
School of Electrical and Electronic Engineering

Self-Balancing Robot

Third Year Individual Project – Final Report

April 2017

Abdul Gafar

9097951

Supervisor: Dr Joaquin Carrasco Gomez

School of Electrical and Electronic Engineering

Acknowledgements

First, I would like to thank my parents and my brother for their unconditional support

over the last three years.

I would like to express my sincere gratitude to Dr Carrasco for accepting to be my

Supervisor for this 3rd year project. I am grateful for the help and advice provided

throughout the year, for without it I would have not progressed as far as I did.

Lastly, I would to thank my friends Omar El-Shabassy, Andrei Velcescu and Canberk

Gurel for their support and help thought the whole project.

School of Electrical and Electronic Engineering

Abstract

Self-balancing robots are a topic of curiosity amongst students, roboticists, and

hobbyists around the world. The fascinating aspect is the fact that it is a naturally

unstable system. This project presents an attempt on developing an autonomous

self-balancing robot. A key element in maintaining the robot in the upright position is

estimation of the tilt angle. For this, the Kalman Filter has been implemented and

tested to fuse data from a gyroscope and an accelerometer. In addition, the

methodology in which the hardware was chosen and put together has been justified.

Then the software development and challenges in the implementation of the Kalman

Filter have also been explained. Lastly the control of the robot has been explored,

with characterisation of the robot in an attempt to implement an LQR controller.

Although several results were presented, the goal of making a self-balancing robot

was not achieved.

School of Electrical and Electronic Engineering

Contents

 Introduction, Motivation and Aims .. 1

 Introduction .. 1

 Motivation ... 1

 Aims and Objectives .. 2

 Background Information and Literature Review ... 3

 Introduction .. 3

 Inverted Pendulum Systems .. 3

2.2.1. Simple Pendulum .. 4

2.2.2. Non-Minimum Phase Zeros and Transfer Function Analysis 4

 Controllers .. 5

 Tilt Angle Estimation .. 6

 Summary .. 7

 Sensor Fusion .. 8

 Introduction .. 8

 Gyroscope Fundamentals .. 9

 Accelerometer Basic Principles .. 10

 Kalman Filter .. 11

3.4.1. Background ... 11

3.4.2. Kalman Filter Algorithm ... 12

3.4.3. Model derivation .. 13

3.4.4. Overall Diagram ... 15

3.4.5. Initialisation .. 15

3.4.6. Tuning Parameters .. 17

 Complementary Filter ... 20

 Analysis of Performance .. 21

 Hardware ... 23

 Introduction .. 23

 Motors and Wheels .. 23

 Microcontroller ... 24

School of Electrical and Electronic Engineering

 Inertial Measurement Unit (IMU) .. 25

 Motor Driver Board ... 26

 Power Source .. 26

 Overall Design ... 26

 Final Assembly ... 27

 Software Implementation ... 28

 Introduction .. 28

 Constant Loop Time ... 28

 Reading from IMU .. 29

 KF Implementation ... 30

 Displacement and Angular Velocity from Encoders 30

 Overall Diagram ... 31

 Control ... 33

 Introduction .. 33

 State-Space Model .. 33

 Estimation of the Robot’s Parameters .. 35

 Analysis of the System ... 36

 LQR in MATLAB .. 36

 Physical Performance .. 38

 Conclusions ... 39

 Project Achievements .. 39

 Project Limitations and Final Remarks ... 39

 References ... 41

 Appendices .. 45

 Appendix 1 – MATLAB code .. 45

 Appendix 2 – Arduino PID code ... 46

 Appendix 3 – Arduino Motor Characterisation Code 53

 Appendix 4 – Arduino LQR Code ... 56

9.5 Appendix 5 - Progress Report………………………………………………… 64

School of Electrical and Electronic Engineering Page 1

 Introduction, Motivation and Aims

 Introduction

Self-balancing robots have been a topic of interest of many researchers, students

and hobbyists worldwide. In essence, it is an inverted pendulum on wheels, a

derivative of the inverted pendulum on a cart. Unlike traditional robots, which are in a

constant state of equilibrium, the robot is a naturally unstable system [1]. Its design is

more complex, as it needs to be actively controlled to maintain its upright position,

however, it benefits from being able to turn on the spot.

The primary practical application of a self-balancing robot is human transportation,

which was popularised by the release of the Segway PT (Personal Transporter) [2]. It

is used in many industries such as inside factory floors or for tourism in the park. It is

more attractive compared to four or three wheeled vehicles as they can take sharp

turns and navigate in tighter spaces [3].

 Motivation

The primary incentive of the project is to develop general understanding of control

theory. For the last few decades, “the inverted pendulum has been the most popular

benchmark, among others, for teaching and research in control theory and robotics

[4].” Hence, developing a self-balancing robot is the ideal platform to put into practice

what has been covered in Control Systems lectures. It would also be interesting to

see the differences between the behaviour in practice compared to simulations.

Furthermore, the material and methods learnt have a wide array of applications; for

example, inverted pendulums have been used to model human locomotion, which

then was used to develop bipedal robots [5].

In addition to control theory, learning about Kalman Filters (KF) was also a motivation

to develop the self-balancing robot. Knowing the tilt angle is necessary in any

balancing robot to apply the appropriate control action. However, different sensing

devices have their compromises; the KF is used to fuse data from two sensors, such

that a better estimate of the tilt angle can be obtained. Kalman filters specifically and

not just the Complementary Filter, because it is considered to be “one of the most

important data fusion algorithms in use today [6]” and it was famously used in the first

manned mission to the moon [7].

School of Electrical and Electronic Engineering Page 2

Besides learning about the theoretical aspects, the project also incorporated a

practical side. This includes but is not limited to, using SolidWorks to see how

everything was going to fit together, using stripboards for small-simple circuits, using

lab equipment for testing and programming in C. These are a wide array of important

skills applicable to many tasks, in future projects, as an engineer.

 Aims and Objectives

This project aims to design, construct and program a self-balancing robot with a self-

developed and implemented Kalman filter. To achieve the aims of the project,

following objectives have been set:

 Perform Literature Review on Kalman Filters and implement it in MATLAB

 Develop the mathematical model for sensor fusion

 Implement and tune the Kalman Filter in a microcontroller

 Design a testing rig to the Kalman Filter

 Tune the KF to have the best performance

 Design and assemble the chassis of the robot

 Develop the software to read from the sensors and to control the actuators

 Implement a PID controller to enable the robot to stay upright

School of Electrical and Electronic Engineering Page 3

 Background Information and Literature Review

 Introduction

This chapter aims to provide an overview of the literature sources used throughout

the development of the robot. First, the fundamentals of inverted pendulum systems

are described: determination of the equilibrium point and what makes the system

interesting to control engineers. Afterwards, a literature review on the most common

control theory applied to self-balancing robots is performed and the last sub-section

summarizes the main sensor fusion techniques.

 Inverted Pendulum Systems

The inverted pendulum is a classical problem in control systems, and to explore the

unstable dynamics, different platforms have been developed. These platforms are

similar in many ways, leading to many of the behaviours being comparable. The most

common types are the self-balancing robot, Inverted Pendulum on a cart and an

inverted pendulum on a linear track, shown in the figure below:

Figure 1: [a] Self-Balancing Robot [8], [b] Inverted Pendulum on a Cart [9], [c]

Inverted Pendulum on a Linear Track [10]

[a] [b] [c]

School of Electrical and Electronic Engineering Page 4

2.2.1. Simple Pendulum

To better understand these systems, analysis of the dynamics of a simple pendulum

is crucial.

Assuming the system on the left, where a mass,

M is connected by a massless rod of length L to a

frictionless pivot. The angular velocity, 𝜔 and the

rate of change of angular velocity,
𝑑𝜔

𝑑𝑡
 are given by

the following formulae [11]:

𝑑𝜃

𝑑𝑡
= 𝜔

𝑑𝜔

𝑑𝑡
= −

𝑀𝑔𝐿

𝐽
 sin 𝜃

Where 𝐽 is the moment of inertia, and 𝑔 is the

gravitational force

Intuitively, the system will remain at rest when

𝜔 = 0 and
𝑑𝜔

𝑑𝑡
= 0. When equation 1 and 2 are

solved to fit the criteria, the equilibrium points are

found to be 𝜃̇ = 0, and 𝜃1 = 0 or 𝜃2 = 180°. 𝜃1 is stable, but not applicable to self-

balancing robots, 𝜃2 is the target position for inverted-pendulum systems. However,

at this position, the system is unstable. Any external disturbance will cause the

pendulum to move indefinitely away from that specific equilibrium point, hence the

need for it to be actively balanced.

2.2.2. Non-Minimum Phase Zeros and Transfer Function Analysis

Perhaps the most fascinating aspect of inverted pendulum systems is the notion of

non-minimum phase zeros. Following [12], a summary of the consequences of the

non-minimum phase zeros is given. As explained in the previous section, inverted

pendulums are unstable, attempting to stabilise an unstable plant using feedback will

give rise to non-minimum phase zeros. The effect of these zeros can be observed by

a simple experiment of trying to balance a long stick on the palm of one’s hand. The

stick is analogous to the inverted pendulum and the hand to the cart. When

attempting to move the hand to right, initially one tends to move to the left briefly then

move to right. The zero in the system’s transfer function has caused an initial

Figure 2: Simple Pendulum

 (1)

 (2)

School of Electrical and Electronic Engineering Page 5

undershoot when a ‘step response’ is applied. The conclusive effect of non-minimum

phase zeros will vary depending on the controller used, it may cause initial

undershooting, direction reversals and/or overshooting.

Given the transfer function G(s),

𝐺(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
(3)

a zero is a the root in the numerator, N(s), of G(s). A non-minimum phase zero is a

positive zero that is in the right half of the pole-zero plot. To exhibit the behaviour, in

which direction reversals occurs, has to be an odd number of zeros in the transfer

function.

From the transfer function, further conclusions can be made. If there are positive

poles, the plant is unstable and based on parity interlacing principle, if the plant has

odd number of positive real poles to the right of the non-minimum poles the plant

cannot be controlled by a stable controller. This is actually present in a linearized

transfer function of an inverted pendulum on a cart. Further discussion in context of

the self-balancing robot designed is given in Chapter 6.

The overall effect of the non-minimum phase zeros is constraints in closed loop

performance. They restrict the bandwidth and it causes a limited gain margin

(suggesting limited robustness). The non-minimum phase zeros cannot be cancelled

in practice as a small difference in the zero and poles will lead to instability in the

plant.

 Controllers

To maintain the robot upright, the most commonly used controllers are Proportional-

Integral-Derivative (PID) and the Linear Quadratic Regulator. Other theses have also

explored the use of Linear-Gaussian Control (LQG), Fuzzy Logic and Pole-

Placement; however, in some cases they were never implemented in a robot and

were only experimented in simulations [13]. In theses where the robot displacement

is also controlled, either LQG is used or combination of controllers. For example LQR

to maintain the robot upright and PID for controlling displacement, or a cascaded PID

controller [14] [13] [15] [16] [17] [2] [1]. PID and LQR are the explored controllers in

this thesis, thus further details will only be provided for them.

School of Electrical and Electronic Engineering Page 6

PID is perhaps the most used controller, as stated by VanDoren “More than 60 years

after the introduction of proportional-integral-derivative controllers, they remain the

workhorse of industrial process control [18].” The algorithm is described by the

following equation:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡) (4)

Where, u(t) is the output of the controller, e(t) is the error and 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are the

tuning parameters. It is relatively easy to implement and does not require a model of

the system. Tuning of the parameters can be done with trial and error. Using this

simple method, robots have been controlled to remain upright [13] [15] [16] [2] [1]

[17].

LQR is a form of optimal control that aims to minimize the performance index whist

taking into account the control effort, as often, higher input effort would imply higher

energy consumption [19]. LQR control requires derivation of the state-space model of

the system [14], thus it is more challenging to implement. A great advantage of LQR

is that unlike PID it can be applied to Multiple Input, Multiple Output (MIMO) systems.

When applied to the self-balancing robot, it was found that LQR has a better

performance [20].

 Tilt Angle Estimation

In order to maintain the robot upright, knowing the tilt angle is imperative. There are a

wide array of sensors that can be used, such as inclinometers, light sensors,

accelerometer or gyroscopes. However, each these sensors have their

shortcomings, the inclinometer takes a long time to converge to the angle it is

currently at, light sensors are highly susceptible to background noise (ambient light

and the reflective index of the surface it is operating in), gyroscopes have a bias and

accelerometers are relatively noisy.

Most often, a combination of a gyroscope and an accelerometer are used. To

combine the measurements, the most commonly used techniques are the Kalman

Filter and the Complementary Filter. In more modern Inertial Measurement Units

(IMU) built in algorithms can be found to fuse the data. The next paragraphs, will

provide an overview of each of the mentioned techniques, and the findings from the

literature review conducted. There is a greater emphasis on the Kalman Filter as it is

one of the core aspects to be explored in the project.

School of Electrical and Electronic Engineering Page 7

Rudolf Kalman introduced the Kalman Filter, also known as Linear Quadratic

Estimation, in 1960 [3]. “If implemented and tuned correctly, the Kalman Filter best

possible (optimal) estimator for a large class of problems [21].” To implement the

Kalman Filter, a state space model of the system is required. One of the great

advantages, in addition to being a good estimator, is the fact that it is a recursive

method. This means that large amount of data does not need to be stored and can

run in real time, allowing it to be implemented in devices that have lower memory

sizes [3]. The challenge for someone without previous experience in using KFs, is

confusion caused by varying notations in textbooks [3].

The complementary filter is simply composed of a high pass filter for the integrated

data from the gyroscope and a low pass filter for the angle calculated from the

accelerometer [22]. It is the most commonly used method as it is relatively easy to

implement. Bonafilia et al, have found that it performs better than the Kalman filter

[14].

In some modern IMUs, such as InvenSense’s MPU 6050 or Bosch’s BNO055, there

is built-in sensor fusion algorithm’s that will directly output the absolute orientation.

This removes the load from the main microcontroller and the algorithm is expected to

have the best performance as it has been developed by the manufacturer [23] [24].

