enable first (RTC_CTRL.alarm_ss_en = 0 or RTC_CTRL.alarm_tod_en = 0). Clearing these bits requires
monitoring the RTC_CTRL.busy bit to assess completion of the write. Once the alarm is disabled, update the associated RTC
alarm registers using software.

8.3.5 RTC Trim Register Access

The RTC Trim register (RTC_TRIM) is readable at any time. To write to this register, set the Write Enable
(RTC_CTRL.write_en) bit to 1 and check the RTC_CTRL.busy bit until it reads 0 and then write the RTC_TRIM register.

8.3.6 RTC Oscillator Control Register Access

The RTC oscillator control register (RTC_OSCCTRL) is readable at any time. To write to this register, set the Write Enable
(RTC_CTRL.write_en) bit to 1 and check the RTC_CTRL.busy bit until it reads 0 and then write to the RTC_OSCCTRL register.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 83

8.4 RTC Output Pin

The RTC is capable of outputting the raw 4KHz signal or a trim compensated 1KHz or 512Hz signal to the 32KCAL alternate
pin function. On both the 16 WLP package and the 20 TQFN package for the MAX32660 the 32KCAL is alternate function 2
on pin P0.2. P0.2 corresponds to GPIO0[2].

8.5 RTC Calibration

The uncompensated accuracy of the RTC is a function of the attached crystal. A digital trim facility allows the device to
compensate for up to ± 127ppm (parts per million) as designated by the RTC_TRIM.trim register field.

Complete the following steps to measure a square wave output on the 32KCAL alternate function pin and determine the
accuracy of the RTC:

1. Enable the 32KCAL alternate function. Refer to the RTC Output Pin section for details
2. Set the RTC_CTRL.freq_sel field to the desired output frequency.
3. Set RTC_CTRL.32kout_en to 1, enabling the square wave output on the 32KCAL alternate pin function.
4. Measure the square wave output and compare it to an accurate reference clock.
5. Set RTC_CTRL.write_en to 1, and adjust the RTC_TRIM register.
6. Repeat steps 1 through 5 as necessary until optimum accuracy is achieved.

8.6 RTC Registers

Refer to the Peripheral Register Map section for the Real-Time Clock (RTC) Base Address.

Table 8-1. RTC Registers, Offsets and Descriptions

Register Offset Access Description

RTC_SEC [0x0000] R/W Seconds Counter Register

RTC_SSEC [0x0004] R/W Sub-Seconds Counter Register

RTC_RAS [0x0008] R/W Alarm Time-of-Day Register

RTC_RSSA [0x000C] R/W Sub-Second Alarm Register

RTC_CTRL [0x0010] R/W Control Register

RTC_TRIM [0x0014] R/W Trim Register

RTC_OSCCTRL [0x0018] R/W Oscillator Control Register

8.6.1 RTC Register Details

Table 8-2: RTC Seconds Counter Register

RTC Seconds Counter Register RTC_SEC [0x00]

Bits Name Access Reset Description

31:0 rts R/W - Seconds Counter
This register is the 32-bit count of seconds.

Table 8-3: RTC Sub-Seconds Counter Register

RTC Sub-Seconds Counter Register RTC_SSEC [0x04]

Bits Name Access Reset Description

31:8 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 84

RTC Sub-Seconds Counter Register RTC_SSEC [0x04]

Bits Name Access Reset Description

7:0 rtss R/W - Sub-Seconds Counter
This field represents sub-seconds and increments at 256Hz. When this field rolls from
0xFF to 0x00, the RTC_SEC.count increments.

Table 8-4: RTC Sub-Seconds Counter Register

RTC Alarm Time-of-Day Register RTC_RAS [0x08]

Bits Name Access Reset Description

31:20 - R/W 0 Reserved for Future Use
Do not modify this field.

19:0 ras R/W 0 Time-of-Day Alarm
Sets the time-of-day alarm from 1 second up to 12-days. When this field matches
RTC_SEC[19:0], an RTC system interrupt is generated.

Table 8-5: RTC Sub-Second Alarm Register

RTC Sub-Second Alarm Register RTC_RSSA [0x0C]

Bits Name Access Reset Description

31:0 rssa R/W 0 Sub-second Alarm
Sets the starting value for the sub-second alarm. The sub-second alarm increments at
256Hz providing an alarm interval of up to 16,777,216 seconds in increments of 3.9
msec. An alarm is generated when the counter rolls from 0xFFFF FFFF to 0x0000 0000.

Table 8-6: RTC Control Register

RTC Control Register RTC_CTRL [0x10]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify this field.

15 write_en R/W 0 Write Enable
Set this field to 1 to write to the RTC_TRIM register, the RTC enable
(RTC_CTRL.enable) bit, or both.

1: Writes to the RTC_TRIM register and the RTC_CTRL.enable bit are allowed.
0: Writes to the RTC_TRIM register and the RTC_CTRL.enable bit are ignored.

14:13 - R/W 0 Reserved for Future Use
Do not modify this field.

12:11 x32k_mode R/W 0 32kHz Oscillator Mode Select
Selects the operating mode for the 32kHz oscillator.

0: Operates in noise immunity mode
1: Operates in quiet mode. Oscillator warm-up is not required.
2: Operates in noise immunity mode when the processor is in active modes and

switches to quiet mode when the processor enters DEEPSLEEP. The system waits
for the 32kHz oscillator to warm-up prior to the processor exiting stop mode.

3: Operates in noise immunity mode when the processor is in active modes and
switches to quiet mode when the processor enters stop mode. The system does
not wait for the 32kHz oscillator to warm-up prior to the processor exiting stop
mode and beginning code execution.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 85

RTC Control Register RTC_CTRL [0x10]

Bits Name Access Reset Description

10:9 freq_sel R/W 0 Frequency Output Select
Selects the output frequency to output on the 32KCAL alternate function output pin if
the RTC_CTRL.32kout_en bit is set to 1 and the GPIO is enabled for the alternate pin
function 32KCAL; unused otherwise.

0b00: 1Hz (Compensated)
0b01: 512Hz (Compensated)
0b1x: 4kHz

8 32kout_en R/W - Square Wave Output Enable
0: Square wave output disabled.
1: Square wave is output on the 32KCAL alternate function pin with the frequency

determined by the RTC_CTRL.freq_sel field.

Note: This bit is set to 0 on a POR and is not affected by other resets.

7 alarm_ss_fl R/W 0 Sub-second Alarm Interrupt Flag
This interrupt flag is set when a sub-second alarm condition occurs. This flag is a wake-
up source for the processor.

0: No sub-second alarm pending.
1: Sub-second interrupt pending.

6 alarm_tod_fl R/W 0 Time-of-Day Alarm Interrupt Flag
This interrupt flag is set by hardware when a time-of-day alarm occurs. This flag is a
wake-up source for the processor.

0: No Time-of-Day alarm interrupt pending.
1: Time-of-day interrupt pending.

5 ready_int_en R/W 0 RTC Ready Interrupt Enable
This interrupt flag is set when the RTC ready bit is set by hardware.

0: Interrupt disabled.
1: Interrupt enabled.

4 ready R/W0O 0 RTC Ready
This bit is set to 1 by hardware when the RTC_SEC register is updated. Software can
clear this bit at any time. Hardware automatically clears this bit just prior to updating
the RTC_SEC register, indicating the RTC is busy.

0: RTC_SEC register not updated.
1: RTC_SEC register updated.

3 busy RO 0 RTC Busy Flag
This bit is set by hardware when changes to the RTC registers are synchronized. The
bit is automatically cleared by hardware when the synchronization is complete.
Software should poll this field for 0 after changing RTC registers to ensure the change
is complete prior to making any other RTC register changes.

0: RTC not busy.
1: RTC busy.

2 alarm_ss_en R/W 0 Sub-Second Alarm Interrupt Enable
Set this bit to 1 to enable the RTC sub-second alarm interrupt. Check the
RTC_CTRL.busy flag after writing this bit to determine when the RTC synchronization is
complete.

0: Alarm sub-second interrupt disabled.
1: Enable alarm sub-second interrupt.

1 alarm_tod_en R/W 0 Time-of-Day Alarm Interrupt Enable
Set this bit to 1 to enable the RTC time-of-day alarm interrupt. Check the
RTC_CTRL.busy flag after writing to this bit to determine when the RTC
synchronization is complete.

0: Time-of-day alarm interrupt is disabled.
1: Enable the time-of-day alarm interrupt.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 86

RTC Control Register RTC_CTRL [0x10]

Bits Name Access Reset Description

0 enable R/W 0 Real-Time Clock Enable
Enables and disables the RTC. The RTC write enable (RTC_CTRL.write_en) bit must be
set before changing this field. RTC Busy (RTC_CTRL.busy) must read 0 before writing to
this bit (RTC_CTRL.write_en). After writing to this bit, check the RTC_CTRL.busy flag
for 0 to determine when the RTC synchronization is complete.

0: RTC disabled.
1: RTC enabled.

Table 8-7: RTC Trim Register

RTC Trim Register RTC_TRIM [0x14]

Bits Name Access Reset Description

31:8 vrtc_tmr R/W 0 VRTC Time Counter
This field is used to show the number of seconds the RTC has since the RTC was
enabled. Hardware increments this field every 32 seconds.

Note: This field is reset on a Power On Reset (POR).

7:0 trim R/W 0 RTC Trim
This field specifies the 2s complement value of the trim resolution. Each increment or
decrement of the field adds or subtracts 1ppm at each 4kHz clock value with a
maximum correction of ± 127ppm.

Table 8-8: RTC Oscillator Control Register

RTC Oscillator Control Register RTC_OSCCTRL [0x18]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify this field.

5 32kout R/W 0 RTC Square Wave Output
0: 32kHz signal is not output to port pin (POR default).
1: Outputs the raw 32kHz clock to the 32KCAL alternate function if the alternate

function is enabled.

Note: This field is only reset on POR and not effected by other forms of reset.

4 bypass R/W 0 RTC Crystal Bypass
Bypass the crystal oscillator to allow a digital square wave to be driven on the 32KIN
pin.

0: Disable bypass (POR default)
1: Enable bypass

Note: This field is only reset on POR and not effected by other forms of reset.

3 ibias_en R/W 1 RTC Oscillator Bias Current Enable
Enables 4× or 2× bias current selected by RTC_OSCCTRL.ibias_sel in noise immunity
mode

0: Disable
1: Enable (POR default)

Note: This field is only reset on POR and not effected by other forms of reset.

2 hyst_en R/W 0 RTC Oscillator Hysteresis Buffer Enable
Enables the RTC hysteresis buffer in noise immunity mode. This increases DC current
consumption by ~144nA.

0: Disable (POR default)
1: Enable

Note: This field is only reset on POR and not effected by other forms of reset.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 87

RTC Oscillator Control Register RTC_OSCCTRL [0x18]

Bits Name Access Reset Description

1 ibias_sel R/W 0 RTC Oscillator 4× Bias Current Select
0: selects 2× bias current for RTC oscillator (POR default).
1: selects 4× bias current for RTC oscillator.

Note: This field is only reset on POR and not effected by other forms of reset.

0 filter_en R/W 1 RTC Oscillator Filter Enable
0: Disable RTC oscillator filter
1: Enable RTC oscillator filter (POR default)

Note: This field is only reset on POR and not effected by other forms of reset.

9 Timers

The MAX32660 contains three 32-bit, reloadable timers. Each timer provides multiple operating modes:

• One-Shot: Timer counts up to terminal value then halts.

• Continuous: Timer counts up to terminal value then repeats.

• Counter: Timer counts input edges received on timer input pin.

• Pulse Width Modulated (PWM) / PWM Differential.

• Capture: Captures a snapshot of the current timer count when timer input edge transitions.

• Compare: Timer pin toggles when timer exceeds terminal count.

• Gated: Timer increments only when timer input pin is asserted.

• Capture/Compare: Timer counts when timer input is asserted, captures timer count when input is deasserted.

9.1 Features

• 32-bit reload counter

• Programmable prescaler with values from 1 to 4096

• Non-overlapping PWM output generation with configurable off-time

• Capture, compare, and capture/compare capability

• Timer pin available as alternate function

• Configurable Input pin for event triggering, clock gating, or capture signal

• Timer output pin for event output and PWM signal generation

• Independent interrupt

9.2 Basic Operation

The timer modes operate by incrementing the TMRn_CNT register, driven by either the timer clock, an external stimulus on
the timer pin, or a combination of both. The TMRn_CNT register is always readable, even while the timer is enabled and
counting.

Each timer mode has a user-configurable timer period, which terminates on the timer clock cycle following the end of timer
period condition. Each timer mode has a different response at the end of a timer period, which can include changing the
state of the timer pin, capturing a timer value, reloading TMRn_CNT with a new starting value, or disabling the counter. The
end of a timer period will always set the corresponding interrupt bit and can generate an interrupt, if enabled.

In most modes the timer peripheral automatically sets TMRn_CNT to 0x0000 0001 at the end of a timer period, but
TMRn_CNT is set to 0x0000 0000 following a system reset. This means the first timer period following a system reset will be

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 88

one timer clock longer than subsequent timer periods if TMRn_CNT is not initialized to 0x0000 0001 during the timer
configuration step.

Clocking of timer functions is driven by the timer clock frequency, fCNT_CLK. The timer clock frequency is a user-configurable,
division of the system peripheral clock, PCLK. Each timer has an independent prescaler, allowing timers to operate at
different frequencies. The prescaler can be set from 1 to 4096 using the TMRn_CN.pres3:TMRn_CN.pres fields. Unless
otherwise mentioned, the timer clock is generated as follows:

Equation 9-1

𝑓
𝐶𝑁𝑇𝐶𝐿𝐾=

𝑓𝑃𝐶𝐿𝐾
𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

Application firmware writes to the timer registers and external events on timer pins will be asynchronous events to the
slower timer clock frequency. These events are latched on the next rising edge of the timer clock. Since it is not possible to
observe the timer clock directly, input events may have up to 0.5 timer clock delay before being recognized.

9.3 Timer Pin Functionality

Most timers have an associated timer pin that can function as an optional input or output depending on the selected timer
mode. The timer pin functionality is mapped as an alternate function that is shared with a GPIO. Timer pin assignments are
detailed in the data sheet for the specific device.

When the timer pin alternate function is enabled, the timer pin will have the same electrical characteristics, such as
pullup/pulldown strength, drive strength, etc. as the GPIO mode settings for that pin. When configured as an output, the
corresponding bit in the GPIO_OUT register should be configured to match the inactive state of the timer pin for that mode.
The pin characteristics must be configured before enabling the timer. Consult the GPIO section for details on how to
configure the electrical characteristics for the pin

Each timer has a dedicated interrupt flag, TMRn_INT.irq, which is set at the end of a timer period. If enabled, an interrupt
will be generated. The interrupt flag can be cleared by writing any value to TMRn_INT.irq.

9.4 One-Shot Mode (000b)

In One-shot mode the timer peripheral increments TMRn_CNT until it matches TMRn_CMP and then stops incrementing
and disables the timer. The timer can optionally output a pulse on the timer pin at the end of the timer period. In this
mode, the timer must be re-enabled to start another one-shot mode event.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 89

Figure 9-1: One-Shot Mode Diagram

TMR_CN.TEN

TMR_CNT

0X0000_0000**

0X0000_0001*

TMR_INT.IRQ

 TIMER CLOCK

TMR_CMP

* TMR_CNT AUTOMATICALLY RELOADS WITH 0X0000_0001 AT THE END OF THE TIMER PERIOD, BUT SOFTWARE CAN WRITE ANY INITIAL VALUE TO TMR_CNT

 BEFORE THE TIMER IS ENABLE D.

** THE DEFAULT VALUE OF TMR_CNT FOR THE FIRS T PE RIOD AFTER A SY STEM RE SET IS 0X0000_0000 UNLESS CHA NGED BY SOFTWARE .

TMR_CN.TPL = 1

TMR_CN.TPL = 0
TIMER PIN

(OUTPUT)

0X0000_0002

TIMER ENABLED

BY SOFTWARE
TIMER DISABLED

BY HARDWARE

TIMER ENABLED

BY SOFTWARE

SOFTWARE CLEARS BIT

9.4.1 Timer Period

The timer period ends on the timer clock following TMRn_CNT = TMRn_CMP.

The timer peripheral automatically performs the following actions at the end of the timer period:

1. TMRn_CNT is reset to 0x0000 0001.
2. The timer is disabled by setting TMRn_CN.ten = 0.
3. If the timer output is enabled, the timer pin is driven to its active state for one timer clock. It then returns to its

inactive state.
4. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will be generated if enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 90

9.4.2 Configuration

Configure the timer for One-Shot mode by doing the following:

1. Set TMRn_CN.ten = 0 to disable the timer.Set TMRn_CN.tmode to 000b to select One-shot mode.
2. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
3. If using the timer pin:

a. Configure the pin as a timer output and configure the electrical characteristics as needed.

b. Set TMRn_CN.tpol to match the desired (inactive) state.
4. If using the timer interrupt, enable the interrupt and set the interrupt priority.
5. Write an initial value to TMRn_CNT, if desired. This effects only the first period; subsequent timer periods always

reset TMRn_CNT= 0x0000 0001.
6. Write the compare value to TMRn_CMP.
7. Set TMRn_CN.ten = 1 to enable the timer.

The timer period is calculated using the following equation:

Equation 9-2: One-shot Mode Timer Period

𝑂𝑛𝑒-𝑠ℎ𝑜𝑡 𝑚𝑜𝑑𝑒 𝑡𝑖𝑚𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
TMRCMP − TMRCNT𝐼𝑁𝐼𝑇𝐼𝐴𝐿𝑉𝐴𝐿𝑈𝐸

+ 1

𝑓𝐶𝑁𝑇𝐶𝐿𝐾
 (𝐻𝑧)

9.5 Continuous Mode (001b)

In Continuous mode, the timer peripheral increments TMRn_CNT until it matches TMRn_CMP, resets TMRn_CNT to
0x0000 0001, and continues incrementing. The timer peripheral can optionally toggle the state of the timer pin at the end
of the timer period.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 91

Figure 9-2: Continuous Mode Diagram

TMR_CN.TEN

TMR_CNT

0X0000_0000**

0X0000_0001*

TMR_INT.IRQ

 TIMER CLOCK

TMR_CMP

* TMR_CNT AUTOMATICALLY RELOADS WITH 0X0000_0001 AT THE END OF THE TIMER PERIOD, BUT SOFTWARE CAN WRITE ANY INITIAL VALUE TO TMR_CNT

 BEFORE THE TIMER IS ENABLE D.

** THE DEFAULT VALUE OF TMR_CNT FOR THE FIRS T PE RIOD AFTER A SY STEM RE SET IS 0X0000_0000 UNLESS CHA NGED BY SOFTWARE .

SOFTWARE CLEARS BIT

TMR_CN.TPL = 1

TMR_CN.TPL = 0
TIMER PIN

(OUTPUT)

0X0000_0002

SOFTWARE CLEARS BIT

9.5.1 Timer Period

The timer period ends on the timer clock following TMRn_CNT = TMRn_CMP.

The timer peripheral automatically performs the following actions at the end of the timer period:

1. TMRn_CNT is reset to 0x0000 0001. The timer remains enabled and continues incrementing.
2. If the timer output is enabled, the timer pin toggles state (low to high or high to low).
3. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will be generated if enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 92

9.5.2 Configuration

Configure the timer for Continuous mode by performing the steps following:

6. Set TMRn_CN.ten = 0 to disable the timer.
1. Set TMRn_CN.tmode to 001b to select Continuous mode.
2. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
3. If using the timer pin:

a. Configure the pin as a timer output and configure the electrical characteristics as needed.
b. Set TMRn_CN.tpol to match the desired (inactive) state.

4. If using the timer interrupt, enable the interrupt and set the interrupt priority.
5. Write an initial value to TMRn_CNT, if desired. This effects only the first period; subsequent timer periods always

reset TMRn_CNT= 0x0000 0001.
6. Write the compare value to TMRn_CMP.
7. Set TMRn_CN.ten = 1 to enable the timer.

The timer period is calculated using the following equation.

Equation 9-3: Continuous Mode Timer Period

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑜𝑑𝑒 𝑡𝑖𝑚𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
TMRCMP − TMRCNT𝐼𝑁𝐼𝑇𝐼𝐴𝐿𝑉𝐴𝐿𝑈𝐸

+ 1

𝑓𝐶𝑁𝑇𝐶𝐿𝐾
 (𝐻𝑧)

9.6 Counter Mode (010b)

In Counter mode, the timer peripheral increments TMRn_CNT when a transition occurs on the timer pin. When TMRn_CNT
= TMR.CMP, the interrupt bit is set, TMRn_CNT is set to 0x0000 0001, and continues incrementing. The timer can be
configured to increment on either the rising edge or the falling edge, but not both.

The timer prescaler setting has no effect in this mode. The frequency of the timer’s input signal (fCTR_CLK) must not exceed 25
percent of the PCLK frequency as shown in the following equation:

Equation 9-4: Counter Mode Maximum Clock Frequency

𝑓𝐶𝑇𝑅𝐶𝐿𝐾
≤

𝑃𝐶𝐿𝐾 (𝐻𝑧)

4

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 93

Figure 9-3: Counter Mode Diagram

TMR_CN.TEN

TMR_CNT

0X0000_0000**

0X0000_0001*

TMR_INT.IRQ

TMR_CN.CMP

* TMR_CNT AUTOMATICALLY RELOADS WITH 0X0000_0001 AT THE END OF THE TIMER PERIOD, BUT SOFTWARE CAN WRITE ANY INITIAL VALUE TO TMR_CNT

 BEFORE THE TIMER IS ENABLE D.

** THE DEFAULT VALUE OF TMR_CNT FOR THE FIRS T PE RIOD AFTER A SY STEM RE SET IS 0X0000_0000 UNLESS CHA NGED BY SOFTWARE .

SOFTWARE CLEARS

TMR_CN.TPL = 1

TMR_CN.TPL = 0
TMR PIN

(INPUT)

0X0000_0002

PCLK

(INTERNAL)

MINIMUM INPUT

PULSE 4 * PCLK

9.6.1 Timer Period

The timer period ends on the rising edge of PCLK following TMRn_CNT = TMRn_CMP.

The timer peripheral automatically performs the following actions at the end of the timer period:

1. TMRn_CNT is reset to 0x0000 0001. The timer remains enabled and continues incrementing on selected transitions
of the timer pin.

2. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will be generated if enabled.

9.6.2 Configuration

Configure the timer for Counter mode by doing the following:

1. Set TMRn_CN.ten = 0 to disable the timer.
2. Set TMRn_CN.tmode to 010b to select Counter mode.
3. Configure the timer pin:

a. Configure the pin as a timer input and configure the electrical characteristics as needed.
b. Set TMRn_CN.tpol to match the desired initial (inactive) state.

4. If using the timer interrupt, enable the interrupt and set the interrupt priority.
5. Write an initial value to TMRn_CNT, if desired. This effects only the first period; subsequent timer periods always

reset TMRn_CNT= 0x0000 0001.
6. Write the compare value to TMRn_CMP.
7. Set TMRn_CN.ten = 1 to enable the timer.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 94

In Counter mode, the number of timer input transitions since timer start is calculated using the following equation:

Equation 9-5: Counter Mode Timer Input Transitions

𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑚𝑜𝑑𝑒 𝑡𝑖𝑚𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑇𝑀𝑅_𝐶𝑁𝑇𝐶𝑈𝑅𝑅𝐸𝑁𝑇_𝐶𝑂𝑈𝑁𝑇_𝑉𝐴𝐿𝑈𝐸 – 𝑇𝑀𝑅_𝐶𝑁𝑇𝑆𝑇𝐴𝑅𝑇_𝑉𝐴𝐿𝑈𝐸

9.7 PWM Mode (011b)

In PWM mode, the timer sends a Pulse-Width Modulated (PWM) output using the timer’s output signal. The timer first
counts up to the match value stored in the TMRn_PWM register. At the end of the cycle where the TMRn_CNT value
matches the TMRn_PWM value, the timer’s output toggles state. The timer continues counting until it reaches the
TMRn_CMP value.

9.7.1 Timer Period

The timer period ends on the rising edge of PCLK following TMRn_CNT = TMRn_CMP.

The timer peripheral automatically performs the following actions at the end of the timer period:

1. The TMRn_CNT is reset to 0x0000 0001, and the timer resumes counting.
2. The timer output signal is toggled.
3. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will be generated if enabled.

