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Abstract 

Self-balancing robots are a topic of curiosity amongst students, roboticists, and 

hobbyists around the world. The fascinating aspect is the fact that it is a naturally 

unstable system. This project presents an attempt on developing an autonomous 

self-balancing robot. A key element in maintaining the robot in the upright position is 

estimation of the tilt angle. For this, the Kalman Filter has been implemented and 

tested to fuse data from a gyroscope and an accelerometer. In addition, the 

methodology in which the hardware was chosen and put together has been justified. 

Then the software development and challenges in the implementation of the Kalman 

Filter have also been explained. Lastly the control of the robot has been explored, 

with characterisation of the robot in an attempt to implement an LQR controller. 

Although several results were presented, the goal of making a self-balancing robot 

was not achieved.  
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 Introduction, Motivation and Aims 

 Introduction  

Self-balancing robots have been a topic of interest of many researchers, students 

and hobbyists worldwide. In essence, it is an inverted pendulum on wheels, a 

derivative of the inverted pendulum on a cart. Unlike traditional robots, which are in a 

constant state of equilibrium, the robot is a naturally unstable system [1]. Its design is 

more complex, as it needs to be actively controlled to maintain its upright position, 

however, it benefits from being able to turn on the spot.  

The primary practical application of a self-balancing robot is human transportation, 

which was popularised by the release of the Segway PT (Personal Transporter) [2]. It 

is used in many industries such as inside factory floors or for tourism in the park. It is 

more attractive compared to four or three wheeled vehicles as they can take sharp 

turns and navigate in tighter spaces [3]. 

 Motivation 

The primary incentive of the project is to develop general understanding of control 

theory. For the last few decades, “the inverted pendulum has been the most popular 

benchmark, among others, for teaching and research in control theory and robotics 

[4].” Hence, developing a self-balancing robot is the ideal platform to put into practice 

what has been covered in Control Systems lectures. It would also be interesting to 

see the differences between the behaviour in practice compared to simulations. 

Furthermore, the material and methods learnt have a wide array of applications; for 

example, inverted pendulums have been used to model human locomotion, which 

then was used to develop bipedal robots [5].  

In addition to control theory, learning about Kalman Filters (KF) was also a motivation 

to develop the self-balancing robot. Knowing the tilt angle is necessary in any 

balancing robot to apply the appropriate control action. However, different sensing 

devices have their compromises; the KF is used to fuse data from two sensors, such 

that a better estimate of the tilt angle can be obtained. Kalman filters specifically and 

not just the Complementary Filter, because it is considered to be “one of the most 

important data fusion algorithms in use today [6]” and it was famously used in the first 

manned mission to the moon [7].  
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Besides learning about the theoretical aspects, the project also incorporated a 

practical side. This includes but is not limited to, using SolidWorks to see how 

everything was going to fit together, using stripboards for small-simple circuits, using 

lab equipment for testing and programming in C.  These are a wide array of important 

skills applicable to many tasks, in future projects, as an engineer. 

 Aims and Objectives 

This project aims to design, construct and program a self-balancing robot with a self-

developed and implemented Kalman filter. To achieve the aims of the project, 

following objectives have been set: 

 Perform Literature Review on Kalman Filters and implement it in MATLAB 

 Develop the mathematical model for sensor fusion 

 Implement and tune the Kalman Filter in a microcontroller 

 Design a testing rig to the Kalman Filter  

 Tune the KF to have the best performance 

 Design and assemble the chassis of the robot 

 Develop the software to read from the sensors and to control the actuators 

 Implement a PID controller to enable the robot to stay upright 
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 Background Information and Literature Review 

 Introduction 

This chapter aims to provide an overview of the literature sources used throughout 

the development of the robot. First, the fundamentals of inverted pendulum systems 

are described: determination of the equilibrium point and what makes the system 

interesting to control engineers. Afterwards, a literature review on the most common 

control theory applied to self-balancing robots is performed and the last sub-section 

summarizes the main sensor fusion techniques. 

 Inverted Pendulum Systems 

The inverted pendulum is a classical problem in control systems, and to explore the 

unstable dynamics, different platforms have been developed. These platforms are 

similar in many ways, leading to many of the behaviours being comparable. The most 

common types are the self-balancing robot, Inverted Pendulum on a cart and an 

inverted pendulum on a linear track, shown in the figure below: 

 

Figure 1: [a] Self-Balancing Robot [8], [b] Inverted Pendulum on a Cart [9], [c] 

Inverted Pendulum on a Linear Track [10] 

 

 

 

 

 

[a] [b] [c] 
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2.2.1. Simple Pendulum 

To better understand these systems, analysis of the dynamics of a simple pendulum 

is crucial.  