 Summary

To begin with, the fundamentals of the system were explored and it was established

that it the robot is at equilibrium when upright or at least the centre of mass is above

the pivot point. Then, it was revealed that the robot has non-minimum phase

response in closed loop. Finally, an overview of the most commonly used sensor

fusion techniques and controllers. The findings are summarized in the tables 1 and 2:

Controller Advantages Disadvantages

PID - Easy to implement

-Does not require the

state space model

- Applicable to Single Input, Single

Output Systems (SISO)

- Does not perform as well as LQR

LQR - Applicable to MIMO

systems

- Performs better than

PID

-More challenging to Implement

-Requires derivation of the State-

Space Model

Table 1: Comparison of Controllers

School of Electrical and Electronic Engineering Page 8

Angle Estimation

Techniques
Advantages Disadvantages

Kalman Filter - Regarded as one of the

best estimators

- It is recursive method

- Requires a state-space model of

the system

- Difficult to understand due to

standard notation

-Has higher computational

requirements

Complementary

Filter

- Easy to implement - Can be susceptible to noise

Built-In Algorithm -Removes the load from

the main microcontroller

- Not available in every IMU

Table 2: Comparison of Angle Estimation Techniques

 Sensor Fusion

 Introduction

A common agreement in literature is that using either a gyroscope or an

accelerometer on their own to obtain the tilt angle is not very reliable. This primarily

arises from the fact that both of these devices have a bias in the measurements, are

affected by white noise and the bias is affected by temperature. Attempting to

account for all the errors, could be a dissertation in itself [25] . In this project, as only

the tilt angle is measured and not relative displacement, it is assumed that the

gyroscope is mainly affected by a bias and the accelerometer by white noise.

This chapter begins by presenting the fundamentals of gyroscopes and

accelerometers to highlight the need for sensor fusion. Followed by, the Kalman

Filter and its implementation, the complimentary filter and finally a comparison of

each of the filters. The Kalman Filter is covered in greater detail as it is one of the

primary focuses of this thesis. The complementary filter has solely been explored to

compare whether the additional computational requirement is a significant

improvement when used to estimate the tilt angle.

School of Electrical and Electronic Engineering Page 9

 Gyroscope Fundamentals

The gyroscope measures angular velocity,𝜃̇, in radians per second or degrees per

second. Intuitively, by integrating the angular velocity the tilt angle can be calculated.

Since the gyroscope readings are taken at discrete time intervals, 𝑑𝑡, numerical

integration is performed using the Euler method. This is shown in the equation below:

𝑔𝑦𝑟𝑜𝑎𝑛𝑔𝑙𝑒𝑡
 = 𝑔𝑦𝑟𝑜𝑎𝑛𝑔𝑙𝑒𝑡−1

+ 𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑑𝑡 (5)

The equation above assumes the sensor initial position is 0 degrees. If the starting

position of the sensor is non-zero, the angle has to be initialized to the value,

possibly from another sensor i.e. inclinometer or accelerometer.

Using the approach mentioned the following graph was obtained:

Figure 3: Graph of Angle (calculated using equation 1) against Time

A key element to observe was that the measurements were taken while the IMU was

at rest; this highlights the effect of the bias in the measurements. Due to the

integration, this systematic error is summed in every loop, thus the angle appears to

be increasing even though the gyroscope was not moving. Furthermore, the size of

the bias also increases over time [26]. In cases where the object can rotate in 3D, the

yaw angle needs to be coupled with the roll and pitch to reduce the chances of

Gimbal Lock [27]. The robot is assumed to have only one axis of rotation thus

coupling does not need to be considered

School of Electrical and Electronic Engineering Page 10

 Accelerometer Basic Principles

The accelerometer measures the acceleration relative to free fall. The acceleration is

often measured in gs, which is based on earth’s gravitational pull (9.81m/s). To

determine the orientation of the accelerometer, it is assumed that the only force

acting on the object is earth’s gravitation pull. Gravity always acts ‘down’, thus when

the object is tilted, the force is divided into components in the x, y, and z directions of

the object. Since the axes are orthogonal to one another, Pythagoras theorem can

be used to show the relationship between the forces as shown in the diagram below:

Figure 4: Diagram that shows the components of gravity in each direction [26]

From the diagram, the following equation can be obtained:

𝐴𝑥𝑟 = 𝜃𝑥 = cos−1 (
𝑥

√𝑥2 + 𝑦2 + 𝑧2
) = cos−1 (

𝑥

𝑅
) (6)

Alternatively, the following equation is more useful as it calculates the angle relative

to the z-axis (Roll) [28]:

𝑅𝑜𝑙𝑙 = 𝜙𝑥𝑦𝑧 = tan−1 (
𝑦

𝑧
) (7)

With a similar approach, Pitch can also be calculated. However, Yaw cannot be

determined accurately, especially when the force in the z direction = 1g (assuming

the accelerometer can only rotate and not translate in any direction). In this case

changing the yaw, will have no impact on the components of x and y, making yaw

constant. This however does not affect the implementation in the robot as only the tilt

angle is required [26].

School of Electrical and Electronic Engineering Page 11

Using equation 6, the following graph was obtained:

Figure 5: Graph of Angle (Accelerometer) against Time

The graph above is divided into 3 sections. In all cases, the IMU orientation was kept

constant (as well as humanly possible). In section 1, the IMU was moved up and

down. In section 2, the table was tapped lightly and in section 3, the accelerometer

was left without external disturbances. The diagram shows the problems with using

accelerometer for measuring angles, even in section 3, when zoomed in it can be

see that the line is still not perfectly smooth, emphasising the noisy nature of the

accelerometer. The root of these issues is the assumption that gravity is the only

force acting upon the object [29].

 Kalman Filter

3.4.1. Background

As microcontrollers work in discrete time, the discrete time Kalman Filter will be used

to estimate the tilt angle. To implement the algorithm, the process has to be

described by the linear stochastic difference equation [21]

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘 (8)

where, 𝑥𝑘 is the state vector containing the variables to be estimated. 𝐴 is the state

transition matrix that is applied to 𝑥𝑘−1. 𝑢𝑘 is the control (input) vector and 𝐵 (control

School of Electrical and Electronic Engineering Page 12

input matrix) maps the inputs to the state vector. Finally, 𝑤𝑘 is vector that contains

the process noise for each of the variables in 𝑥𝑘. The noise is assumed to be

normally distributed with the a mean value of zero and the covariance is given by 𝑄

𝑝(𝑤)~ 𝑁(0, 𝑄) (9)

The measurements are modelled by

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (10)

Where, 𝑧𝑘 is contains the measured values of 𝑥𝑘. 𝐻 transforms the state vector into

measurements. 𝑣𝑘 is the measurement noise also Gaussian distributed but with a

variance of 𝑅

𝑝(𝑣)~ 𝑁(0, 𝑅) (11)

𝑤𝑘 and 𝑣𝑘 are white noises and independent of each other [30].

3.4.2. Kalman Filter Algorithm

The KF implements a form of feedback: first, a process state estimate is made using

the time update equations and then using the measurement update equation a form

of measurement estimation is obtained [21]. The equations for the time update are

presented below:

𝑥̂𝑘|𝑘−1 = 𝐴𝑥̂𝑘−1|𝑘−1 + 𝐵𝑢𝑘 (12)

𝑃𝑘|𝑘−1 = 𝐴𝑘 𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘 (13)

Where 𝑥̂ is the state estimate and 𝑃 is the process covariance matrix.

The measurement update is described by the following equations:

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

(14)

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘|𝑘−1) (15)

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 (16)

Where K is the Kalman Gain Matrix.

School of Electrical and Electronic Engineering Page 13

The time update equations aim to predict the current state and process covariance

given the information of the previous steps, this is known as the priori state. The

measurement equations form part of the feedback where the measurements of the

current state are incorporated into the priori state forming the posteriori estimate, 𝑥̂𝑘|𝑘

and 𝑃𝑘|𝑘. This notion of priori and posteriori is shown by the subscript in the

equations, where a | b would mean an estimate of a based on b and all previous

states before b.

In equation (15) the part in parentheses, 𝑧𝑘 − 𝐻𝑥̂𝑘|𝑘−1, calculates the difference

between the predicted value and the measured value, this is known as the innovation

or residual represented by as 𝑦𝑘 and in equation (14) the section 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 is

known as the innovation covariance, commonly denoted as 𝑆𝑘. Using the 𝑆𝑘 the

Kalman Gain, 𝐾𝑘, is calculated which is then forms part of (15) to compute the

posteriori state estimate 𝑥̂𝑘|𝑘. The fundamental part of the KF is the calculation of the

𝐾𝑘, from a series of substitutions and manipulations, it aims to minimize the posteriori

error covariance (16) [21]. The overall effect can be visualised in the diagram below:

Figure 6: Diagram showing the effect of the KF estimation, adapted from [31]

3.4.3. Model derivation

As shown by Gorniki, the model can be derived from continuous time, using the

assumptions that the measurement from the gyroscope outputs,𝑈, is composed of

the angular velocity with a constant bias [16] [32]

𝑈 = 𝜃̇ + 𝜃𝑏𝑖𝑎𝑠 (17)

𝜃̇𝑏𝑖𝑎𝑠 = 0 (18)

School of Electrical and Electronic Engineering Page 14

Equation (17) is re-arranged to make 𝜃̇ the subject:

𝜃̇ = −𝜃𝑏𝑖𝑎𝑠 + 𝑈 (19)

The model is discretised in step intervals of 𝑘 using the approximation (20) [31]

𝑑𝑥

𝑑𝑡
=

∆𝑥

∆𝑡
=

𝑥𝑘 − 𝑥𝑘−1

𝑡𝑘 − 𝑡𝑘−1
 (20)

𝜃𝑘 − 𝜃𝑘−1

𝑑𝑡
= −𝜃𝑏𝑖𝑎𝑠𝑘

+ 𝑈𝑘 (21)

𝜃𝑏𝑖𝑎𝑠𝑘
− 𝜃𝑏𝑖𝑎𝑠𝑘−1

𝑑𝑡
= 0 (22)

Re-arranging to make 𝜃𝑘 and 𝜃𝑏𝑖𝑎𝑠𝑘
 the subjects of the equations:

𝜃𝑘 = 𝜃𝑘−1 − 𝜃𝑏𝑖𝑎𝑠𝑘 ∙ 𝑑𝑡 + 𝑈𝑘 ∙ 𝑑𝑡 (23)

𝜃𝑏𝑖𝑎𝑠𝑘
= 𝜃𝑏𝑖𝑎𝑠𝑘−1

(24)

Equation (24) is similar to the equation (4) except here the bias is also considered.

Equation (23) and (24) can now be put in the state space format:

[
𝜃

𝜃𝑏𝑖𝑎𝑠
]

𝑘

= [
1 −𝑑𝑡
0 1

] [
𝜃

𝜃𝑏𝑖𝑎𝑠
]

𝑘−1

+ [
𝑑𝑡
0

] 𝑈𝑘 (25)

The accelerometer then comes into the algorithm in the measurement update. Using

the equation (d) the tilt angle can be calculated but not the bias, thus the 𝐻 matrix is

given by:

𝐻 = [1 0] (26)

School of Electrical and Electronic Engineering Page 15

3.4.4. Overall Diagram

The diagram below best describes the algorithm:

3.4.5. Initialisation

The model derived in section 4.4.3 calculates the tilt angle relative to an initial

position; the initial position is measured from the accelerometer or another alternative

is to start the algorithm whilst the robot is vertical and set the initial tilt angle to zero.

The initialising bias can be calculated by taking a few readings while the gyroscope is

still and then take the average or just setting it to zero.

The process covariance matrix also needs to be initialised. This will depend on the

initialisation of the state vectors. If the initial state vector is initialised with a well

estimated value then 𝑃0 can be set to a diagonal matrix with relatively small values,

𝑃0 = [
𝑆𝑚𝑎𝑙𝑙 0

0 𝑆𝑚𝑎𝑙𝑙
] (27)

on the other hand if the initial state vector is initialised to badly estimated values then

𝑃0 is set to a diagonal matrix with relatively high values [16],

𝑃0 = [
𝐿𝑎𝑟𝑔𝑒 0

0 𝐿𝑎𝑟𝑔𝑒
] (28)

In more precise terms, “the values in the covariance matrix must be defined such that

the difference between the initial state and the initial state estimate fall in the range

𝑥0

𝑃0

Time Update “Prediction”

𝑥̂𝑘|𝑘−1 = 𝐴𝑥̂𝑘−1|𝑘−1 + 𝐵𝑢𝑘

𝑃𝑘|𝑘−1 = 𝐴𝑘 𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘

Measurement Update

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝑆𝑘)−1

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘)

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1
𝑥̂𝑘|𝑘

𝑃𝑘|𝑘

(𝑘) → (𝑘 − 1)

The current

state becomes

the previous

state

Accelerometer

Measurement, 𝑧𝑘

Gyro Input, 𝑢𝑘

Initialisation

Figure 7: Ongoing Discrete Kalman Filter Cycle [34]

School of Electrical and Electronic Engineering Page 16

that is allowable according to the covariance matrix.” Thus the initialisation of the

state vector does not have to be very accurate, after some iterations the KF will

converge to the actual value, given that 𝑃0 is sufficiently large.

Overall, there are two cases and the effects of each can be seen in the diagrams

below:

 Case 1: High 𝑃0 and the state vector has been initialised to zero although the

sensor was tilted

𝑃0 = [
10 0
0 10

]

 Case 2: Low 𝑃0 and the state vector has been initialised using the angle from

the accelerometer and the bias has been estimated by taking the average of a

few readings.

𝑃0 = [
0.05 0

0 0.05
]

Figure 8: Graph showing the effect of Case 1

Figure 9: Graph showing the effect of Case 2

KF output converging to the value

measured by the accelerometer

School of Electrical and Electronic Engineering Page 17

In case one, as can be seen from the graph the KF output takes about 0.2 seconds

to converge to the value of the accelerometer reading. The elements in 𝑃 take about

2 seconds stabilise. In case two, the KF output starts with the accelerometer, change

in elements of 𝑃 are not even visible through the serial monitor, this is due to limit in

decimal places in the serial communication. As the output stabilises relatively quickly,

the benefits of both scenarios are exploited, the tilt angle is initialised from the

accelerometer, the bias by taking the average over a certain period and 𝑃0 with a

relatively high value.

3.4.6. Tuning Parameters

The final requirement to apply the KF and have a good performance is appropriate

tuning. The tuning parameters are the measurement noise covariance, 𝑅𝑘, and the

process noise covariance, 𝑄𝑘. 𝑅𝑘 can be measured as this is from the measurement

device. 𝑄𝑘 on the other hand is difficult to measure as the process being estimated

cannot be directly observed [3]. 𝑅𝑘 was estimated by recording values whilst the

accelerometer was stationary, then using the variance formula below where 𝑁 is the

number of samples, 𝐴 the random variable and 𝜇 is the mean [33]:

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝐴, 𝐴) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐴) =
1

𝑁 − 1
∑|𝐴𝑖 − 𝜇|2

𝑁

𝑖=1

(29)

𝜇 =
1

𝑁
∑ 𝐴𝑖

𝑁

𝑖=1

(30)

With a sample of 900 measurements 𝑅𝑘 was found to be 0.0527 degrees squared.