When TMRn_CN.tpol = 0, the timer output signal starts low and then transitions to high when the TMRn_CNT value
matches the TMRn_PWM value. The timer output signal remains high until the TMRn_CNT value reaches the TMRn_CMP
value, resulting in the timer output signal transitioning low, and the TMRn_CNT value resetting to 0x0000 0001.

When TMRn_CN.tpol = 1, the Timer output signal starts high and transitions low when the TMRn_CNT value matches the
TMRn_PWM value. The timer output signal remains low until the TMRn_CNT value reaches the TMRn_CMP value, resulting
in the timer output signal transitioning high, and the TMRn_CNT value resetting to 0x0000 0001.

9.7.2 PWM Mode Configuration

Complete the following steps to configure a timer for PWM mode and initiate the PWM operation:

1. Set TMRn_CN.ten = 0 to disable the timer.
2. Set TMRn_CN.tmode to 011b to select PWM mode.
3. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
4. Configure the timer pin:
5. Configure the pin as a timer input and configure the electrical characteristics as needed.
6. Set TMRn_CN.tpol to match the desired initial (inactive) state.

a. Set TMRn_CN.tpol to select the initial logic level (high or low) and PWM transition state for the timer’s output.
b. Set TMRn_CNT to the starting count, typically 0x0000 0001. The initial TMRn_CNT value only effects the initial

period in PWM mode with subsequent periods always setting TMRn_CNT to 0x0000 0001.
c. Set the TMRn_PWM value to the transition period count.

7. Set the TMRn_CMP value for the PWM second transition period. Note: TMRn_CMP must be greater than the
TMRn_PWM value.

8. Optionally enable the timer’s interrupt in the Interrupt Controller and set the timer’s interrupt priority.
9. Set TMRn_CN.ten to 1 to enable the timer and start the PWM.

The PWM period is calculated using the following equation:

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 95

Equation 9-6: Timer PWM Period

𝑃𝑊𝑀 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
𝑇𝑀𝑅_𝐶𝑀𝑃

𝑓𝐶𝑁𝑇_𝐶𝐿𝐾 (𝐻𝑧)

If an initial starting value other than 0x0000 0001 is loaded into the TMRn_CNT register, use the One-Shot mode equation
to determine the initial PWM period.

If TMRn_CN.tpol is 0, the ratio of the PWM output high time to the total period is calculated using the following equation:

𝑃𝑊𝑀 𝑜𝑢𝑡𝑝𝑢𝑡 ℎ𝑖𝑔ℎ 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 (%) =
(𝑇𝑀𝑅_𝐶𝑀𝑃 – 𝑇𝑀𝑅_𝑃𝑊𝑀)

𝑇𝑀𝑅_𝐶𝑀𝑃
 × 100

If TMRn_CN.tpol is set to 1, the ratio of the PWM output high time to the total period is calculated using the following
equation:

𝑃𝑊𝑀 𝑜𝑢𝑡𝑝𝑢𝑡 ℎ𝑖𝑔ℎ 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 (%) =
TMRPWM

TMRCMP

 × 100

9.8 Capture Mode (100b)

Capture mode most often used to measure the time between events. The timer increments from an initial value until an
edge transition occurs on the timer pin. This triggers the ‘capture’ event which copies TMRn_CNT to the TMRn_PWM.pwm
register, resets TMRn_CNT = 0x0000 0001, and continues incrementing. Also, if the timer pin does not go active before
TMRn_CNT = TMRn_CMP, the timer will reset TMRn_CNT = 0x0000 0001, and continue incrementing. Either event will set
the timer interrupt bit.

Figure 9-4: Capture Mode Diagram

TMR_CN.TEN

TMR_CNT

0X0000_0000**

0X0000_0001*

TMR_INT.IRQ

 TIMER CLOCK

TMR_CMP

* TMR_CNT AUTOMATICALLY RELOADS WITH 0X0000_0001 AFTER A CAPTURE E VENT OR WHE N TMR_CNT = TMR_CMP, BUT SOFTWARE CAN WRITE ANY INITIAL

 VALUE TO TMR_CNT BEFORE THE TIMER IS ENABLED.

** THE DEFAULT VALUE OF TMR_CNT FOR THE FIRS T PE RIOD AFTER A SY STEM RE SET IS 0X0000_0000 UNLESS CHA NGED BY SOFTWARE .

SOFTWARE CLEARS .IRQ BIT

TIMER PIN

(INPUT)

0X0000_0002

TMR_CNT(CAPTURE)

TMR_CN.TPL = 1

TMR_CN.TPL = 0

TMR_CNT(CAPTURE)

COP IED TO TMR_PWM

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 96

9.8.1 Timer Period

Two timer period events are possible in Capture Mode:

The Capture event occurs on the timer clock following the selected transition on the timer pin. The timer peripheral
automatically performs the following actions:

1. The value in TMRn_CNT is copied to TMRn_PWM
2. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will be generated if enabled.
3. The timer remains enabled and continues incrementing.
4. The timer period ends on the timer clock following TMRn_CNT = TMRn_CMP.

The timer period event occurs on the timer clock TMRn_CNT = TMRn_CMP. The timer peripheral automatically performs
the following actions when an end of timer period event occurs:

1. The value in TMRn_CNT is reset to 0x0000 00001. The timer remains enabled and continues incrementing.
2. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will generated if enabled.

9.8.2 Configuration

Configure the timer for Capture mode by doing the following:

1. Disable the timer by setting TMRn_CN.ten to 0.
2. Select Counter mode by setting TMRn_CN.tmode to 010b.
3. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
4. If using the timer pin:

a. Configure the pin as a timer output and configure the electrical characteristics as needed.
b. Set TMRn_CN.tpol to match the desired (inactive) state.

5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
6. Write the initial value to TMRn_CNT. This effects only the first period; subsequent periods always begin with

0x0000 0001.
7. Write the compare value to TMRn_CMP.
8. Set TMRn_CN.ten = 1 to enable the timer.

The timer period is calculated using the following equation:

Equation 9-7: Capture Mode Elapsed Time

𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
𝑇𝑀𝑅_𝑃𝑊𝑀 − 𝑇𝑀𝑅_𝐶𝑁𝑇𝐼𝑁𝐼𝑇𝐼𝐴𝐿_𝐶𝑂𝑈𝑁𝑇_𝑉𝐴𝐿𝑈𝐸

𝑓𝐶𝑁𝑇_𝐶𝐿𝐾

Note: The capture elapsed time calculation is only valid after the capture event occurs, and the timer stores the captured
count in the TMRn_PWM register.

9.9 Compare Mode (101b)

In Compare mode the timer peripheral increments continually, allowing the timer to be a programmable 32-bit
programmable period timer. The end of timer period event occurs when the timer value matches the compare value, but
the timer continues to increment until the count reaches 0xFFFF FFFF. The timer counter then rolls over and continues
counting from 0x0000 000.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 97

Figure 9-5: Counter Mode Diagram

TMR_CN.TEN

TMR_CNT

0X0000_0000**

0X0000_0001*

TMR_INT.IRQ

 TIMER CLOCK

TMR_CN.CMP

* TMR_CNT AUTOMATICALLY RELOADS WITH 0X0000_0001 AT THE END OF THE TIMER PERIOD, BUT SOFTWARE CAN WRITE ANY INITIAL VALUE TO TMR_CNT

 BEFORE THE TIMER IS ENABLE D.

** THE DEFAULT VALUE OF TMR_CNT FOR THE FIRS T PE RIOD AFTER A SY STEM RE SET IS 0X0000_0000 UNLESS CHA NGED BY SOFTWARE .

SOFTW ARE CLEARS .IRQ BIT

0XFFFF_FFFF

TMR_CN.TPL = 1

TMR_CN.TPL = 0TIMER PIN

(OUTPUT)

0X0000_0002

9.9.1 Timer Period

The timer period ends on the timer clock following TMRn_CNT = TMRn_CMP.

The timer peripheral automatically performs the following actions at the end of the timer period:

1. The timer remains enabled and continues incrementing. Unlike other modes, TMRn_CNT is not reset to
0x0000 0001 at the end of the timer period.

2. If the timer output is enabled, then the timer pin toggles state (low to high or high to low).
3. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will be generated if enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 98

9.9.2 Configuration

Configure the timer for Compare mode by doing the following:

1. Set TMRn_CN.ten = 0 to disable the timer.
2. Set TMRn_CN.tmode to 011b to select Compare mode.
3. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
4. If using the timer pin:

a. Configure the pin as a timer output and configure the electrical characteristics as needed.
b. Set TMRn_CN.tpol to match the desired (inactive) state.

5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
6. Write the initial value to TMRn_CNT. This effects only the first period as the counter increments continuously,

rolling over to 0x0000 0000 and continuing.
7. Write the compare value to TMRn_CMP.
8. Set TMRn_CN.ten = 1 to enable the timer.

The timer period is calculated using the following equation:

Equation 9-8: Compare Mode Timer Period

𝐶𝑜𝑚𝑝𝑎𝑟𝑒 𝑚𝑜𝑑𝑒 𝑡𝑖𝑚𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
𝑇𝑀𝑅_𝐶𝑀𝑃 − 𝑇𝑀𝑅𝐼𝑁𝐼𝑇𝐼𝐴𝐿_𝐶𝑂𝑈𝑁𝑇|_𝑉𝐴𝐿𝑈𝐸 + 1

𝑓𝐶𝑁𝑇_𝐶𝐿𝐾 (𝐻𝑧)

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 99

9.10 Gated Mode (110b)

Gated mode is similar to continuous mode, except that TMRn_CNT only increments when the timer pin is in its active state.

Figure 9-6: Gated Mode Diagram

TMR_CN.TEN

TMR_CNT

0X0000_0000**

0X0000_0001*

TMR_INT.IRQ

TIMER CLOCK

TMR_CMP

* TMR_CNT AUTOMATICALLY RELOADS WITH 0X0000_0001 AT THE END OF THE TIMER PERIOD, BUT SOFTW ARE CAN WRITE ANY INITIAL VALUE TO TMR_CNT

 BEFORE THE TIMER IS ENABLE D.

** THE DEFAULT VALUE OF TMR_CNT FOR THE FIRS T PE RIOD AFTER A SY STEM RE SET IS 0X0000_0000 UNLESS CHA NGED BY SOFTWARE .

TMR_CN.TPL = 1

TMR_CN.TPL = 0
TIMER PIN

(INPUT)

0X0000_0002

SOFTWARE CLEARS BIT

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 100

9.10.1 Timer Period

The timer period ends when TMRn_CNT = TMRn_CMP.

The timer peripheral automatically performs the following actions at the end of the timer period:

1. TMRn_CNT is reset to 0x0000 0001. The timer remains enabled and continues incrementing.
2. The timer interrupt bit TMRn_INT.irq will be set. An interrupt will be generated if enabled.

9.10.2 Configuration

Configure the timer for Gated mode by doing the following:

1. Set TMRn_CN.ten = 0 to disable the timer.
2. Set TMRn_CN.tmode to 110b to select Gated mode.
3. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
4. Configure the timer pin:

a. Configure the pin as a timer input and configure the electrical characteristics as needed.
b. Set TMRn_CN.tpol to match the desired initial (inactive) state.

5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
6. Write an initial value to TMRn_CNT, if desired. This effects only the first period; subsequent timer periods always

reset TMRn_CNT= 0x0000 0001.
7. Write the compare value to TMRn_CMP.
8. Set TMRn_CN.ten = 1 to enable the timer.

9.11 Capture/Compare Mode (111b)

In Capture/Compare mode, the timer starts counting after the first external timer input transition occurs. The transition, a
rising edge or falling edge on the timer’s input signal, is set using the TMRn_CN.tpol bit.

Each subsequent transition, after the first transition of the timer input signal, captures the TMRn_CNT value, writing it to
the TMRn_PWM register (capture event). When a capture event occurs, a timer interrupt is generated, the TMRn_CNT
value is reset to 0x0000 0001, and the timer resumes counting.

If no capture event occurs, the timer counts up to the TMRn_CMP value. At the end of the cycle where the TMRn_CNT
equals the TMRn_CMP value, a timer interrupt is generated, the TMRn_CNT value is reset to 0x0000 0001, and the timer
resumes counting.

9.11.1 Timer Period

The timer period ends when the selected transition occurs on the timer pin, or on the clock cycle following
TMRn_CNT = TMRn_CMP.

The timer peripheral automatically performs the following actions at the end of the timer period:

If the end of the timer period was caused by a transition on the timer pin:

1. The value in TMRn_CNT is copied to TMRn_PWM.
2. TMRn_CNT is reset to 0x0000 0001. The timer remains enabled and continues incrementing.
3. The timer interrupt bit, TMRn_INT.irq, is set. A Timer IRQ is generated, if enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 101

4. If the end of the timer period was caused by a transition on the timer pin:

5. TMRn_CNT is reset to 0x0000 0001. The timer remains enabled and continues incrementing.
6. The timer interrupt bit TMRn_INT.irq will be set. An interrupt is generated, if enabled.

9.11.2 Configuration

Configure the timer for Capture/Compare mode by doing the following:

1. Set TMRn_CN.ten = 0 to disable the timer.
2. Set TMRn_CN.tmode to 111b to select Capture/Compare mode.
3. Set TMRn_CN.pres3:TMRn_CN.pres to set the prescaler that determines the timer frequency.
4. Configure the timer pin:

a. Configure the pin as a timer input and configure the electrical characteristics as needed.
b. Set TMRn_CN.tpol to select the positive edge (TMRn_CN.tpol = 0) or negative edge (TMRn_CN.tpol = 0)

transition causes the capture event.

5. If using the timer interrupt, enable the interrupt and set the interrupt priority.
6. Write an initial value to TMRn_CNT, if desired. This effects only the first period; subsequent timer periods always

reset TMRn_CNT= 0x0000 0001.
7. Set TMRn_CN.ten to 1 to enable the timer. Counting starts after the first transition of the timer’s input signal. No

interrupt is generated by the first transition of the input signal.

In Capture/Compare mode, the elapsed time from the timer start to the capture event is calculated using the following
equation:

Equation 9-9: Capture Mode Elapsed Time

𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
𝑇𝑀𝑅_𝑃𝑊𝑀 − 𝑇𝑀𝑅_𝐶𝑁𝑇𝐼𝑁𝐼𝑇𝐼𝐴𝐿_𝐶𝑁𝑇_𝑉𝐴𝐿𝑈𝐸

𝑓𝐶𝑁𝑇_𝐶𝐿𝐾 (𝐻𝑧)

9.12 Timer Registers

Address assignments for each timer’s register is shown in Table 1. Register fields marked as reserved for future use should
only be written to 0.

Each timer is controlled by a block of registers assigned to that specific timer. All timers contain an identical set of registers.

Register names for a specific instance are defined by appending the instance number to the peripheral name. For example,
the Timer Count Register for Timer 0 is TMR0_CNT while the Timer Count Register for Timer 1 is TMR1_CNT, and so on. The
microcontroller includes three timer instances, TMR0 through TMR2.

Refer to Table 2-1: APB Peripheral Base Address Map for the Timer 0 (TMR0) to Timer 2 (TMR2) Base Peripheral Address.

9.13 Timer Register Details

Table 9-1: Timer Register Offsets, Names, Access and Descriptions

Offset Register Name Access Description

[0x0000] TMRn_CNT R/W Timer Counter Register

[0x0004] TMRn_CMP R/W Timer Compare Register

[0x0008] TMRn_PWM R/W Timer PWM Register

[0x000C] TMRn_INT R/W Timer Interrupt Register

[0x0010] TMRn_CN R/W Timer Control Register

[0x0014] TMRn_NOLCMP R/W Timer Non-Overlapping Compare Register

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 102

Table 9-2: Timer Count Registers

Timer Count Register TMRn_CNT [0x0000]

Bits Name Access Reset Description

31:0 count R/W 0 Count
The current count value for the timer. This field increments as the timer counts. Reads
to this register are always valid. In general, disable the timer by clearing bit
TMRn_CN.ten, prior to writing the TMRn_CNT field.

Table 9-3: Timer Compare Registers

Timer Compare Register TMRn_CMP [0x0004]

Bits Name Access Reset Description

31:0 compare R/W 0 Timer Compare Value
The value in this register is used as the compare value for the timer’s count value. The
compare field meaning is determined by the specific mode of the timer. Refer to the
mode’s detailed configuration section for compare usage and meaning.

Timer PWM Register TMRn_PWM [0x0008]

Bits Name Access Reset Description

31:0 pwm R/W 0 Timer PWM Match
In PWM mode, this field sets the count value for the first transition period of the
PWM cycle. At the end of the cycle where TMRn_CNT equals TMRn_CMP, the PWM
output transitions to the second period of the PWM cycle. The second PWM period
count is stored in the TMRn_CMP register. The value set for TMRn_PWM.pwm must
be less than the value set in TMRn_CMP for PWM mode operation.
Timer Capture Value
In Capture, Compare, and Capture/Compare modes, this field is used to store the
TMRn_CNT value when a Capture, Compare, or Capture/Compare event occurs.

Table 9-4: Timer Interrupt Registers

Timer Interrupt Register TMRn_INT [0x000C]

Bits Name Access Reset Description

31:1 - R 0 Reserved for Future Use
Do not modify this field.

0 irq RW 0 Timer Interrupt

Writing any value to this bit clears the timer’s interrupt.

Table 9-5: Timer Control Registers

Timer Control Register TMRn_CN [0x0010]

Bits Name Access Reset Description

 - R 0 Reserved for Future Use
Do not modify this field.

12 pwmckbd R/W 1 PWM Output 𝝓𝑨′ Disable
1: Disable PWM Output 𝜙𝐴′
0: Enable PWM Output 𝜙𝐴′

11 nollpol R/W 0 PWM Output 𝝓𝑨′ Polarity Bit
1: Output 𝜙𝐴′ inverted
0: Output 𝜙𝐴′ non-inverted

10 nolhpol R/W 0 PWM Output 𝝓𝑨 Polarity Bit
1: Output 𝜙𝐴 inverted
0: Output 𝜙𝐴 non-inverted

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 103

Timer Control Register TMRn_CN [0x0010]

Bits Name Access Reset Description

9 pwmsync R/W 0 PWM Synchronization Mode
1: PWM synchronization mode enabled
0: PWM synchronization mode disabled

8 pres3 R/W 0 Timer Prescale Select MSB
See TMRn_CN.pres for details about this bit.

7 ten R/W 0 Timer Enable
1: Timer enabled
0: Timer disabled

6 tpol R/W 0 Timer Polarity
Selects the polarity of the timer’s input and output signal. This setting is not used if
the GPIO Port Pin for the timer’s input, output, or both is not configured for the timer
alternate function in GPIO. The tpol field meaning is determined by the specific mode
of the timer. Refer to the mode’s detailed configuration section for tpol usage and
meaning.

5:3 pres R/W 0 Timer Prescaler Select
Sets the timer’s prescaler value. The prescaler divides the PCLK input to the timer and

sets the timer’s count clock, 𝑓𝐶𝑁𝑇_𝐶𝐿𝐾 = 𝑃𝐶𝐿𝐾 (𝐻𝑧)
𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

⁄ .The timer’s prescaler

setting is a 4-bit value with pres3 as the most significant bit and pres as the three least
significant bits. The table below shows the prescaler values based on pres3:pres.

pres3 pres Prescaler 𝒇𝑪𝑵𝑻𝑪𝑳𝑲

0 0b000 1 𝑃𝐶𝐿𝐾 (𝐻𝑧)
1

⁄

0 0b001 2 𝑃𝐶𝐿𝐾 (𝐻𝑧)
2

⁄

0 0b010 4 𝑃𝐶𝐿𝐾 (𝐻𝑧)
4⁄

0 0b011 8 𝑃𝐶𝐿𝐾 (𝐻𝑧)
8⁄

0 0b100 16 𝑃𝐶𝐿𝐾 (𝐻𝑧)
16⁄

0 0b101 32 𝑃𝐶𝐿𝐾 (𝐻𝑧)
32⁄

0 0b110 64 𝑃𝐶𝐿𝐾 (𝐻𝑧)
64⁄

0 0b111 128 𝑃𝐶𝐿𝐾 (𝐻𝑧)
128⁄

1 0b000 256 𝑃𝐶𝐿𝐾 (𝐻𝑧)
256

⁄

1 0b010 512 𝑃𝐶𝐿𝐾 (𝐻𝑧)
512

⁄

1 0b011 1024 𝑃𝐶𝐿𝐾 (𝐻𝑧)
1024⁄

1 0b100 2048 𝑃𝐶𝐿𝐾 (𝐻𝑧)
2048⁄

1 0b101 4096 𝑃𝐶𝐿𝐾 (𝐻𝑧)
4096⁄

1 0b110 Reserved Reserved

1 0b111 Reserved Reserved

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 104

Timer Control Register TMRn_CN [0x0010]

Bits Name Access Reset Description

2:0 tmode R/W 0 Timer Mode Select
Sets the timer’s operating mode.

tmode Selected Timer Mode

000b One-Shot

001b Continuous

010b Counter

011b PWM

100b Capture

101b Compare

110b Gated

111b Capture/Compare

Table 9-6: Timer Non-Overlapping Compare Registers

Timer Non-Overlapping Compare Register TMRn_NOLCMP [0x0014]

Bits Name Access Reset Description

31:16 - R 0 Reserved for Future Use
Do not modify this field.

15:8 nolhcmp R/W 0 Non-Overlapping High Compare
The 8-bit timer count value of non-overlapping time between the falling edge of PWM
output 𝜙𝐴′ and the next rising edge of PWM output 𝜙𝐴.

7:0 nollcmp R/W 0 Non-Overlapping Low Compare
The 8-bit timer count value of non-overlapping time between the falling edge of PWM
output 𝜙𝐴 and next rising edge of PWM output 𝜙𝐴′.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 105

10 Watchdog Timer (WDT)

The watchdog timer protects against corrupt or unreliable software, power faults, and other system-level problems, which
may place the microcontroller into an improper operating state. When the application is executing properly, application
software periodically resets the watchdog counter. If the watchdog timer interrupt is enabled and the software does not
reset the counter within the interrupt time period (WDT0_CTRL.int_period), the watchdog timer generates a watchdog
timer interrupt. If the watchdog timer reset is enabled and the software does not reset the counter within the reset time
period (WDT0_CTRL..rst_period), the watchdog timer generates a system reset.

Figure 10-1 shows the block diagram of the watchdog timers.

Figure 10-1: Watchdog Timer Block Diagram

10.1 Features

• Sixteen programmable time periods for the watchdog interrupt

 216 through 231 PCLK cycles

• Sixteen programmable time periods for the watchdog reset

 216 through 231 PCLK cycles

• The watchdog timer counter is reset on all forms of reset

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 106

10.2 Usage

Utilizing the watchdog timer in the application software is straightforward. As early as possible in the application software,
enable the watchdog timer interrupt and watchdog timer reset. Periodically the application software must write to the
WDT0_RST register to reset the watchdog counter. If program execution becomes lost, the watchdog timer interrupt will
occur, giving the system a “last chance” to recover from whatever circumstance caused the improper code execution. The
interrupt routine may either attempt to repair the situation or allow the watchdog timer reset to occur. In the event of a
system software failure, the interrupt will not be executed, and the watchdog system reset will recover operation.

As soon as possible after a reset, the application software should interrogate the WDT0_CTRL.rst_flag to determine if the
reset event resulted from a watchdog timer reset. If so, application software should assume that there was a program
execution error and take whatever steps necessary to guard against a software corruption issue.

10.3 Interrupt and Reset Period Timeout Configuration

Each watchdog timer supports two independent timeout periods, the interrupt period timeout and reset period timeout.

Interrupt Period Timeout (WDT_CTRL0.int_period) - Sets the number of PCLK cycles until a watchdog timer interrupt is
generated. This period must be less than the Reset Period Timeout for the watchdog timer interrupt to occur.

Reset Period Timeout (WDT_CTRL0.rst_period) – Sets the number of PCLK cycles until a system reset event occurs.

The interrupt and reset period timeouts are calculated using Equation 10-1 and Equation 10-2 respectively, where

𝑓𝑃𝐶𝐿𝐾 =
𝑓𝑆𝑌𝑆𝐶𝐿𝐾

2⁄ . Table 10-1 shows example interrupt period timeout calculations for several WDT0_CTRL.int_period

settings for the with the System Clock set as the 96MHz Relaxation Oscillator.