Assuming the system on the left, where a mass, 

M is connected by a massless rod of length L to a 

frictionless pivot. The angular velocity, 𝜔 and the 

rate of change of angular velocity, 
𝑑𝜔

𝑑𝑡
 are given by 

the following formulae [11]:  

𝑑𝜃

𝑑𝑡
= 𝜔 

𝑑𝜔

𝑑𝑡
=  −

𝑀𝑔𝐿

𝐽
 sin 𝜃 

Where 𝐽 is the moment of inertia, and 𝑔 is the 

gravitational force  

Intuitively, the system will remain at rest when 

𝜔 = 0 and 
𝑑𝜔

𝑑𝑡
= 0. When equation 1 and 2 are 

solved to fit the criteria, the equilibrium points are 

found to be 𝜃̇ = 0, and 𝜃1 =  0 or 𝜃2 =  180°. 𝜃1 is stable, but not applicable to self-

balancing robots, 𝜃2 is the target position for inverted-pendulum systems. However, 

at this position, the system is unstable. Any external disturbance will cause the 

pendulum to move indefinitely away from that specific equilibrium point, hence the 

need for it to be actively balanced. 

2.2.2. Non-Minimum Phase Zeros and Transfer Function Analysis 

Perhaps the most fascinating aspect of inverted pendulum systems is the notion of 

non-minimum phase zeros. Following [12], a summary of the consequences of the 

non-minimum phase zeros is given. As explained in the previous section, inverted 

pendulums are unstable, attempting to stabilise an unstable plant using feedback will 

give rise to non-minimum phase zeros. The effect of these zeros can be observed by 

a simple experiment of trying to balance a long stick on the palm of one’s hand. The 

stick is analogous to the inverted pendulum and the hand to the cart. When 

attempting to move the hand to right, initially one tends to move to the left briefly then 

move to right. The zero in the system’s transfer function has caused an initial 

Figure 2: Simple Pendulum 

 (1) 

 (2) 
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undershoot when a ‘step response’ is applied. The conclusive effect of non-minimum 

phase zeros will vary depending on the controller used, it may cause initial 

undershooting, direction reversals and/or overshooting.  

Given the transfer function G(s), 

𝐺(𝑠) =  
𝑁(𝑠)

𝐷(𝑠)
(3) 

a zero is a the root in the numerator, N(s), of G(s). A non-minimum phase zero is a 

positive zero that is in the right half of the pole-zero plot. To exhibit the behaviour, in 

which direction reversals occurs, has to be an odd number of zeros in the transfer 

function. 

From the transfer function, further conclusions can be made. If there are positive 

poles, the plant is unstable and based on parity interlacing principle, if the plant has 

odd number of positive real poles to the right of the non-minimum poles the plant 

cannot be controlled by a stable controller.  This is actually present in a linearized 

transfer function of an inverted pendulum on a cart. Further discussion in context of 

the self-balancing robot designed is given in Chapter 6. 

The overall effect of the non-minimum phase zeros is constraints in closed loop 

performance. They restrict the bandwidth and it causes a limited gain margin 

(suggesting limited robustness). The non-minimum phase zeros cannot be cancelled 

in practice as a small difference in the zero and poles will lead to instability in the 

plant. 

 Controllers  

To maintain the robot upright, the most commonly used controllers are Proportional-

Integral-Derivative (PID) and the Linear Quadratic Regulator. Other theses have also 

explored the use of Linear-Gaussian Control (LQG), Fuzzy Logic and Pole-

Placement; however, in some cases they were never implemented in a robot and 

were only experimented in simulations [13]. In theses where the robot displacement 

is also controlled, either LQG is used or combination of controllers. For example LQR 

to maintain the robot upright and PID for controlling displacement, or a cascaded PID 

controller [14] [13] [15] [16] [17] [2] [1]. PID and LQR are the explored controllers in 

this thesis, thus further details will only be provided for them. 
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PID is perhaps the most used controller, as stated by VanDoren “More than 60 years 

after the introduction of proportional-integral-derivative controllers, they remain the 

workhorse of industrial process control [18].” The algorithm is described by the 

following equation: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡) (4) 

Where, u(t) is the output of the controller, e(t) is the error and 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are the 

tuning parameters. It is relatively easy to implement and does not require a model of 

the system. Tuning of the parameters can be done with trial and error. Using this 

simple method, robots have been controlled to remain upright [13] [15] [16] [2] [1] 

[17]. 

LQR is a form of optimal control that aims to minimize the performance index whist 

taking into account the control effort, as often, higher input effort would imply higher 

energy consumption [19]. LQR control requires derivation of the state-space model of 

the system [14], thus it is more challenging to implement. A great advantage of LQR 

is that unlike PID it can be applied to Multiple Input, Multiple Output (MIMO) systems. 