Although the value of 𝑅𝑘 was calculated, “superior filter performance (statically

speaking) can be obtained by tuning the filter parameters. [21]” To do so,

understanding of the effects of each of the parameters is essential.

𝑅𝑘 describes the precision of the measurements, it has an effect on the Kalman Gain

(14) and the posteriori estimate (15). If 𝑅𝑘 is large then the Kalman Gain will be

smaller, hence there less ‘trust’ in the innovation and vice versa. The practical effect

of changing 𝑅𝑘 is shown in Figures 10 and 11 where the sensor was moved in a way

that square waves were generated.

School of Electrical and Electronic Engineering Page 18

Figure 10: Graph Showing the effect of high 𝑅𝑘

Figure 11: Graph Showing the effect of low 𝑅𝑘

From Figure 10, it can be observed that setting 𝑅𝑘 to a value that is too large leads to

the output of the KF taking too long to converge causing the output to have a smaller

amplitude that the actual movements and the output not being square waves, instead

being composed of smooth curves. Figure 11 shows the opposite, where the output

is close to the values of the accelerometer. Having a high confidence in the

measurements could cause higher noise in the output of the KF.

𝑄𝑘 indicates the confidence in the model derived. The elements of 𝑄𝑘 are assumed to

uncorrelated, and therefore it is a diagonal matrix, composed of 𝑄𝑎𝑛𝑔𝑙𝑒 (covariance of

the angle) and 𝑄𝑏𝑖𝑎𝑠 (covariance of the bias).

𝑄𝑘 = [
𝑄𝑎𝑛𝑔𝑙𝑒 0

0 𝑄𝑏𝑖𝑎𝑠
] (31)

School of Electrical and Electronic Engineering Page 19

The effects of changing 𝑄𝑎𝑛𝑔𝑙𝑒 are opposite to 𝑅𝑘 and 𝑄𝑏𝑖𝑎𝑠 is adjusted until no drift is

observed in the Kalman Filter output. Figures 12 and 13 show the influence of

𝑄𝑎𝑛𝑔𝑙𝑒 in the output of the KF. Figure 14 shows the KF running for about 40 seconds,

and it can be seen that the output has not deviated from the average of the

accelerometer reading, suggesting that the 𝑄𝑏𝑖𝑎𝑠 is appropriate.

Figure 12: Graph Showing the effect of high 𝑄𝑎𝑛𝑔𝑙𝑒

Figure 12: : Graph Showing the effect of low 𝑄𝑎𝑛𝑔𝑙𝑒

Figure 14: Graph showing that the angle is the appropriate value

School of Electrical and Electronic Engineering Page 20

 Complementary Filter

This section is based on the work by Esfandyari et al [22] . The diagram below

outlines the complementary filter (CF) for fusing data from a gyroscope and an

accelerometer:

Figure 13: Diagram of the Complementary Filter [22]

The diagram can be translated into the equation below:

𝜃 = 𝛽 ∙ 𝜃𝑔𝑦𝑟𝑜 + (1 − 𝛽) ∙ 𝜃𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑡𝑒𝑟 (32)

Where 𝛽 is a constant between zero and one. 𝜃𝑔𝑦𝑟𝑜 is calculated using equation (7)

and the accelerometer using equation (23). The bias is estimated in the start up

sequence, the same way it is estimated for the KF.

In essence, the first part of the equation behaves like a high pass filer and the

second like a low pass filter. 𝛽 is generally set to a relatively high value (close to 1), it

is set depending on the sampling rate(∆𝑇) and time constant(𝜏) desired. 𝜏 is given by

𝜏 =
𝛽 ∙ ∆𝑇

1 − 𝛽
(33)

𝜏 affects the weighting in equation 31. If the motion of is faster than 𝜏, higher

weighting is placed upon the gyroscope angle, behaving as the low pass filter and

reducing the noise from the accelerometer. The opposite happens when the motion

is slower than 𝜏, the accelerometer angle measurement has a higher weighting

decreasing the effect of the bias in the gyroscope.

School of Electrical and Electronic Engineering Page 21

 Analysis of Performance

To test the performance of the filtering techniques and to tune the Kalman Filter the

test rig shown in Figure 14 was designed and made. The length of the arm, which the

IMU is secured to, was to mimic the position of the IMU in the robot. Initially, the

servo motors where programmed to move the arm, however, the servo motors are

not sufficiently fast, to notice any delay in the output of the sensor fusion techniques.

The rig was still useful as it holds the position after no external force is applied. By

manually moving the arm, the waveforms in Figures 10-14 were generated. The final

tuning parameters for the KF are shown in Figure 15 and it can be observed that with

these values the output converges sufficiently fast whilst the accelerometer noise is

filtered out.

Figure 14: Picture of the Test Rig

Figure 15: Graph showing the performance of the KF after being tuned

Servo Motors
IMU

School of Electrical and Electronic Engineering Page 22

As a final comparison, the output of the Kalman Filter, the Complememtary Filter and

the built in algorithm was plotted in Figure 16.

As the manufacturers of the chip developed the built in Digital-Motion Processor

(DMP), it was expected to have the best performance and was going to be used as

the benchmark for comparison of the different filtering techniques. In practice, Figure

16 shows that the DMP takes longer to settle than the Kalman Filter and the

Complementary Filter. It may be because the frequency had to be lowered to 20Hz

otherwise the buffer in the IMU would overflow. The Kalman Filter and the

Complementary Filter appear to have very similar performance, the only further

comparison required would be to observe whether the complementary filter would

drift over time due to the increasing bias.

Lastly, the table below shows loop execution time of each of the angle estimation

methods and it can be seen that the KF only requires an additional 270

microseconds to complete the calculations in comparison to the Complementary

Filter, making no significant impact on the overall loop execution time.

Angle Estimation Method Average Loop Iteration time (µS)

Kalman Filter 1740

Complementary Filter 1470

DMP 1462

Table 2: Average Loop Time of Each of the Fusion Techniques

Figure 16: Graph showing the output angles of the DMP, KF and CF.

DMP converging

School of Electrical and Electronic Engineering Page 23

 Hardware

 Introduction

The section aims to provide an overview of the design considerations and

implementation of the robot physically. To begin with, the torque required by the

motor is estimated and the compromise between torque and RPM is discussed.

Followed by a description of the main components such as the microcontroller, the

IMU, the motor driver board and the power source. To finalise, the overall design of

the robot is shown.

 Motors and Wheels

To determine the appropriate motors for the robot, the

first consideration was the minimum torque required.

To estimate the torque, the model to the right was

considered. The relationship between torque, 𝜏, and

force, 𝑭, is given by

𝜏 = ‖𝒓‖‖𝑭‖ sin 𝜃

Where 𝒓 is the position vector and 𝜃 is the angle

between force and position vectors.

Assuming the distance between the pivot point and the centre of mass (𝐿) is 12cm,

the maximum tilt angle (θmax) is 40° and the mass of the robot (𝑚) is 0.7kg, the

minimum torque required is

𝜏 = 𝐿 ∗ 𝑚𝑔 ∗ 𝑠𝑖𝑛𝜃 = 0.12 ∗ 0.7 ∗ 9.81 ∗ sin(40) = 0.530 𝑁𝑚 (35)

ven that there are two motors, the torque required per motor is 0.265Nm. In this

scenario, the inertia is not taken into account and the robot is assume to start moving

at θmax. Due to the crude assumptions, the robot by Gornicki was looked at [16]. In

which the stall torque of the motors were 0.224Nm and a gear with a 3:1 ratio was

used. With the assumption of 15% inefficiency, that corresponds to a maximum

torque on the output shaft of 0.5712Nm.

Looking solely at the parameters mentioned, the chosen motor was the Pololu

medium power 47:1 Metal Gearmotor with 48 CPR Encoder. The motor has a stall

torque of 0.611Nm and the encoder outputs 2248.86 counts per revolution [34].

However, this was not the appropriate manner to choose the motors. The wheels and

θmax

mg
L

Figure 17: Robot Model

(34)

School of Electrical and Electronic Engineering Page 24

the RPM also have to take into consideration. The torque required to move the wheel

is also given by Equation X, where 𝒓 would be the radius of the wheel and 𝜃 would

be 90 degrees, thus for a given force the torque is proportional to the wheel radius.

The trade-off of choosing smaller wheels such that lower torque is required is lower

circumference of the wheel, requiring the motors to spin faster to get under the centre

of mass of the robot.

The dispute between torque and RPM is also present with the distance between the

centre of mass and the pivot. As shown by Equation X, as 𝐿 increases, the torque

required also increases, on the other hand the natural frequency, 𝜔𝑝 of the pendulum

[35], is given by

𝜔𝑝 = √
𝑔

𝐿
(36)

Increasing 𝐿 has the effect of reducing the natural frequency of the system,

decreasing how fast the actuators have to perform.

As mentioned, unfortunately the natural frequency and the wheel size were only

considered after motor was purchased. To attempt to improve the system’s

performance the battery was moved to higher position to increase the centre of

mass. In addition, the wheels were changed from 60mm to 80mm in diameter.

 Microcontroller

The microcontroller used in the robot is the Arduino Uno. It is a board based on the

ATmega328P from Atmel’s AVR family. It is an 8-bit microcontroller running with a 16

MHz clock speed. The board has a built-in voltage regulator allowing it to be

powered by any input voltage in the range of 6-20V. On-board is also an FTDI chip,

making only a USB cable required to program it [36]. The board has a relatively small

size, maintaining the robot as small as possible. The main advantage of the Arduino

is the IDE and the large community. Its IDE enables fast software development due

to the extensive collection of libraries and sample code. The large community is

helpful in the case where a problem is encountered, there is a higher chance that

someone else has found a solution and it is visible in one of the many forums

available.

School of Electrical and Electronic Engineering Page 25

 Inertial Measurement Unit (IMU)

The inertial measurement unit (IMU) is very important component in the robot as

knowing the tilt angle is critical. IMUs are composed of electromechanical systems

(MEMS). MEMS accelerometers and gyroscopes have the advantage of being

compact, inexpensive and having low power consumption. They are however less

accurate in comparison to optical devices [25].

The IMU used is InvenSense’s MPU6050. The specifications mentioned of the IMU in

this section, can be found in the data sheet [37]. It a 6 degrees of freedom IMU,

consisting of a 3-axis gyroscope and a 3-axis accelerometer. Initially the IMU used

was the MPU9250, however due malfunction, the sensor was replaced. These

sensors are very similar, with the exception of the magnetometer found on the

MPU9250. A great advantage of the sensor is that it has been used with an Arduino

and libraries are available for it.

The gyroscope full-scale range that can be adjusted to ±250, ±500, ±1000 or ±2000

degrees per second. The gyroscope was set up to have the range between ±1000

degrees per second, with these settings the gyroscope will have the lowest resolution

but looking at equation 36 and assuming 𝐿 = 0.12𝑚, the natural frequency of the

system is 9.04 radians/second (corresponding to 517 degrees per second), any lower

range would cause the motion not to be detected. The gyroscope also has an

adjustable sampling frequency between 1 to 8 kHz. Upon brief experimentation, it

was concluded that the set sampling frequency did not have a significant impact on

the results; it may be because the microcontroller only read data from the sensor at

400 Hz.

The accelerometer can also be programmed to have different full-scale ranges, these

include to ±2, ±4 and ±6g. The range chosen is ±2g as the assumption while

calculating the angle form the accelerometer is that gravity is the only force acting

upon the robot. The MPU6050’s accelerometer has a sampling rate of 1 kHz.

The communication between the microcontroller and the IMU is through the Inter-

Integrated Circuit (I2C) protocol. The protocol is used for set-up of the IMU and

reading data from it. Further details on the communication and set-up of the IMU are

provided in the Section 5.

School of Electrical and Electronic Engineering Page 26

 Motor Driver Board

The motors chosen are designed to operate at 12V and have a stall current of 2.1

Amps. The microcontroller cannot supply that much power, thus a Full bridge driver

is required to allow the motor to be controller in both directions. The motor driver

board used is the Aptinex Dual L6203 Board. The board itself has diodes to protect

the microcontroller and battery from back EMF. The L6203 chips can operate with a

supply voltage up to 42V, and can supply an RMS current of 4A (peak 5A). They are

also compatible with TTL logic, meaning that the microcontroller can be connected

directly to the control pins without the need of transistors in between. Lastly, the

enable pins can be controller with a Pulse Width Modulation (PWM) frequency of up

to 100 KHz [38], at higher frequencies the motor was found to have higher torque it

may be due to higher current supplied.

 Power Source

To provide power while maintaining the robot mobile, a Lithium Polymer (Li-Po)

battery was chosen as the power source. The specific battery used is Hobbyking’s

Turnigy 3 cell 2200mAh 20C. The battery can supply a current of up to 44A. Given

that the stall current of each of the motors is 2.1A and the remaining components

(Arduino, IMU and encoders) have an estimated current draw of 500 mA, the battery

can effortlessly manage [34]. The large current can be dangerous for the

components, thus a fuse had to be put in place.

 Overall Design

The final design of the robot is shown in the following page. The modular design

allowed the layers to be adjusted as needed, as mentioned, the positioning of the

battery was moved higher up to reduce the natural frequency of the system. The

heights were also adjusted, being composed of M3 spacers, it simply involved adding

a few more in between the layers. The layered format also kept the components

protected, this was particularly important with the battery as a puncture or dent on a

Li-Po battery may cause an explosion.

Initially, the layers were planned to be made out of MDF, however it was not

available, they were instead made out of Acetal. Acetal can be laser cut and is easy

to work with. Furthermore, the material has a high tensile strength without being

brittle or dense, this means that it will not be excessively heavy and can withstand all

the drops while the robot is being tuned.

