eForth for STM8S
Chen-Hanson Ting, 7/19/2010
1.
STM8S Discovery Board
The STM8S Discovery Board from STMicroelectronics Corp. is a very convenient single board computer which allows you to evaluate STM8S chip and explore all its capabilities. It is amazing that ST makes it available for less than $10. Such generosity deserves a convenient operating system which an average user can interact with the CPU and develop applications. STM8eForth is such a system. I am donating it to the public domain. You can use it and distribute it freely. You can also use it to develop applications for commercial purposes without any restriction.

2.
Running STM8eForth

STM8eForth system is distributed in the form of an assembly file stm8ef.asm. It is fully tested on STVD IDE which can be downloaded from www.st.com/stm8s-discovery. Install STVD on your computer. Create a new project. Add stm8sef.asm to this project, build the project, and use the debugger to program the resulting binary image to Discovery Board. To interact with the eForth system downloaded to Discovery Board, you have to connect the UART2 port in STM8S to a COM port on PC. The Discovery web page also distributes a Hyperterminal sample project which shows you haw to make the connection. You have to open Hyperterminal application under Windows to communicate with STM8S, using RS232 communication protocol at 9600 baud, 8 data bits, 1 stop bit, and no parity.
Once STM8S chip on Discovery Board and Hyperterminal on PC are properly set up and connected, you can type FORTH commands and STM8S with execute them. Here are samples of conversation I copied from Hyperterminal screen:

When STM8S is turned on, it displays the sign-on message:

stm8eForth v2.1

 ok

 ok

If you press the Return key, eForth will echo "ok" with a linefeed.

Here is the universal first program you write on any new computer:

 : TEST1 CR ." HELLO, WORLD!" ; ok

 TEST1

HELLO, WORLD! ok
Here is a program testing the IF-ELSE-THEN conditional structure:

 : TEST2 IF 123 ELSE 456 THEN . ; ok

 0 TEST2 456 ok

 1 TEST2 123 ok
Here is a program testing a loop structure:

 : TEST3 10 FOR R@ . NEXT ; ok

 TEST3 10 9 8 7 6 5 4 3 2 1 0 ok
Here is a program testing how fast this computer can do empty loops. It takes eForth about 2 seconds to do 10 million empty loops. It is not bad for a high level language to run loops like this.
 : TEST4 100 FOR 10000 FOR NEXT NEXT ; ok

 TEST4 ok

Now is the fun stuff. I can turn the LED on Discovery Board easily by writing directly to the Output Data Register of Port D. Bit 0 in this register controls the LED. PD_ODR port address is $500F. C! is the FORTH command which write a byte to a memory or register location. HEX specifies that all subsequent numbers will be entered and displayed in hexadecimal. "1 500F C!" writes a 1 to bit 0 of register PD_ODR at 500F, which turns off the LED. "0 500F C!" clear this bit and turns the LED on..

 HEX ok

 1 500F C! ok

 0 500F C! ok

Here is a program which turns on the beeper on Discovery Board. Beeper in STM8S is connected to Bit 4 of Port D. However, this happens only if set the Option bit AFR7. This is a long story I love to tell. But now for short, when in the debugger, enable this beeper alternate function by clicking:

Menu->Debug Instrument->MCU Configuration-AFR7

After AFR7 is thus enabled, you can write into the beeper control-status register BEEP_CSR at $50F3 to run the beeper. Writing $3E enables 1 KHz beep. Writing $7E enables 2 KHz beep. Writing $FE enables 4 KHz beep. Writing $1E stops beeper.

 3E 50F3 C! ok

 7E 50F3 C! ok

 FE 50F3 C! ok

 1E 50F3 C! ok
The other important FORTH command is C@ to examine the contents of a memory location or a register. For example, to read BEEP_CSR:

 50F3 C@

 1E ok
FORTH words C@ and C! are powerful tools for the user to explore STM8S chip. You can read and write any hardware register, and observe the effects immediately. STM8S is not a simple chip. You've got 20 Mbytes of documentation to wade through. The best way to learn to use this chip is go through the documentation with STM8eForth system running interactively. Read about a peripheral device, peek at the registers and poke them with different values to see what happens. You don't have to read all the manuals. You can pick only the devices you are interested and experiment with them. After you use one device successfully, the test code you tried can be readily incorporated into your application. The capability of interacting with your hardware generally reduces software development time by a factor of 2 to 4.
3.
Comments on stm8ef.asm

STM8S is an 8 bit microcontroller, even at 16 MHz, it is still a taxing task to run as a 16 bit FORTH Virtual Machine. It has an 8 bit accumulator A, two 16 bit index registers X and Y, and a 16 bit stack pointer SP. Because most of the arithmetic operations can be done in the index registers, STM8S is almost a 16 bit microcontroller. Nevertheless, the index registers are still limited in functionality, and it is difficult to implement FORTH in the most efficient way. I use SP as the FORTH return stack pointer, and X register as parameter stack pointer. The nesting and unnesting of subroutines is very efficient, but data manipulator on the parameter stack is bit more time consuming.

32 Kbytes of flash memory are quite generous for a microcontroller. eForth system occupies only 5508 bytes, and there are plenty of space for applications. 2 Kbytes of RAM is not enough for the eForth system to reside completely in RAM, but enough to add a fair number of new FORTH words for testing and debugging. After new words are fully tested, they can be added to flash memory by extending the assembly source code.
eForth system is a simple FORTH implementation targeted for embedded systems. All FORTH commands are called words stored in ROM memory in the form of a linked list. Each word has a link field pointing to the prior word, a name field for the interpreter to search this word, and a code field containing executable code and data. A sequence of words can be typed on the terminal, and FORTH interpreter will execute them in sequence. A sequence of words can also be assigned a name and compiled to become a new word. New words are added to the system until the last word which becomes the application. This is the most natural and most efficient way languages and intelligence are developed.
You can find lots of information about FORTH and eForth on www.forth.org, and on my web site www.offet.com. If you have questions, write to me at ting@offete.com.