When applied to the self-balancing robot, it was found that LQR has a better 

performance [20]. 

 Tilt Angle Estimation 

In order to maintain the robot upright, knowing the tilt angle is imperative. There are a 

wide array of sensors that can be used, such as inclinometers, light sensors, 

accelerometer or gyroscopes. However, each these sensors have their 

shortcomings, the inclinometer takes a long time to converge to the angle it is 

currently at, light sensors are highly susceptible to background noise (ambient light 

and the reflective index of the surface it is operating in), gyroscopes have a bias and 

accelerometers are relatively noisy.  

Most often, a combination of a gyroscope and an accelerometer are used. To 

combine the measurements, the most commonly used techniques are the Kalman 

Filter and the Complementary Filter. In more modern Inertial Measurement Units 

(IMU) built in algorithms can be found to fuse the data. The next paragraphs, will 

provide an overview of each of the mentioned techniques, and the findings from the 

literature review conducted. There is a greater emphasis on the Kalman Filter as it is 

one of the core aspects to be explored in the project. 
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Rudolf Kalman introduced the Kalman Filter, also known as Linear Quadratic 

Estimation, in 1960 [3].  “If implemented and tuned correctly, the Kalman Filter best 

possible (optimal) estimator for a large class of problems [21].” To implement the 

Kalman Filter, a state space model of the system is required. One of the great 

advantages, in addition to being a good estimator, is the fact that it is a recursive 

method. This means that large amount of data does not need to be stored and can 

run in real time, allowing it to be implemented in devices that have lower memory 

sizes [3]. The challenge for someone without previous experience in using KFs, is 

confusion caused by varying notations in textbooks [3]. 

The complementary filter is simply composed of a high pass filter for the integrated 

data from the gyroscope and a low pass filter for the angle calculated from the 

accelerometer [22]. It is the most commonly used method as it is relatively easy to 

implement. Bonafilia et al, have found that it performs better than the Kalman filter 

[14]. 

In some modern IMUs, such as InvenSense’s MPU 6050 or Bosch’s BNO055, there 

is built-in sensor fusion algorithm’s that will directly output the absolute orientation. 

This removes the load from the main microcontroller and the algorithm is expected to 

have the best performance as it has been developed by the manufacturer [23] [24]. 

 Summary 

To begin with, the fundamentals of the system were explored and it was established 

that it the robot is at equilibrium when upright or at least the centre of mass is above 

the pivot point. Then, it was revealed that the robot has non-minimum phase 

response in closed loop.  Finally, an overview of the most commonly used sensor 

fusion techniques and controllers. The findings are summarized in the tables 1 and 2: 

Controller Advantages Disadvantages 

PID - Easy to implement 

-Does not require the 

state space model 

- Applicable to Single Input, Single 

Output Systems (SISO) 

- Does not perform as well as LQR 

LQR - Applicable to MIMO 

systems 

- Performs better than 

PID 

-More challenging to Implement 

-Requires derivation of the State-

Space Model 

Table 1: Comparison of Controllers 
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Angle Estimation 

Techniques 
Advantages Disadvantages 

Kalman Filter - Regarded as one of the 

best estimators 

- It is recursive method 

- Requires a state-space model of 

the system 

- Difficult to understand due to 

standard notation 

-Has higher computational 

requirements  

Complementary 

Filter 

- Easy to implement - Can be susceptible to noise 

Built-In Algorithm -Removes the load from 

the main microcontroller 

- Not available in every IMU 

Table 2: Comparison of Angle Estimation Techniques 

 Sensor Fusion 

 Introduction 

A common agreement in literature is that using either a gyroscope or an 

accelerometer on their own to obtain the tilt angle is not very reliable. This primarily 

arises from the fact that both of these devices have a bias in the measurements, are 

affected by white noise and the bias is affected by temperature.  Attempting to 

account for all the errors, could be a dissertation in itself [25] . In this project, as only 

the tilt angle is measured and not relative displacement, it is assumed that the 

gyroscope is mainly affected by a bias and the accelerometer by white noise. 

This chapter begins by presenting the fundamentals of gyroscopes and 

accelerometers to highlight the need for sensor fusion. Followed by, the Kalman 

Filter and its implementation, the complimentary filter and finally a comparison of 

each of the filters. The Kalman Filter is covered in greater detail as it is one of the 

primary focuses of this thesis. The complementary filter has solely been explored to 

compare whether the additional computational requirement is a significant 

improvement when used to estimate the tilt angle. 