Equation 10-1: Watchdog Timer Interrupt Period

𝑇𝐼𝑁𝑇_𝑃𝐸𝑅𝐼𝑂𝐷 = (
1

𝑓𝑃𝐶𝐿𝐾

) × 2(31−𝑊𝐷𝑇0_𝐶𝑇𝑅𝐿.𝑖𝑛𝑡_𝑝𝑒𝑟𝑖𝑜𝑑)

Equation 10-2. Watchdog Timer Reset Period

𝑇𝑅𝑆𝑇_𝑃𝐸𝑅𝐼𝑂𝐷 = (
1

𝑓𝑃𝐶𝐿𝐾

) × 2(31−𝑊𝐷𝑇0_𝐶𝑇𝑅𝐿.𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑)

Table 10-1: Watchdog Timer Interrupt Period with fSYSCLK = 96MHz and fPCLK = 48MHz

WDT0_CTRL
int_period

TINT_PERIOD
(seconds)

15 0.001

14 0.002

13 0.004

12 0.009

11 0.018

10 0.035

9 0.070

8 0.140

7 0.280

6 0.560

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 107

WDT0_CTRL
int_period

TINT_PERIOD
(seconds)

5 1.12

4 2.24

3 4.47

2 8.95

1 17.9

0 Disabled

10.4 Enabling the Watchdog Timer

The watchdog timers are free running and require a protected sequence of writes to enable the watchdog timers to prevent
an unintended reset during the enable process.

10.4.1 Enable sequence

1. Write WDT0_RST.wdt_rst: 0x000000A5
2. Write WDT0_RST.wdt_rst: 0x0000005A
3. Set WDT0_CTRL.wdt_en to 1

10.5 Disabling the Watchdog Timer

The watchdog timers can be disabled by the application code manually or by the microcontroller automatically as shown
below.

10.5.1 Manual Disable

Setting WDT0_CTRL.wdt_en to 0 disables the watchdog timer.

10.5.2 Automatic Disable

A power-on-reset (POR) event automatically disables the watchdog timers by setting WDT0_CTRL.wdt_en to 0.

Note: The watchdog timer remains enabled during all other types of reset.

10.6 Resetting the Watchdog Timer

To prevent a watchdog interrupt or a watchdog reset or both, application software must write the reset sequence, shown
below, to the WDT0_RST register prior to an interrupt or reset timeout occurring.

10.6.1 Reset Sequence

1. Write WDT0_RST: 0x0000 00A5
2. Write WDT0_RST 0x0000 005A

10.7 Detection of a Watchdog Reset Event

During system start-up, system software should check the WDT0_CTRL.rst_flag to determine if the reset was the result of a
watchdog reset. Application software is responsible for taking appropriate actions if a watchdog reset occurred.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 108

10.8 Watchdog Timer Registers

Table 10-2: Watchdog Timer Registers

Register Name Address Access Description

WDT0_CTRL [0x0000] R/W Watchdog Timer 0 Control Register

WDT0_RST [0x0004] R/W Watchdog Timer 0 Reset Register

Table 10-3: Watchdog Timer Control Register

Watchdog Timer 0 Control Register WDT0_CTRL 0x0000 [0x00]

Register Field Bits Access Reset Description

rst_flag 31 R/W See description Reset Flag
If set a watchdog system reset occurred.

0: Watchdog did not cause reset event.
1: Watchdog reset occurred.

- 30:12 RO 0 Reserved for Future Use
Do not modify this field.

rst_en 11 R/W 0 Reset Enable
Enable/Disable system reset if the WDT0_CTRL.rst_period expires. Only
reset by power on reset.

0: Disabled
1: Enabled

int_en 10 R/W 0 Interrupt Enable
Enable or Disable the watchdog interrupt.

0: Disabled
1: Enabled

int_flag 9 R/W1C 0 Interrupt Flag
If set, the watchdog interrupt period has occurred.

0: IRQ not pending
1: Interrupt period expired. Generates a WDT IRQ if

WDT0_CTRL.int_en = 1.

wdt_en 8 R/W See Description Enable
Enable or disable the watchdog timer. Only reset by a power on reset. To
enable the watchdog timer, the following sequence of writes must be
performed.

1) Write WDT0_RST: 0x0000 00A5
2) Write WDT0_RST: 0x0000 005A
3) Write WDT0_RST.wdt_en: 0x1

0: Disabled
1: Watchdog Timer Enabled. To set this field to 1, perform the sequence

shown above.

Note: This field is reset by a Power-On Reset event only. Other forms of
reset do not reset this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 109

Watchdog Timer 0 Control Register WDT0_CTRL 0x0000 [0x00]

Register Field Bits Access Reset Description

rst_period 7:4 R/W 0 Reset Period
Sets the number of PCLK cycles until a system reset occurs if the watchdog
timer is not reset.

0xF: 216 × 𝑡𝑃𝐶𝐿𝐾
0xE: 217 × 𝑡𝑃𝐶𝐿𝐾
0xD: 218 × 𝑡𝑃𝐶𝐿𝐾
0xC: 219 × 𝑡𝑃𝐶𝐿𝐾
0xB: 220 × 𝑡𝑃𝐶𝐿𝐾
0xA: 221 × 𝑡𝑃𝐶𝐿𝐾
0x9: 222 × 𝑡𝑃𝐶𝐿𝐾
0x8: 223 × 𝑡𝑃𝐶𝐿𝐾
0x7: 224 × 𝑡𝑃𝐶𝐿𝐾

0x6: 225 × 𝑡𝑃𝐶𝐿𝐾
0x5: 226 × 𝑡𝑃𝐶𝐿𝐾
0x4: 227 × 𝑡𝑃𝐶𝐿𝐾
0x3: 228 × 𝑡𝑃𝐶𝐿𝐾
0x2: 229 × 𝑡𝑃𝐶𝐿𝐾
0x1: 230 × 𝑡𝑃𝐶𝐿𝐾
0x0: 231 × 𝑡𝑃𝐶𝐿𝐾

int_period 3:0 R/W 0 Interrupt Period
Sets the number of PCLK cycles until a watchdog timer interrupt is
generated.

0xF: 216 × 𝑡𝑃𝐶𝐿𝐾
0xE: 217 × 𝑡𝑃𝐶𝐿𝐾
0xD: 218 × 𝑡𝑃𝐶𝐿𝐾
0xC: 219 × 𝑡𝑃𝐶𝐿𝐾
0xB: 220 × 𝑡𝑃𝐶𝐿𝐾
0xA: 221 × 𝑡𝑃𝐶𝐿𝐾
0x9: 222 × 𝑡𝑃𝐶𝐿𝐾
0x8: 223 × 𝑡𝑃𝐶𝐿𝐾
0x7: 224 × 𝑡𝑃𝐶𝐿𝐾

0x6: 225 × 𝑡𝑃𝐶𝐿𝐾
0x5: 226 × 𝑡𝑃𝐶𝐿𝐾
0x4: 227 × 𝑡𝑃𝐶𝐿𝐾
0x3: 228 × 𝑡𝑃𝐶𝐿𝐾
0x2: 229 × 𝑡𝑃𝐶𝐿𝐾
0x1: 230 × 𝑡𝑃𝐶𝐿𝐾
0x0: 231 × 𝑡𝑃𝐶𝐿𝐾

Table 10-4: Watchdog Timer Reset Register

Watchdog Timer 0 Reset Register WDT0_RST 0x0004 [0x04]

Register Field Bits Access Reset Description

- 31:8 RO 0 Reserved for Future Use
Do not modify this field.

wdt_rst 7:0 R/W 0 Reset Register
Writing the watchdog counter reset sequence to this register resets the
watchdog counter. The following is the required reset sequence to reset the
watchdog and prevent a watchdog timer interrupt or watchdog system reset.

• Write WDT0_RST: 0x0000 00A5

• Write WDT0_RST: 0x0000 005A

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 110

11 I2C Master/Slave Serial Controller

The microcontroller integrates two I2C peripherals, designated I2C0 and I2C1. The registers for each of the
instances are identical with the same offset addresses for each register. For simplicity, I2Cn is used throughout this
section to refer to both I2C ports. They each support both Master and Slave modes. The I2C peripherals support
standard-mode and fast-mode I2C standards.

The I2C bus is a standardized two-wire, bidirectional serial bus. It uses only two bus lines, a Serial Data Access
(SDA) line for data, and a Serial Clock line (SCL) for the clock. SDA and SCL idle high with external pullup resistors.
They are pulled low by open-drain drivers in the peripherals. Internal pullup circuits in the GPIO pins are capable of
holding the SDA line and SCL line at a logic high state when all devices are idle, but external pullup resistors are
highly recommended for all but the simplest, lowest-capacitance systems.

An I2C master owns the I2C bus for the duration of a transfer, driving the clock (SCL) and generating START and
STOP signals. In slave mode, the I2C Controller relies on an external master to generate the clock on SCL. An I2C
slave responds to data and commands only when an I2C master device addresses it.

For detailed information on I2C bus operation refer to Maxim Application Note 4024: SPI/I²C Bus Lines Control
Multiple Peripherals.

11.1 I²C Master/Slave Features

Each I2C Master/Slave is compliant with the I2C Bus Specification and include the following features

• I2C bus specification version 2.1 compliant (100kHz and 400kHz)

• Programmable for both Standard Mode (100 kHz) and Fast Mode (400kHz) data rates

• Multi-master capable, including support for arbitration and clock synchronization

• Supports 7- and 10-bit addressing

• Supports RESTART condition

• Supports clock stretching

• Support for 7- and 10-bit device addressing

• Transfer status interrupts and flags

• DMA data transfer support

• I2C timing parameters fully controllable via firmware

• Glitch filter and Schmitt trigger hysteresis on SDA and SCL

• Control, status, and interrupt events are available for maximum flexibility

• Independent 8-byte RX FIFO and 8-byte TX FIFO

• TX FIFO preloading

• Programmable interrupt threshold levels for the TX and RX FIFO

11.2 I2C Bus Speeds

The I2C peripherals support two I2C clock frequencies: 100kHz Standard mode and 400kHz Fast Mode. All modes
are downward compatible and operate at a lower bus speed as necessary.

11.3 I2C Transfer Protocol Operation

The I2C protocol operates over a two-wire bus: a clock circuit (SCL) and a data circuit (SDA). I2C is a half-duplex
protocol: only one device is permitted to transmit on the bus at a time. The data rate is not fixed and can
dynamically operate up to 100kHz in Standard Mode and up to 400kHz in Fast Mode.

https://www.maximintegrated.com/en/app-notes/index.mvp/id/4024
https://www.maximintegrated.com/en/app-notes/index.mvp/id/4024

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 111

Each transfer is initiated when the bus master sends a START or repeated START condition followed by the address
of the slave peripheral. Information is sent most significant bit (MSB) first. Following the slave address, the master
exchanges data with the addressed slave. The master can transmit data to the slave (a ‘write’ operation) or receive
data from the slave (a ‘read’ operation). An acknowledge bit is sent by the receiving device after each byte is
transferred. When all necessary data bytes have been transferred, a STOP or RESTART condition is sent by the bus
master to indicate the end of the transaction. After the STOP condition has been sent, the bus is idle and ready for
the next transaction. After a RESTART condition is sent, the same master begins a new transmission. The number
of bytes that can be transmitted per transfer is unrestricted.

11.4 START and STOP Conditions

A START condition occurs when a bus master pulls SDA from high to low while SCL is high, and a STOP condition
occurs when a bus master allows SDA to be pulled from low to high while SCL is high. Because these are unique
conditions that cannot occur during normal data transfer, they are used to denote the beginning and end of the
data transfer.

11.5 I2C Master/Slave Overview

I2C transmit and receive data transfer operations are initiated by first loading the data to be sent in the I2C FIFO by
writing data to the I2Cn_FIFO register. Once the transaction has completed, the data received can be read from
the FIFO by reading data from the I2Cn_FIFO register. If a slave sends a NACK in response to a write operation, the
I2C master generates an interrupt to the core. The I2C controller can be configured to issue a STOP condition to
free the bus.

The receive FIFO contains the received data. If the receive FIFO is full or the transmit FIFO is empty, the I2C master
stretches the clock to allow time to read bytes from the receive FIFO or load bytes into the transmit FIFO.

11.6 Slave Addressing

The first byte transmitted after a START condition is the slave address byte. If seven-bit addressing is used, the
address byte consists of seven address bits and one R/W bit.

The I2C implementation used in this device supports both 7-bit and 10-bit addressing. However, some addresses
are reserved for special purposes: for example, 0b0000 0000 is a general call address to every slave on the bus, and
0b0000 0001 is a START byte for slower microcontrollers. If the master sends address 0b1111 1xx1, then it is
requesting the device ID of a slave. If the address byte starts with 0b1111 0xxx, then the master is initiating 10-bit
addressing mode where xxx are the most significant bits of the 10-bit address.

All addresses that start with 0b0000 xxxx or 0b1111 1xxx are reserved by the I2C specification for special purposes
and should not be used for slave addresses.

11.7 Acknowledge and Not Acknowledge

An acknowledge bit (ACK) is generated by the receiver, whether I2C master or slave, after every byte received. The
ACK bit is how the receiver tells the transmitter that the byte was successfully received, and another byte might be
sent.

A Not Acknowledge (NACK) occurs if the receiver does not generate an ACK when the transmitter releases SDA. A
NACK allows SDA to float high during the acknowledge time slot. The I2C master can then either generate a STOP
condition to abort the transfer, or it can generate a repeated START condition (that is, send a START condition
without an intervening STOP condition) to start a new transfer.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 112

A receiver can generate a NACK after a byte transfer if any of the following conditions occur:

• No receiver is present on the bus with the transmitted address. In that case, no device will respond with an
acknowledge signal.

• The receiver is unable to receive or transmit because it is busy and is not ready to start communication with
the master.

• During the transfer, the receiver receives data or commands it does not understand.

• During the transfer, the receiver is unable to receive any more data.

• If an I2C master has requested data from a slave, it signals the slave to stop transmitting by sending a NACK
following the last byte it requires.

11.8 Bit Transfer Process

Both SDA and SCL circuits are open-drain, bidirectional circuits. Each has an external pullup resistor that ensures
each circuit is high when idle. The I2C specification states that during data transfer, the SDA line can change state
only when SCL is low, and that SDA is stable and able to be read when SCL is high as shown in Figure 11-1, below.

Figure 11-1: I2C Write Data Transfer

The process for an I2C data transfer is as follows:

1. A bus master indicates a data transfer to a slave with a START condition.
2. The master then transmits one byte with a 7-bit slave address and a single read-write bit: a zero for a

write or a one for a read.
3. During the next SCL clock following the read-write bit, the master releases SDA. During this clock period,

the addressed slave responds with an ACK by pulling SDA low.
4. The master senses the ACK condition and begins transferring data. If reading from the slave, it floats SDA

and allows the slave to drive SDA to send data. After each byte, the master drives SDA low to
acknowledge the byte. If writing to the slave, the master drives data on the SDA circuit for each of the
eight bits of the byte, and then floats SDA during the ninth bit to allow the slave to reply with the ACK
indication.

5. After the last byte is transferred, the master indicates the transfer is complete by generating a STOP
condition. A STOP condition is generated when the master pulls SDA from a low to high while SCL is high.

11.9 SCL and SDA Bus Drivers

The I2C bus expects SCL and SDA to be open-drain signals. In this device, once the I2C peripheral is enabled and the
proper GPIO alternate function is selected, the corresponding pad circuits are automatically configured as open-
drain outputs. However, SCL can also be optionally configured as a push-pull driver to conserve power and avoid
the need for any pull-up resistor. This should only be used in systems where no I2C slave device can hold SCL low.
Push-pull operation is enabled by setting I2Cn_CTRL0.sclppm to 1. (SDA always operates in open-drain mode.)

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 113

11.9.1 I2C Interrupt Sources

The I2C Controller has a very flexible interrupt generator that generates an interrupt signal to the Interrupt
Controller on any of several events. On recognizing the I2C interrupt, firmware determines the cause of the
interrupt by reading the I2C Interrupt Flags registers I2Cn_INTFL0 and I2Cn_INTFL1. Interrupts can be generated for
the following events:

• Transaction Complete (Master/Slave)

• Address NACK received from slave (Master)

• Data NACK received from slave (Master)

• Lost arbitration (Master)

• Transaction timeout (Master/Slave)

• FIFO is empty, not empty, full to configurable threshold level (Master/Slave)

• TX FIFO locked (Master/Slave)

• Out of sequence START and STOP conditions (Master/Slave)

• Sent a NACK to an external master because the TX or RX FIFO was not ready (Slave)

• Address ACK or NACK received (Master)

• Incoming address match (Slave)

• TX Underflow or RX Overflow (Slave)

Interrupts for each event can be enabled or disabled by setting or clearing the corresponding bit in the
I2Cn_INTEN0 or I2Cn_INTEN1 interrupt enable register.

Note that disabling the interrupt does not prevent the corresponding flag from bring set, only from generating an
interrupt request.

It is recommended that before enabling an interrupt, the status of the corresponding interrupt flag should be
checked and, if necessary, serviced or cleared. This prevents a previous interrupt event from interfering with a new
I2C communications session.

11.9.2 SCL Clock Configurations

The SCL frequency is dependent upon the values of I2C peripheral clock and the values of the external resistor and
capacitor on the SCL clock line.

Note: An external RC load on the SCL line will affect the target SCL frequency calculation.

Figure 11-2: I2C Specification Minimum and Maximum Clock Parameters

Parameter Standard Mode Fast Mode

Min Max Min Max

SCL Clock Freq. 0 100 kHz 0 400 kHz

I2C Hold Time 4.0 µs - 0.6 µs -

SCL High 4.0 µs - 0.6 µs -

SCL Low 4.7 µs - 1.3 µs -

tRC Rise Time - 1000 ns 20 ns 300 ns

11.9.3 Clock Synchronization

The I2C specification allows for more than one bus master. When more than one master is on the same bus, clock
synchronization between different master’s clocks is necessary. The I2C Master mode supports automatic clock
synchronization and is compliant with the clock synchronization requirements of the I2C Specification. Clock
synchronization is automatically handled in the I2C controller.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 114

11.9.4 Transmit and Receive FIFOs

Each I2C master/slave has one 8-byte deep transmit FIFO (TX FIFO) and one 8-byte deep receive FIFO (RX FIFO) that
reduces processor overhead. To further speed transfers, the DMA can read and write to each FIFO. When the DMA
is used to read and write to the FIFOs, no additional I2C configuration is required and interrupts are still sent to the
core. See the DMA section for more details.

When the receive FIFO is enabled, received bytes are automatically written to it. If the receive FIFO is full, no more
data is written and any newly received bytes are lost.

When the transmit FIFO is enabled, either user firmware or the DMA can provide data to be transmitted. The
oldest byte in the FIFO is sent out over SDA only when an ACK signal is received from an addressed slave.

Interrupts can be generated for the following FIFO status:

• TX FIFO level less than or equal to threshold

• RX FIFO level greater than or equal to threshold

• TX FIFO underflow

• RX FIFO overflow

• TX FIFO locked for writing

11.10 Clock Stretching

If a slave cannot receive or transmit a complete byte of data, it can force the master into a wait state by clock
stretching. Clock stretching is when a slave holds SCL low after an ACK is on the bus. When the slave is ready, it
releases the SCL line from low and then resumes the data transfer.

These I2C controller can hold SCL low in both master and slave modes after an ACK bit transmission. However, the
term ‘clock stretching’ as defined in the I2C Bus Specification only applies if performed by a slave device. When an
I2C master holds the SCL line low, the master is technically varying the clock speed. The master can vary the clock
speed from DC (0Hz) up to the maximum fSCL. For simplicity, this section describes situations where either an
external slave or external master holds the SCL line low.

For clock stretching, SCL is held low after an ACK bit and before the first data bit. This is often done when a
receiver cannot receive more data (usually from a full RX FIFO), or a transmitter needs to send more data but is not
ready (usually from an empty TX FIFO).

However, during Interactive Receive Mode (IRXM), the receiver begins clock stretching before the ACK bit, allowing
firmware time to decide whether to send an ACK or NACK. If operating in IRXM (I2Cn_CTRL0.irxm=1) as a slave with
clock stretching disabled (I2Cn_CTRL0.sclstrd=1), SCL is not held low. Thus, the burden is on firmware to respond
quickly enough to meet the data setup timing requirements as a late ACK could cause a transition on SDA while SCL
is high, resulting in an unwanted STOP or RESTART. For these reasons, it is not recommended to use interactive
receive mode with slave clock stretching disabled.

For a transmit operation as either master or slave, when the TX FIFO is empty after the last byte is shifted out, SCL
is automatically held low until data is written to the TX FIFO. Master transmitters can stop clock stretching in this
situation to end the transaction by sending a START or RESTART condition. When a slave transmitter sees an
external master end the transaction by sending a NACK, it can then release SDA.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 115

11.11 I2C Bus Timeout

The Timeout register, I2Cn_TIMEOUT.to, is used to detect bus errors. Equation 11-1 and Equation 11-2 show
equations for calculating the maximum and minimum timeout values based on the value loaded into the
I2Cn_TIMEOUT.to field.

Equation 11-1: I2C Timeout Maximum

𝑡𝑇𝐼𝑀𝐸𝑂𝑈𝑇 ≤ (
1

𝑓𝐼2𝐶_𝐶𝐿𝐾

) × ((𝐼2𝐶𝑛_𝑇𝐼𝑀𝐸𝑂𝑈𝑇. 𝑡𝑜 × 8) + 3)

Due to clock synchronization, the timeout is guaranteed to meet the following minimum time calculation shown in
Equation 11-2.

Equation 11-2: I2C Timeout Minimum

𝑡𝑇𝐼𝑀𝐸𝑂𝑈𝑇 ≤ (
1

𝑓𝐼2𝐶_𝐶𝐿𝐾

) × ((𝐼2𝐶𝑛_𝑇𝐼𝑀𝐸𝑂𝑈𝑇. 𝑡𝑜 × 8) + 2)

The timeout feature is disabled when I2Cn_TIMEOUT.to = 0 and is enabled for any non-zero value. When the
timeout is enabled, the Timeout timer starts counting when SCL is driven low by this I2C and resets when SCL is
released.

The timeout counter only monitors if the I2C port is driving SCL line low. It does not monitor if external I2C device is
holding it low. The I2Cn peripheral does not monitor the status of the SDA line.

If the timeout timer expires a bus error condition has occurred and the I2Cn peripheral releases both the SCL and
SDA lines and sets the timeout error interrupt flag to 1 (I2Cn_INTFL0.toeri = 1).

For applications where an external device may hold the SCL line low longer than the maximum timeout supported,
the timeout can be disabled by setting the timeout field to 0 (I2Cn_TIMEOUT.to = 0).

11.12 I2C Addressing

After a START or RESTART condition, an address byte is transmitted where the first seven bits are the address, and
the last bit indicates to the slave if the operation is a read or a write.

Table 11-1: I2C Address Byte Format

Slave Address Bits R/W Bit Description

0000 000 0 General Call Address

0000 000 1 START Condition

0000 001 x CBUS Address

0000 010 x Reserved for different bus format

0000 011 x Reserved for future purposes

0000 1xx x HS-mode master code

1111 1xx x Reserved for future purposes

1111 0xx x 10-bit slave addressing

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 116

In 7-bit addressing mode, the master sends one address byte. To address a 7-bit address slave, first clear
I2Cn_MSTR_MODE.sea = 0, then write the address to the TX FIFO formatted as follows where An is address A6:A0.

Master write to Slave : 7-bit address : [A6A5A4A3A2A1A0 0]
Master read from Slave : 7-bit address : [A6A5A4A3A2A1A0 1]

In 10-bit addressing mode (I2Cn_MSTR_MODE.sea=1), the first byte the master sends is the 10-bit Slave
Addressing byte which includes the first two bits of the 10-bit address, followed by a 0 for the R/W bit. That is
followed by a second byte representing the remainder of the 10-bit address. If the operation is a write, this is
followed by data bytes to be written to the slave. If the operation is a read, it is followed by a repeated START.
Firmware then writes the 10-bit address again with a 1 for the R/W bit. The I2C controller then begins receiving
data from the slave device.

If the RX FIFO is not empty and an I2C write occurs, the I2C hardware automatically sends a NACK.