School of Electrical and Electronic Engineering Page 27

Additionally, potentiometers and a switch were added. The potentiometers are to

help tune PID and the switch is to allow the power to be cut off without having to

unplug the battery cable every time. To hold them in place the following pieces were

designed and 3D Printed:

 Final Assembly

Figure 19: Final Robot Assembly

80mm

wheel

Geared Motors with

Encoders

M3 Hex Spacers

Switch

Arduino

Battery

Potentiometers

Box for Loads

Motor Driver Board

IMU

Break out

Board

Figure 18: 3D Printed Parts

Fuse

School of Electrical and Electronic Engineering Page 28

 Software Implementation

 Introduction

This section provides in detail the key aspects of programming the robot. The code is

composed of various sections found online, this maybe in the form of forums, blogs

or tutorials. Throughout the project various versions of code developed, each for a

specific purpose, for example just printing the output of the Kalman Filter and the

accelerometer angle to view the performance of the Kalman Filter or code to

characterize the motors. Part of the code is the same as it would be in an equation

from, thus only the non-trivial aspects are considered here and the reasons behind

are mentioned. To begin with, the important sections of the code are mentioned.

Later, the block diagram of the code is given to provide a higher level view of the

code.

 Constant Loop Time

A large number of the equations mentioned in the previous sections have 𝑑𝑡

incorporated in them. Either 𝑑𝑡 can be measured or the microcontroller could be

programmed to have a constant loop time. At first interrupts were proposed, however

interrupts are required for encoders and prioritisation of interrupts would have to be

considered. To solve this, the loop was kept constant using the Micros() function

which when called returns the number or microseconds the Arduino has been

running since being turned on. The Micros() is evaluated in a while loop condition, to

do nothing, until the specified time is met. To test if the loop time was constant, the

loop time was set to 2.5ms and a pin was programmed to remain HIGH for 1ms and

then go LOW. The pin was then connected to an oscilloscope and the output is

shown in the figure below. As can be seen this worked as expected:

Figure 20: Oscilloscope Output

School of Electrical and Electronic Engineering Page 29

 Reading from IMU

As mentioned previously, the communication between the IMU and the

microcontroller is done through the I2C protocol. The protocol involves a series of

rules, such as the master (Arduino) driving the clock line or the master initiating

transfer of data. These are not of concern, as the Wire.h library accommodates for

the rules. However, the format in which reading and writing of data is done, still

needs to be followed [26]. This has been simplified and summarized in the table

below:

Read Write

1. Send the start sequence, specifying

the address of the slave device and the

write bit HIGH

1. Send the start sequence, specifying

the address of the slave device and the

write bit HIGH

2. Send the internal register address

that writing is done to

2. Send the internal register address

that is going to be read from

3. Send data byte 3. Send the start sequence again,

specifying the address of the slave

device and the write bit LOW

4. Send stop sequence 4. Read data from the register

 5. Send stop sequence

Table 3: I2C Read/Write Protocol

The device address and the register addresses can be found in the register map [39].

The register map also the values to write to configure the device as desire for it to

operate, for example writing 0x00 to register 0x1C to set the accelerometer full scale

to ±2gs.

Once the IMU has been set up and the reading is done from the appropriate

registers, the values have to be scaled to a unit that is meaningful. The data read is

the value from the Analogue to Digital Converters (ADCs) in the IMU, to convert the

following formula can be used:

𝑆𝑐𝑎𝑙𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝐴𝐷𝐶𝑣𝑎𝑙𝑢𝑒

𝐴𝐷𝐶𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 𝑆𝑐𝑎𝑙𝑒𝑆𝑖𝑧𝑒 (37)

The ADCs in the IMU have a 16-bit resolution and the scale size is as configured

[26].

School of Electrical and Electronic Engineering Page 30

 KF Implementation

From the Kalman Filtering Section, it can be seen that the algorithm involves matrix

multiplication, addition and inversion, to do so the MatrixMath.h library could be used,

however this would pose a significant delay in the loop iteration time. To solve the

issue, the matrices have been expanded and simplified before writing the code. For

example, equation X can be written as follows:

𝐾1 =
𝑃11

𝑃11 + 𝑅
 (38)

𝐾2 =
𝑃21

𝑃11 + 𝑅
(39)

Separating the matrix into two sets of equations removes the need to use the library.

Furthermore, changing the inverse to division will decrease the computation required

by the microcontroller as the library would have used the Gauss-Jordan elimination

with partial pivoting. Changing inversion to multiplication is only allowed in this case,

as the values inside the parentheses simplify into a scalar. Making such changes is

important with the Arduino Uno as it is an 8-bit microcontroller and has no floating-

point unit.

 Displacement and Angular Velocity from Encoders

The encoders in the motors are quadrature encoders. There are two signals and the

rising edges are counted to establish the displacement and angular velocity. The

direction in which the shaft is rotating is determined by the phase difference between

the two signals. This is shown in the diagram below:

To count the edges and determine the phase different, rising edge interrupts were

setup on channel A. In which if, channel B is HIGH then increment the number of

pulses or if B is LOW decrement the number of pulses. This method simplifies the

Figure 21: Shows the direction is determined with quadrature encoders [41]

School of Electrical and Electronic Engineering Page 31

code and reduces the number interrupt pins needed, however, it increases the

quantisation error as the number of ticks per revolution falls from 2248 to 562.

To convert the number of pulses, 𝑁, to rotor displacement and angular velocity the

following formulae are used:

𝑅𝑜𝑡𝑜𝑟 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 [𝑑𝑒𝑔𝑟𝑒𝑠𝑠] = 𝑒𝑑𝑔𝑒 𝑐𝑜𝑢𝑛𝑡 ∙
360

𝑁𝑃𝑃𝑅
+ 𝛼0 (40)

𝜔𝑠ℎ𝑎𝑓𝑡 [
𝑟𝑎𝑑

𝑠
] =

2𝜋 ∙ 𝑁

𝑁𝑃𝑃𝑅 ∙ 𝑇
 (41)

Where 𝑁𝑃𝑃𝑅 is the number of pulses per revolution of the encoder, 𝛼0 is the initial

position (assumed to be zero), and 𝑇 is the time window between readings. The

quantisation error is also inversely proportional to 𝑇. To reduce the quantisation error,

the time window was set to 10 loop iterations.

 Overall Diagram

The complete software loop is given in the following page. Most of the code is

sequential with the only exception being the encoder interrupts, as these are

asynchronous. In the diagram, the interrupt is shown as a grey box, with grey arrows

to and from it. The dashed arrows show that it can happen anywhere in the code, at

any given moment.

The initialisation involves the following: setting up the serial communication with the

computer, setting up the IMU, declaring the input and output pins, setting the PWM

frequency, and estimating the bias and initial position for the Kalman Filter.

The output to the motor driver board simply involves setting which part of the H-

bridge is going to be on, to have the correct direction of motion of the wheels. In

addition, setting the PWM duty cycle for the appropriate angular velocity of the

wheels.

School of Electrical and Electronic Engineering Page 32

Code Block Diagram

Interrupt - Decrement or

increment encoder

counter

Initialisation

Read Raw Data

from Sensors

Process Data
(Scale IMU and

Encoder Readings)

Kalman Filter

Controller

Output to

Motor Driver

Loop Time

Control

Figure 22: Code Block Diagram

School of Electrical and Electronic Engineering Page 33

 Control

 Introduction

This chapter focusses on the control aspect of the self-balancing robot designed.

Firstly the state space model of the robot is shown and the how the parameters were

established. Then a discussion on stability of the plant and control of the plant in

simulation. Finally, the robot’s physical performance is shown and analysed.

 State-Space Model

Developing the model is a tedious task, thus the model developed by Bonafilia et al

was used. The model has been developed from the three models shown below:

The model is based upon the following assumptions: No yaw is considered, the body

and wheel are represented by point masses, no slipping between the ground and

wheels, and the mechanical system is slower than the electrical system [17].

The linearized model given in the following state-space format

𝜉̇ = 𝐴𝜉 + 𝐵𝑢 (42)

𝑦 = 𝐶𝜉 + 𝐷𝑢 (43)

With the following states:

𝜉 = [𝑥 𝑥̇ 𝜃 𝜃̇]

Figure 23: [a] diagram of force and torque on the wheels, [b] diagram of upper body

of the robot, [c] diagram of electrical sub-system [14]

 (44)

School of Electrical and Electronic Engineering Page 34

Where 𝑥 is the displacement, 𝑥̇ is the velocity, 𝜃 is the tilt angle and 𝜃̇ is the angular

velocity. The Matrices 𝐴, 𝐵, 𝐶 and 𝐷 are shown below and the parameters are given

in table 4.

𝐴 = [

0 1
0 𝛼

0 0
𝛽 −𝑟𝛼

0 0
0 𝛾

0 1
𝛿 −𝑟𝛾

] (45)

𝐵 = [0 𝛼𝜀 0 𝛾𝜀]𝑇 (46)

𝐶 = [
0 0
0 0

1 0
0 1

] (47)

𝐷 = [0 0]𝑇 (48)

Where

𝛼 =
2(𝑅𝑏 − 𝐾𝑒𝐾𝑚)(𝑀𝑏𝐿2 + 𝑀𝑏𝑟𝐿 + 𝐽𝑏)

𝑅(2(𝐽𝑏𝐽𝑤 + 𝐽𝑤𝐿2𝑀𝑏 + 𝐽𝑏𝑀𝑤𝑟2 + 𝐿2𝑀𝑏𝑀𝑤𝑟2) + 𝐽𝑏𝑀𝑏𝑟2)
(49)

𝛽 =
−𝐿2𝑀𝑏

2𝑔𝑟2

𝐽𝑏(2𝐽𝑤 + 𝑀𝑏𝑟2 + 2𝑀𝑤𝑟2) + 2𝐽𝑤𝐿2𝑀𝑏 + 2𝐿2𝑀𝑏𝑀𝑤𝑟2
(50)

𝛾 =
2(𝑅𝑏 − 𝐾𝑒𝐾𝑚)(2𝐽𝑤 + 𝑀𝑏𝑟2 + 2𝑀𝑊𝑟2 + 𝐿𝑀𝑏𝑟)

𝑅𝑟(2(𝐽𝑏𝐽𝑤 + 𝐽𝑤𝐿2𝑀𝑏 + 𝐽𝑏𝑀𝑤𝑟2 + 𝐿2𝑀𝑏𝑀𝑤𝑟2) + 𝐽𝑏𝑀𝑏𝑟2)
(51)

𝛿 =
𝐿𝑀𝑏𝑔(2𝐽𝑤 + 𝑀𝑏𝑟2 + 2𝑀𝑤𝑟2)

2𝐽𝑏𝐽𝑤 + 2𝐽𝑤𝐿2𝑀𝑏 + 𝐽𝑏𝑀𝑏𝑟2 + 2𝐽𝑏𝑀𝑤𝑟2 + 2𝑗𝑏𝑀𝑤𝑟2 + 2𝐿2𝑀𝑏𝑀𝑤𝑟2
 (52)

𝜀 =
𝐾𝑚𝑟

𝑅𝑏 − 𝐾𝑒𝐾𝑚
 (53)

Table 4: Parameters of the robot

Parameter Value Description

𝑴𝒃 0.987 Mass of the robot [kg]

𝑴𝒘 0.025 Mass of the wheels [kg]

𝑱𝒃 3.83e-3 Moment of inertia about the centre of mass [kgm2]

𝒓 0.04 Radius of the wheels [m]

𝑱𝒘 4e-05 Moment of inertia for the wheels [kgm2]

𝑳 0.102 Distance of wheel to centre of Mass

𝑲𝒆 0.855 EMF constant [Vs/rad]

𝑲𝒎 0.316 Torque constant [Nm/A]

𝑹 7.2 Motor resistance [Ω]

𝒃 0.002 Viscous friction constant [Nm s / rad]

𝒈 9.81 Gravitational constant [m / s2]

School of Electrical and Electronic Engineering Page 35

 Estimation of the Robot’s Parameters

Estimation of some of the parameters is simple, such as the mass of the robot using

a scale or the resistance of the motors using a multimeter. The viscous friction

constant was assumed to be the same as the one found by Bonafilia et al. The

inertia value for the wheel was calculated by assuming the wheel is solid cylinder

rotating around its centre and using the formula below [40]:

𝐽𝑤 =
1

2
𝑀𝑤𝑟2 =

1

2
(0.025 × 2)(0.04)2 = 4 × 10−5 kgm2 (54)

The robot’s body was assumed to be a homogenous parallelepiped and was

calculated using the formula below, where ℎ is the height and 𝑤 is the width:

𝐽𝑏 =
𝑀𝑏

12
(ℎ2 + 𝑤2) =

0.987

12
(0.2042 + 0.072) = 3.83 × 10−3 kgm2 (55)

The torque constant,𝐾𝑚, is 1/gradient of the

current/torque graph shown to the right. The

values provided in the data sheet are the stall

current, stall torque and the free running current.

From these value 𝐾𝑚 was found to be 0.316

Nm/A.

To find 𝐾𝑒 different voltages were applied to

the motors and the values of angular velocity were plotted (Figure 26). Using the

method of Least squares estimation the equation of the line of best fit was found and

is given on the graph legend in the format of 𝑦 = 𝐴 + 𝐵𝑥.

Figure 24: Current vs Torque Graph

Figure 25: Graph of Speed vs Voltage

School of Electrical and Electronic Engineering Page 36

𝐾𝑒 is the inverse of the gradient, hence given by

𝐾𝑒 =
1

𝐵
= 0.855

𝑉𝑠

𝑟𝑎𝑑
(56)

 Analysis of the System

Using the MATLAB toolbox to covert the state space model into a transfer function

and pole-zero plotting function, the figure below was generated:

As it can be seen, there are positive poles in the plant, once again showing that the

plant is unstable. Unlike as expected, non-minimum phase zeros are not present in

the system, it may be due to how the system model was derived. Furthermore,

dissimilar to the inverted pendulum on a cart there are no positive real poles to the

right of the non-minimum phase zero, hence a stable controller can be used to

control the plant.

 LQR in MATLAB

In the robot designed, all of the states can be measured thus

𝐶 = [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

] (57)

Figure 26: Pole-Zero Plot

School of Electrical and Electronic Engineering Page 37

Standard selection of 𝑄 is given by

𝑄 = 𝐶𝑇𝐶 (58)

Thus 𝑄 will be the same as (55). The value of 𝑅 was selected arbitrarily to one.

Using the LQR function in MATLAB, the following 𝐾 matrix was obtained:

𝐾 = [1.0000 0.1129 − 37.7177 − 1.4959] (59)

To view the system’s performance and the input signal the Simulink diagram in

Figure 27 was employed. The initial conditions were set such that all the states were

zero, except the tilt angle was set to 0.15 radians. The system states and the system

input are shown in Figures 28 and 29 respectively.