 

 



School of Electrical and Electronic Engineering Page 9 

 Gyroscope Fundamentals 

The gyroscope measures angular velocity,𝜃̇, in radians per second or degrees per 

second. Intuitively, by integrating the angular velocity the tilt angle can be calculated. 

Since the gyroscope readings are taken at discrete time intervals, 𝑑𝑡, numerical 

integration is performed using the Euler method. This is shown in the equation below:  

𝑔𝑦𝑟𝑜𝑎𝑛𝑔𝑙𝑒𝑡
 =   𝑔𝑦𝑟𝑜𝑎𝑛𝑔𝑙𝑒𝑡−1

+  𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑑𝑡 (5) 

The equation above assumes the sensor initial position is 0 degrees. If the starting 

position of the sensor is non-zero, the angle has to be initialized to the value, 

possibly from another sensor i.e. inclinometer or accelerometer.  

Using the approach mentioned the following graph was obtained: 

 

Figure 3: Graph of Angle (calculated using equation 1) against Time 

A key element to observe was that the measurements were taken while the IMU was 

at rest; this highlights the effect of the bias in the measurements. Due to the 

integration, this systematic error is summed in every loop, thus the angle appears to 

be increasing even though the gyroscope was not moving. Furthermore, the size of 

the bias also increases over time [26]. In cases where the object can rotate in 3D, the 

yaw angle needs to be coupled with the roll and pitch to reduce the chances of 

Gimbal Lock [27]. The robot is assumed to have only one axis of rotation thus 

coupling does not need to be considered 
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 Accelerometer Basic Principles 

The accelerometer measures the acceleration relative to free fall. The acceleration is 

often measured in gs, which is based on earth’s gravitational pull (9.81m/s). To 

determine the orientation of the accelerometer, it is assumed that the only force 

acting on the object is earth’s gravitation pull. Gravity always acts ‘down’, thus when 

the object is tilted, the force is divided into components in the x, y, and z directions of 

the object.  Since the axes are orthogonal to one another, Pythagoras theorem can 

be used to show the relationship between the forces as shown in the diagram below: 

Figure 4: Diagram that shows the components of gravity in each direction [26] 

From the diagram, the following equation can be obtained: 

𝐴𝑥𝑟 =  𝜃𝑥 = cos−1 (
𝑥

√𝑥2 +  𝑦2 + 𝑧2
) = cos−1 (

𝑥

𝑅
) (6) 

Alternatively, the following equation is more useful as it calculates the angle relative 

to the z-axis (Roll) [28]: 

𝑅𝑜𝑙𝑙 =  𝜙𝑥𝑦𝑧 = tan−1 (
𝑦

𝑧
) (7) 

With a similar approach, Pitch can also be calculated. However, Yaw cannot be 

determined accurately, especially when the force in the z direction = 1g (assuming 

the accelerometer can only rotate and not translate in any direction). In this case 

changing the yaw, will have no impact on the components of x and y, making yaw 

constant. This however does not affect the implementation in the robot as only the tilt 

angle is required [26]. 
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Using equation 6, the following graph was obtained: 

 

Figure 5: Graph of Angle (Accelerometer) against Time 

The graph above is divided into 3 sections. In all cases, the IMU orientation was kept 

constant (as well as humanly possible). In section 1, the IMU was moved up and 

down. In section 2, the table was tapped lightly and in section 3, the accelerometer 

was left without external disturbances. The diagram shows the problems with using 

accelerometer for measuring angles, even in section 3, when zoomed in it can be 

see that the line is still not perfectly smooth, emphasising the noisy nature of the 

accelerometer. The root of these issues is the assumption that gravity is the only 

force acting upon the object [29]. 

 Kalman Filter 

3.4.1. Background 

As microcontrollers work in discrete time, the discrete time Kalman Filter will be used 

to estimate the tilt angle. To implement the algorithm, the process has to be 

described by the linear stochastic difference equation [21] 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘 (8) 

where, 𝑥𝑘 is the state vector containing the variables to be estimated. 𝐴 is the state 

transition matrix that is applied to 𝑥𝑘−1. 𝑢𝑘 is the control (input) vector and 𝐵 (control 
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input matrix) maps the inputs to the state vector. Finally, 𝑤𝑘 is vector that contains 

the process noise for each of the variables in 𝑥𝑘. The noise is assumed to be 

normally distributed with the a mean value of zero and the covariance is given by 𝑄 

𝑝(𝑤)~ 𝑁(0, 𝑄) (9) 

The measurements are modelled by 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (10) 

Where, 𝑧𝑘 is contains the measured values of 𝑥𝑘. 𝐻 transforms the state vector into 

measurements. 𝑣𝑘 is the measurement noise also Gaussian distributed but with a 

variance of 𝑅 

𝑝(𝑣)~ 𝑁(0, 𝑅) (11) 

𝑤𝑘 and 𝑣𝑘 are white noises and independent of each other [30]. 