The setting of the Do Not Respond bit (I2Cn_RXCTRL0.dnr) controls when a NACK is sent as follows:

• I2Cn_RXCTRL0.dnr = 1

 A NACK is sent on the first address byte received and the hardware sets the Do Not Respond Interrupt
Flag (I2Cn_INTFL0.dnreri = 1

• I2Cn_RXCTRL0.dnr = 0

 Sends an ACK for each address byte, but NACKs subsequent data received.

If the TX FIFO is not ready (I2Cn_TXCTRL1.txrdy = 0) and the I2C controller receives a data read, the hardware
automatically sends a NACK during the first address byte. The setting of the Do Not Respond field is ignored by the
hardware for this condition because it is the only opportunity to send a NACK for an I2C read transaction.

11.13 I2C TX FIFO and RX FIFO Management

There are separate transmit and receive FIFOs, TX FIFO and RX FIFO. Both are accessed using the FIFO Data register
I2Cn_FIFO. Writes to this register enqueue data into the TX FIFO. Writes to a full TX FIFO have no effect. Reads
from I2Cn_FIFO dequeue data from the RX FIFO. Reads from an empty RX FIFO returns 0xFF.

The TX and RX FIFO will only read or write one byte at a time. Transactions larger than 8 bits can still be performed,
however. A 16- or 32-bit write to the TX FIFO stores just the lowest 8 bits of the write data. A 16- or 32-bit read
from the RX FIFO will have the valid data in the lowest 8 bits and 0’s in the upper bits. In any case, the TX and RX
FIFOs will only accept

Both the RX FIFO and TX FIFO are flushed when the I2C port is disabled by clearing I2Cn_CTRL0.i2cen=0.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 117

The TX FIFO and RX FIFO can be flushed by setting the Transmit FIFO Flush bit (I2Cn_TXCTRL0.txfsh = 1) or the
Receive FIFO Flush bit (I2Cn_RXCTRL0.rxfsh = 1), respectively.

11.13.1 Transmit Lockout

Under certain conditions the TX FIFO is automatically locked by hardware and flushed so stale data is not
unintentionally transmitted. he TX FIFO is automatically flushed and locked writes under the following conditions:

• General Call Address match and TX FIFO Preloading is disabled

• Slave Address match and TX FIFO Preloading is disabled

• Operating as a slave transmitter, and a NACK is received.

• Any of the following interrupts: Arbitration Error, Timeout Error, Master Mode Address NACK, Data NACK
Error, Start Error, and STOP Condition Detected.

When the above conditions occur, the TX FIFO is flushed so stale data is not unintentionally transmitted. In
addition, the Transmit Lockout Flag is set (I2Cn_INTFL0.txloi=1) and writes to the TX FIFO are ignored until
firmware acknowledges the external event by clearing I2Cn_INTFL0.txloi.

Flushing the TX FIFO on Slave Address Match or General Call Match can be disabled using the Transmit FIFO
Preload bit (I2Cn_TXCTRL0.txpreld). Setting this bit allows applications to preload the Transmit FIFO prior to a Slave
Address Match. This can be combined with Slave Clock Stretching disabled (I2Cn_CTRL0.sclstrd = 0) to maximize
the chance of completing a transmit operation without a transmit underflow error.

11.14 Interactive Receive Mode

In some situations, this I2C might want to inspect and respond to each byte of received data. In this case,
Interactive Receive Mode can be used. Interactive Receive Mode is enabled by setting I2Cn_CTRL0.irxm = 1. If
Interactive Receive Mode is enabled, it must occur before any I2C transfer is initiated.

When Interactive Receive Mode (IRXM) is enabled, after every data byte received this I2C automatically holds SCL
low before the ACK bit, and after the 8th SCL falling edge sets the IRXM Interrupt Status Flag
(I2Cn_INTFL0.irxmi = 1). Firmware can then read the received data and generate appropriate response based on
the active low bit I2Cn_CTRL0.ack. If I2Cn_CTRL0.ack=1, this I2C acknowledges with a NACK (leaving SDA high). If
I2Cn_CTRL0.ack = 0, then this I2C acknowledges with an ACK (pulling SDA low).

After deciding on the ACK/NACK response, write a 1 to clear I2Cn_INTFL0.irxmi to 0. This releases SCL and sends an
I2Cn_CTRL0.ack value onto SDA. For both master and slave operations, SCL is released only after the necessary SCL
low time requirement has been satisfied, to conform with tsu;dat timing.

While this I2C is waiting for I2Cn_INTFL0.irxmi to be cleared, firmware can disable Interactive Receive Mode and, if
operating as a master, load the remaining number of bytes to be received for the transaction. This allows firmware
to examine the initial bytes of a transaction, which might be a command, and then disable Interactive Receive
Mode to receive the remaining bytes.

During Interactive Receive Mode, received data is not placed in the RX FIFO. Instead, the I2Cn_FIFO address is
repurposed to directly read the receive shift register, bypassing the RX FIFO. Therefore, before disabling Interactive
Receive Mode, firmware must first read the data byte from I2Cn_FIFO.data. Otherwise, firmware would read 0xFF
from an empty RX FIFO.

Note: Interactive Receive Mode does not apply to address bytes, only to data bytes.

Note: Interactive Receive Mode does not apply to general call address responses or START byte responses.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 118

11.15 I2C DMA Control

There are independent DMA channels for each TX FIFO and each RX FIFO. DMA activity is triggered by the TX FIFO
(I2Cn_TXCTRL0.txth) and RX FIFO (I2Cn_RXCTRL0.rxth) threshold levels.

11.15.1 I2C Transmit DMA Burst Size

When the TX FIFO byte count (I2Cn_TXCTRL1.txfifo) is less than or equal to the TX FIFO Threshold Level
I2Cn_TXCTRL0.txth, then the DMA transfers data into the TX FIFO according to the DMA configuration. To ensure
the DMA does not overflow the TX FIFO, the DMA burst size should be set as follows:

Equation 11-3: DMA Burst Size Calculation for I2C Transmit

𝐷𝑀𝐴 𝐵𝑢𝑟𝑠𝑡 𝑆𝑖𝑧𝑒 = 𝑇𝑋 𝐹𝐼𝐹𝑂 𝐷𝑒𝑝𝑡ℎ − 𝐼2𝐶𝑛_𝑇𝑋𝐶𝑇𝑅𝐿0. 𝑡𝑥𝑡ℎ ≡ 8 − 𝐼2𝐶𝑛_𝑇𝑋𝐶𝑇𝑅𝐿0. 𝑡𝑥𝑡ℎ

where 0 ≤ 𝐼2𝐶𝑛_𝑇𝑋𝐶𝑇𝑅𝐿0 ≤ 7

Applications trying to avoid transmit underflow and/or clock stretching should use a smaller burst size and higher
I2Cn_TXCTRL0.txth setting. This fills up the FIFO more frequently but increases internal bus traffic.

11.15.2 I2C Receive DMA Burst Size

When the RX FIFO count (I2Cn_RXCTRL1.rxfifo) is greater than or equal to the RX FIFO Threshold Level
I2Cn_RXCTRL0.rxth, the DMA transfers data out of the RX FIFO according to the DMA configuration. To ensure the
DMA does not underflow the RX FIFO, the DMA burst size should be set as follows:

Equation 11-4: DMA Burst Size Calculation for I2C Receive

𝐷𝑀𝐴 𝐵𝑢𝑟𝑠𝑡 𝑆𝑖𝑧𝑒 = 𝐼2𝐶𝑛_𝑅𝑋𝐶𝑇𝑅𝐿0. 𝑟𝑥𝑡ℎ

where 1 ≤ 𝐼2𝐶𝑛_𝑅𝑋𝐶𝑇𝑅𝐿0. 𝑟𝑥𝑡ℎ ≤ 8

Applications trying to avoid receive overflow and/or clock stretching should use a smaller burst size and lower
I2Cn_RXCTRL0.rxth. This results in reading from the Receive FIFO more frequently but increases internal bus traffic.

Note for receive operations, the length of the DMA transaction (in bytes) must be an integer multiple of
I2Cn_RXCTRL0.rxth. Otherwise, the receive transaction will end with some data still in the RX FIFO, but not enough
to trigger an interrupt to the DMA, leaving the DMA transaction incomplete. One easy way to ensure this for all
transaction lengths is to set burst size to 1(I2Cn_RXCTRL0.rxth = 1).

To enable DMA transfers, enable the TX DMA channel (I2Cn_DMA.txen) and/or the RX DMA channel
(I2Cn_DMA.rxen). Refer to the DMA Controller chapter for more information on configuring the DMA.

11.16 I2C Master Mode Transmit Operation

The peripheral operates in master mode when Master Mode Enable I2Cn_CTRL0.mst=1. To initiate a transfer, the
master generates a START condition by setting I2Cn_MSTR_MODE.start=1. If the bus is busy, it does not generate a
START condition until the bus is available.

A master can communicate with two slave devices without relinquishing the bus. Instead of generating a STOP
condition after communicating with the first slave, the master generates a Repeated START condition, or RESTART,

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 119

by setting I2Cn_MSTR_MODE.restart=1. If a transaction is in progress, the master finishes the transaction before
generating a RESTART. The controller then transmits the slave address stored in the TX FIFO. The
I2Cn_MSTR_MODE.restart bit is automatically cleared to 0 as soon as the master begins a RESTART condition. The
reception of a STOP condition clears any pending RESTART.

I2Cn_MSTR_MODE.start is automatically cleared to 0 after the master has completed a transaction and sent a
STOP condition.

The master can also generate a STOP condition by setting I2Cn_MSTR_MODE.stop = 1.

If both START and RESTART conditions are enabled at the same time, a START condition is generated first. Then, at
the end of the first transaction, a RESTART condition is generated.

If both RESTART and STOP conditions are enabled at the same time, a STOP condition is not generated. Instead, a
RESTART condition is generated. After the RESTART condition is generated, both bits are cleared.

If START, RESTART, and STOP are all enabled at the same time, a START condition is first generated. At the end of
the first transaction, a RESTART condition is generated. The I2Cn_MSTR_MODE.stop bit is cleared and ignored.

A slave cannot generate START, RESTART, or STOP conditions. Therefore, when Master Mode is disabled, the
I2Cn_MSTR_MODE.start, I2Cn_MSTR_MODE.restart, and I2Cn_MSTR_MODE.stop bits are all cleared to 0.

Note: After starting a transfer, I2Cn_MSTR_MODE.start = 1, changing the I2C configuration results in unpredictable
behavior.

11.17 I2C Master Mode Transmit Bus Arbitration

The I2C protocol supports multiple masters on the same bus. When the bus is free, it is possible that two masters
might try to initiate communication at the same time. This is a valid bus condition. If this occurs, only one master
can remain in master mode and complete its transaction. The other master must back off transmission and wait
until the bus is idle. This process is called bus arbitration.

To determine which master wins the arbitration, each master compares the data being transmitted on SDA to the
value observed on SDA. If the master attempting to transmit a 1 on SDA (that is, the master wants SDA to float)
senses a 0 instead, that master concludes that it has lost arbitration because another master is transmitting a 0
onto SDA. It then cedes the bus by switching off its SDA driver.

Note that this arbitration scheme works with any number of bus masters: if more than two masters begin
transmitting simultaneously, the arbitration continues as each master cedes the bus until only one master remains
transmitting. Data is not corrupted because as soon as each master realizes it has lost arbitration it stops
transmitting, leaving the data on SDA intact.

Once a master has lost arbitration it stops generating SCL, sets I2Cn_INTFL0.areri, and clears
I2Cn_MSTR_MODE.start, I2Cn_MSTR_MODE.restart, and I2Cn_MSTR_MODE.stop to 0.

The I2C master peripheral is compliant with the bus arbitration requirements of the I2C specification. I2C bus
arbitration is handled by the peripheral hardware and requires no additional configuration.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 120

11.18 SCL Clock Generation

The master generates the I2C clock on the SCL line. The I2C clock base is supplied by the clock signal fI2C_CLK.

Figure 11-3: I2C Clock Period

I2CCKLI2CCKH I2CCKH

SCL

VIH_MIN

VIL_MAX

The SCL high time is configured in the I2C Clock High Time register I2Cn_CLKHI.ckh. The SCL low time is configured
in the I2C Clock Low Time register I2Cn_CLKLO.ckl.

SCL High Time = tI2C_CLK×(I2Cn_CLKHI.ckh+1)
SCL Low Time = tI2C_CLK ×(I2Cn_CLKLO.ckl+1)

During synchronization, external masters or external slaves may be driving SCL simultaneously. This affects the SCL
duty cycle. By monitoring SCL, the controller can determine whether an external master or slave is holding SCL low.
In either case, the controller waits until SCL is high before starting to count the number of SCL high cycles.
Similarly, if an external master pulls SCL low before the controller has finished counting SCL high cycles, then the
controller starts counting SCL low cycles and releases SCL once the time period, I2Cn_CLKLO.ckl, has expired.

Because the controller does not start counting the high/low time until the input buffer detects the new value, the
actual clock behavior is based on many factors. These include bus loading, other devices on the bus holding SCL
low, and the filter delay time of this device.

11.19 TX FIFO Preloading

There may be situations where, when operating as a slave, firmware wants to preload the TX FIFO prior to a
transmission, such as when clock stretching is disabled. Firmware may also want to respond to an external master
requesting data by sending a NACK until the requested data is ready to transmit, rather than sending an ACK and
then holding the bus low while the data is prepared. By default, however, Address Match and General Call Match
clear the TX FIFO preventing firmware from preloading data into the TX FIFO. Firmware can change this behavior
by enabling TX FIFO Preloading.

When TX FIFO Preloading is enabled, the application firmware controls ACKs to the external master using the TX
Ready (I2Cn_TXCTRL1.txrdy) bit. When I2Cn_TXCTRL1.txrdy is set to 0, hardware automatically NACKs all read
transactions from the Master. Setting I2Cn_TXCTRL1.txrdy to 1 sends an ACK to the Master on the next read
transaction and transmits the data in the TX FIFO. Preloading the TX FIFO must be complete prior to setting the
I2Cn_TXCTRL1.txrdy field to 1.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 121

The required steps for implementing TX FIFO Preloading in an application are as follow:

1. Set I2Cn_TXCTRL1.txrdy to 0
2. Enable TX FIFO Preloading by setting I2Cn_TXCTRL0.txpreld to 1.
3. If the TX FIFO Lockout Flag (I2Cn_INTFL0.txloi) is set to 1, write 1 to clear the flag and enable writes to the

TX FIFO.
4. Enable DMA or Interrupts if required.
5. Load the TX FIFO with the data to send when the Master sends the next read request.
6. Set I2Cn_TXCTRL1.txrdy to 1 to automatically let the hardware send the preloaded FIFO on the next read

from a Master.
7. I2Cn_TXCTRL1.txrdy is cleared by hardware when a read occurs and data is transmitted from the TX FIFO.

Once cleared, the application firmware may repeat the Preloading process or disable TX FIFO Preloading.

Note: The TX FIFO Lockout flag is set if an error condition occurs while TX FIFO Preloading is enabled.

11.20 Master Mode Receiver Operation

When in Master Mode, initiating a Master Receiver operation begins with the following sequence:

1. Write the number of data bytes to be received to I2Cn_RXCTRL1.rxcnt.
2. Write the Slave Address to the TX FIFO with the R/W bit set to 1
3. Send a START condition by setting I2Cn_MSTR_MODE.start = 1
4. Slave address is automatically pushed out of the TX FIFO
5. This I2C receives an ACK from the slave, setting I2Cn_INTFL0.adracki = 1
6. This I2C receives data from the slave and automatically replies with an ACK to each.
7. Once I2Cn_RXCTRL1.rxcnt data bytes have been received, this I2C sends a NACK to the slave and sets the

Transfer Done Interrupt Status Flag I2Cn_INTFL0.donei
8. If I2Cn_MSTR_MODE.restart or I2Cn_MSTR_MODE.stop is set, then this I2C sends a repeated START or

STOP, respectively.

11.21 I2C Registers

Refer to the Peripheral Register Map section for the I2C0 and I2C1 Register Base Addresses.

Table 11-2: I2C Registers

Offset Register Name Access Description

[0x0000] I2Cn_CTRL0 R/W I2C Control 0 Register

[0x0004] I2Cn_STATUS RO I2C Status Register

[0x0008] I2Cn_INTFL0 R/W1C I2C Interrupt Flags 0 Register

[0x000C] I2Cn_INTEN0 R/W I2C Interrupt Enable 0 Register

[0x0010] I2Cn_INTFL1 R/W1C I2C Interrupts Flags 1 Register

[0x0014] I2Cn_INTEN1 R/W I2C Interrupts Enable 1 Register

[0x0018] I2Cn_FIFOLEN RO I2C FIFO Length Register

[0x001C] I2Cn_RXCTRL0 R/W I2C Receive Control 0 Register

[0x0020] I2Cn_RXCTRL1 R/W I2C Receive Control 1 Register 1

[0x0024] I2Cn_TXCTRL0 R/W I2C Transmit Control 0 Register 0

[0x0028] I2Cn_TXCTRL1 R/W I2C Transmit Control 1 Register 1

[0x002C] I2Cn_FIFO R/W I2C Transmit and Receive FIFO Register

[0x0030] I2Cn_MSTR_MODE R/W I2C Master Mode Register

[0x0034] I2Cn_CLKLO R/W I2C Clock Low Time Register

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 122

Offset Register Name Access Description

[0x0038] I2Cn_CLKHI R/W I2C Clock High Time Register

[0x0040] I2Cn_TIMEOUT R/W I2C Timeout Register

[0x0044] I2Cn_SLADDR R/W I2C Slave Address Register

[0x0048] I2Cn_DMA R/W I2C DMA Enable Register

Table 11-3: I2C Control Registers 0

I2C Control 0 Register I2Cn_CTRL0 [0x0000]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify.

15 hsmode R/W - High Speed Mode
This field must always be set to 0. High speed mode is not supported.

14 - R/W 0 Reserved for Future Use
Do not modify this field.

13 scl_ppm R/W 0 SCL Push-Pull Mode Enable
Setting this field enables push-pull mode for the SCL hardware pin. This field
should not be set unless any external slave device will never actively drive SCL
low.

0: SCL operates in standard I2C open-drain mode
1: SCL operates in push-pull mode without the need for a pull-up resistor.

Only recommended when in Master mode and external slaves will not
drive SCL low.

12 scl_strd R/W 0 SCL Clock Stretch Control
0: Enable Slave clock stretching
1: Disable Slave clock stretching

11 read R 0 Read/Write Bit Status
Returns the logic level of the R/W bit on a received address match
(I2Cn_INTFL0.ami = 1) or general call match (I2Cn_INTFL0.gci = 1). This bit is
valid for three SCL clock cycles after the address match status flag is set.

10 swoe R/W 0 Software output Enabled
When set, pins SDA and SCL are directly controlled by the fields
I2Cn_CTRL0.sdao and I2Cn_CTRL0.sclo, rather than the I2C controller. Setting
this field to 1 enables software bit bang control of I2C.

0: The I2C controller manages the SDA and SCL pins in hardware.
1: SDA and SCL are controller by firmware using the I2Cn_CTRL0.sdao and

I2Cn_CTRL0.sclo fields.

9 sda RO - SDA Status
Returns the current logic level of the SDA pin.

0: SDA pin is logic low.
1: SDA pin is logic high.

8 scl RO - SCL Status
Returns the current logic level of the SCL hardware pin.

0: SCL pin is logic low.
1: SCL pin is logic high.

7 sdao R/W 0 SDA Pin Control
Set the state of the SDA hardware pin (actively pull low or float).

0: Pull SDA Low
1: Release SDA

Note: Only valid when I2Cn_CTRL0.swoe=1

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 123

I2C Control 0 Register I2Cn_CTRL0 [0x0000]

Bits Name Access Reset Description

6 sclo R/W 0 SCL Pin Control
Set the state of the SCL hardware pin (actively pull low or float).

0: Pull SCL low
1: Release SCL

Note: Only valid when I2Cn_CTRL0.swoe=1

5 - R/W 0 Reserved for Future Use
Do not modify.

4 ack R/W 0 Interactive Receive Mode (IRM) Acknowledge
If IRM is enabled (I2Cn_CTRL0.irxm = 1), this field determines if the hardware
sends an ACK or a NACK to an IRM transaction.

0: Respond to IRM with ACK
1: Respond to IRM with NACK

3 irxm R/W 0 Interactive Receive Mode (IRXM)
When receiving data, allows for an Interactive Receive Mode (IRM) interrupt
event after each received byte of data. The I2C peripheral hardware can be
enabled to send either an ACK or NACK for IRM. See Interactive Receive Mode
section for detailed information.

0: Disable Interactive Receive Mode
1: Enable Interactive Receive Mode

Note: Only set this field when the I2C bus is inactive.

2 gcen R/W 0 General Call Address Enable
Set this field to 1 to enable General Call Address Acknowledgement.

0: Ignore General Call Address
1: Acknowledge General Call Address

1 mst R/W 0 Master Mode Enable
Setting this field to 1 enables Master mode operation for the I2C peripheral.
Setting this field to 0 enables the I2C peripheral for Slave mode operation.

0: Slave mode enabled
1: Master mode enabled

0 i2cen R/W 0 I2C Enable
Set this field to 1 to enable the I2C peripheral.

0: I2C peripheral disabled
1: I2C peripheral enabled

Table 11-4: I2C Status Registers

I2C Status Register I2Cn_STATUS [0x0004]

Bits Name Access Reset Description

31:6 - R/W - Reserved for Future Use
Do not modify this field.

5 ckmd RO 0 SCL Drive Status
This field indicates if an external device is behaving as a master by actively
driving the SCL line.

0: External device not driving SCL
1: External device is a Master actively driving the SCL pin

4 txf RO 0 TX FIFO Full
When set, the TX FIFO is full.

0: TX FIFO is not full
1: TX FIFO full

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 124

I2C Status Register I2Cn_STATUS [0x0004]

Bits Name Access Reset Description

3 txe RO 1 TX FIFO Empty
If set, the TX FIFO is empty.

0: TX FIFO is not empty
1: TX FIFO is empty

2 rxf RO 0 RX FIFO Full
If set, the RX FIFO is full.

0: RX FIFO not full
1: RX FIFO Full

1 rxe RO 1 RX FIFO Empty
If set, the RX FIFO is empty.

0: RX FIFO is not empty
1: RX FIFO is empty

0 busy RO 0 Bus Busy
If set, the I2C bus is active.

0: Bus is idle
1: Bus is busy

Table 11-5: I2C Interrupt Status Flags Registers 0

I2C Interrupt Status Flags 0 Register I2Cn_INTFL0 [0x0008]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify this field.

15 txloi R/W1C 0 TX FIFO Locked Interrupt Flag
If set, the TX FIFO is locked and writes to the TX FIFO are ignored. This field is
set to 1 by hardware to prevent stale data from being transmitted from the TX
FIFO. When set, the TX FIFO is automatically flushed. Writes to the TX FIFO are
ignored until this flag is cleared. Write 1 to clear.

0: TX FIFO not locked.
1: TX FIFO is locked and all writes to the TX FIFO are ignored.

14 stoperi R/W1C 0 Out of Sequence STOP Interrupt Flag
This flag is set if a STOP condition occurs on the I2C Bus out of expected
sequence. Write 1 to clear this field. Writing 0 has no effect.

0: Error condition has not occurred.
1: Out of sequence STOP condition occurred.

13 strteri R/W1C 0 Out of Sequence START Interrupt Flag
This flag is set if a START condition occurs on the I2C Bus out of expected
sequence. Write 1 to clear this field. Writing 0 has no effect.

0: Error condition has not occurred.
1: Out of sequence START condition occurred.

12 dnreri R/W1C 0 Slave Mode Do Not Respond Interrupt Flag
This occurs if an address match is made, but the TX FIFO or RX FIFO is not
ready. Write 1 to clear this field. Writing 0 has no effect.

0: Error condition has not occurred.
1: I2C address match has occurred and either the TX or RX FIFO is not

configured.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 125

I2C Interrupt Status Flags 0 Register I2Cn_INTFL0 [0x0008]

Bits Name Access Reset Description

11 dateri R/W1C 0 Master Mode: Data NACK from External Slave Interrupt Flag
This flag is set by hardware if a NACK is received from a slave on the I2C bus.
This flag is only valid if the I2Cn peripheral is configured for Master Mode
operation. Write 1 to clear. Write 0 has no effect.