Figure 27: Simulink Diagram

Figure 28: System states vs Time

School of Electrical and Electronic Engineering Page 38

From Figure 29, it can be seen that the voltage does not exceed ±12V; hence, the

calculated 𝐾 values may be used in the actual robot. Figure 28 shows that the robot

is expected to return to equilibrium and the initial position within a fraction of a

second.

 Physical Performance

Once the robot was assembled and the Kalman Filter tuned, then a PID controller

was implemented. The code can be found in Appendix 1. The recorded performance

is shown in the diagram below:

The performance is very poor; the robot was oscillating between ±4 degrees. The

values were recorded through a USB cable, which dampened the oscillations of the

robot. Without the USB cable the robot will vibrate attempting to balance for a few

seconds and then fall. The issue is suspected to be due to the backlash in the motors

that became progressively worse as the motors were worn in, and an initial dead

Figure 30: Robot Tilt angle

Figure 29: System Input (Voltage) vs Time

School of Electrical and Electronic Engineering Page 39

zone in the Voltage against RPM graph. As an attempt to compensate, an offset was

set to in the PMW duty cycle in the each given direction. According to Bonafilia et al,

this problem was faced in their robot as well and an attempt to set an offset resulted

in a shaky behaviour.

LQR was also implemented in the robot using the 𝐾 values calculated in MATLAB,

the code is given in Appendix 4. However, the robot did not maintain itself upright.

 Conclusions

 Project Achievements

The objectives set in the beginning of the project were met, with the exception of

making the robot balance by itself using PID. The project as whole was a steep

learning due to the wide array of disciplines involved from construction and design, to

control and software implementation.

 Project Limitations and Final Remarks

The robot not balancing is certainly a large limitation of the project. The focus was

control and data fusion, hardware selection was rushed and an aside which caused

the need to have to change battery position and the wheels. Furthermore, the motors

were found to have significant backlash, which was a complaint in the manufacturer’s

forums. Deeper analysis could have been conducted prior to purchasing the

components. Instead of using standard motors with spur gears, motors with planetary

gearboxes generally tend to have less backlash. In addition, instead of the Arduino a

Teensy microcontroller could have been used, the cost is similar with higher

performance, and the same IDE and libraries can be used to program it. This would

have resulted in less time attempting to optimise the code.

In terms of delivery, in comparison to set plan, an attempt was made to complete the

targets for each given week. For example, if by week 2 Kalman tuning had to be

completed and it was only finished in week 4, the targets for weeks 3 and 4 were met

whilst I was trying to meet the targets for week 2. This however was also a

disadvantage as it led to exploring aspects that were not included in the final robot

such as LabVIEW for data visualisation or Bluetooth communication. The weeks set

aside for contingency planning were very useful, major hindrance was found when

the IMU stopped working.

School of Electrical and Electronic Engineering Page 40

Given more time and resources, better motors could be purchased to make the robot

balance. The development of a self-balancing robot may extended in many directions

for future work, the yaw can be considered, LQG controller can be implemented or

remote control using Bluetooth communication.

Ultimately, it can be summarised that a learning platform was developed rather than

designing and development of an optimally performing self-balancing robot.

School of Electrical and Electronic Engineering Page 41

 References

[1] D. Caulley, N. Nehoran and S. Zaho, “Self-balancing robot,” 2015. [Online].

Available:

https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2015/dc68

6_nn233_hz263/final_project_webpage_v2/dc686_nn233_hz263/. [Accessed

02 April 2017].

[2] C. Sundin and F. Thorstensson, “Autonomous Balancing Robot,” 2012.

[3] R. C. Ooi, “Balancing a Two-Wheeled Autonomous Robot,” The University of

Western Australia, 2003.

[4] O. Boubaker, “The inverted pendulum: A fundamental benchmark in control

theory and robotics,” IEEE, 2012.

[5] D. Goldman, N. Gravish, S. Sharpe and H. Li, “Nonlinear Dynamics of Human

Locomotion,” Georgia Institute of Technology, Shanghai Jiao Tong University,

2012.

[6] F. R, “Understanding the Basis of the Kalman Filter Via a Simple and Intuitive

Derivation,” IEEE SIGNAL PROCESSING MAGAZINE, 2012.

[7] C. J, Interviewee, 5 Lines of Code to Land on the Moon. [Interview]. 2016.

[8] SainSmart, “SainSmart InstaBots Upright Rover Kit V2.0 Updated 2-Wheel

Self-Balancing Robot Kit,” [Online]. Available:

https://www.sainsmart.com/sainsmart-balancing-robot-kit-v2.html. [Accessed

02 April 2017].

[9] Kansas State University, “Wireless Inverted Pendulum Cart,” [Online].

Available: http://www.mne.k-state.edu/static/nlc/tiki-

index.php?page=S_H_WirelessInvertedPendulumCart. [Accessed 02 April

2017].

[10] Quanser, “Linear Flexible Joint with Inverted Pendulum,” [Online]. Available:

http://www.quanser.com/products/linear_flexible_joint_pendulum. [Accessed

02 April 2017].

[11] P. A. Song, “Engineering Analysis,” The University of Manchester, 2016.

[12] J. Hoagg and D. Bernstein, “Nonminimum-Phase Zeros,” IEEE Control

Systems Magazine, 2007.

[13] S. A. B. Junoh, “Two-Wheeled Balancing Robot Controlled Designed Using

PID,” Universiti Tun Hussein Onn Malaysia, 2015.

School of Electrical and Electronic Engineering Page 42

[14] B. Bonafilia, N. Gustafsson, P. Nyman and S. Nilson, “Self-Balancing two-

wheeled robot,” Chalmers University of Technology.

[15] S. Balasubramanian and M. N. Lathiff, “Self Balancing Robot,” The University

of British Columbia, 2011.

[16] K. Gornicki, “Autonomous Self Stabilizing Robot,” The University of

Manchester, 2015.

[17] L. Jodensvi, V. Johansson, C. Lanfelt and S. Lofstrom, “One Robot to Roll

Them All,” Chalmers University of Technology, Gotenborg, 2015.

[18] V. VanDoren, “PID:Still the One,” Control Engineering, 2003.

[19] Z. Ding, Control Systems II (EEEN30041), The University of Mancehster,

2017.

[20] W. An and Y. Li, “Simulation and Control of a Two-wheeled Self-balancing

Robot,” in IEEE Internation Conference on Rotics and Biometrics, Shenzen,

2013.

[21] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” 2001.

[Online]. Available:

http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_08.

pdf. [Accessed 01 April 2017].

[22] STMicroelectronics, “Solutions for MEMS sensor fusion,” Mouser Electronics,

July 2011. [Online]. Available:

http://www.mouser.co.uk/applications/sensor_solutions_mems/. [Accessed

2017 April 02].

[23] Bosch, “Bosch Sensortec - BNO055,” [Online]. Available: https://www.bosch-

sensortec.com/bst/products/all_products/bno055. [Accessed 13 April 2017].

[24] InvenSense, “MPU-6050,” [Online]. Available:

https://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/.

[Accessed 02 April 2017].

[25] O. J. Woodman, “An introduction to inertial navigation,” August 2007. [Online].

Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf.

[Accessed 02 April 2017].

[26] North Carolina State University, “Using the MPU-6050,” [Online]. Available:

www.cs.unca.edu/~bruce/Fall13/360/IMU_Wk8.pptx. [Accessed 02 April

2017].

School of Electrical and Electronic Engineering Page 43

[27] Q. a. Rotations, “Jernej Barbic,” [Online]. Available: http://run.usc.edu/cs520-

s12/quaternions/quaternions-cs520.pdf. [Accessed 02 April 2017].

[28] Freescale Semiconductor, Inc., “Tilt Sensing Using a Three-Axis,” March

2013. [Online]. Available:

http://www.nxp.com/assets/documents/data/en/application-notes/AN3461.pdf.

[Accessed 02 April 2017].

[29] Rutgers School of Arts and Sciences, “Sensing your orientation: how to use

an accelerometer,” [Online]. Available:

http://physics.rutgers.edu/~aatish/teach/srr/workshop3.pdf. [Accessed 02 April

2017].

[30] R. Faragher, “Understanding the Basis of the Kalman Filter Via a Simple and

Intuitive Derivation,” IEEE Signal Processing Magazine, no. September, pp.

128-132, 2012.

[31] S. Watson and J. C. Gomez, Mobile Robots and Autonomous Systems Part II:

Estimation for Localisation and Mapping, The University of Manchester, 2017.

[32] J. C. Gomez, Interviewee, Weekly Tutorials. [Interview]. 20 February 2017.

[33] MathWorks, “Covariance,” [Online]. Available:

https://uk.mathworks.com/help/matlab/ref/cov.html#bumju45-6. [Accessed 03

April 2017].

[34] A. Gafar, “Self Balancing Robot: Progress Report,” The University of

Manchester, 2016.

[35] D. A. Russel, “The Simple Pendulum,” [Online]. Available:

http://www.acs.psu.edu/drussell/Demos/Pendulum/Pendula.html. [Accessed

23 April 2017].

[36] Arduino, “Arduino Uno & Genuino Uno,” [Online]. Available:

https://www.arduino.cc/en/main/arduinoBoardUno. [Accessed 22 April 2017].

[37] InvenSense, “MPU-6000 and MPU-6050 Product Specification Revision 3.4,”

08 August 2013. [Online]. Available: https://www.invensense.com/wp-

content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [Accessed 02 April

2017].

[38] STMicroelectronics, “L6201 - L6202 - L6203 - DMOS FULL BRIDGE

DRIVER,” [Online]. Available:

http://www.st.com/content/ccc/resource/technical/document/datasheet/03/af/9

d/d5/a2/56/46/f6/CD00000089.pdf/files/CD00000089.pdf/jcr:content/translatio

ns/en.CD00000089.pdf. [Accessed 17 April 2017].

School of Electrical and Electronic Engineering Page 44

[39] InvenSense, “MPU-6000 and MPU-6050 Register Map and Descriptions

Revision 4.2,” 19 08 2013. [Online]. Available:

https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-

Register-Map1.pdf. [Accessed 07 April 2017].

[40] Hyper Physics, “Moment of Inertia: Cylinder,” [Online]. Available:

http://hyperphysics.phy-astr.gsu.edu/hbase/icyl.html. [Accessed 2017 April

22].

[41] S. Durovic, Mechatronic Analysis and Design, Manchester: The University of

Manchester, 2016.

School of Electrical and Electronic Engineering Page 45

 Appendices

 Appendix 1 – MATLAB code

%robot parameters
mb = 0.987; %mass of robot
mw = 0.025; %mass of wheels
jb = 0.00383; %moment of inertia about the centre of mass
r = 0.04; %radius of wheels
jw = 4E-05; %moment of inertia for the wheels
l = 0.102; %distance from wheel axle to CoM
ke = 0.855;
km = 0.316;
R = 7.2; %motor resistance
b = 0.002; %Viscous friction constant
g = 9.81; %gravity

alp = (2*(R*b - ke*km)*(mb*l*l + mb*r*l +jb))/ R*(2*(jb*jw + jw*l*l*mb +

jb*mw*r*r + l*l*mb*mw*r*r)+jb*mb*r*r);

bet = (-l*l*mb*mb*g*r*r)/(jb*(2*jw + mb*r*r + 2*mw*r*r) + 2*jw*l*l*mb +

2*l*l*mb*mw*r*r);

gam = (-2*(R*b -ke*km)*(2*jw + mb*r*r + 2*mw*r*r + l*mb*r))/(R*r*(2*(jb*jw

+ jw*l*l*mb + jb*mw*r*r + l*l*mb*mw*r*r)+jb*mb*r*r));

delt = (l*mb*g*(2*jw + mb*r*r + 2*mw*r*r))/(2*jb*jw + 2*jw*l*l*mb +

jb*mb*r*r +2*jb*mw*r*r + 2*l*l*mb*mw*r*r);

chi = (km*r)/(R*b - ke*km);

A = [0 1 0 0;
 0 alp bet -r*alp;
 0 0 0 1;
 0 gam delt -r*alp];

B = [0; alp*chi; 0; gam*chi];

C = [1 0 0 0;
 0 1 0 0;
 0 0 1 0;
 0 0 0 1]
D = [0;0;0;0]

Q=C'*C

[n,d]=ss2tf(A,B,C,D)

G = ss(A,B,C,D)

R = 1;

[K,S,e] = lqr(G,Q,R)

School of Electrical and Electronic Engineering Page 46

 Appendix 2 – Arduino PID code

//Sources used in code development

//http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-

to-implement-it/

//http://playground.arduino.cc/Main/RotaryEncoders

//http://www.geekmomprojects.com/mpu-6050-redux-dmp-data-fusion-vs-

complementary-filter/

//http://www.x-firm.com/?page_id=191

//http://playground.arduino.cc/Code/PwmFrequency

// http://tom.pycke.be/mav/71/kalman-filtering-of-imu-data

#include <Wire.h>

#define Q_angle 0.03

#define Q_gyro 0.01

#define R 0.05

#define EN34 9 //m2 enable

#define EN12 10 //m1 enable

#define M2neg 6

#define M2pos 7

#define M1neg 5

#define M1pos 4

float summation=0;

float kp=100.0, ki=0.0, kd=0.0, output=0;

char offset = 0;

double gyroX, gyroY, gyroZ;//raw values

long accelX, accelY, accelZ;

float acc_x_zero, acc_y_zero, acc_z_zero, gyro_x_zero;

float g_x, g_y, g_z; //scalled values

float ang_vel_x, ang_vel_y, ang_vel_z;

float P_00 = 5, P_01 = 0, P_10 = 0, P_11 = 5;

double tilt_angle;

School of Electrical and Electronic Engineering Page 47

float bias_x;

float angle;

uint32_t timer;

uint32_t Test_timer;

void setPwmFrequency(int pin, int divisor) {

 byte mode;

 if(pin == 5 || pin == 6 || pin == 9 || pin == 10) {

 switch(divisor) {

 case 1: mode = 0x01; break;

 case 8: mode = 0x02; break;

 case 64: mode = 0x03; break;

 case 256: mode = 0x04; break;

 case 1024: mode = 0x05; break;

 default: return;

 }

 if(pin == 5 || pin == 6) {

 TCCR0B = TCCR0B & 0b11111000 | mode;

 } else {

 TCCR1B = TCCR1B & 0b11111000 | mode;