3.4.2. Kalman Filter Algorithm 

The KF implements a form of feedback: first, a process state estimate is made using 

the time update equations and then using the measurement update equation a form 

of measurement estimation is obtained [21]. The equations for the time update are 

presented below: 

𝑥̂𝑘|𝑘−1 = 𝐴𝑥̂𝑘−1|𝑘−1 + 𝐵𝑢𝑘 (12) 

𝑃𝑘|𝑘−1 = 𝐴𝑘 𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘 (13) 

Where 𝑥̂ is the state estimate and 𝑃 is the process covariance matrix. 

The measurement update is described by the following equations: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

(14) 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘|𝑘−1) (15) 

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 (16) 

Where K is the Kalman Gain Matrix.  
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The time update equations aim to predict the current state and process covariance 

given the information of the previous steps, this is known as the priori state. The 

measurement equations form part of the feedback where the measurements of the 

current state are incorporated into the priori state forming the posteriori estimate, 𝑥̂𝑘|𝑘 

and 𝑃𝑘|𝑘. This notion of priori and posteriori is shown by the subscript in the 

equations, where a | b would mean an estimate of a based on b and all previous 

states before b. 

In equation (15) the part in parentheses, 𝑧𝑘 − 𝐻𝑥̂𝑘|𝑘−1, calculates the difference 

between the predicted value and the measured value, this is known as the innovation 

or residual represented by as  𝑦𝑘 and in equation (14) the section 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 is 

known as the innovation covariance, commonly denoted as 𝑆𝑘. Using the 𝑆𝑘 the 

Kalman Gain, 𝐾𝑘, is calculated which is then forms part of (15) to compute the 

posteriori state estimate 𝑥̂𝑘|𝑘. The fundamental part of the KF is the calculation of the 

𝐾𝑘, from a series of substitutions and manipulations, it aims to minimize the posteriori 

error covariance (16) [21]. The overall effect can be visualised in the diagram below:  

 

Figure 6: Diagram showing the effect of the KF estimation, adapted from [31] 

3.4.3. Model derivation 

As shown by Gorniki, the model can be derived from continuous time, using the 

assumptions that the measurement from the gyroscope outputs,𝑈, is composed of 

the angular velocity with a constant bias [16] [32] 

𝑈 =  𝜃̇ + 𝜃𝑏𝑖𝑎𝑠 (17) 

𝜃̇𝑏𝑖𝑎𝑠 = 0 (18) 
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Equation (17) is re-arranged to make 𝜃̇ the subject: 

𝜃̇ =  −𝜃𝑏𝑖𝑎𝑠 +  𝑈 (19) 

The model is discretised in step intervals of 𝑘 using the approximation (20) [31] 

𝑑𝑥

𝑑𝑡
=  

∆𝑥

∆𝑡
=  

𝑥𝑘 − 𝑥𝑘−1

𝑡𝑘 − 𝑡𝑘−1
 (20) 

𝜃𝑘 − 𝜃𝑘−1

𝑑𝑡
=  −𝜃𝑏𝑖𝑎𝑠𝑘

+  𝑈𝑘 (21) 

𝜃𝑏𝑖𝑎𝑠𝑘
− 𝜃𝑏𝑖𝑎𝑠𝑘−1

𝑑𝑡
= 0 (22) 

Re-arranging to make 𝜃𝑘 and 𝜃𝑏𝑖𝑎𝑠𝑘
 the subjects of the equations: 

𝜃𝑘 = 𝜃𝑘−1  − 𝜃𝑏𝑖𝑎𝑠𝑘 ∙ 𝑑𝑡 +  𝑈𝑘 ∙ 𝑑𝑡 (23) 

𝜃𝑏𝑖𝑎𝑠𝑘
=  𝜃𝑏𝑖𝑎𝑠𝑘−1

(24) 

Equation (24) is similar to the equation (4) except here the bias is also considered. 

Equation (23) and (24) can now be put in the state space format:  

[
𝜃

𝜃𝑏𝑖𝑎𝑠
]

𝑘

= [
1 −𝑑𝑡
0 1

] [
𝜃

𝜃𝑏𝑖𝑎𝑠
]

𝑘−1

+ [
𝑑𝑡
0

] 𝑈𝑘 (25) 

The accelerometer then comes into the algorithm in the measurement update. Using 

the equation (d) the tilt angle can be calculated but not the bias, thus the 𝐻 matrix is 

given by: 

𝐻 =  [1 0] (26) 
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3.4.4. Overall Diagram 

The diagram below best describes the algorithm: 

3.4.5. Initialisation 

The model derived in section 4.4.3 calculates the tilt angle relative to an initial 

position; the initial position is measured from the accelerometer or another alternative 

is to start the algorithm whilst the robot is vertical and set the initial tilt angle to zero. 