0: Error condition has not occurred.
1: Data NACK received from a slave.

10 adreri R/W1C 0 Master Mode: Address NACK from Slave Error Flag
This flag is set by hardware if an Address NACK is received from a slave on the
I2C bus. This flag is only valid if the I2Cn peripheral is configured for Master
Mode operation. Write 1 to clear. Write 0 has no effect.

0: Error condition has not occurred.
1: Address NACK received from a slave.

9 toeri R/ W1C 0 Timeout Error Interrupt Flag
This occurs when this device holds SCL low longer than the programmed
timeout value. Applies to both Master and Slave Mode. Write 1 to clear. Write
0 has no effect.

0: Timeout error has not occurred.
1: Timeout error occurred.

8 arberi R/ W1C 0 Master Mode Arbitration Lost Interrupt Flag
Write 1 to clear. Write 0 has no effect.

0: Condition has not occurred.
1: Condition occurred.

7 adracki R/ W1C 0 Master Mode: Address ACK from External Slave Interrupt Flag
This field is set when a slave address ACK is received. Write 1 to clear. Write 0
has no effect.

0: Condition has not occurred.
1: The slave device ACK for the address was received.

6 stopi R/ W1C 0 Slave Mode: STOP Condition Interrupt Flag
This flag is set by hardware when a STOP condition is detected on the I2C bus.
Write 1 to clear. Write 0 has no effect.

0: Stop condition has not occurred
1: Stop condition occurred

5 txthi RO 1 TX FIFO Threshold Level Interrupt Flag
This field is set by hardware if the number of bytes in the Transmit FIFO is less
than or equal to the Transmit FIFO threshold level. Write 1 to clear. This field is
automatically cleared by hardware when the TX FIFO contains fewer bytes
than the TX threshold level.

0: TX FIFO contains more bytes than the TX threshold level.
1: TX FIFO contains TX threshold level or fewer bytes (Default).

4 rxthi RO 1 RX FIFO Threshold Level Interrupt Flag
This field is set by hardware if the number of bytes in the Receive FIFO is
greater than or equal top the Receive FIFO threshold level. This field is
automatically cleared when the RX FIFO contains fewer bytes than the RX
threshold setting.

0: RX FIFO contains fewer bytes than the RX threshold level.
1: RX FIFO contains at least RX threshold level of bytes (Default).

3 ami R/W1C 0 Slave Mode: Address Match Status Interrupt Flag
In Slave Mode operation, a slave mode address match condition has occurred.
Write 1 to clear. Writing 0 has no effect.

0: Slave address match has not occurred.
1: Slave address match occurred.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 126

I2C Interrupt Status Flags 0 Register I2Cn_INTFL0 [0x0008]

Bits Name Access Reset Description

2 gci R/W1C 0 Slave Mode: General Call Address Match Received Interrupt Flag
In Slave Mode operation, a general call address match condition has occurred.
Write 1 to clear. Writing 0 has no effect.

0: General call address match has not occurred.
1: General call address match occurred.

1 irxmi R/W1C 0 Interactive Receive Mode Interrupt Flag
Write 1 to clear. Writing 0 is ignored.

0: Interrupt condition has not occurred.
1: Interrupt condition occurred.

0 donei R/W1C 0 Transfer Complete Interrupt Flag
This flag is set for both Master and Slave mode for both transmit and receive
operations on the SCL falling edge after an ACK is received or sent. Write 1 to
clear. Writing 0 has no effect.

0: Transfer is not complete.
1: Transfer complete.

Table 11-6: I2C Interrupt Enable 0 Registers

I2C Interrupt Enable 0 Register I2Cn_INTEN0 [0x000C]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify this field..

15 txloie R/W 0 TX FIFO Locked Out Interrupt Enable
Set this field to enable events for TX FIFO lock events.

0: Interrupt disabled.
1: Interrupt enabled.

14 stoperie R/W 0 Out of Sequence STOP condition detected Interrupt Enable
Set this field to enable events for an out of sequence STOP condition event.

0: Interrupt disabled.
1: Interrupt enabled.

13 strterie R/W 0 Out of Sequence START condition detected Interrupt Enable
Set this field to enable events for an out of sequence START condition event.

0: Interrupt disabled.
1: Interrupt enabled.

12 dnrerie R/W 0 Slave Mode Do Not Respond Interrupt Enable
Set this field to enable events in Slave Mode when the Do Not Respond
condition occurs.

0: Interrupt disabled.
1: Interrupt enabled.

11 daterie R/W 0 Master Mode Received Data NACK from Slave Interrupt Enable
Set this field to enable events for Master Mode external device data NACK
events.

0: Interrupt disabled.
1: Interrupt enabled.

10 adrerie R/W 0 Master Mode Received Address NACK from Slave Interrupt Enable
Set this field to enable events for Master Mode slave device address NACK
events.

0: Interrupt disabled.
1: Interrupt enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 127

I2C Interrupt Enable 0 Register I2Cn_INTEN0 [0x000C]

Bits Name Access Reset Description

9 toerie R/W 0 Timeout Error Interrupt Enable
Set this field to enable events for a timeout error interrupt event.

0: Interrupt disabled.
1: Interrupt enabled.

8 arberie R/W 0 Master Mode Arbitration Lost Interrupt Enable
Set this field to enable events in Master Mode for arbitration lost events.

0: Interrupt disabled.
1: Interrupt enabled.

7 adrackie R/W 0 Received Address ACK from Slave Interrupt Enable
Set this field to enable events for Master Mode slave device address ACK
events.

0: Interrupt disabled.
1: Interrupt enabled.

6 stopie R/W 0 STOP Condition Detected Interrupt Enable
Set this field to enable interrupt events for STOP conditions.

0: Interrupt disabled.
1: Interrupt enabled.

5 txthie R/W 0 TX FIFO Threshold Level Interrupt Enable
Set this field to enable interrupt events when a TX FIFO threshold event occurs.

0: Interrupt disabled.
1: Interrupt enabled.

4 rxthie R/W 0 RX FIFO Threshold Level Interrupt Enable
Set this field to enable interrupt events when an RX FIFO threshold event
occurs.

0: Interrupt disabled.
1: Interrupt enabled.

3 amie R/W 0 Slave Mode Incoming Address Match Interrupt Enable
Set this field to enable the slave mode address match interrupt event.

0: Interrupt disabled.
1: Interrupt enabled.

2 gcie R/W 0 Slave Mode General Call Address Match Received Interrupt Enable
Set this field to enable the slave mode general call address match received
interrupt event.

0: Interrupt disabled.
1: Interrupt enabled.

1 irxmie R/W 0 Interactive Receive Interrupt Enable
Set this field to enable the interactive receive interrupt event.

0: Interrupt disabled.
1: Interrupt enabled.

0 doneie R/W 0 Transfer Complete Interrupt Enable
Set this field to enable the transfer complete interrupt event.

0: Interrupt disabled.
1: Interrupt enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 128

Table 11-7: I2C Interrupt Status Flags 1 Registers

I2C Interrupt Status Flags 1 Register I2Cn_INTFL1 [0x0010]

Bits Name Access Reset Description

31:2 - R/W - Reserved for Future Use
Do not modify this field.

1 txufi R/W1C 0 Slave Mode: TX FIFO Underflow Status Flag
In Slave Mode operation, the hardware sets this flag automatically if the TX
FIFO is empty and the master requests more data by sending an ACK after the
previous byte transferred.

0: Slave mode TX FIFO underflow condition has not occurred.
1: Slave mode TX FIFO underflow condition occurred.

0 rxofi R/W1C 0 Slave Mode: RX FIFO Overflow Status Flag
In Slave Mode operation, the hardware sets this flag automatically when an RX
FIFO overflow occurs. Write 1 to clear. Writing 0 has no effect.

0: Slave mode RX FIFO overflow event has not occurred.
1: Slave mode RX FIFO overflow condition occurred (data lost).

Table 11-8: I2C Interrupt Enable Registers 1

I2C Interrupt Enable 1 Register I2Cn_INTEN1 [0x0014]

Bits Name Access Reset Description

31:2 - R/W 0 Reserved for Future Use
Do not modify this field.

1 txufie R/W 0 Slave Mode TX FIFO Underflow Interrupt Enable
In slave mode operation, set this field to enable the TX FIFO underflow
interrupt.

0: Interrupt disabled.
1: Interrupt enabled.

0 rxofie R/W 0 Slave Mode RX FIFO Overflow Interrupt Enable
In slave mode operation, set this field to enable the RX FIFO overflow
interrupt.

0: Interrupt disabled.
1: Interrupt enabled.

Table 11-9: I2C FIFO Length Registers

I2C FIFO Length Register I2Cn_FIFOLEN [0x0018]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify this field.

15:8 txlen RO 8 TX FIFO Length
Returns the length of the TX FIFO.

8: 8-byte TX FIFO.

7:0 rxlen RO 8 RX FIFO Length
Returns the length of the RX FIFO.

8: 8-byte RX FIFO.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 129

Table 11-10: I2C Receive Control Registers 0

I2C Receive Control Register 0 I2Cn_RXCTRL0 [0x001C]

Bits Name Access Reset Description

31:12 - R/W 0 Reserved for Future Use
Do not modify this field.

11:8 rxth R/W 0 RX FIFO Threshold Level
Set this field to the required number of bytes to trigger a RX FIFO threshold
event. When the number of bytes in the RX FIFO is equal to or greater than
this field, the hardware sets the I2Cn_INTFL0.rxthi bit indicating an RX FIFO
threshold level event.

0: 0 bytes or more in the RX FIFO causes a threshold event.
1: 1+ bytes in the RX FIFO triggers a receive threshold event (recommended

minimum value).
…
8: RX FIFO threshold event only occurs when the RX FIFO is full.

7 rxfsh R/W1O 0 Flush RX FIFO
Write 1 to this field to initiate a RX FIFO flush, clearing all data in the RX FIFO.
This field is automatically cleared by hardware when the RX FIFO flush
completes. Writing 0 has no effect.

0: RX FIFO flush complete or not active.
1: Flush the RX FIFO

6:1 - R/W 0 Reserved for Future Use
Do not modify this field.

0 dnr R/W 0 Do Not Respond
Slave mode operation only.

0: If the RX FIFO contains data and an external master requests a WRITE
transaction, respond to an address match with an ACK but NACK the
subsequent data byte(s). (No additional data is written into the RX FIFO.)

1: If the RX FIFO contains data and a master requests a WRITE transaction,
do not respond to an address match and send a NACK instead.

Table 11-11: I2C Receive Control 1 Registers

I2C Receive Control 1 Register I2Cn_RXCTRL1 [0x0020]

Bits Name Access Reset Description

31:12 - R/W 0 Reserved for Future Use
Do not modify this field.

11:8 rxfifo R 0 RX FIFO Byte Count Status
Returns the number of bytes currently in the RX FIFO.

0: No data in the RX FIFO.
...
8: 8 bytes in the RX FIFO (max value).

7:0 rxcnt R/W 1 RX FIFO Transaction Byte Count Configuration
When in Master Mode, write the number of bytes to be received in a
transaction from 1 to 256. 0x00 represents 256.

0: 256 byte receive transaction.
1: 1 byte receive transaction.
2: 2 byte receive transaction.
…
255: 255 byte receive transaction.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 130

Table 11-12: I2C Transmit Control Registers 0

I2C Transmit Control Register 0 I2Cn_TXCTRL0 [0x0024]

Bits Name Access Reset Description

31:12 - R/W - Reserved for Future Use
Do not modify this field.

11:8 txth R/W 0 TX FIFO Threshold Level
Sets the level for a Transmit FIFO threshold event interrupt. If the
number of bytes remaining in the TX FIFO falls to this level or lower the
interrupt flag I2Cn_INTFL0.txthi is set indicating a TX FIFO Threshold
Event occurred.

0: 0 bytes remaining in the TX FIFO triggers a TX FIFO threshold event.
1: 1 byte or less remaining in the TX FIFO triggers a TX FIFO threshold

event (recommended minimum value).
…
7: 7 or fewer bytes remaining in the TX FIFO triggers a TX FIFO

threshold event

7 txfsh R/W1O 0 TX FIFO Flush
Write this field to 1 to initiate a TX FIFO flush, clearing all remaining data
from the transmit FIFO.

0: TX FIFO flush is complete or not active.
1: Flush the TX FIFO

Note: Hardware automatically clears this bit to 0 after it is written to 1
when the flush is completed.
If I2Cn_INTFL0.txloi = 1, then I2Cn_TXCTRL0.txfsh = 1.

6:1 - R/W 0 Reserved for Future Use
Do not modify this field.

0 txpreld R/W 0 TX FIFO Preload Mode Enable
0: Normal operation. An address match in Slave Mode, or a General

Call address match, will flush and lock the TX FIFO so it cannot be
written and set I2Cn_INTFL0.txloi.

1: TX FIFO Preload Mode. An address match in Slave Mode, or a
General Call address match, will not lock the TX FIFO and will not set
I2Cn_INTFL0.txloi. This allows firmware to preload data into the TX
FIFO. The status of the I2C is controllable at I2Cn_TXCTRL1.txrdy.

Table 11-13: I2C Transmit Control Registers 1

I2C Transmit Control Register 1 I2Cn_TXCTRL1 [0x0028]

Bits Name Access Reset Description

31:12 - R/W 0 Reserved for Future Use
Do not modify.

11:8 txfifo RO 0x0 Transmit FIFO Byte Count Status
Contains the number of bytes in the TX FIFO

7:2 - R/W 0 Reserved for Future Use
Do not modify.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 131

I2C Transmit Control Register 1 I2Cn_TXCTRL1 [0x0028]

Bits Name Access Reset Description

1 txlast R/W1O 0 Slave Mode Transmit Last
This bit decides what to do if the I2C is in Slave Mode, is transmitting data to a
Master, and the TX FIFO is empty.

0: Hold SCL low. This pauses transmission until data is written to the TX
FIFO.

1: End transaction by releasing SCL.
Cleared on a STOP/RESTART condition, or if I2Cn_INTFL0.txloi=1 (transmit
FIFO locked for writing).

0 txrdy R/W1O 1 Transmit FIFO Preload Ready Status
When TX FIFO Preload Mode is enabled, I2Cn_TXCTRL0.txpreld = 1, this bit is
automatically cleared to 0. While this bit is 0, if the I2C hardware receives a
slave address match a NACK is sent. Once the I2C hardware is ready (firmware
has preloaded the TX FIFO, configured the DMA, etc.) application firmware
must set this bit to 1 so the I2C hardware will send an ACK on a slave address
match.
When TX FIFO Preload Mode is disabled, I2Cn_TXCTRL0.txpreld = 1, this bit is
forced to 1 and the I2C hardware behaves normally.

Table 11-14: I2C Data Registers

I2C Data Register I2Cn_FIFO [0x002C]

Bits Name Access Reset Description

31:8 - R/W 0 Reserved for Future Use
Do not modify this field.

7:0 data R/W 0xFF I2C FIFO Data Register
Reads from this register pops data off the RX FIFO.
Writes to this register pushes data onto the TX FIFO.
Reading from an empty RX FIFO returns 0xFF.
Writes to a full TX FIFO are ignored.

Table 11-15: I2C Master Mode Control Registers

I2C Master Mode Control Register I2Cn_MSTR_MODE [0x0030]

Bits Name Access Reset Description

31:8 - R/W 0 Reserved for Future Use
Do not modify this field.

7 sea R/W 0 Slave Extended Addressing
0: Send a 7-bit address to the slave
1: Send a 10-bit address to the slave

6:3 - R/W 0 Reserved for Future Use
Do not modify.

2 stop R/W1O 0 Send STOP Condition
0: Stop condition completed or inactive.
1: Send a STOP Condition

Note: This bit is automatically cleared by hardware when the STOP
condition begins.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 132

I2C Master Mode Control Register I2Cn_MSTR_MODE [0x0030]

Bits Name Access Reset Description

1 restart R/W1O 0 Send Repeated START Condition
After sending data to a slave, instead of sending a STOP condition
the master may send another START to retain control of the bus.

0: Repeated start condition complete or inactive.
1: Send a Repeated START

Note: This bit is automatically cleared by hardware when the
repeated START condition begins.

0 start R/W1O 0 Start Master Mode Transfer
0: Master mode transfer inactive.
1: Start Master Mode Transfer

Note: This bit is automatically cleared by hardware when the
transfer is completed or aborted.

Table 11-16: I2C SCL Low Control Register

I2C Clock Low Control I2Cn_CLKLO [0x0034]

Bits Name Access Reset Description

31:9 - R/W 0 Reserved for Future Use
Do not modify.

8:0 scl_lo R/W 1 Clock Low Time
In Master Mode, this configures the SCL low time.
𝑡𝑆𝐶𝐿_𝐿𝑂𝑊 = 𝑓𝐼2𝐶_𝐶𝐿𝐾 × (𝑠𝑐𝑙_𝑙𝑜 + 1)

Note: 0 is not a valid setting for this field.

Table 11-17: I2C SCL High Control Register

I2C Clock High Control Register I2Cn_CLKHI [0x0038]

Bits Name Access Reset Description

31:9 - R/W 0 Reserved for Future Use
Do not modify.

8:0 scl_hi R/W 1 Clock High Time
In Master Mode, this configures the SCL high time.

𝑡𝑆𝐶𝐿_𝐻𝐼𝐺𝐻 = 1
𝑓𝐼2𝐶_𝐶𝐿𝐾

⁄ × (𝑠𝑐𝑙_ℎ𝑖 + 1)

In both Master and Slave Mode, this also configures the time SCL is
held low after new data is loaded from the TX FIFO or after firmware
clears irxmi during Interactive Receive Mode.

Note: 0 is not a valid setting for this field.

Table 11-18: I2C Timeout Registers

I2C Timeout Register I2Cn_TIMEOUT [0x0040]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 133

I2C Timeout Register I2Cn_TIMEOUT [0x0040]

Bits Name Access Reset Description

15:0 to R/W 0 Bus Error SCL Timeout Period
Set this value to the number of I2C clock cycles desired to cause a
bus timeout error.
The I2Cn peripheral timeout timer starts when it pulls SCL low. After
the I2Cn peripheral releases the line, if the line is not pulled high
prior to the timeout number of I2C clock cycles, a bus error
condition is set (I2Cn_INTFL0.toeri = 1) and the I2Cn peripheral
releases the SCL and SDA lines

0: Timeout disabled.
All other values result in a timeout calculation of:

𝑡𝐵𝑈𝑆_𝑇𝐼𝑀𝐸𝑂𝑈𝑇 = 1
𝑓𝐼2𝐶_𝐶𝐿𝐾

⁄ × 𝑡𝑜

The timeout counter only monitors how this device is driving SCL,
not an external I2C.

Table 11-19: I2C Slave Address Register

I2C Slave Address Register I2Cn_SLADDR [0x0044]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify.

15 ea R/W 0 Slave Mode Extended Address Select
When this I2C is operating in Slave Mode, this bit selects whether sla
contains a 7-bit or 10-bit address.

0: 7-bit addressing
1: 10-bit addressing

14:10 - R/W 0 Reserved for Future Use
Do not modify.

9:0 sla R/W 0 Slave Mode Slave Address
When this I2C is operating in Slave Mode, this contains the slave
address of this I2C.

Table 11-20: I2C DMA Register

I2C DMA Register I2Cn_DMA [0x0048]

Bits Name Access Reset Description

31:2 - R/W 0 Reserved for Future Use

1 rxen R/W 0 RX DMA Channel Enable
0: Disable RX DMA channel
1: Enable RX DMA channel

0 txen R/W 0 TX DMA Channel Enable
0: Disable TX DMA channel
1: Enable TX DMA channel

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 134

12 Serial Peripheral Interface 0 (SPI0)

The Serial Peripheral Interface 0 (SPI0) is a highly configurable, synchronous communications peripheral that interfaces to
SPI devices and supports both Master and Slave modes.

12.1 SPI Port 0

Features:

• Four SPI modes (mode 0, 1, 2, and 3)

• Master, Multi-Master, and Slave mode support

• Wake up from SLEEP based on configurable Transmit and Receive FIFO Levels

• One Slave Select (SS) control line with programmable polarity

• Programmable Serial Clock (SCLK) frequency and duty cycle

• 32-byte Transmit FIFO, 32-byte Receive FIFO

Figure 12-1: SPI Modes of Operation

SPI

Master

SCLK

SS

MOSI

MISO

SPI

Slave

SPI

Master

SCLK

SS

SDIO

SPI

Slave

SPI

Master

SCLK

SS

SDIO[1:0]

SPI

Slave

SPI

Master

SCLK

SS

SDIO[3:0]

SPI

Slave

Three-Wire Quad-Mode SPI

Three-Wire Single-Mode SPIFour-Wire Single-Mode SPI

Three-Wire Dual-Mode SPI

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 135

Common SPI Signals (see Figure 12-1, above):

• SS = Slave Select (configurable as active low or active high)

 SPI0 supports one Slave Select line

• SCLK = Serial Clock

• MOSI = Master Out Slave In

 Serial data pin. When in SPI Master mode, this pin is a serial data output. When in SPI Slave mode, this pin is a
serial data input.

 In Three wire SPI mode this pin is used as a bi-direction Slave-In, Slave-Out (SISO) pin

• MISO = Master In Slave Out.

 Serial data pin. When in SPI Master mode, this pin is a serial data input. When in SPI Slave mode, this pin is a serial
data output.

The following SPI connection modes are supported:

• Three wire SPI: SS, SCLK, MOSI (SISO)

• Four wire SPI: SS, SCLK, MOSI, MISO

12.2 Configuration

Before configuring the SPI peripheral, first disable the SPI port by clearing the register bit SPI0_CTRL0.spi_en.

With the SPI peripheral disabled, configure the SPI port for master mode (SPI0_CTRL0.mm_en = 1) or for slave mode
(SPI0_CTRL0.mm_en = 0).

Next, configure communication specific parameters such as clock phase, width, number of bits per character, and signal
polarity using the SPI0_CTRL2 and SPI0_SS_TIME registers.

Clock scaling and duty cycle control are configured with SPI0_CLK_CFG.

Interrupt events are configured using the SPI0_INT_EN register.

Wakeup events are configured using the SPI0_WAKE_EN register.

The DMA is configured using SPI0_DMA.

If the SPI is configured in Master Mode, configure SPI0_CTRL0 to set Master Mode parameters including the SS signals.

Enable the Transmit FIFO if transmitting data and the Receive FIFO

If transmitting data, load data to the transmit FIFO.

Set SPI0_CTRL0.start = 1 to begin a Master Mode transmission.

Do not modify the SPI timing registers while a SPI transaction is in progress. Modifying any SPI timing register while a SPI
transfer is in progress will result in an invalid SPI communication transaction.

To prevent a stall condition when in Master Mode, ensure that the transmit FIFO does not empty until the entire
transmission is complete.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 136

12.2.1 FIFOs

The Transmit FIFO hardware is 32 bytes deep. The write data width can be 8-, 16- or 32-bits wide. A 16-bit write queues a
16-bit word to the FIFO hardware. A 32-bit write queues two 16-bit words to the FIFO hardware with the least significant
word dequeued first. Bytes must be written to two consecutive byte addresses, with the odd byte as the most significant
byte, and the even byte as the least significant byte. The FIFO logic waits for both the odd and even bytes to be written to
this register space before dequeuing the 16-bit result to the FIFO.

The Receive FIFO hardware is 32 bytes deep. Read data width can be 8-, 16- or 32-bits. A byte read from this register
dequeues one byte from the FIFO. A 16-bit read from this register dequeues two bytes from the FIFO, least significant byte
first. A 32-bit read from this register dequeues four bytes from the FIFO, least significant byte first.

12.2.2 Interrupts and Wakeups

The SPI supports multiple interrupt sources. Interrupt source events can come from the FIFOs, the SS and SR signals, and SPI
status. Status flags for each interrupt are set regardless of the state of the interrupt enable bit for that event. Each interrupt
flag field is set once when the condition is satisfied and remains set until cleared by the application. Write 1 to clear a
specific interrupt flag field.

The following FIFO interrupts are supported:

• Transmit FIFO Empty

• Transmit FIFO Level crossed. Level is set by firmware.

• Receive FIFO Full

• Receive FIFO Level crossed. Level is set by firmware.