 }

 } else if(pin == 3 || pin == 11) {

 switch(divisor) {

 case 1: mode = 0x01; break;

 case 8: mode = 0x02; break;

 case 32: mode = 0x03; break;

 case 64: mode = 0x04; break;

 case 128: mode = 0x05; break;

 case 256: mode = 0x06; break;

 case 1024: mode = 0x07; break;

 default: return;

 }

 TCCR2B = TCCR2B & 0b11111000 | mode;

 }

}

void zero_calculation(){

School of Electrical and Electronic Engineering Page 48

//Serial.println("Begin Bias Measurement");

 for(int i =0; i<50; i++){

 ReadData();

 gyro_x_zero= gyro_x_zero+ ang_vel_x;

 acc_x_zero = acc_x_zero + g_x;

 acc_y_zero = acc_y_zero + g_y;

 acc_z_zero = acc_z_zero + g_z;

 delayMicroseconds(2500);

 }

 gyro_x_zero = gyro_x_zero/50;

 acc_x_zero = acc_x_zero/50;

 acc_y_zero = acc_y_zero/50;

 acc_z_zero = (acc_z_zero/50) - 1;

 bias_x = gyro_x_zero; // initialzing the bias

//Serial.println("Sequence Completed");

}

void KF(float newAngle, float newRate, float dt) {

 tilt_angle += dt * (newRate - bias_x);

 P_00 += dt * (dt*P_11 - P_01 - P_10 + Q_angle);

 P_01 -= dt * P_11;

 P_10 -= dt * P_11;

 P_11 += Q_gyro * dt;

 float S = P_00 + R;

 float K_0 = P_00 / S;

 float K_1 = P_10 / S;

 float y = newAngle - tilt_angle;

School of Electrical and Electronic Engineering Page 49

 tilt_angle += K_0 * y;

 bias_x += K_1 * y;

 float P00_temp = P_00;

 float P01_temp = P_01;

 P_00 -= K_0 * P00_temp;

 P_01 -= K_0 * P01_temp;

 P_10 -= K_1 * P00_temp;

 P_11 -= K_1 * P01_temp;

};

void motorctrl(int torque){ //torque between 0-255

 if (torque >= 0) { // drive motors forward

 digitalWrite(M1neg, LOW);

 digitalWrite(M1pos, HIGH);

 digitalWrite(M2neg, HIGH);

 digitalWrite(M2pos, LOW);

 torque = abs(torque)+ offset;

 }

 else{ // drive motors backward

 digitalWrite(M1neg, HIGH);

 digitalWrite(M1pos, LOW);

 digitalWrite(M2neg, LOW);

 digitalWrite(M2pos, HIGH);

 torque = abs(torque)+ offset;

 }

 analogWrite(EN12,torque);

 analogWrite(EN34,torque);

 }

void MPUsetup(){

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x19); // Set Sample rate to 1000Hz

 Wire.write(0x00); //

 Wire.endTransmission();

School of Electrical and Electronic Engineering Page 50

 Wire.beginTransmission(0x1A); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x00); // Disable FSYNC

 Wire.write(0x00); //

 Wire.endTransmission();

 //SETTING UP POWER

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x6B); // Power Management 1

 Wire.write(0x00); // pg 40

 Wire.endTransmission();

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x6C); // Power Management 2

 Wire.write(0x00); // pg 41 - enables gyro and acc x,y,z

 Wire.endTransmission();

 //GYRO CONFIGURATION

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x1B); // gyro configuration

 Wire.write(0x02); // pg 14 - sets the full scale to +/- 1000 degress/second

 Wire.endTransmission();

 //ACC CONFIGURATION

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x1C); // acc configuration

 Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs

 Wire.endTransmission();

}

void ReadData(){

 //get raw data (does not represent gs or dps, needs to be scalled depending on

setup)

//accelerometer readings

 Wire.beginTransmission(0x68); //I2C address of the MPU

School of Electrical and Electronic Engineering Page 51

 Wire.write(0x3B); //Starting register for Accel Readings

 Wire.endTransmission();

 Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40)

 while(Wire.available() < 6);

 accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX

 accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY

 accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ

//gyro data

 Wire.beginTransmission(0x68); //I2C address of the MPU

 Wire.write(0x43); //Starting register for Gyro Readings

 Wire.endTransmission();

 Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48)

 while(Wire.available() < 6);

 gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into gyroX

 gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into gyroY

 gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into gyroZ

 // scalling based on the set up full range

 g_x = accelX / 16384.0;

 g_y = accelY / 16384.0;

 g_z = accelZ / 16384.0;

 ang_vel_x = gyroX / (131.0);

 ang_vel_y = gyroY / (131.0);

 ang_vel_z = gyroZ / (131.0);

}

void setup() {

 Serial.begin(115200);

 Wire.begin();

 Wire.setClock(400000UL); // Set I2C frequency to 400kHz

 MPUsetup();

 delay(100); // Wait for sensor to stabilize

 setPwmFrequency(10, 1);

 pinMode(EN34, OUTPUT);

School of Electrical and Electronic Engineering Page 52

 pinMode(EN12, OUTPUT);

 pinMode(M2neg, OUTPUT);

 pinMode(M2pos, OUTPUT);

 pinMode(M1neg, OUTPUT);

 pinMode(M1pos, OUTPUT);

 ReadData();

 zero_calculation(); //estimation of bias

 float acc_xangle = atan2(g_y - acc_y_zero, g_z - acc_z_zero) * 57.3;

 tilt_angle = acc_xangle; // Set starting angle

}

void loop() {

 ReadData();

 float dt = micros()- Test_timer;

 Test_timer = micros();

 dt /= 1000000;

 float acc_xangle = atan(g_y /g_z) * 57.3;

 KF(acc_xangle, ang_vel_x, dt);

 Serial.println(tilt_angle);

 kp = analogRead(A0)/4.0;

 kd= analogRead(A1)/128.0;

 ki= analogRead(A2)/128.0;

 summation = constrain(summation + tilt_angle*dt, 40, 40) ;

 int tiltoutput =constrain(kp*(tilt_angle) + kd*(ang_vel_x-bias_x) + ki*summation, -

254+offset, 254-offset) ;

 motorctrl(tiltoutput);

 while(micros() - timer < 5000); //200Hz

 timer = micros(); }

School of Electrical and Electronic Engineering Page 53

 Appendix 3 – Arduino Motor Characterisation Code

#include <Wire.h>

#define EN34 9 //m2 enable

#define EN12 10 //m1 enable

#define M2neg 6

#define M2pos 7

#define M1neg 5

#define M1pos 4

 int offset =10;

 int encoder0PinA = 2;

 int encoder0PinB = 12;

 volatile long counter=0;

 double outer;

 int prev_counter;

void setPwmFrequency(int pin, int divisor) {

 byte mode;

 if(pin == 5 || pin == 6 || pin == 9 || pin == 10) {

 switch(divisor) {

 case 1: mode = 0x01; break;

 case 8: mode = 0x02; break;

 case 64: mode = 0x03; break;

 case 256: mode = 0x04; break;

 case 1024: mode = 0x05; break;

 default: return;

 }

 if(pin == 5 || pin == 6) {

 TCCR0B = TCCR0B & 0b11111000 | mode;

 } else {

 TCCR1B = TCCR1B & 0b11111000 | mode;

 }

 } else if(pin == 3 || pin == 11) {

 switch(divisor) {

 case 1: mode = 0x01; break;

 case 8: mode = 0x02; break;

School of Electrical and Electronic Engineering Page 54

 case 32: mode = 0x03; break;

 case 64: mode = 0x04; break;

 case 128: mode = 0x05; break;

 case 256: mode = 0x06; break;

 case 1024: mode = 0x07; break;

 default: return;

 }

 TCCR2B = TCCR2B & 0b11111000 | mode;

 }

}

void motorctrl(int torque){ //torque between 0-255

 if (torque >= 0) { // drive motors forward

 digitalWrite(M1neg, LOW);

 digitalWrite(M1pos, HIGH);

 digitalWrite(M2neg, HIGH);

 digitalWrite(M2pos, LOW);

 torque = abs(torque)+ offset;

 }

 else{ // drive motors backward

 digitalWrite(M1neg, HIGH);

 digitalWrite(M1pos, LOW);

 digitalWrite(M2neg, LOW);

 digitalWrite(M2pos, HIGH);

 torque = abs(torque)+ offset;

 }

 analogWrite(EN12,torque);

 analogWrite(EN34,torque);

 }

void setup() {

 attachInterrupt(digitalPinToInterrupt(encoder0PinA), rotary, RISING);

 pinMode (encoder0PinB,INPUT);

 Serial.begin(115200);

School of Electrical and Electronic Engineering Page 55

 Wire.begin();

 Wire.setClock(400000UL); // Set I2C frequency to 400kHz

 delay(100); // Wait for sensor to stabilize

 setPwmFrequency(10, 1);

 pinMode(EN34, OUTPUT);

 pinMode(EN12, OUTPUT);

 pinMode(M2neg, OUTPUT);

 pinMode(M2pos, OUTPUT);

 pinMode(M1neg, OUTPUT);

 pinMode(M1pos, OUTPUT);

}

void loop() {

 for (int x = 0; x<52; x++){

 counter =0;

 motorctrl(x*5);

 delay(5000);

 motorctrl(0*5);

 float rads = counter*((2*3.14159)/(562*5));

 Serial.print(x*5);

 Serial.print("\t");

 Serial.println(rads);

 }

}

 void rotary() {

// Serial.println(counter);

 if(digitalRead(encoder0PinB)) {

 counter++;

 } else {

 counter--;

 }

 }

School of Electrical and Electronic Engineering Page 56

 Appendix 4 – Arduino LQR Code

//http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-

to-implement-it/

//http://playground.arduino.cc/Main/RotaryEncoders

//http://www.geekmomprojects.com/mpu-6050-redux-dmp-data-fusion-vs-

complementary-filter/

//http://www.x-firm.com/?page_id=191

#include <Wire.h>

#define Q_angle 0.03

#define Q_gyro 0.01

#define R 0.05

#define Pi 3.14159

#define EN34 9 //m2 enable

#define EN12 10 //m1 enable

#define M2neg 6

#define M2pos 7

#define M1neg 5

#define M1pos 4

int encoder0PinA = 2;

int encoder0PinB = 12;

volatile long counter=0;

uint32_t previous_counter=0;

int loop_itteration =0;

char offset = 0;

float K1 = 1.0000, K2=0.1129, K3=-37.7177, K4=-1.4959;

float x1, x2, x3, x4;

double gyroX, gyroY, gyroZ;//raw values

long accelX, accelY, accelZ;

School of Electrical and Electronic Engineering Page 57

float acc_x_zero, acc_y_zero, acc_z_zero, gyro_x_zero;

float g_x, g_y, g_z; //scalled values

float ang_vel_x, ang_vel_y, ang_vel_z;

float P_00 = 5, P_01 = 0, P_10 = 0, P_11 = 5;

double tilt_angle;

float bias_x;

float angle;

uint32_t timer;

uint32_t Test_timer;

void setPwmFrequency(int pin, int divisor) {

 byte mode;

 if(pin == 5 || pin == 6 || pin == 9 || pin == 10) {

 switch(divisor) {

 case 1: mode = 0x01; break;

 case 8: mode = 0x02; break;

 case 64: mode = 0x03; break;

 case 256: mode = 0x04; break;

 case 1024: mode = 0x05; break;

 default: return;

 }

 if(pin == 5 || pin == 6) {

 TCCR0B = TCCR0B & 0b11111000 | mode;

 } else {

 TCCR1B = TCCR1B & 0b11111000 | mode;

 }

 } else if(pin == 3 || pin == 11) {

 switch(divisor) {

 case 1: mode = 0x01; break;

 case 8: mode = 0x02; break;

 case 32: mode = 0x03; break;

 case 64: mode = 0x04; break;

 case 128: mode = 0x05; break;

 case 256: mode = 0x06; break;

School of Electrical and Electronic Engineering Page 58

 case 1024: mode = 0x07; break;

 default: return;

 }

 TCCR2B = TCCR2B & 0b11111000 | mode;

 }

}

void zero_calculation(){

//Serial.println("Begin Bias Measurement");

 for(int i =0; i<50; i++){

 ReadData();

 gyro_x_zero= gyro_x_zero+ ang_vel_x;

 acc_x_zero = acc_x_zero + g_x;

 acc_y_zero = acc_y_zero + g_y;

 acc_z_zero = acc_z_zero + g_z;

 delayMicroseconds(2500);

 }

 gyro_x_zero = gyro_x_zero/50;

 acc_x_zero = acc_x_zero/50;

 acc_y_zero = acc_y_zero/50;

 acc_z_zero = (acc_z_zero/50) - 1;

 bias_x = gyro_x_zero; // initialzing the bias

//Serial.println("Sequence Completed");

}

void KF(float newAngle, float newRate, float dt) {

 tilt_angle += dt * (newRate - bias_x);

 P_00 += dt * (dt*P_11 - P_01 - P_10 + Q_angle);

 P_01 -= dt * P_11;

 P_10 -= dt * P_11;

 P_11 += Q_gyro * dt;

School of Electrical and Electronic Engineering Page 59

 float S = P_00 + R;

 float K_0 = P_00 / S;

 float K_1 = P_10 / S;

 float y = newAngle - tilt_angle;

 tilt_angle += K_0 * y;

 bias_x += K_1 * y;

 float P00_temp = P_00;

 float P01_temp = P_01;

 P_00 -= K_0 * P00_temp;

 P_01 -= K_0 * P01_temp;

 P_10 -= K_1 * P00_temp;

 P_11 -= K_1 * P01_temp;

};

void motorctrl(int torque){ //torque between 0-255

 if (torque >= 0) { // drive motors forward

 digitalWrite(M1neg, LOW);

 digitalWrite(M1pos, HIGH);

 digitalWrite(M2neg, LOW);

 digitalWrite(M2pos, HIGH);

 torque = abs(torque)+ offset;

 }

 else{ // drive motors backward

 digitalWrite(M1neg, HIGH);

 digitalWrite(M1pos, LOW);

 digitalWrite(M2neg, HIGH);

 digitalWrite(M2pos, LOW);

 torque = abs(torque)+ offset;

 }

 analogWrite(EN12,torque);

School of Electrical and Electronic Engineering Page 60

 analogWrite(EN34,torque);

 }

void MPUsetup(){

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x19); // Set Sample rate to 1000Hz

 Wire.write(0x00); //

 Wire.endTransmission();

 Wire.beginTransmission(0x1A); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x00); // Disable FSYNC