The initialising bias can be calculated by taking a few readings while the gyroscope is 

still and then take the average or just setting it to zero.  

The process covariance matrix also needs to be initialised. This will depend on the 

initialisation of the state vectors. If the initial state vector is initialised with a well 

estimated value then 𝑃0 can be set to a diagonal matrix with relatively small values,  

𝑃0 = [
𝑆𝑚𝑎𝑙𝑙 0

0 𝑆𝑚𝑎𝑙𝑙
] (27) 

on the other hand if the initial state vector is initialised to badly estimated values then 

𝑃0 is set to a diagonal matrix with relatively high values [16], 

𝑃0 = [
𝐿𝑎𝑟𝑔𝑒 0

0 𝐿𝑎𝑟𝑔𝑒
] (28) 

In more precise terms, “the values in the covariance matrix must be defined such that 

the difference between the initial state and the initial state estimate fall in the range 

𝑥0 

𝑃0 

 

Time Update “Prediction” 

𝑥̂𝑘|𝑘−1 = 𝐴𝑥̂𝑘−1|𝑘−1 + 𝐵𝑢𝑘  

𝑃𝑘|𝑘−1 = 𝐴𝑘 𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘  

Measurement Update 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝑆𝑘)−1  

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘)  

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1  
𝑥̂𝑘|𝑘 

𝑃𝑘|𝑘 

(𝑘 ) → (𝑘 − 1) 

The current 

state becomes 

the previous 

state 

Accelerometer 

Measurement, 𝑧𝑘 

Gyro Input, 𝑢𝑘  

Initialisation 

Figure 7: Ongoing Discrete Kalman Filter Cycle [34] 
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that is allowable according to the covariance matrix.” Thus the initialisation of the 

state vector does not have to be very accurate, after some iterations the KF will 

converge to the actual value, given that 𝑃0 is sufficiently large. 

Overall, there are two cases and the effects of each can be seen in the diagrams 

below: 

 Case 1: High 𝑃0 and the state vector has been initialised to zero although the 

sensor was tilted 

𝑃0 = [
10 0
0 10

] 

 Case 2: Low 𝑃0 and the state vector has been initialised using the angle from 

the accelerometer and the bias has been estimated by taking the average of a 

few readings. 

𝑃0 = [
0.05 0

0 0.05
] 

Figure 8: Graph showing the effect of Case 1 

Figure 9: Graph showing the effect of Case 2 

KF output converging to the value 

measured by the accelerometer 
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In case one, as can be seen from the graph the KF output takes about 0.2 seconds 

to converge to the value of the accelerometer reading. The elements in 𝑃 take about 

2 seconds stabilise. In case two, the KF output starts with the accelerometer, change 

in elements of 𝑃 are not even visible through the serial monitor, this is due to limit in 

decimal places in the serial communication. As the output stabilises relatively quickly, 

the benefits of both scenarios are exploited, the tilt angle is initialised from the 

accelerometer, the bias by taking the average over a certain period and 𝑃0 with a 

relatively high value.  

3.4.6. Tuning Parameters 

The final requirement to apply the KF and have a good performance is appropriate 

tuning. The tuning parameters are the measurement noise covariance, 𝑅𝑘, and the 

process noise covariance, 𝑄𝑘. 𝑅𝑘 can be measured as this is from the measurement 

device. 𝑄𝑘 on the other hand is difficult to measure as the process being estimated 

cannot be directly observed [3]. 𝑅𝑘 was estimated by recording values whilst the 

accelerometer was stationary, then using the variance formula below where 𝑁 is the 

number of samples, 𝐴 the random variable and 𝜇 is the mean [33]: 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝐴, 𝐴) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐴) =  
1

𝑁 − 1
∑|𝐴𝑖 − 𝜇|2

𝑁

𝑖=1

(29) 

𝜇 =  
1

𝑁
∑ 𝐴𝑖

𝑁

𝑖=1

(30) 

With a sample of 900 measurements 𝑅𝑘 was found to be 0.0527 degrees squared.  

Although the value of 𝑅𝑘 was calculated, “superior filter performance (statically 

speaking) can be obtained by tuning the filter parameters. [21]” To do so, 

understanding of the effects of each of the parameters is essential.  