• Transmit FIFO Underrun (Slave mode only, Master mode will stall the clock)

• Transmit FIFO Overrun

• Receive FIFO Underrun

• Receive FIFO Overrun (Slave Mode only, Master Mode will stall the clock)

The SPI supports interrupts for the internal state of the SPI as well as external signals. The following transmission interrupts
are supported:

• SS Asserted or Deasserted

• Transmission Complete

• Slave Mode Transaction Aborted

• Multi-Master Fault

SPI0 has four Wakeup (WAKE) sources that can wake the ARM processor from SLEEP mode when the WAKE event occurs.
The following WAKE events are supported:

• Wake on RX FIFO Full

• Wake on TX FIFO Empty

• Wake on RX FIFO Level crossed

• Wake on TX FIFO Level crossed

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 137

12.3 Timing Diagrams

The following waveform diagrams show SPI communications in each of the four SPI modes.

12.3.1 SPI Mode 0

Figure 12-2: SPI Mode 0, Four-Wire Communication

SCLK

SS

MOSI

MISO

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSINACT

cpol = 0

cpha = 0

tL

Input Sample

Edge

SSACT2

tH tL

SSACT1 tL

Four-Wire SPI

MOSI / MIS O

X X

XX

X

X XX

Figure 12-3: SPI Mode 0, Three-Wire Communication

SCLK

SS

SDO

Data

Direction

Bit 15 Bit 14 Bit 0Bit 1

SSACT1 SSACT2

Bit 15 Bit 14 Bit 0Bit 1

SSINACT

cpol = 0

cpha = 0

tL

Input Sample

Edge

SSACT2

tH tL

SSACT1 tL

SDI Bit 15 Bit 14 Bit 0Bit 1 X X

Three-Wire SPI

SDIO

X

X

X

X

12.3.2 SPI Mode 1

Figure 12-4: SPI Mode 1, Four-Wire Communication

SCLK

SS

MOSI

MISO

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

Input Sample

Edge

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

SSINACT

tLtH

cpol = 0

cpha = 1

tH tH

X

X

X

X

Four-Wire SPI

MOSI / MISO

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 138

Figure 12-5: SPI Mode 1, Three-Wire Communication

SCLK

SS

SDO

SDI

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

Input Sample

Edge

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

SSINACT

tLtH

cpol = 0

cpha = 1

tH tH

X

X

X

X

Three-Wire SPI

SDIO

Data

Direction

12.3.3 SPI Mode 2

Figure 12-6: SPI Mode 2, Four-Wire Communication

SCLK

SS

MOSI

MISO

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

Input Sample

Edge

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

SSINACT

tLtH

cpol = 1

cpha = 0

tH tL

Four-Wire SPI

MOSI / MISO

X

X XX

X

X

X

X

Figure 12-7: SPI Mode 2, Three-Wire Communication

Three-Wire SPI

SDIO

SCLK

SS

SDO

SDI

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

Input Sample

Edge

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

SSINACT

tLtH

cpol = 1

cpha = 0

tH tL

X

X X

X

X

Data

Direction

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 139

12.3.4 SPI Mode 3

Figure 12-8: SPI Mode 3, Four-Wire Communication

SCLK

SS

MOSI

MISO

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

Input Sample

Edge

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

SSINACT

tL tH

cpol = 1

cpha = 1

tH

X

X

X

X

Four-Wire SPI

MOSI / MISO

X

Figure 12-9: SPI Mode 3, Three-Wire Communication

Three-Wire SPI

SDIO

SCLK

SS

SDO

SDI

Bit 15 Bit 14 Bit 0Bit 1

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

Input Sample

Edge

Bit 1 Bit 0Bit 15 Bit 14

SSACT1 SSACT2

SSINACT

tL tH

cpol = 1

cpha = 1

tH

X

X

X

X

Data

Direction

12.4 SPI0 Registers

Refer to Table 2-1: APB Peripheral Base Address Map for the SPI0 (SPI0_) Base Peripheral Address.

Table 12-1: SPI0 Master Register Addresses and Descriptions

Offset Register Name Access Description

[0x0000] SPIn_DATA R/W SPI FIFO Data Register

[0x0004] SPI0_CTRL0 R/W SPI Master Signals Control Register

[0x0008] SPI0_CTRL1 R/W SPI Transmit Packet Size Register

[0x000C] SPI0_CTRL2 R/W SPI Static Configuration Register

[0x0010] SPI0_SS_TIME R/W SPI Slave Select Timing Register

[0x0014] SPI0_CLK_CFG R/W SPI Master Clock Configuration Register

[0x001C] SPI0_DMA R/W SPI DMA Control Register

[0x0020] SPI0_INT_FL R/W1O SPI Interrupt Status Flags Register

[0x0024] SPI0_INT_EN R/W SPI Interrupt Enable Register

[0x0028] SPI0_WAKE_FL R/W1O SPI Wakeup Status Flags Register

[0x002C] SPI0_WAKE_EN R/W SPI Wakeup Enable Register

[0x0030] SPI0_STAT RO SPI Active Status Register

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 140

Table 12-2: SPI FIFO Data Registers

SPIn FIFO Data Register SPI0_DATA [0x0000]

Bits Name Access Reset Description

31:0 - R/W 0 SPI FIFO Data Register
Reads dequeue data off the receive FIFO.
Writes queue data onto the transmit FIFO.
Reads and writes with this register are in 1-byte, 2-byte, or 4-byte formats only.

Table 12-3: SPI Master Signals Control Registers

SPI Master Signals Control Register SPI0_CTRL0 [0x0004]

Bits Name Access Reset Description

31:9 - R/W 0 Reserved for Future Use
Do not modify this field.

8 ss_ctrl R/W 0 Master Mode Slave Select Control
In Master Mode operation, this bit controls the state of the slave select line at the
end of a transmission.

0: Slave Select is deasserted at the end of a transmission
1: Slave Select stays asserted at the end of a transmission

7:6 - R/W 0 Reserved for Future Use
Do not modify this field.

5 start R/WAC 0 Master Mode Start Data Transmission
This bit is cleared by hardware. Writing a 0 is ignored.

0: Hardware automatically sets this field to 0 when the transaction has been
initiated.

1: Master initiates a data transmission. Ensure that all pending transactions are
complete before writing a 1.

Note: At least 1 byte must be loaded in the TX FIFO prior to setting this bit to 1.
Note: This field is only used when the SPI is configured for Master Mode
(SPI0_CTRL0.mm_en = 1).

4 ss_io 0 Master Mode Slave Select Signal Direction
0: Slave Select is an output
1: Slave Select is an input

Note: This field is only used when the SPI is configured for Master Mode
(SPI0_CTRL0.mm_en = 1).

3:2 - R/W 0 Reserved for Future Use
Do not modify this field.

1 mm_en R/W 0 SPI Master Mode Enable
This field selects between slave mode and master mode operation for the SPI port.
Write this field to 0 to operate as an SPI slave. Setting this field to 1 sets the port as
an SPI master.

0: SPI port is in Slave Mode.
1: SPI is in Master Mode

0 spi_en R/W 0 SPI Enable/Disable
This field enables the SPI port instance. Setting this field disables the SPI port, but
does not change the contents of the receive or transmit FIFOs or other SPI registers.

0: SPI port is disabled
1: SPI port is enabled

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 141

Table 12-4: SPI Transmit Packet Size Register

SPI Transmit Packet Size Register SPI0_CTRL1 [0x0008]

Bits Name Access Reset Description

31:16 rx_num_char R/W 0 Number of Receive Characters
Number of characters to receive in RX FIFO.

Note: If the SPI port is set to operate in 4-wire mode, this field is ignored and the
tx_num_chars field is used for both the number of characters to receive or
transmit.

15:0 tx_num_char R/W 0 Number of Transmit Characters
Number of characters to transmit from TX FIFO.

Note: In 4-wire mode, this also applies to the RX FIFO.

Table 12-5: SPI Static Configuration Registers

SPI Static Configuration Register SPI0_CTRL2 [0x000C]

Bits Name Access Reset Description

31:17 - R/W 0 Reserved for Future Use
Do not modify this field.

16 ss_pol R/W 0 Slave Select Polarity
Controls the polarity of the SPI0 SS signal

0: SS is active low
1: SS is active high

15 three_wire R/W 0 Three-Wire Mode Enable
0: Four-wire mode enabled.
1: Three-wire mode enabled (Single IO Mode only).

14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:12 data_width R/W 0 SPI Data Width
Set this field to the required number of SDIO pins required. For Three-wire mode
this field must be set to 0. Four-wire mode supports Single or Dual IO Mode.

0: 1-data pin (Single IO Mode)
1: 2-data pins (Dual IO Mode)
2: Reserved
3: Reserved

11:8 num_bits R/W 0x0 Number of Bits per Character
1-bit and 9-bit character lengths are not supported in Slave Mode

7:2 - R/W 0 Reserved for Future Use
Do not modify this field.

 1 clk_pol R/W 0 Clock Polarity
Selects the SPI clock polarity.

0: Normal clock. Use when in SPI Mode 0 and Mode 1
1: Inverted clock. Use when in SPI Mode 2 and Mode 3

0 clk_pha R/W 0 Clock Phase
0: Data sampled on clock rising edge. Use when in SPI Mode 0 and Mode 2
1: Data sampled on clock falling edge. Use when in SPI Mode 1 and Mode 3

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 142

Table 12-6: SPI Slave Select Timing Register

SPI Slave Select Timing SPI0_SS_TIME [0x0010]

Bits Name Access Reset Description

31:24 - R/W 0 Reserved for Future Use
Do not modify this field.

23:16 ssinact R/W 0 SS Inactive Clock Delay
This is the time SS is inactive, and the bus is inactive between character
transmission.
It is the number of system clock cycles from the time a character is transmitted, and
SS is inactive to the time SS is active and a new character is transmitted.

0: 256
1: 1
2: 2
3:3
…
…
254: 254
255: 255

15:8 ssact2 R/W 0 Slave Select Active After Last SCLK
Number of system clock cycles that SS is active from the last SCLK edge to when SS is
inactive. 0: 256

1: 1
2: 2
3:3
…
…
254: 254
255: 255

7:0 ssact1 R/W 0 Slave Select Active to First SCLK
Number of system clock cycles between the time SS is asserted until the first SCLK
edge.

0: 256
1: 1
2: 2
3:3
…
…
254: 254
255: 255

Table 12-7: SPI Master Clock Configuration Registers

SPI Master Clock Configuration Register SPI0_CLK_CFG [0x0014]

Bits Name Access Reset Description

31:20 - R/W 0 Reserved for Future Use

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 143

SPI Master Clock Configuration Register SPI0_CLK_CFG [0x0014]

Bits Name Access Reset Description

19:16 scale R/W 0 System Clock to SPI Clock Scale Factor
Scales the Peripheral Clock (PCLK) by 2scale to generate the SPI module clock.

𝑓𝑆𝑃𝐼_𝐶𝐿𝐾 =
𝑓𝑃𝐶𝐿𝐾

2𝑠𝑐𝑎𝑙𝑒

0x0 - 0x8: Scales the system clock by the set value to generate the internal SPI clock
0x9 - 0xF: Invalid

Note: The microcontroller System Clock is scaled by scale to generate the internal SPI
clock. The external SPI clock, SCLK, is generated by setting the low cycle time, low, and
the high cycle time, hi.
Note: If scale=0, hi=0, and low=0, character sizes of 2 and 10 bits are not supported.

15:8 hi R/W 0x00 SCLK Hi Clock Cycles Control
0x0: Hi duty cycle control disabled. Only valid if scale = 0.
0x1 – 0xF: Number of internal SPI clocks that SCLK is high.

Note: If scale=0, hi=0, and low=0, character sizes of 2 and 10 bits are not
supported.

7:0 lo R/W 0x00 SCLK Low Clock Cycles Control
0x0: Low duty cycle control disabled. Only valid if SPI0_CLK_CFG.scale = 0.
0x1 – 0xF: Number of internal SPI clocks that SCLK is low

Note: If SPI0_CLK_CFG.scale=0, SPI0_CLK_CFG.hi=0, and SPI0_CLK_CFG.low=0, character
sizes of 2 and 10 bits are not supported.

Table 12-8: SPI DMA Control Registers

SPI DMA Control Register SPI0_DMA [0x001C]

Bits Name Access Reset Description

31 rx_dma_en R/W 0 RX DMA Enable
0: RX DMA is disabled. Any pending DMA requests are cleared
1: RX DMA is enabled

30 - R/W 0 Reserved for Future Use
Do not modify this field.

29:24 rx_fifo_cnt R 0 Number of Bytes in the RX FIFO
Read returns the number of bytes currently in the RX FIFO

23 rx_fifo_clear W - Clear the RX FIFO
1: Clear the RX FIFO and any pending RX FIFO flags in SPI0_INT_FL. This should be

done when the RX FIFO is inactive.
Writing a 0 has no effect.

22 rx_fifo_en R/W 0 RX FIFO Enabled
0: RX FIFO disabled
1: RX FIFO enabled

21 - R/W 0 Reserved for Future Use
Do not modify this field.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 144

SPI DMA Control Register SPI0_DMA [0x001C]

Bits Name Access Reset Description

20:16 rx_fifo_level R/W 0 RX FIFO Threshold Level
When the RX FIFO contains more bytes than the value set in this field, a DMA
request is triggered, and the SPI0_INT_FL.rx_level interrupt flag is set. Valid levels for
this field are from 0x00 to 0x1E.

0x00: 1 byte in the RX FIFO generates a SPI0_INT_FL.rx_level interrupt flag.
0x01: 2 bytes in the RX FIFO generates an interrupt.
…
n: n+1 bytes in the RX FIFO sets the SPI0_INT_FL.rx_level interrupt flag.
…
0x1E: Maximum allowed value for this field. 0x1F bytes in the RX FIFO set the

SPI0_INT_FL.rx_level interrupt flag.
0x1F is not a valid value.

15 tx_dma_en R/W 0 TX DMA Enable
0: TX DMA is disabled. Any pending DMA requests are cleared
1: TX DMA is enabled

14 - R/W 0 Reserved for Future Use
Do not modify this field.

13:8 tx_fifo_cnt R0 0 Number of Bytes in the TX FIFO
Read returns the number of bytes currently in the TX FIFO

7 tx_fifo_clear W1O - Clear the TX FIFO
Set this field to flush the TX FIFO. Write 1 only. Write 0 is ignored.

0: TX FIFO flush not active.
1: Clear the TX FIFO and any pending TX FIFO flags in SPI0_INT_FL. This should be

done when the TX FIFO is inactive.

Note: Writing 0 has no effect.

6 tx_fifo_en R/W 0 TX FIFO Enabled
Enable the TX FIFO by setting this field to 1.

0: TX FIFO disabled
1: TX FIFO enabled

5 - R/W 0 Reserved for Future Use
Do not modify this field.

4:0 tx_fifo_level R/W 0x10 TX FIFO Threshold Level
When the TX FIFO has fewer than the value set in this field, a DMA request is
triggered, and the SPI0_INT_FL.tx_level interrupt flag is set.

Table 12-9: SPI Interrupt Flag Registers

SPI Interrupt Flag Register SPI0_INT_FL [0x0020]

Bits Name Access Reset Description

31:16 - R/W1C 0 Reserved for Future Use
Do not modify this field.

15 rx_und R/W1C 0 RX FIFO Underrun Flag
Set when a read is attempted from an empty RX FIFO.

14 rx_ovr R/W1C 0 RX FIFO Overrun Flag
Set if SPI is in Slave Mode, and a write to a full RX FIFO is attempted. If the SPI is in
Master Mode, this bit is not set as the SPI stalls the clock until data is read from the RX
FIFO.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 145

SPI Interrupt Flag Register SPI0_INT_FL [0x0020]

Bits Name Access Reset Description

13 tx_und R/W1C 0 TX FIFO Underrun Flag
Set if SPI is in Slave Mode, and a read from empty TX FIFO is attempted. If SPI0 is in
Master Mode, this bit is not set as the SPI stalls the clock until data is written to the
empty TX FIFO.

12 tx_ovr R/W1C 0 TX FIFO Overrun Flag
Set when a write is attempted to a full TX FIFO.

11 m_done R/W1C 0 Master Data Transmission Done Flag
Set if SPI is in Master Mode, and all transactions have completed.

10 - R/W 0 Reserved for Future Use
Do not modify this field.

9 abort R/W1C 0 Slave Mode Transaction Abort Detected Flag
Set if the SPI is in Slave Mode, and SS is deasserted before a complete character is
received.

8 fault R/W1C 0 Multi-Master Fault Flag
Set if the SPI is in Master Mode, Multi-Master Mode is enabled, and a Slave Select
input is asserted. A collision also sets this flag.

7:6 - R/W 0 Reserved for Future Use
Do not modify this field.

5 ssd R/W1C 0 Slave Select Deasserted Flag

4 ssa R/W1C 0 Slave Select Asserted Flag

3 rx_full R/W1C 0 RX FIFO Full Flag

2 rx_level R/W1C 0 RX FIFO Threshold Level Crossed Flag
Set when the RX FIFO exceeds the value in SPI0_DMA.rx_fifo_level.

1 tx_empty R/W1C 1 TX FIFO Empty Flag

0 tx_level R/W1C 0 TX FIFO Threshold Level Crossed Flag
Set when the TX FIFO is less than the value in SPI0_DMA.tx_fifo_level.

Table 12-10: SPI Interrupt Enable Registers

SPI Interrupt Enable Register SPI0_INT_EN [0x0024]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify this field.

15 rx_und R/W 0 RX FIFO Underrun Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

14 rx_ovr R/W 0 RX FIFO Overrun Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

13 tx_und R/W 0 TX FIFO Underrun Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

12 tx_ovr R/W 0 TX FIFO Overrun Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 146

SPI Interrupt Enable Register SPI0_INT_EN [0x0024]

Bits Name Access Reset Description

11 m_done R/W 0 Master Data Transmission Done Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

10 - R/W 0 Reserved for Future Use
Do not modify this field.

9 abort R/W 0 Slave Mode Abort Detected Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

8 fault R/W 0 Multi-Master Fault Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

7:6 - R/W 0 Reserved for Future Use
Do not modify this field.

5 ssd R/W 0 Slave Select Deasserted Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

4 ssa R/W 0 Slave Select Asserted Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

3 rx_full R/W 0 RX FIFO Full Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

2 rx_level R/W RX FIFO Threshold Level Crossed Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

1 tx_empty R/W 0 TX FIFO Empty Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

0 tx_level R/W 0 TX FIFO Threshold Level Crossed Interrupt Enable
0: Interrupt is disabled
1: Interrupt is enabled

Table 12-11: SPI Wakeup Status Flags Registers

SPI Wakeup Status Flags SPI0_WAKE_FL [0x0028]

Bits Name Access Reset Description

31:4 - R/W 0 Reserved for Future Use
Do not modify this field.

3 rx_full R/W1C 0 Wake on RX FIFO Full Flag
0: Wake condition has not occurred.
1: Wake condition occurred.

2 rx_level R/W1C 0 Wake on RX FIFO Threshold Level Crossed Flag
0: Wake condition has not occurred.
1: Wake condition occurred.

1 tx_empty R/W1C 0 Wake on TX FIFO Empty Flag
0: Wake condition has not occurred.
1: Wake condition occurred.

0 tx_level R/W1C 0 Wake on TX FIFO Threshold Level Crossed Flag
0: Wake condition has not occurred.
1: Wake condition occurred.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 147

Table 12-12: SPI Wakeup Enable Registers

SPI Wakeup Enable SPI0_WAKE_EN [0x002C]

Bits Name Access Reset Description

31:4 - R/W 0 Reserved for Future Use
Do not modify this field.

3 rx_full R/W 0 Wake on RX FIFO Full Enable
0: Wake event is disabled
1: Wake event is enabled.

2 rx_level R/W 0 Wake on RX FIFO Threshold Level Crossed Enable
0: Wake event is disabled
1: Wake event is enabled.

1 tx_empty R/W 0 Wake on TX FIFO Empty Enable
0: Wake event is disabled
1: Wake event is enabled.

0 tx_level R/W 0 Wake on TX FIFO Threshold Level Crossed Enable
0: Wake event is disabled
1: Wake event is enabled.

Table 12-13: SPI Status Registers

SPI Status Register SPI0_STAT [0x0030]

Bits Name Access Reset Description

31:1 - R/W 0 Reserved for Future Use
Do not modify this field.

0 busy R 0 SPI Active Status
0: SPI is not active. In Master Mode, cleared when the last character is sent. In Slave

Mode, cleared when SS is deasserted.
1: SPI is active. In Master Mode, set when transmit starts. In Slave Mode, set when SS

is asserted.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 148

13 SPIMSS

13.1 Overview

The SPIMSS module provides an independent serial communication channel to communicate synchronously with peripheral
devices in a multiple master or multiple slave system. The interface is a four-wire full-duplex serial bus that can be operated
in either master mode or slave mode. SPI-compatible devices include EEPROMs, printer controllers and contactless smart
card controllers.

SPIMSS also supports Inter-IC Sound (I2S) protocol for 16-bit mono or stereo audio transfer to or from an external I2S audio
codec.

13.1.1 Features

• Full-duplex, synchronous communication of 1 to 16-bit characters

• Four-wire interface

• Data transfers rates up to one-fourth the peripheral clock frequency (fPCLK)

• Master, multi-master and slave modes of operation

• Dedicated Bit Rate Generator

• 8 entry by 16-bit Transmit and Receive FIFOs

• Transmit and Receive DMA Support

• I2S mode

 16-bit audio transfer
 I2S Master mode
 I2S Slave mode

• 1 Slave Select Pin in Master Mode

The block diagram shows the SPIMSS external interface signals, control unit, receive and transmit FIFOs, and single shift
register common to the transmit and receive data path. Each time that an SPIMSS transfer completes, the received
character is transferred to the receive FIFO.

Figure 13-1. SPIMSS Block Diagram

Receive
FIFO

Transmit
FIFO

S
P

I
C

o
n
tr

o
l I

n
te

rf
a
ce

APB Interface

Interrupt Signal

MISO

MOSI

RxDmaReq

TxDmaReq

SCLK

SSEL

s
h
ift

 re
g
is

te
r

SSEL_1

SSEL_2

SSEL_3

The SPIMSS may be configured as either a SPI master (in single or multi-master systems) or a SPI slave. An SPI system has a
single master and one or more slaves for any given transaction.

NEEDS UPDATE

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 149

Figure 13-2. SPI Single-Master, Single-Slave

SPI Master

16-bit Shift Register
Bit 15Bit 0

MISO

MOSI

SCLK

SSELTo Slave SSEL

From Slave’s MISO

To Slave’s MOSI

To Slave SCLK
Baud Rate
Generator

Figure 13-3. SPI Multi-Master, Multi-Slave

SPI Master/Slave

16-bit Shift Register
Bit 15Bit 0

MISO

MOSI

SCLK

SSEL_1To Slave #2’s SSEL

From Slave’s MISO

To Slave’s MOSI

To Slave SCLK

SSEL

Baud Rate
Generator

SSEL_2To Slave #1’s SSEL

From external master

Figure 13-4. SPI Slave

SPI Slave

16-bit Shift Register

Bit 15 Bit 0
MISO

MOSI

SCLK

SSELFrom Master SSEL

To Master’s MISO

From Master’s MOSI

From Master SCLK

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 150

13.2 Operation

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (serial clock, transmit
data, receive data and slave select). The SPI block consists of a transmit/receive shift register (supported by FIFOs), a Bit
Rate Generator and a control unit.

During an SPI transfer, data is sent and received simultaneously by both master and slave devices. When an SPI transfer
occurs, a multi-bit (selectable from 1 to 16-bit) character is shifted out on one data pin and a multi-bit character is
simultaneously shifted in on a second data pin. A 16-bit shift register in the master and another 16-bit shift register in the
slave are connected as a circular buffer with the most significant bit (bit15) sent first. The SPI contains two 8×16 FIFOs to
support transmit and receive directions. New data is moved automatically from the transmit FIFO into the shift register at
the start of every new SPI transfer as long as there is data in the transmit FIFO. At the end of every SPI transfer, data is
moved from the shift register into the receive FIFO.