 Wire.write(0x00); //

 Wire.endTransmission();

 //SETTING UP POWER

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x6B); // Power Management 1

 Wire.write(0x00); // pg 40

 Wire.endTransmission();

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x6C); // Power Management 2

 Wire.write(0x00); // pg 41 - enables gyro and acc x,y,z

 Wire.endTransmission();

 //GYRO CONFIGURATION

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x1B); // gyro configuration

 Wire.write(0x02); // pg 14 - sets the full scale to +/- 1000 degress/second

 Wire.endTransmission();

 //ACC CONFIGURATION

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x1C); // acc configuration

 Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs

 Wire.endTransmission();

School of Electrical and Electronic Engineering Page 61

}

void ReadData(){

 //get raw data (does not represent gs or dps, needs to be scalled depending on

setup)

//accelerometer readings

 Wire.beginTransmission(0x68); //I2C address of the MPU

 Wire.write(0x3B); //Starting register for Accel Readings

 Wire.endTransmission();

 Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40)

 while(Wire.available() < 6);

 accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX

 accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY

 accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ

//gyro data

 Wire.beginTransmission(0x68); //I2C address of the MPU

 Wire.write(0x43); //Starting register for Gyro Readings

 Wire.endTransmission();

 Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48)

 while(Wire.available() < 6);

 gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into gyroX

 gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into gyroY

 gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into gyroZ

 // scalling based on the set up full range

 g_x = accelX / 16384.0;

 g_y = accelY / 16384.0;

 g_z = accelZ / 16384.0;

 ang_vel_x = gyroX / (32.768);

 ang_vel_y = gyroY / (32.768);

 ang_vel_z = gyroZ / (32.768);

}

void setup() {

School of Electrical and Electronic Engineering Page 62

 attachInterrupt(digitalPinToInterrupt(encoder0PinA), rotary, RISING);

 pinMode (encoder0PinB,INPUT);

 Serial.begin(115200);

 Wire.begin();

 Wire.setClock(400000UL); // Set I2C frequency to 400kHz

 MPUsetup();

 delay(100); // Wait for sensor to stabilize

 setPwmFrequency(10, 1);

 pinMode(EN34, OUTPUT);

 pinMode(EN12, OUTPUT);

 pinMode(M2neg, OUTPUT);

 pinMode(M2pos, OUTPUT);

 pinMode(M1neg, OUTPUT);

 pinMode(M1pos, OUTPUT);

 ReadData();

 zero_calculation(); //estimation of bias

 float acc_xangle = atan2(g_y - acc_y_zero, g_z - acc_z_zero) * 57.3;

 tilt_angle = acc_xangle; // Set starting angle

 timer = micros();

}

 void rotary() {

// Serial.println(counter);

 if(digitalRead(encoder0PinB)) {

 counter++;

 } else {

 counter--;

 }

 }

void loop() {

 ReadData();

 float dt = micros()- Test_timer;

School of Electrical and Electronic Engineering Page 63

 Test_timer = micros();

 dt /= 1000000;

 float acc_xangle = atan(g_y /g_z) * 57.3;

 KF(acc_xangle, ang_vel_x, dt);

 if (loop_itteration==10){

 x2 = ((counter-previous_counter)*2*Pi)/0.05;//linear velocity

 counter=previous_counter;

 loop_itteration=0;}

 loop_itteration++;

 x1 = (counter*2*Pi*0.04)/562; //displacement

 x3 = (tilt_angle)/57.3; //tilt angle in radians

 x4 = (ang_vel_x - bias_x)/0.0174533; //angular velocity in rad/s

 float tiltoutput = constrain(-(x1*K1+x2*K2+x3*K3+x4*K4)*(255/12), -254, 254);

 motorctrl(tiltoutput);

 while(micros() - timer < 5000); //200Hz

 timer = micros();

}

School of Electrical and Electronic Engineering

 Appendix 5 – Progress Report

Self-Balancing Robot

Third Year Individual Project – Progress Report

Nov 2016

Abdul Gafar

9097951

Supervisor:

Dr. Joaquin Carrasco Gomez

School of Electrical and Electronic Engineering

Contents
 Introduction and Motivation .. 1

 Aims and Objectives .. 2

 Existing Work ... 2

 Kalman Filter .. 3

 Creating a Model .. 3

 The Kalman Filter Algorithm ... 4

4.2.1. Time Update .. 4

4.2.2. Measurement Update .. 5

 Overall Diagram ... 5

 Kalman Filter Practice in MATLAB ... 5

 Hardware ... 7

 Microcontroller ... 7

 Motors .. 7

 Power Source .. 8

 Motor Driver Board ... 8

 IMU .. 8

 Overall Design ... 9

 Conclusion ... 10

 References ... 11

 Appendices .. 13

 Appendix 1 –Technical Risk Assessment .. 13

 Appendix 2 – Health and Safety Risk Assessment 14

 Appendix 3– Project Plan ... 16

 Appendix 4 -Kalman Filter Code 1 – Constant ... 17

 Appendix 5 - Kalman Filter Code 2 – Linear .. 18

 Appendix 6 - MPU 9250 Register Map ... 19

 Appendix 7 - IMU Code to obtain raw values ... 22

 Appendix 8 – IMU Output ... 24

School of Electrical and Electronic Engineering

 Introduction and Motivation

Self-balancing robots have sparked interest of many researchers, students and

hobbyist worldwide. From an engineer’s perspective, it is an inverted pendulum on

wheels. The inverted pendulum is a classical problem in control systems due its

unstable nature. To the average individual, one of the triggers for the curiosity

towards the self-balancing robots was the release of the Segway PT (Personal

Transporter). These robots became very popular because of their manoeuvrability, in

particular their short turning radius [1]. The Segway has been used in many

industries, from tourism in the park, police, and even ambulances. In recent times, a

derivative of the Segway, the hoverboard, has been a headline in social media, once

again directing the attention of many towards the engineering behind.

In any balancing robot knowing the tilt angle is critical, thus an inertial measurement

unit (IMU) is a necessity. The IMU is predominantly composed of a gyroscope and an

accelerometer. Both sensors have their advantages and disadvantages, therefore to

obtain a more accurate measurement the data has to be fused. As part of the project,

a technique known as Kalman filtering will be explored. If implemented and tuned

correctly, the Kalman Filter best possible (optimal) estimator for a large class of

problems.” [2]

As a Mechatronics student, making a self-balancing robot is the ideal project. The

core of the project is control, thus it will allow the application what has been covered

to date and exploration of new material such as alternative controllers, data fusion or

odometry. In addition, the project is sufficiently broad to refine knowledge in the

areas of embedded systems, programming, PCB and mechanical design. The

material to be covered has a broad range of applications, developing many skills

transferrable to future projects.

The purpose of this report is to outline the plan of the project and to summarize the

progress achieved to date.

School of Electrical and Electronic Engineering

 Aims and Objectives

The aim of the project is to design, make and program a Self-Balancing Robot with a

self-developed Kalman Filter. In order to successfully complete the project, the

following objectives need to be met:

 Perform Literature review on Kalman Filters and implement in MATLAB

 Develop a Kalman Filter to fuse data from the gyroscope and accelerometer

 Design and assemble the chassis of the robot

 Develop a PID controller to enable the robot to stay upright

If time permits, the list below outlines the possible additional targets:

 Explore the use of a LQR or Fuzzy Logic controller

 Create a remote controller for the robot

 Improve the control algorithm to be able to support loads including

asymmetrical loads

 Create Autonomous Pre-programmed paths using odometry

 Existing Work

Balancing Robots have existed for several years, thus many papers and theses have

been written about them. Some are purely for learning purposes, as is the case.

Others are to research the application of certain theory such as the LQH controller or

fuzzy logic. And in certain theses, it is develop a robot for a specific purpose, this

includes a butler robot or an interactive balancing robot to be used in exhibitions.

In most cases, students would focus on a certain aspect, such as data fusion,

analysis of dynamics or controller design, and the rest of the robot would be built

using simpler techniques. For example, they would focus on using a Kalman filter

and use a PID controller or focus on LQR controller and use a Complementary filter.

For sensor fusion, the complementary filter and the Kalman filter are the most

commonly techniques. The Kalman filter will be further explained in section 4. The

complementary filter, simply consists of a low pass filter for the gyroscope and high

pass filter for the accelerometer. Whilst, the Kalman filter is accepted as the best

estimator, in a specific case the complementary filter appeared to perform better. [3]

To maintain the robot upright, the commonly mentioned controllers are Proportional-

School of Electrical and Electronic Engineering

integral-derivative (PID) and the Linear Quadratic Regulator (LQR). A Linear

Quadratic-Gaussian controller has also been tested, however, due to a slow

microcontroller, it was not successful. [1] In more complex balancing robots, which

the robot also moves around, two controllers are used. For example an LQR

controller to balance the robot and a PID controller to control yaw. [4]

 Kalman Filter

The Kalman Filter (KF) was first introduced in 1960 by Rudolf E. Kalman [5]. Since

then, due to its adaptability and usefulness, research and development has

continued creating variants such as the Extended Kalman Filter or the Unscented

Kalman Filter [2]. The KF was famously used in the Apollo program, ultimately taking

Neil Armstrong to the moon [6]. “The Kalman Filter is over 50 years old but is still one

of the most important data fusion algorithms in use today [7].” Its use ranges from

navigation and object tracking to investment banking and economics.

Data fusion in essential in this case due to the nature of the gyroscope and

accelerometer. The accelerometer measurements are more susceptible to noise,

whilst the gyroscope drifts over time. This makes the accelerometer readings more

accurate in the long run, and the gyroscope more accurate over a short space of time

[8]. To resolve the dilemma the KF can be used.

In addition to the accuracy of estimation, the KF is appealing because it is a recursive

method. The current state is dependent on the previous state, which means that not

all the data is necessary, allowing it to be implemented in a simple microcontroller

without large storage [9]. One of the barriers for use of the KF is difficulty in

understanding due to the lack of standard notation.

 Creating a Model

To implement a KF, the system needs to be modelled in state-space form. The

difference equation (1) that can be used to represent the process state and equation

(2) models the measurements [2].

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1……………………………………………………………… (1)

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘…………………………………………………………………………… (2)

Where [6]:

School of Electrical and Electronic Engineering

𝑥𝑘 is the state vector, contains variables to be estimated i.e. angle or bias

𝑢𝑘 is the vector containing control inputs i.e. angular acceleration

A is the transition matrix, which maps the state parameters at t-1 to t

B is the control input matrix, maps the controlled inputs 𝑢𝑘 to the state vector

𝑧𝑘 is the measurements matrix

H is matrix that transforms the state vector into measurements

𝑤𝑘 and 𝑣𝑘 are the vectors containing the process noise and measurement noise

respectively. The noise is assumed to be zero mean Gaussian distributed with a

covariance Q and R, respectively i.e. 𝑤𝑘~ (0, Q) and 𝑣𝑘~ (0, R).

 The Kalman Filter Algorithm

The KF is composed of two sets of equations, time update and measurement update

equations.

4.2.1. Time Update

The following equations describe the time update stage, also known as prediction

stage:

𝑥̂𝑘|𝑘−1 = 𝐴𝑥̂𝑘−1|𝑘−1 + 𝐵𝑢𝑘…………………………………………..……………………. (3)

𝑃𝑘|𝑘−1 = 𝐴𝑘 𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘………………………...…………...………………………. (4)

Where:

𝑥̂ is the state estimate

P is the process covariance matrix

A note on the subscript: a | b would mean a given b and all previous states before b.

For example 𝑥̂𝑘|𝑘−1, is the estimate at k based on k-1 and on all the states before k-1.

 𝑥̂𝑘|𝑘−1 is known as the priori state, 𝑥̂𝑘−1|𝑘−1 is the previous state and 𝑥̂𝑘|𝑘 is the

posteriori state.

School of Electrical and Electronic Engineering

4.2.2. Measurement Update

The following equations are used in the measurement update:

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1…………………………………………………….. (5)

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘|𝑘−1) ……………………………………………………….. (6)

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 ……………………………………………………………… (7)

Where: K is the Kalman Gain Matrix

 Overall Diagram

The KF runs in a loop shown in the diagram below:

 Kalman Filter Practice in MATLAB

In order to better understand how KFs are implement, examples were done in

MATLAB. The first example was following a tutorial, which the ‘real’ measurement

was a constant voltage [10]. In the tutorial the computation was shown, but no code

was given. Implementing it MATLAB helped visualize how the KF can be realised in

code. The MATLAB can be found in Appendix B. The figure in the following shows

the output:

Initialisation:

𝑥0

𝑃0

𝑥𝑘−1

𝑃𝑘−1

Time Update

“Prediction”

Measurement Update
Measurement

Input

Output:

𝑥𝑘

𝑃𝑘

k=>k-1

current becomes

previous

School of Electrical and Electronic Engineering

To further aid understanding, a simple example was created and implemented. It

consists of measuring the displacement of an object travelling in 1-D at a constant

velocity of 1.5m/s. The MATLAB code can be found in Appendix C. The figure below

shows the output:

School of Electrical and Electronic Engineering

 Hardware

 Microcontroller

The microcontroller chosen was the Arduino Uno. It has a relatively small footprint,

keeping the robot compact. The main advantage of the Arduino is large community

and extensive collection of libraries, if any problems are stumbled upon, there is a

higher chance that someone else has found a solution.

 Motors

In order to establish the motors required, a calculation of

the required torque is necessary. The diagram to the right

shows a sketch of the balancing robot.

𝜏 = ‖𝒓‖‖𝑭‖𝑠𝑖𝑛𝜃 ………..……………..……………….... (1)

Where: 𝜏 is magnitude of the torque, F is the force vector,

r is the position vector and 𝜃 is the angle between force

and position vectors.

Assuming the distance between the pivot point and the centre of mass (L) is 12cm,

the maximum tilt angle (θmax) is 40° and the mass of the robot (m) is 0.7kg.

𝜏 = 𝐿 ∗ 𝑚𝑔 ∗ 𝑠𝑖𝑛𝜃 = 0.12 ∗ 0.7 ∗ 9.81 ∗ sin(40) = 0.530 𝑁𝑚 …………………………. (2)

Since there will be two motors, the minimum torque required is 0.265Nm. This

assumes the robot is going to start moving at the maximum tilt angle, in reality inertia

also has to be considered.

Looking at practical example, Gornicki used motors with a stall torque of 0.224Nm

and a gear with a 3:1 ratio [11]. Assuming 15% inefficiency [12], that equates to

0.5712Nm.