𝑅𝑘 describes the precision of  the measurements, it has an effect on the Kalman Gain 

(14) and the posteriori estimate (15). If 𝑅𝑘 is large then the Kalman Gain will be 

smaller, hence there less ‘trust’ in the innovation and vice versa.  The practical effect 

of changing 𝑅𝑘 is shown in Figures 10 and 11 where the sensor was moved in a way 

that square waves were generated.  
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Figure 10: Graph Showing the effect of high 𝑅𝑘  

Figure 11: Graph Showing the effect of low 𝑅𝑘 

From Figure 10, it can be observed that setting 𝑅𝑘 to a value that is too large leads to 

the output of the KF taking too long to converge causing the output to have a smaller 

amplitude that the actual movements and the output not being square waves, instead 

being composed of smooth curves. Figure 11 shows the opposite, where the output 

is close to the values of the accelerometer. Having a high confidence in the 

measurements could cause higher noise in the output of the KF. 

𝑄𝑘 indicates the confidence in the model derived. The elements of 𝑄𝑘 are assumed to 

uncorrelated, and therefore it is a diagonal matrix, composed of 𝑄𝑎𝑛𝑔𝑙𝑒 (covariance of 

the angle) and  𝑄𝑏𝑖𝑎𝑠 (covariance of the bias).  

𝑄𝑘 =  [
𝑄𝑎𝑛𝑔𝑙𝑒 0

0 𝑄𝑏𝑖𝑎𝑠
] (31) 
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The effects of changing 𝑄𝑎𝑛𝑔𝑙𝑒 are opposite to 𝑅𝑘 and 𝑄𝑏𝑖𝑎𝑠 is adjusted until no drift is 

observed in the Kalman Filter output. Figures 12 and 13 show the influence of 

𝑄𝑎𝑛𝑔𝑙𝑒 in the output of the KF. Figure 14 shows the KF running for about 40 seconds, 

and it can be seen that the output has not deviated from the average of the 

accelerometer reading, suggesting that the 𝑄𝑏𝑖𝑎𝑠 is appropriate.  

Figure 12: Graph Showing the effect of high 𝑄𝑎𝑛𝑔𝑙𝑒 

Figure 12: : Graph Showing the effect of low 𝑄𝑎𝑛𝑔𝑙𝑒 

Figure 14: Graph showing that the angle is the appropriate value 
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 Complementary Filter 

This section is based on the work by Esfandyari et al [22] . The diagram below 

outlines the complementary filter (CF) for fusing data from a gyroscope and an 

accelerometer:  

 

Figure 13: Diagram of the Complementary Filter [22] 

The diagram can be translated into the equation below: 

𝜃 =  𝛽 ∙ 𝜃𝑔𝑦𝑟𝑜 + (1 − 𝛽) ∙ 𝜃𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑡𝑒𝑟 (32) 

Where 𝛽 is a constant between zero and one. 𝜃𝑔𝑦𝑟𝑜  is calculated using equation (7) 

and the accelerometer using equation (23). The bias is estimated in the start up 

sequence, the same way it is estimated for the KF.  

In essence, the first part of the equation behaves like a high pass filer and the 

second like a low pass filter. 𝛽 is generally set to a relatively high value (close to 1), it 

is set depending on the sampling rate(∆𝑇) and time constant(𝜏) desired. 𝜏 is given by 

𝜏 =  
𝛽 ∙ ∆𝑇

1 − 𝛽
(33) 

𝜏 affects the weighting in equation 31. If the motion of is faster than 𝜏, higher 

weighting is placed upon the gyroscope angle, behaving as the low pass filter and 

reducing the noise from the accelerometer. The opposite happens when the motion 

is slower than 𝜏, the accelerometer angle measurement has a higher weighting 

decreasing the effect of the bias in the gyroscope.  
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 Analysis of Performance 

To test the performance of the filtering techniques and to tune the Kalman Filter the 

test rig shown in Figure 14 was designed and made. The length of the arm, which the 

IMU is secured to, was to mimic the position of the IMU in the robot. Initially, the 

servo motors where programmed to move the arm, however, the servo motors are 

not sufficiently fast, to notice any delay in the output of the sensor fusion techniques. 

The rig was still useful as it holds the position after no external force is applied. By 

manually moving the arm, the waveforms in Figures 10-14 were generated. The final 

tuning parameters for the KF are shown in Figure 15 and it can be observed that with 

these values the output converges sufficiently fast whilst the accelerometer noise is 

filtered out.  

Figure 14: Picture of the Test Rig 

Figure 15: Graph showing the performance of the KF after being tuned 

Servo Motors 
IMU 
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As a final comparison, the output of the Kalman Filter, the Complememtary Filter and 

the built in algorithm was plotted in Figure 16.  