13.3 SPI Signals

The SPI signals are:

• MISO (Master-In, Slave-Out)

• MOSI (Master-Out, Slave-In)

• SCLK (SPI Serial Clock)

• SSEL (Slave Select)

These signals are pinned out through GPIO pins as alternate functions. Refer to the GPIO chapter for information on
selecting the SPIMSS mode I/O. An external pull-up resistor should be used to prevent floating input signals when operating
the SPI signals in open drain mode (refer to the wor bit) or high impedance mode (slave MISO is in high impedance mode
when the slave is not selected).

13.3.1 Master-In, Slave-Out

The MISO pin is configured as an input in master mode and as an output in slave mode. It is one of two lines that transfer
serial data, with the most significant bit sent first. The MISO pin of a slave device is placed in a high-impedance state if the
slave is not selected. When the SPI channel is not active (SPIMSSn_CTRL.start = 0), this signal is in a high-impedance state.

13.3.2 Master-Out, Slave-In

The MOSI pin is configured as an output in master mode and as an input in slave mode. It is one of two lines that transfer
serial data, with the most significant bit sent first. When the SPI channel is not enabled, this signal is in a high-impedance
state.

13.3.3 Serial Clock

The Serial Clock (SCLK) synchronizes data movement in and out of the device through the MOSI and MISO pins. In master
mode, the SPI’s Bit Rate Generator creates SCLK. The master drives the serial clock out its SCLK pin to the slave’s SCLK pin.
When the SPI is configured as a slave, the SCLK pin is an input from the master. Slave devices ignore the SCLK signal, unless
their SSEL pin is asserted. When configured as a slave, the minimum SCLK period is 8 times the peripheral clock (PCLK)
period. For example, if the APB clock (PCLK) is running at 60 MHz in the slave SPI, the master SPI SCLK must be set at a
maximum of 7 MHz.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 151

The master and slave are each capable of exchanging a character of data during a sequence of SPIMSSn_MOD.numbits clock
cycles (refer to SPIMSSn_MOD.numbits field). In both master and slave devices, data is shifted on one edge of the SCLK and
is sampled on the opposite edge where data is stable. Edge polarity is determined by the SPI phase and polarity control.

13.3.4 Slave Select

The Slave Select (SSEL) signal is used to select a specific slave device during SPI transfers or to distinguish left and right
channel audio data in I2S mode. In an SPI system with multiple slaves, the master must provide separate SSEL signals to
each slave. SSEL must be low prior to all data communication to and from the slave device. SSEL must stay low for the full
duration of each character transfer. The SSEL signal may stay low during the transfer of multiple characters or may de-
assert between each character. Application code should not toggle the slave select between words. Though the SSEL signal
typically is active low, either polarity can be supported via the SPIMSSn_MODE.ssv bit.

13.3.4.1 Single Master SPI System

When configured as the only master in an SPI system, the SSEL pin is configured as an output by setting
SPIMSSn_CTRL.ss_io = 1. The polarity of SSEL is selected via the SPIMSSn_MODE.ssv bit. Other GPIO output pins must be
employed to select additional SPI slave devices.

13.3.4.2 Multi-Master SPI System

When configured as one master in a multi-master SPI system, the SSEL pin is configured as an input by clearing
SPIMSSn_CTRL.ss_io = 0. When acting as the master, the SSEL input signal should be high. If the SSEL input signal goes low
(indicating another master is selecting this device as an SPI slave) the Collision error flag is set. The SPI block can be
switched between master and slave modes when operating in a multi-master system via the SPIMSSn_CTRL.mmen bit.

13.3.4.3 Slave SPI System

When configured as a slave in an SPI system, the SSEL pin is configured as an input by clearing SPIMSSn_CTRL.ss_io = 0.

13.3.4.4 I2S System

In I2S mode the SSEL output is controlled by hardware and distinguishes left and right channel audio data. When operating
as the I2S master, the SCLK and SSEL signals are outputs. When operating as the I2S slave, the SCLK and SSEL signals are
inputs. This SSEL signal is referred to as word select signal (WS) in the I2S protocol. Normally the WS signal transitions one
SCLK period before the MSB of the audio data word, however if the SPIMSSn_I2S_CTRL.i2s_lj bit is set, the audio data word
is “left justified” to be in phase with the WS signal.

13.4 SPI Clock Phase and Polarity Control

The SPI supports four combinations of SCLK phase and polarity. Clock Polarity (SPIMSSn_CTRL.clkpol) selects an active
low/high clock and has no effect on the transfer format. Clock Phase (SPIMSSn_CTRL.phase) selects one of two
fundamentally different transfer formats.

For proper data transmission, the clock phase and polarity must be identical for the SPI master and slave. The master
always places data on the MOSI line a half-cycle before the SCLK edge for the slave to latch the data.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 152

Table 13-1. Clock Phase and Polarity Operation

SPIMSSn_CTRL
phase

SPIMSSn_CTRL
clkpol

SCLK
Transmit Edge

SCLK
Receive Edge

SCLK
Idle State

0 0 Falling Rising Low

0 1 Rising Falling High

1 0 Rising Falling Low

1 1 Falling Rising High

13.4.1 Transfer Format for Phase 0

Figure 13-5 is the timing diagram for an SPI 16-bit transfer in which the clock phase is cleared (SPIMSSn_CTRL.phase = 0).
The two SCLK waveforms show active low (SPIMSSn_CTRL.clkpol = 0) and active high (SPIMSSn_CTRL.clkpol = 1). The
diagram may be interpreted as either a master or slave timing diagram since the SCLK, MISO and MOSI pins are directly
connected between the master and the slave.

In the case of multi-character transfers with SSEL remaining asserted between characters, the output data will change at
the end of the Bit0 (final clock edge) to reflect the output value for Bit15 of the next character.

When the phase is set to 0, the data must be available on the MISO and MOSI lines prior to the first clock edge and data
transition is performed during the SCLK’s idle state as shown in Figure 13-5.

Figure 13-5. SPI Timing for Phase 0 (SPIMSSn_CTRL.phase = 0)

SCLK
(CLKPOL = 0)

SCLK
(CLKPOL = 1)

Bit15 Bit14 Bit3 Bit2 Bit1 Bit0MOSI

Bit15 Bit14 Bit3 Bit2 Bit1 Bit0MISO

Input Sample Time

SSEL

13.4.2 Transfer Format for Phase 1

Figure 13-6 is the timing diagram for an SPI transfer in which the clock phase is set (SPIMSSn_CTRL.phase = 1). The two SCLK
waveforms show active low (SPIMSSn_CTRL.clkpol = 0) and active high (SPIMSSn_CTRL.clkpol = 1). The diagram may be
interpreted as either a master or slave timing diagram since the SCLK, MISO and MOSI pins are directly connected between
the master and the slave.

In the case of multi-character transfers with SSEL remaining asserted between characters, the Bit0 output data will remain
stable until the clock edge which starts Bit15 of the next character or until SSEL deasserts at the end of the transfer.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 153

When the phase is set to 1, SCLK’s first transition is used to trigger the data transition on MISO and MOSI and subsequent
data transitions are triggered on SCLK’s active transition and the data is read on SCLK’s second transition as shown Figure
13-6.

Figure 13-6. SPI Timing for Phase 1 (SPIMSSn_CTRL.phase = 1)

SCLK
(CLKPOL = 0)

SCLK
(CLKPOL = 1)

Bit15 Bit14 Bit3 Bit2 Bit1 Bit0MOSI

Bit15 Bit14 Bit3 Bit2 Bit1 Bit0MISO

Input Sample Time

SSEL

13.5 Data Movement

Data movement can be controlled in one of the following ways:

• Software polling the SPIMSSn_INT_FL.txst bit (transfer one word at a time) or polling the
SPIMSSn_INT_FL.tx_fifo_level or SPIMSSn_INT_FL.rx_fifo_level fields (can transfer up to 8 characters at a time).

• The SPIMSSn_CTRL.irqe bit can be set to enable data and error interrupts. The SPIMSSn_CTRL.str bit may be used if
desired to force a “startup” data interrupt. A data interrupt will be generated on completion of each character
transfer.

• DMA control of data transferred is enabled via the SPIMSSn_DMA.rx_dma_en and/or SPIMSSn_DMA.tx_dma_en
bits. The SPIMSSn_DMA.tx_fifo_level and SPIMSSn_DMA.rx_fifo_level control when DMA requests are asserted.
When DMA mode is enabled, data interrupts are disabled (error interrupts will still occur). DMA operation is
beneficial for block transfers as the CPU only needs to service one DMA interrupt per block of data versus one
interrupt for each character transferred in non-DMA mode.

The SPIMSSn_DATA Register is used for transferring data for both transmit and receive operations.

For incoming data, the receive data is shifted into an internal shift register. Once a full character has been shifted in, the
character is automatically moved into the Receive FIFO. The Receive FIFO data is read through the SPIMSSn_DATA Register.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 154

For outgoing data, the transmit data is written to the SPIMSSn_DATA Register and transferred by hardware to the SPIMSS
Transmit FIFO. When the shift register is empty, data is automatically moved into the shift register from the Transmit FIFO.

Note: When the SPIMSS is not actively transmitting or receiving data (SPIMSSn_CTRL.start = 0), data written to the SPIMSS
Data Register is stored in the FIFO as long as it is not full. Any data in the FIFO when the SPIMSS start is set to 1 is
transmitted immediately. Flush the FIFO at any time by setting the SPIMSSn_DMA.tx_fifo_clr bit to 1.

With the SPI configured as a master, writing data to this register initiates the data transmission. With the SPI configured as
a slave, writing data to this register loads the shift register in preparation for the next data transfer with the external
master. In either the master or slave mode, when the transmit FIFO is full, writes to this register are ignored and the
Transmit Overrun error flag, SPIMSSn_INT_FL.tovr, is set in the SPIMSS Interrupt register.

Data is shifted out starting with bit 15. The last bit received will reside in bit position 0. When the character length is less
than 16 bits (as set by the SPIMSSn_MOD.numbits field), the transmit character must be left justified in the SPIMSS Data
Register (SPIMSSn_DATA). A received character of less than 16 bits will be right justified (last bit received will be in bit
position 0). For example, if the SPIMSS is configured for 4-bit characters, the transmit characters must be written to
SPIMSSn_DATA[15:12] and the received characters are read from SPIMSSn_DATA[3:0].

The software overhead to left justify the transmit data can be eliminated by setting the SPIMSSn_MODE.tx_lj bit in the
SPIMSSn_MODE register. When SPIMSSn_MODE.tx_lj = 1, transmit data is always written by software or DMA to
SPIMSSn_DATA in right justified form and hardware performs the left justify according to SPIMSSn_MODE.numbits when
the shift register is loaded. For the 4-bit character example, when SPIMSSn_MODE.tx_lj = 1, transmit data is written to
SPIMSSn_DATA[3:0] and hardware shifts these to bits [15:12] when the shift register is loaded. The SPIMSSn_MODE.tx_lj bit
has no effect on receive data which is always right justified.

13.6 Configuration for Master, Slave and Multi-Master Modes

13.6.1 Single Master Operation

Configure the SPIMSS as a Single SPI Master by performing the following steps:

1. Enable SPI master mode by setting SPIMSSn_CTRL.mode to 1.
2. Set the SPIMSS outputs to open drain by setting SPIMSSn_CTRL.od_out_en = 0
3. SPIMSSn_CTRL.start = 1
4. SPIMSSn_CTRL.od_out_en = 0
5. SPIMSSn_CTRL.ss_io = 1

The SPIMSSn_CTRL.phase and SPIMSSn_CTRL.clkpol bits and the SPIMSSn_MODE.numbits field must be consistent with the
slave SPI devices. The SPIMSSn_MODE.ssv bit asserts/deasserts the SSEL output pin, SPI1_SS0. The SPI Bit Rate register
must be initialized.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 155

13.6.2 Multi-Master Operation

The SPI block is configured for master/slave operation in a multi-master SPI configuration by setting:

• SPIMSSn_CTRL.mmen = 1 or 0

 Software controls the master/slave mode dynamically via some bus arbitration algorithm to allow multiple
masters to communicate to slave and master/slave devices.

• SPIMSSn_CTRL.ss_io = 0

• SPIMSSn_CTRL.od_out_en = 1

 Open-drain mode must be enabled to prevent bus contention since all SCLK, MOSI and MISO pins are tied
together on the external SPI bus.

• SPIMSSn_CTRL.start = 1

At any time, only one SPI device can be configured as the master and all other SPI devices on the bus must be configured as
slaves. The master selects a single slave by asserting the Slave Select pin to that slave only. Then the master drives data out
using SCLK and MOSI pins to each of the slaves’ SCLK and MOSI pins (including those which are not selected). The selected
slave drives data out its MISO pin to the master’s MISO pin. When configured as a master operating in a multi-master
system, if the SSEL pin is configured as an input and is driven low by another master, a multi-master collision fault is
signaled by SPIMSSn_INT_FL.col = 1.

13.7 Slave Operation

The SPI block is configured for slave mode operation by setting:

• SPIMSSn_CTRL.start = 1

• SPIMSSn_CTRL.mode = 0

• SPIMSSn_CTRL.ss_io = 0

• SPIMSSn_CTRL.od_out_en = 0

The SPIMSSn_CTRL.phase and SPIMSSn_CTRL.clkpol bits and the SPIMSSn_MODE.numbits field must be set to be consistent
with the other SPI devices. The SPIMSSn_CTRL.str bit may be used, if desired, to force a start interrupt. The
SPIMSSn_CTRL.birq bit and the SPIMSSn_CTRL.bss bit are not used in slave mode. The SPI bit rate generator is not used in
slave mode, so the Mode Register, SPIMSSn_MODE, need not be initialized.

If the slave has data to send to the master, the data should be written before the transaction starts (first edge of SCLK when
SSEL is asserted). If the SPIMSSn_DATA Register is not written prior to the slave transaction (the Transmit FIFO is empty),
the MISO pin will output whatever value was written last into the SPIMSSn_DATA Register.

Due to the delay resulting from synchronization of the SPI input signals to PCLK, the maximum SCLK bit rate that can be
supported in slave mode is the PCLK frequency divided by 8. This rate is controlled by the SPI master.

13.8 I2S (Inter-IC Sound) Mode

The SPI block is configured for I2S mode operation by setting:

• SPIMSSn_I2S_CTRL.i2s_en = 1

• SPIMSSn_CTRL.phase = 0

• SPIMSSn_CTRL.clkpol = 0

• SPIMSSn_MODE.numbits = 0 (to select 16-bit characters)

• SPIMSSn_CTRL.start = 1

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 156

The SPIMSSn_CTRL.mmen and SPIMSSn_CTRL.ss_io bits are set in accordance with either master or slave mode of
operation. The SPIMSSn_MODE.ssv bit is ignored by hardware in I2S mode. In I2S, the master hardware sources SSEL
(known as word select (WS) in the I2S protocol) and SCLK. In this mode SSEL toggles between consecutive audio words.
SSEL=0 indicates left channel data and SSEL=1 indicates right channel audio data.

The receive and/or transmit DMA channels must be enabled when operating in I2S mode. Typically, audio data will only
flow in one direction as defined by the SPIMSSn_DMA.rx_dma_en or SPIMSSn_DMA.tx_dma_en bits, however audio data
may be transferred in both directions simultaneously if desired. Data in the transmit buffer should be initialized with the
first 16-bit character containing a left channel audio sample, then alternating right and left channel 16-bit audio samples.
When audio data is being received, the first sample written into the receive buffer will be a left channel audio sample.

13.8.1 Mute

The SPIMSSn_I2S_CTRL.i2s_mute bit in the I2S Control Register can be set by software asynchronously to the DMA transfers
to silence the transmit output. At the beginning of the next left channel audio sample after SPIMSSn_I2S_CTRL.i2s_mute is
asserted, DMA and FIFO accesses will continue, however, the data read from the transmit FIFO will be discarded and
replaced with zeroes. When SPIMSSn_I2S_CTRL.i2s_mute is deasserted, the transmit output will resume at the beginning of
the next left channel audio sample.

13.8.2 Pause

The SPIMSSn_I2S_CTRL.i2s_pause bit can be set by software asynchronously to the DMA transfers to halt DMA and FIFO
accesses. At the beginning of the next left channel audio sample after SPIMSSn_I2S_CTRL.i2s_pause is asserted, both
transmit and receive DMA and FIFO accesses will halt and the transmit data will be forced to zero. At the beginning of the
next left channel audio sample after SPIMSSn_I2S_CTRL.i2s_pause is deasserted, the DMA accesses will resume from where
they were halted. Pause takes precedence over mute.

13.8.3 Mono

The SPIMSSn_I2S_CTRL.i2s_mono bit in the I2S Control Register is set to select single channel audio data vs. stereo format.
In mono mode each transmit data word read from the transmit FIFO is duplicated for both left and right channel output
words. The receive channel will read the data from the left channel (SSEL = 0) and ignore data in the right channel. This
allows DMA buffers for mono mode to be one-half the size of DMA buffers for stereo mode.

13.8.4 Left Justify

The SPIMSSn_I2S_CTRL.i2s_lj bit selects the phase of the SSEL signal versus the data. When SPIMSSn_I2S_CTRL.i2s_lj = 0
(normal I2S mode), the audio data lags the SSEL signal by one SCLK period. When SPIMSSn_I2S_CTRL.i2s_lj = 1, the audio
data is “left justified” so that it is in sync with the SSEL signal.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 157

Figure 13-7: I2S Mode (i2s_en=1, i2s_lj=0)

Bit15 Bit0Bit0 Bit15MOSI, MISO

SSEL

Bit 15

SCLK (I2S_EN=1,
PHASE = 0,

CLKPOL = 0)

left ch right ch

left channel right channel

Figure 13-8: I2S Mode (i2s_en=1, i2s_lj=1)

Bit15 Bit0Bit0 Bit15MOSI, MISO

SSEL

Bit 15

SCLK(I2S_EN=1,
PHASE = 0,

CLKPOL = 0)

left ch right ch

left channel right channel

13.9 Error Detection

The SPI contains error detection logic to support SPI communication protocols and recognize when communication errors
have occurred. If the IRQE bit is set, error conditions will generate an interrupt. The SPIMSS Interrupt Flag Register,
SPIMSSn_INT_FL) indicates which error has been detected.

13.9.1 Transmit Overrun

A transmit overrun error indicates a write to the FIFO was attempted when the internal transmit FIFO was full in either
master or slave mode. An overrun condition sets the SPIMSSn_INT_FL.tovr bit to 1. Writing a 1 to SPIMSSn_INT_FL.tovr
clears this error flag.

Note: A transmit FIFO overrun in I2S mode may result in mixing left and right channel data. Software should reinitialize the
DMA channel and data buffer and restart the I2S transfer.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 158

13.9.2 Mode Fault (Multi-Master Collision)

A mode fault indicates more than one master is trying to communicate at the same time (a multi-master collision). The
mode fault is detected when an enabled master’s SSEL input pin is asserted low. A mode fault sets the SPIMSSn_INT_FL.col
bit to 1. Writing a 1 to SPIMSSn_INT_FL.col clears this error flag.

This error interrupt will not occur in I2S mode.

13.9.3 Slave Mode Abort

A slave mode abort indicates that the SSEL pin deasserted before all bits in a character were transferred (while operating in
slave mode). The next time SSEL asserts, the MISO pin will output SPIMSSn_DATA[15], regardless of where the previous
transaction left off. A slave mode abort sets the SPIMSSn_INT_FL.abt bit to 1. Writing a 1 to SPIMSSn_INT_FL.abt clears this
error flag.

This error interrupt will not occur in I2S mode.

13.9.4 Receive Overrun

A receive overrun error indicates a write to the receive FIFO occurred when the internal receive FIFO was full (in either
master or slave mode). An overrun condition sets the SPIMSSn_INT_FL.rovr to 1. Writing a 1 to SPIMSSn_INT_FL.rovr bit
clears this error flag.

A receive FIFO overrun in I2S mode may result in mixing left and right channel data. Software should reinitialize the DMA
channel and data buffer and restart the I2S transfer.

13.10 SPI Interrupts

When the SPI interrupt is enabled (SPIMSSn_CTRL.irqe bit = 1, the SPIMSS generates an interrupt when one of the following
interrupt conditions occur. The interrupt condition is indicated by the SPIMSSn_INT_FL.irq bit in the SPIMSS Interrupt Flag
Register. Writing a 1 to the SPIMSSn_INT_FL.irq bit clears the pending SPI interrupt request.

13.10.1 Data Interrupt

A data interrupt occurs when the transmit character has been fully moved out of the shift register AND the Transmit FIFO is
empty (in either master or slave mode). Since transmit and receive are always interlocked, there is no need for a separate
receive interrupt. If either transmit or receive DMA is enabled via the SPIMSSn_DMA.rx_dma_en and
SPIMSSn_DMA.tx_dma_en bits, the data interrupt will not occur, however error interrupts are still enabled when using
DMA. A data interrupt is indicated by SPIMSSn_INT_FL.irq = 1 and no error interrupt bits set.

13.10.2 Forced Interrupt

To start the data transfer process, an SPI interrupt may be forced by software by writing a 1 to the SPIMSSn_CTRL.str bit in
the SPI Control Register.

13.10.3 Error Condition Interrupt

If any of the SPI error conditions occurs as described in the previous section, the corresponding error bit and the IRQ bit are
set in the SPIMSS Interrupt register and the SPI interrupt is asserted. The error status bits and the IRQ bit should be cleared
at the same time by writing a 1 to those bits.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 159

13.10.4 Bit Rate Generator Time-out Interrupt

If the SPI is disabled, an SPI interrupt can be generated by a Bit Rate Generator time-out. This timer function must be
enabled by setting the SPIMSSn_CTRL.birq bit in the SPI Control Register.

13.11 SPI Bit Rate Generator

13.11.1 Slave Mode

The Bit Rate Generator is not used in SPI slave mode. When configured as a slave, the minimum SCLK period is 8 times the
PCLK period.

13.11.2 Master Mode

In SPI master mode, the Bit Rate Generator creates a lower frequency serial clock (SCLK) for data transmission
synchronization between the master and the external slave. The input to the Bit Rate Generator is the PCLK. The SPI Bit
Rate register is a 16-bit reload value, SPIMSSn_BRG, for the SPI Bit Rate Generator. The reload value, SPIMSSn_BRG.div
must be greater than or equal to 0x02 for SPI operation (maximum bit rate is fPCLK frequency divided by 4). The SPI bit rate is
calculated using the following equation (for the special case div = 0x0000 substitute 216 for div in the equation):

Equation 13-1: SPIMSS Bit Rate Equation

𝑆𝑃𝐼 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒 (𝑏𝑖𝑡𝑠
𝑠𝑒𝑐⁄) = (

𝑓𝑃𝐶𝐿𝐾

2 × 𝑆𝑃𝐼_𝐵𝑅𝐺. 𝑑𝑖𝑣
)

13.11.3 Timer Mode

When the SPI is disabled, the Bit Rate Generator can function as a continuous mode 16-bit timer with interrupt on time-out.
To configure the Bit Rate Generator as a timer with interrupt on time-out, complete the following procedure:

1. Set SPIMSSn_CTRL.start = 0 to stop any SPIMSS activity.
2. Disable the transmit and receive FIFOs

a. SPIMSSn_DMA.tx_fifo_en = 0
b. SPIMSSn_DMA.rx_fifo_en = 0

3. Disable DMA mode

c. SPIMSSn_DMA.tx_dma_en = 0
d. SPIMSSn_DMA.rx_dma_en = 0

4. Load the desired 16-bit divisor into the SPIMSS Bit Rate Generation Register, SPIMSSn_BRG.div.
5. Set SPIMSSn_CTRL.birq = 1 to enable the bit rate generator
6. Enable the SPIMSS peripheral by setting SPIMSSn_CTRL.start = 1

13.12 SPIMSS Registers

Refer to Table 2-1: APB Peripheral Base Address Map for the SPIMSS (SPIMSS_) Base Peripheral Address.

Table 13-2: SPIMSS Register Offsets, Access and Descriptions

Offset Register Name Access Description

[0x0000] SPIMSSn_DATA R/W SPIMSS Data Register

[0x0004] SPIMSSn_CTRL R/W SPIMSS Control Register

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 160

Offset Register Name Access Description

[0x0008] SPIMSSn_INT_FL R/W SPIMSS Interrupt Flag Register

[0x000C] SPIMSSn_MODE R/W SPIMSS Mode Register

[0x0014] SPIMSSn_BRG R/W SPIMSS Bit Rate Register

[0x0018] SPIMSSn_DMA R/W SPIMSS DMA Register

[0x001C] SPIMSSn_I2S_CTRL R/W SPIMSS I2S Control Register

13.13 SPIMSS Register Details

Table 13-3. SPIMSS Data Register

SPIMSS Data Register SPIMSSn_DATA [0x0000]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify this field.