To fit the requirements, the chosen motor is the Pololu medium power 47:1 Metal

Gearmotor with 48 CPR Encoder. The stall torque of the motor is 0.611Nm and the

encoder outputs 2248.86 counts per revolution [13], corresponding to a resolution of

up to 0.16°. The encoders are necessary for odometry, without the encoders the

robot may balance but it will be moving around constantly.

θmax

mg
L

School of Electrical and Electronic Engineering

 Power Source

The considered power sources were lithium polymer (Li-Po) batteries and AA

batteries. Li-Po batteries were found the most appropriate power source, as AA

batteries generally have a lower maximum discharge current [14]. Li-Po batteries

also have a relatively high specific energy and energy density [15]. There are some

dangers associated with them, these have been addressed in the Health and Safety

Risk Assessment (Appendix x). The specific battery to be used is the Turnigy 3 cell

2200mAh 20C. The stall current for each motor is 2.1A at 12V [13] and power also

needs to be supplied to the other devices (Arduino, IMU and encoders). As a rough

estimate, the power source should be able to supply a minimum of 5A. The Li-Po

battery can supply up to 44A [16].

 Motor Driver Board

The L298 dual full bridge driver was initial choice. According to the datasheet the

motor driver has peak output current per channel of 2A in DC operation and up to 3A

non-repetitive [17]. In practice, the L298 would go into thermal shut down at 0.8A

[18], making it unsuitable for the robot. To avoid deceit from manufacturers, the

L6203 was chosen, theoretically it can supply 5A [19]. In order not to damage the

motors resettable fuses will be used.

 IMU

The selected IMU is the MPU 9250 by InvenSense. It has 9 degrees of freedom,

consisting of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer. The

magnetometer is not necessary, but the IMU without the magnetometer costs twice

the price. By accessing the configuration register, the gyroscope full scale range can

adjusted from ±250 to 1000 degrees per second. The accelerometer can also be

programmed from ±2 to 6 g. This device has a built in Digital Motion Processor

(DMP), but for this project it will not be used. A great advantage of this IMU is that it

has been used with the Arduino and libraries are available for it. [20]

Communication between the Arduino and the IMU is through the Inter-Integrated

Circuit (I2C) protocol. To read the values form the gyroscope and accelerometer,

specific memory addresses need to be accessed (the register map is in the

appendix). Following a tutorial for the MPU6050, the raw data values were read.

Surprisingly, the register map for MPU9250 is identical to the MPU6050. The code to

read the values and the output window is in the Appendix X.

School of Electrical and Electronic Engineering

 Overall Design

The overall planned format of the robot can be seen in the Solidworks render below:

The design is an adaptation of the SainSmart self-balancing robot [21]. The design is

entirely modular. The layer heights can be changed by changing the spacer lengths

and the box for loads can be removed. Having the layers also protects the

components, specifically the Li-Po battery. The battery is shielded from heat from the

motor drivers and it is also protected from impacts.

The layers will be made of Medium Density Fibreboard (MDF). It is relatively light,

inexpensive, easy to manufacture and readily available in the university. In addition

MDF should be able to withstand the drops and hits that might happen when the

robot controller is being tuned.

The wheels will be from Remote Controlled (RC) cars. They are wide and the tyres

made of soft rubber. This enables the wheels to have good grip, which is not

surprising as often RC hobbyists compete with each other.

Box for additional

loads

Hole for cables

M3 Hex spacers

Motor driver board

Geared Motor with

encoders

Arduino and IMU

Li-Po Battery

Lateral Supports

RC Wheels

School of Electrical and Electronic Engineering

 Conclusion

A basic understanding of Kalman filters has been achieved and the robot’s physical

design has been completed. The next step this semester is to implement the KF in C

code to fuse the data from the gyroscope and accelerometer. A comparison can then

be made between the data from the output of the KF and the built in DMP. Once the

Kalman filter is well tuned and a good estimate of the tilt angle is obtained, the PID

controller can then be developed to maintain the robot upright.

The progress achieved to date is as planned, this suggests that the aim of the project

is realistic. Based on the Gantt chart in Appendix A, the project should be completed

by the end of week 6 in second semester, allowing some time to adjust for

unpredicted scenarios or to be dedicated in meeting the additional objectives.

School of Electrical and Electronic Engineering

 References

[1] Sundin, C. and Thorstensson, F. (2013). Autonomous balancing robot. Masters

of Science. Chalmers University of Technolgy.

[2] Welch, G. and Bishop, G. (2001). An Introduction to the Kalman Filter. [online]

Available at:

http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pd

f [Accessed 4 Nov. 2016].

[3] Bonafilia, B., Gustafsson, N., Nyman, P. and Nilsson, S. (n.d.). Self-balancing

two-wheeled robot. Chalmers University of Technology.

[4] Ding, Y., Gafford, J. and Kunio, M. (2012). Modeling, Simulation and Fabrication

of a Balancing Robot. Harvard University, Massachusetts Institute of

Technology.

[5] Welch, G. and Bishop, G. (2006). An Introduction to the Kalman Filter. [online]

Available at: http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

[Accessed 4 Nov. 2016].

[6] Carrasco, J. (2016). 5 Lines of Code to Land on the Moon.

[7] Faragher, R. (2012). Understanding the Basis of the Kalman Filter Via a Simple

and Intuitive Derivation. IEEE SIGNAL PROCESSING MAGAZINE, [online]

(1053-5888/12), pp.128-132. Available at:

https://www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%20of

%20the%20Kalman%20Filter.pdf [Accessed 7 Nov. 2016].

[8] Cornman, A. and Mei, D. (n.d.). Extended Kalman Filtering. Stanford

University.

[9] Ooi, R. (2013). Balancing a Two-Wheeled Autonomous Robot. Undergraduate.

The University of Western Australia.

[10] Esme, B. (2016). Bilgin's Blog | Kalman Filter For Dummies. [online]

Bilgin.esme.org. Available at:

http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies [Accessed 4 Nov.

2016].

[11] Gornicki, K. (2015). Autonomous Self Stabilising Robot. Undergraduate. The

University of Manchester.

[12] Baines, G. (2015) 'Embedded Systems Project: Motor Characterisation

and Gearbox Ratio Selection’. Available at:

https://online.manchester.ac.uk/bbcswebdav/pid-3643166-dt-content-rid-

12476223_1/courses/I3027-EEEN-21000-1151-1YR-

School of Electrical and Electronic Engineering

027927/ESP%20Week%202%20Motors%20and%20Gearbox_2015.pdf

(Accessed: 04/11/2015)

[13] Pololu.com. (2016). Pololu - 47:1 Metal Gearmotor 25Dx52L mm MP 12V with

48 CPR Encoder. [online] Available at:

https://www.pololu.com/product/3241/specs [Accessed 3 Nov. 2016].

[14] Energizer.com. (2016). Product Datasheet - L91 Ultimate Lithium. [online]

Available at: http://data.energizer.com/PDFs/l91.pdf [Accessed 7 Nov. 2016].

[15] Learn.sparkfun.com. (2016). Battery Technologies. [online] Available at:

https://learn.sparkfun.com/tutorials/battery-technologies [Accessed 4 Nov.

2016].

[16] Hobbyking. (2016). Turnigy 2200mAh 3S 20C Lipo Pack. [online] Available at:

https://www.hobbyking.com/en_us/turnigy-2200mah-3s-20c-lipo-pack.html

[Accessed 7 Nov. 2016].

[17] Sparkfun. (2016). L298 H Bridge Datasheet. [online] Available at:

https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf [Accessed 7

Nov. 2016].

[18] Rugged Circuits. (2016). The Motor Driver Myth. [online] Available at:

http://www.rugged-circuits.com/the-motor-driver-myth/ [Accessed 3 Nov. 2016].

[19] Anon, (2016). L6203 Datasheet. [online] Available at:

http://users.ece.utexas.edu/~valvano/Datasheets/L6203.pdf [Accessed 4 Nov.

2016].

[20] Invensense.com. (2016). MPU-9250 | InvenSense. [online] Available at:

https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250

[Accessed 4 Nov. 2016].

[21] Sainsmart.com. (2016). SainSmart 2-Wheel Arduino Self-Balancing Robot Kit

3D Printing, Arduino, Robotics | Sainsmart. [online] Available at:

http://www.sainsmart.com/sainsmart-balancing-robot-kit.html [Accessed 3 Nov.

2016].

School of Electrical and Electronic Engineering

 Appendices

 Appendix 1 –Technical Risk Assessment

As mentioned previously, the Arduino makes it an easy platform to program in due to

large community and extensive collection of libraries. Furthermore, Kalman filters and

balancing robots have been realized using an Arduino, this suggests a lower

technical risk. However, due to low processing capability the Arduino itself may be a

liability. Christian Sundin mentions that the Arduino could not execute the algorithm

for an LQG controller fast enough [1]. If met with such scenario, a solution may be to

use two Arduinos in master-slave configuration or a faster microcontroller such as the

STM32 Nucleo.

Another risk for the project would be slow order processing time and delivery. If the

required components do not arrive within the expected time frame, the project will

have to be put on hold. To minimize this risk, component orders were placed early

this semester.

School of Electrical and Electronic Engineering

 Appendix 2 – Health and Safety Risk Assessment

School of Electrical and Electronic Engineering

School of Electrical and Electronic Engineering

 Appendix 3– Project Plan

School of Electrical and Electronic Engineering

 Appendix 4 -Kalman Filter Code 1 – Constant

%Example from http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies
zk = zeros (1,200);
y = 4 * ones (1,200);

for n=1:200
 zk (n) = 4 + 0.5*randn;
end

x0=0;
P0=1;
R=0.25;
A=1;
Q=0;

x = zeros (1,200);
k = zeros (1,200);
p = zeros (1,200);

k(1)= P0/(P0+R);

x(1)= x0 + k(1)*(zk(1)-x0);
p(1)= (1-k(1))*P0;

for t=2:200

 k(t)= p(t-1)/(p(t-1)+R);
 x(t)= x(t-1) + k(t)*(zk(t)-x(t-1));
 p(t)=(1-k(t))*p(t-1);

end
subplot(121)
plot(x)
hold on
plot (y, 'Color','r')

subplot(122)
plot(x-4)

School of Electrical and Electronic Engineering

 Appendix 5 - Kalman Filter Code 2 – Linear

%An object travelling in 1D at a constant velocity of 1.5m/s

yk = zeros (1,200);
for n=1:200yk
 yk (n) = 1.5*n + 3*randn ;
end % creates 'measured' inputs with 'measurements' being independent
 %of each other i.e. erros don't propagate

R=1; %the function 'randn' ouputs normally distributed random numbers
 %this makes the standard deviation=1, therefore variance=1

X0=0; %starting at origin
P0=1; %any non-zero value otherwise K=0
A=1;
Q=0;
U=1.5; %travelling speed
W=0; %Assuming no white noise
H=1; %1 as just numbers not matrices

B = zeros (1,200);
for n=1:200
 B(n)= n;
end %for elapsed time

xkp = zeros (1,200);
x = zeros (1,200);
k = zeros (1,200);
pkp = zeros (1,200);
pk = zeros (1,200);

%t1 Predicted state
xkp(1)= A*X0 + B(1)*U + W;
pkp(1)= A*P0*A + Q;

%update w/ new measurements and kalman gain
k(1)=(pkp(1)*H)*inv(H*pkp(1)*H + R);
x(1)= xkp(1) + k(1)*(yk(1)-H*xkp(1));
pk(1)= (1-k(1)*H)*pkp(1);

for t=2:200
 %t(n) Predicted state
 xkp(t)= A*x(t-1) + 1*U + W;
 pkp(t)= A*pk(t-1)*A + Q;
 %update w/ new measurements and kalman gain
 k(t)=(pkp(t)*H)*inv(H*pkp(t)*H + R);
 x(t)= xkp(t) + k(t)*(yk(t)-H*xkp(t));

 pk(t)= (1-k(t-1)*H)*pkp(t-1);
end

test = linspace(0,300,200);

subplot(121)
plot(x)
hold on
plot (yk, 'Color','r')
subplot(122)
plot(x-test)
hold on
plot(yk-test, 'Color','r')

School of Electrical and Electronic Engineering

 Appendix 6 - MPU 9250 Register Map

School of Electrical and Electronic Engineering

School of Electrical and Electronic Engineering

School of Electrical and Electronic Engineering

 Appendix 7 - IMU Code to obtain raw values

// code modified from https://www.youtube.com/watch?v=M9lZ5Qy5S2s

#include <Wire.h>

long accelX, accelY, accelZ; //accelerometer

long gyroX, gyroY, gyroZ;//gyro

void setup() {

 Serial.begin(9600);

 Wire.begin(); // starting I2C communication

 // initialising the sensor //SETTING UP POWER

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x6B); // Power Management 1

 Wire.write(0x00); // pg 40

 Wire.endTransmission();

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x6C); // Power Management 2

 Wire.write(0x00); // pg 41 - enables gyro and acc x,y,z

 Wire.endTransmission();

 //GYRO CONFIGURATION

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x1B); // gyro configuration

 Wire.write(0x00); // pg 14 - sets the full scale to +/- 250 degress/second

 Wire.endTransmission();

 //ACC CONFIGURATION

 Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place)

 Wire.write(0x1C); // acc configuration

 Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs

 Wire.endTransmission();

}

void loop() {

//get raw data (does not represent gs or dps, needs to be scaled depending on setup)

School of Electrical and Electronic Engineering

//accelerometer readings

 Wire.beginTransmission(0x68); //I2C address of the MPU

 Wire.write(0x3B); //Starting register for Accel Readings

 Wire.endTransmission();

 Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40)

 while(Wire.available() < 6);

 accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX

 accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY

 accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ

//gyro data

 Wire.beginTransmission(0x68); //I2C address of the MPU

 Wire.write(0x43); //Starting register for Gyro Readings

 Wire.endTransmission();

 Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48)

 while(Wire.available() < 6);

 gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX

 gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY

 gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ

 Serial.print("Gyro");

 Serial.print(" X=");

 Serial.print(gyroX);

 Serial.print(" Y=");

 Serial.print(gyroY);

 Serial.print(" Z=");

 Serial.print(gyroZ);

 Serial.print(" Accel");

 Serial.print(" X=");

 Serial.print(accelX);

 Serial.print(" Y=");

 Serial.print(accelY);

 Serial.print(" Z=");

 Serial.println(accelZ);

}

School of Electrical and Electronic Engineering

 Appendix 8 – IMU Output