15:0 data R/W 0 SPIMSS Data
Refer to the Data Movement section for details.

Table 13-4: SPIMSS Control Register

SPIMSSn Control Register SPIMSSn_CTRL [0x0004]

Bits Name Access Reset Description

31:8 - R/W 0 Reserved for Future Use
Do not modify this field.

7 irqe R/W 0 Interrupt Request Enable
Set to enable interrupts for the SPIMSS peripheral.

0: SPI interrupts are disabled.
1: SPI interrupts are enabled. Interrupt requests are sent to the Interrupt

Controller

Note that if transmit or receive DMA is enabled, the transmit data complete
interrupt is disabled, but other interrupt sources are enabled.

6 str R/W 0 Start SPI Interrupt
Setting this bit starts a SPIMSS interrupt request. Setting this bit also sets
SPIMSSn_INT_FL.irq to 1. Setting this bit forces the SPIMSS to send an interrupt
request to the Interrupt Controller if SPIMSSn_CTRL.irqe = 1. This bit is cleared by
writing a 0 to this bit or by writing a 1 to the IRQ bit in the SPIMSSn_INT_FL.

5 birq R/W 0 Bit Rate Generator Timer Interrupt Request
Enable or disable the Bit Rate Generator if the SPIMSS is enabled
(SPIMSSn_CTRL = 1).

0: Clearing this bit disables the Bit Rate Generation timer function.
1: Setting this bit to 1 enables the Bit Rate Generation timer function and

enables the time-out interrupt.

Note: If SPIMSSn_CTRL.start = 1, this bit has no effect.

4 phase R/W 0 Phase Select
Refer to the SPI Clock Phase and Polarity Control section for details.

0: Data must be valid prior to first SCLK edge.
1: Data transition occurs after first SCLK edge.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 161

SPIMSSn Control Register SPIMSSn_CTRL [0x0004]

Bits Name Access Reset Description

3 clkpol R/W 0 Clock Polarity
Sets the idle state for the SCK clock pin after a character transaction.

0: SCLK idles Low (0) after character transmission/reception.
1: SCLK idles High (1) after character transmission/reception.

2 od_out_en R/W 0 Wired OR (Open Drain) Enable
Set to enable wired OR for the SPI signal pins (SPI1_SCK, SPI1_SS0, SPI1_MOSI,
SPI1_MISO).

0: Wired OR configuration disabled.
1: Wired OR configuration enabled.

1 mmen R/W 0 SPI Master Mode Enable
Set this field to enable Master Mode for SPI.

0: SPI set to slave mode operation
1: SPI set to master mode operation

0 start R/W 0 SPI Start
Set this field to start operation of the SPIMSS port as configured. If the FIFOs
contain data, the data is considered valid by the SPIMSS peripheral and is used.

0: Stop SPIMSS operation.
1: Start SPIMSS transaction as configured.

Note: This bit should be set to 1 only after the SPIMSS is configured for operation.
Setting this bit to 0 does not reset or change any configuration of the SPIMSS
peripheral and does not affect any data in the FIFOs.

Table 13-5: SPIMSS Interrupt Flag Register

SPIMSSn Interrupt Flag Register SPIMSSn_INT_FL [0x0008]

Bits Name Access Reset Description

31:8 - R/W 0 Reserved for Future Use
Do not modify this field.

7 irq R/W1C 0 SPI Interrupt Request Flag
This bit is set by hardware when an SPI interrupt request is pending. Write 1 to
clear.

0 = No SPI interrupt request is pending
1 = An SPI interrupt request is pending

Note: This field cannot be cleared unless all interrupt flags in this register are
cleared.

6 tovr R/W1C 0 Transmit Overrun Flag
This bit is set by hardware when a transmit FIFO overrun has occurred. Write 1 to
clear.

0 = No SPI interrupt request is pending
1 = An SPI interrupt request is pending

5 col R/W1C 0 Collision Flag
This bit is set by hardware when a multi-master collision (mode fault) occurs.
Write 1 to clear.

0 = No multi-master collision has occurred
1 = A multi-master collision has occurred

4 abt R/W1C 0 Slave Mode Transaction Abort Flag
This bit is set by hardware when a slave mode transaction abort occurs. Write 1 to
clear.

0: No slave mode transaction abort has occurred
1: A slave mode transaction abort has occurred

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 162

SPIMSSn Interrupt Flag Register SPIMSSn_INT_FL [0x0008]

Bits Name Access Reset Description

3 rovr R/W1C 0 Receive Overrun Flag
This bit is set by hardware when a receive FIFO overrun occurs. Write 1 to clear.

0: No FIFO overrun has occurred
1: A FIFO overrun has occurred.

2 tund R/W1C 0 Transmit Underrun Flag
This bit is set by hardware to indicate a transmit FIFO underrun has occurred.
Write 1 to clear.

0: No FIFO underrun has occurred
1: A FIFO underrun has occurred

1 txst RO 0 Transmit Status
This field reads 1 if a SPIMSS data transmission is currently in progress.

0: No data transmission currently in progress.
1: Data transmission currently in progress

0 slas R/W 0 Slave Select
If the SPI is in slave mode, this bit indicates if the SPI is selected. If the SPI is in
master mode, this bit has no meaning.

0 = Slave SPI is selected
1 = Slave SPI is not selected

Table 13-6: SPIMSS Mode Register

SPIMSSn Mode Register SPIMSSn_MODE [0x000C]

Bits Name Access Reset Description

31:8 - R/W 0 Reserved for Future Use
Do not modify this field.

7 tx_lj R/W 0 Transmit Data Alignment
Selects left or right alignment when data is loaded into the SPIMSSn_DATA.data
field for transmission if the character size is less than 16-bits.

0: Data is LSB aligned with the unused bits set to 0 up to the MSB (right aligned)
1: Data is MSB aligned with the unused bits set to 0 down to the LSB (left

aligned)

6 - R/W 0 Reserved for Future Use
Do not modify this field.

5:2 numbits R/W 0 Number of Data Bits per Character to Transfer
This field contains the number of bits to shift for each character transfer. Refer to
the data movement chapter for information on valid bit positions when the
character length is less than 16-bits.

0b0000: 16-bits
0b0001: 1-bits
0b0010: 2-bits
…
0b1110: 14-bits
0b1111: 15-bits

Note: Setting this field to 0 (default) sets the number of bits per character to 16.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 163

SPIMSSn Mode Register SPIMSSn_MODE [0x000C]

Bits Name Access Reset Description

1 ss_io R/W 0 Slave Select Input/Output Mode
Setting this field to 1 sets the slave select pin, SPI1_SS0, as an output. Clearing this
field sets the slave select pin, SPI1_SS0, to an input.

0 = The SPI1_SS0 pin is configured as an input.
1 = The SPI1_SS0 pin is configured as an output

Note: This field is only used if the SPIMSSn is in SPI Master mode
(SPIMSSn_CTRL.mode = 1).

0 ssv R/W 0 Slave Select Value
This indicates the value of the SPI1_SSO (I2S_LRCLK) pin if the SPIMSS slave select
pin is configured as an output (SPIMSSn_MODE.ss_io = 1), writing this field drives
the pin to the value written. If the slave select pin is set to an input
(SPIMSSn_MODE.ss_io = 0), reading this field returns the level of the slave select
pin.

Table 13-7: SPIMSS Bit Rate Generator Register

SPIMSSn Bit Rate Generator Register SPIMSSn_BRG [0x0014]

Bits Name Access Reset Description

31:16 - R/W 0 Reserved for Future Use
Do not modify this field.

15:0 div R/W 0 Bit Rate Reload Value
The SPI Bit Rate register is a 16-bit reload value for the SPI Bit Rate Generator. The
reload value must be greater than or equal to 0x2 for proper SPI operation

(maximum bit rate =
𝑓𝑃𝐶𝐿𝐾

4⁄). Refer to Equation 13-1 for calculation.

Table 13-8: SPIMSS DMA Register

SPIMSSn DMA Register SPIMSSn_DMA [0x0018]

Bits Name Access Reset Description

31 rx_dma_en R/W 0 Receive DMA Enable
Disabling clears any active request to the DMA controller.

0: Disable RX DMA requests
1: Enable RX DMA requests

30:28 - R/W 0 Reserved for Future Use
Do not modify this field.

27:24 rx_fifo_cnt R/W 0 Receive FIFO Count
0b0000: RX FIFO empty (0 entries)
0b0001: RX FIFO contains 1 entry
0b0010: RX FIFO contains 2 entries
0b0011: RX FIFO contains 3 entries
…
0b1000: RX FIFO contains 15 entries

23:21 - R/W 0 Reserved for Future Use
Do not modify this field.

20 rx_fifo_clr R/W 0 Receive FIFO Clear
Write 1 to reset the Receive FIFO. Writing 0 has no effect.

0: Ignored
1: Reset Receive FIFO

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 164

SPIMSSn DMA Register SPIMSSn_DMA [0x0018]

Bits Name Access Reset Description

19 - R/W 0 Reserved for Future Use
Do not modify this field.

18:16 rx_fifo_lvl R/W 0 Receive FIFO Level
Sets the RX FIFO DMA request threshold. This configures the number of filled RX
FIFO entries before activating an RX DMA request.

000: Request Receive DMA when RX FIFO contains 1 entry
001: Request Receive DMA when RX FIFO contains 2 entries
010: Request Receive DMA when RX FIFO contains 3 entries
…
111: Request Receive DMA when RX FIFO contains 8 entries

15 tx_dma_en R/W 0 Transmit DMA Enable
Disabling clears any active request to the DMA controller.

0: Disable TX DMA requests
1: Enable TX DMA requests

14:12 - R/W 0 Reserved for Future Use
Do not modify this field.

11:8 tx_fifo_cnt R/W 0 Transmit FIFO Count
0b0000: TX FIFO empty (0 entries)
0b0001: TX FIFO contains 1 entry
0b0010: TX FIFO contains 2 entries
0b0011: TX FIFO contains 3 entries
…
0b1000: TX FIFO contains 15 entries

7:5 - R/W 0 Reserved for Future Use
Do not modify this field.

4 tx_fifo_clr R/W 0 Transmit FIFO Clear
Write 1 to reset the Receive FIFO. Writing 0 has no effect.

0: Ignored
1: Reset Receive FIFO

3 - R/W 0 Reserved for Future Use
Do not modify this field.

2:0 tx_fifo_lvl R/W 0 Transmit FIFO Level
Sets theTX FIFO DMA request threshold. This configures the number of empty TX
FIFO entries before activating a Transmit DMA request.

0b000: Request Transmit DMA when TX FIFO has 1 free entry.
0b001: Request Transmit DMA when TX FIFO has 2 free entries
0b010: Request Transmit DMA when TX FIFO has 3 free entries
…
0b111: Request Transmit DMA when TX FIFO has 8 free entries

Table 13-9: SPIMSS I2S Control Register

SPIMSSn I2S Control Register SPIMSSn_I2S_CTRL [0x001C]

Bits Name Access Reset Description

31:5 - R/W 0 Reserved for Future Use
Do not modify this field.

4 i2s_lj R/W 0 I2S Left Justify
0: Normal I2S audio protocol - audio data lags left/right channel signal by one

SCLK period.
1: Audio data is synchronized with SSEL (left/right channel signal).

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 165

SPIMSSn I2S Control Register SPIMSSn_I2S_CTRL [0x001C]

Bits Name Access Reset Description

3 i2s_mono R/W 0 I2S Monophonic Audio Mode
Set this field to enable monophonic audio mode. In this mode, each transmit data
word is replicated on both left and right channels. Receive data is taken from left
channel, right channel receive data is ignored.

0 - Stereophonic audio.
1 - Monophonic audio format

2 i2s_pause R/W 0 I2S Pause Transmit/Receive
0: Normal transmission/reception.
1: Halt transmit and receive FIFO and DMA accesses, transmit 0.

1 i2s_mute R/W 0 I2S Mute Transmit
0: Normal transmit.
1: Transmit data is replaced with 0

0 i2s_en R/W 0 I2S Mode Enable
Set to enable I2S mode.

0: I2S mode is disabled.
1: I2S mode enabled.

 MAX32660 User Guide

Revision April 20, 2018 PRELIMINARY | Maxim Integrated | 166

14 Revision History

REVISION
NUMBER

REVISION DATE DESCRIPTION

0.1 3/21/2018
Fixed GCR_MEM_CTRL register. Updated DMA chapter and Register Names. Added this Revision
History table.

0.2 4/9/2018

• Updated Operating Modes section to clarify wakeup sources and behavior.

• Removed reference to 7.3728MHz oscillator as system clock source and removed all
references to it from user guide.

• Updated System Clock Select field to remove unavailable clock sources.

• Updated Watchdog Timer chapter with links for WDT registers.

• Specified SPI can only wakeup the part from SLEEP mode via the SPI Wakeup events.

• Updating 96MHz Oscillator references to be generic High-Frequency Internal Oscillator to
allow OVR determination of the HIRC frequency.

• Updated OVR information to indicate changes to HIRC frequency based on OVR settings
(Pending).

• Changed GCR_PMR register to GCR_PM register.

• Updated SPIMSS chapter to add corrected fields and register names throughout.

• Updated I2C chapter for clarity and updating to correct registers and field names.

0.3 4/11/2018

• Core OVR section includes steps to change OVR including requirements for the Flash Wait
States. Added Flash Wait State table and OVR table.

• Updated GCR_CLK_CTRL.sysclk field to match hardware.

• Updated the GCR_CLK_CTRL clock enable and ready fields to match hardware and to
accurately describe their states.

0.4 4/20/2018

• Added Timer chapter back in.

• Additional instructions on OVR and Flash Wait States.

• I2C updates.

• SPI0 updates.

©2017-2018 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED
PRODUCTS, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL
PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other
product or service names are the property of their respective owners.

	1 Overview
	2 Memory, Register Mapping, and Access
	2.1 Overview
	2.2 Standard Memory Regions
	2.2.1 Code Space
	2.2.2 SRAM Space
	2.2.3 Peripheral Space
	2.2.4 External RAM Space
	2.2.5 External Device Space
	2.2.6 System Area (Private Peripheral Bus)
	2.2.7 System Area (Vendor Defined)

	2.3 Device Memory Instances
	2.3.1 Main Program Flash Memory
	2.3.2 Instruction Cache Memory
	2.3.3 Information Block Flash Memory
	2.3.4 System SRAM
	2.3.5 AHB Bus Matrix and AHB Bus Interfaces
	2.3.6 Core AHB Interface
	2.3.6.1 I-Code
	2.3.6.2 D-Code
	2.3.6.3 System

	2.3.7 AHB Master
	2.3.7.1 Standard DMA

	2.4 Peripheral Register Map

	3 System Clocks, Reset, and Power Management
	3.1 Core Operating Voltage Range Selection
	3.1.1 Single Supply Operation
	3.1.2 If the MAX32660 is powered by a single supply connected via VDD, the operating voltage range can easily be changed on the fly by the application firmware. Changing the OVR in single supply mode changes the output of the internal LDO regulator to...
	3.1.3 Dual Supply Operation
	3.1.4 Setting the Operating Voltage Range
	3.1.5 Flash Wait States

	3.2 System Clocks
	3.3 Oscillator Sources and Clock Switching
	3.3.1 High-Frequency Internal Oscillator
	3.3.2 32.768kHz External Crystal Oscillator
	3.3.3 8kHz Ultra-Low Power Nano-Ring Internal Oscillator

	3.4 System Oscillators Reset
	3.5 Operating Modes
	3.5.1 ACTIVE Mode
	3.5.2 SLEEP Low Power Mode
	3.5.3 DEEPSLEEP Low Power Mode
	3.5.4 BACKUP Low Power Mode

	3.6 Shutdown State
	3.7 Device Resets
	3.7.1 Peripheral Reset
	3.7.2 Soft Reset
	3.7.3 System Reset
	3.7.4 Power-On Reset

	3.8 Instruction Cache Controller
	3.8.1 Enabling ICC0
	3.8.2 Disabling ICC0
	3.8.3 Flushing the ICC0 Cache

	3.9 Instruction Cache Controller Registers
	3.10 RAM Memory Management
	3.10.1 On-Chip Cache Management
	3.10.2 RAM Zeroization
	3.10.3 RAM Low Power Modes

	3.11 Global Control Registers (GCR)
	3.12 System Initialization Registers
	3.13 Function Control Registers
	3.14 Power Supply Monitoring
	3.15 Power Sequencer Registers

	4 Flash Controller
	4.1 Overview
	4.2 Usage
	4.2.1 Clock Configuration
	4.2.2 Lock Protection
	4.2.3 Flash Write Width
	4.2.4 Flash Write
	4.2.5 Page Erase
	4.2.6 Mass Erase

	4.3 Flash Controller Registers

	5 General-Purpose I/O and Alternate Function Pins
	5.1 General Description
	5.2 Power-On-Reset Configuration
	5.2.1 I/O Mode and Alternate Function Selection
	5.2.2 Input mode configuration
	5.2.3 Output Mode Configuration
	5.2.4 GPIO Drive Strength

	5.3 Alternate Function Configuration
	5.4 Configuring GPIO (External) Interrupts
	5.4.1 Interrupts
	5.4.2 Using GPIO for Wakeup from Low Power Modes

	5.5 GPIO Registers
	5.6 GPIO Port 0 Register Details

	6 DMA Controller
	6.1 DMA channel operation
	6.2 DMA Channel Arbitration and DMA Bursts
	6.3 DMA Source and Destination Addressing
	6.4 Data Movement from Source to DMA FIFO
	6.5 Data Movement from the DMA FIFO to Destination
	6.6 Count-To-Zero Condition
	6.7 Chaining Buffers
	6.8 DMA Interrupts
	DMAn_CFG.ctzien = 1
	DMAn_CFG.chdien = 1

	6.9 Channel Time-outs
	6.10 10-bit Timer
	6.11 Channel and Register Access Restrictions
	6.12 Memory-to-Memory DMA
	6.13 Standard DMA Registers
	6.13.1 DMA Control Registers
	6.13.2 DMA Control Register Details

	6.14 Standard DMA Channel Registers
	6.14.1 Standard DMA Channel Register Address Offsets for DMA Channel 0 to 15
	6.14.2 DMA Channel Register Details

	7 UART
	7.1 UART Frame Characters
	7.2 UART Interrupts
	7.3 UART Bit Rate Calculation
	7.3.1 Example Baud Rate Calculation:

	7.4 UART DMA Using the TX and RX FIFOs
	7.4.1 RX FIFO DMA Operation
	7.4.2 TX FIFO DMA Operation

	7.5 Flushing the UART FIFOs
	7.6 Hardware Flow Control
	7.7 UART Registers

	8 Real-Time Clock (RTC)
	8.1 Overview
	8.2 RTC Alarm Functions
	8.2.1 Time-of-Day Alarm
	8.2.2 Sub-Second Alarm
	8.2.3 RTC Wakeup From DEEPSLEEP/BACKUP Power Modes

	8.3 RTC Register Access
	8.3.1 RTC Register Write Protection
	8.3.2 RTC Register Read Protection
	8.3.3 RTC Count Register Access
	8.3.4 RTC Alarm Register Access
	8.3.5 RTC Trim Register Access
	8.3.6 RTC Oscillator Control Register Access

	8.4 RTC Output Pin
	8.5 RTC Calibration
	8.6 RTC Registers
	8.6.1 RTC Register Details

	9 Timers
	9.1 Features
	9.2 Basic Operation
	9.3 Timer Pin Functionality
	9.4 One-Shot Mode (000b)
	9.4.1 Timer Period
	9.4.2 Configuration

	9.5 Continuous Mode (001b)
	9.5.1 Timer Period
	9.5.2 Configuration

	9.6 Counter Mode (010b)
	9.6.1 Timer Period
	9.6.2 Configuration

	9.7 PWM Mode (011b)
	9.7.1 Timer Period
	9.7.2 PWM Mode Configuration

	9.8 Capture Mode (100b)
	9.8.1 Timer Period
	9.8.2 Configuration

	9.9 Compare Mode (101b)
	9.9.1 Timer Period
	9.9.2 Configuration

	9.10 Gated Mode (110b)
	9.10.1 Timer Period
	9.10.2 Configuration

	9.11 Capture/Compare Mode (111b)
	9.11.1 Timer Period
	9.11.2 Configuration

	9.12 Timer Registers
	9.13 Timer Register Details

	10 Watchdog Timer (WDT)
	10.1 Features
	10.2 Usage
	10.3 Interrupt and Reset Period Timeout Configuration
	10.4 Enabling the Watchdog Timer
	10.4.1 Enable sequence

	10.5 Disabling the Watchdog Timer
	10.5.1 Manual Disable
	10.5.2 Automatic Disable

	10.6 Resetting the Watchdog Timer
	10.6.1 Reset Sequence

	10.7 Detection of a Watchdog Reset Event
	10.8 Watchdog Timer Registers

	11 I2C Master/Slave Serial Controller
	11.1 I²C Master/Slave Features
	11.2 I2C Bus Speeds
	11.3 I2C Transfer Protocol Operation
	11.4 START and STOP Conditions
	11.5 I2C Master/Slave Overview
	11.6 Slave Addressing
	11.7 Acknowledge and Not Acknowledge
	11.8 Bit Transfer Process
	11.9 SCL and SDA Bus Drivers
	11.9.1 I2C Interrupt Sources
	11.9.2 SCL Clock Configurations
	11.9.3 Clock Synchronization
	11.9.4 Transmit and Receive FIFOs

	11.10 Clock Stretching
	11.11 I2C Bus Timeout
	11.12 I2C Addressing
	11.13 I2C TX FIFO and RX FIFO Management
	11.13.1 Transmit Lockout

	11.14 Interactive Receive Mode
	11.15 I2C DMA Control
	11.15.1 I2C Transmit DMA Burst Size
	11.15.2 I2C Receive DMA Burst Size

	11.16 I2C Master Mode Transmit Operation
	11.17 I2C Master Mode Transmit Bus Arbitration
	11.18 SCL Clock Generation
	11.19 TX FIFO Preloading
	11.20 Master Mode Receiver Operation
	11.21 I2C Registers

	12 Serial Peripheral Interface 0 (SPI0)
	12.1 SPI Port 0
	12.2 Configuration
	12.2.1 FIFOs
	12.2.2 Interrupts and Wakeups

	12.3 Timing Diagrams
	12.3.1 SPI Mode 0
	12.3.2 SPI Mode 1
	12.3.3 SPI Mode 2
	12.3.4 SPI Mode 3

	12.4 SPI0 Registers

	13 SPIMSS
	13.1 Overview
	13.1.1 Features

	13.2 Operation
	13.3 SPI Signals
	13.3.1 Master-In, Slave-Out
	13.3.2 Master-Out, Slave-In
	13.3.3 Serial Clock
	13.3.4 Slave Select
	13.3.4.1 Single Master SPI System
	13.3.4.2 Multi-Master SPI System
	13.3.4.3 Slave SPI System
	13.3.4.4 I2S System

	13.4 SPI Clock Phase and Polarity Control
	13.4.1 Transfer Format for Phase 0
	13.4.2 Transfer Format for Phase 1

	13.5 Data Movement
	13.6 Configuration for Master, Slave and Multi-Master Modes
	13.6.1 Single Master Operation
	13.6.2 Multi-Master Operation

	13.7 Slave Operation
	13.8 I2S (Inter-IC Sound) Mode
	13.8.1 Mute
	13.8.2 Pause
	13.8.3 Mono
	13.8.4 Left Justify

	13.9 Error Detection
	13.9.1 Transmit Overrun
	13.9.2 Mode Fault (Multi-Master Collision)
	13.9.3 Slave Mode Abort
	13.9.4 Receive Overrun

	13.10 SPI Interrupts
	13.10.1 Data Interrupt
	13.10.2 Forced Interrupt
	13.10.3 Error Condition Interrupt
	13.10.4 Bit Rate Generator Time-out Interrupt

	13.11 SPI Bit Rate Generator
	13.11.1 Slave Mode
	13.11.2 Master Mode
	13.11.3 Timer Mode

	13.12 SPIMSS Registers
	13.13 SPIMSS Register Details

	14 Revision History