As the manufacturers of the chip developed the built in Digital-Motion Processor 

(DMP), it was expected to have the best performance and was going to be used as 

the benchmark for comparison of the different filtering techniques. In practice, Figure 

16 shows that the DMP takes longer to settle than the Kalman Filter and the 

Complementary Filter. It may be because the frequency had to be lowered to 20Hz 

otherwise the buffer in the IMU would overflow. The Kalman Filter and the 

Complementary Filter appear to have very similar performance, the only further 

comparison required would be to observe whether the complementary filter would 

drift over time due to the increasing bias. 

Lastly, the table below shows loop execution time of each of the angle estimation 

methods and it can be seen that the KF only requires an additional 270 

microseconds to complete the calculations in comparison to the Complementary 

Filter, making no significant impact on the overall loop execution time.  

Angle Estimation Method Average Loop Iteration time (µS) 

Kalman Filter 1740 

Complementary Filter 1470 

DMP 1462 

Table 2: Average Loop Time of Each of the Fusion Techniques 

Figure 16: Graph showing the output angles of the DMP, KF and CF. 

DMP converging 
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 Hardware 

 Introduction 

The section aims to provide an overview of the design considerations and 

implementation of the robot physically. To begin with, the torque required by the 

motor is estimated and the compromise between torque and RPM is discussed. 

Followed by a description of the main components such as the microcontroller, the 

IMU, the motor driver board and the power source. To finalise, the overall design of 

the robot is shown. 

 Motors and Wheels  

To determine the appropriate motors for the robot, the 

first consideration was the minimum torque required. 

To estimate the torque, the model to the right was 

considered. The relationship between torque, 𝜏, and 

force, 𝑭, is given by 

𝜏 =  ‖𝒓‖‖𝑭‖ sin 𝜃  

Where 𝒓 is the position vector and 𝜃 is the angle 

between force and position vectors. 

Assuming the distance between the pivot point and the centre of mass (𝐿) is 12cm, 

the maximum tilt angle (θmax) is 40° and the mass of the robot (𝑚) is 0.7kg, the 

minimum torque required is 

𝜏 =  𝐿 ∗ 𝑚𝑔 ∗ 𝑠𝑖𝑛𝜃 = 0.12 ∗ 0.7 ∗ 9.81 ∗ sin(40) = 0.530 𝑁𝑚 (35)

ven that there are two motors, the torque required per motor is 0.265Nm. In this 

scenario, the inertia is not taken into account and the robot is assume to start moving 

at θmax. Due to the crude assumptions, the robot by Gornicki was looked at [16]. In 

which the stall torque of the motors were 0.224Nm and a gear with a 3:1 ratio was 

used. With the assumption of 15% inefficiency, that corresponds to a maximum 

torque on the output shaft of 0.5712Nm. 

Looking solely at the parameters mentioned, the chosen motor was the Pololu 

medium power 47:1 Metal Gearmotor with 48 CPR Encoder. The motor has a stall 

torque of 0.611Nm and the encoder outputs 2248.86 counts per revolution [34]. 

However, this was not the appropriate manner to choose the motors. The wheels and 

θmax 

mg 
L 

Figure 17: Robot Model 

(34) 
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the RPM also have to take into consideration. The torque required to move the wheel 

is also given by Equation X, where 𝒓 would be the radius of the wheel and 𝜃 would 

be 90 degrees, thus for a given force the torque is proportional to the wheel radius. 

The trade-off of choosing smaller wheels such that lower torque is required is lower 

circumference of the wheel, requiring the motors to spin faster to get under the centre 

of mass of the robot.  

The dispute between torque and RPM is also present with the distance between the 

centre of mass and the pivot. As shown by Equation X, as 𝐿 increases, the torque 

required also increases, on the other hand the natural frequency, 𝜔𝑝 of the pendulum 

[35], is given by 

𝜔𝑝 = √
𝑔

𝐿
(36) 

Increasing 𝐿 has the effect of reducing the natural frequency of the system, 

decreasing how fast the actuators have to perform. 

As mentioned, unfortunately the natural frequency and the wheel size were only 

considered after motor was purchased. To attempt to improve the system’s 

performance the battery was moved to higher position to increase the centre of 

mass. In addition, the wheels were changed from 60mm to 80mm in diameter.  

 Microcontroller 

The microcontroller used in the robot is the Arduino Uno. It is a board based on the 

ATmega328P from Atmel’s AVR family. It is an 8-bit microcontroller running with a 16 

MHz clock speed.   The board has a built-in voltage regulator allowing it to be 

powered by any input voltage in the range of 6-20V. On-board is also an FTDI chip, 

making only a USB cable required to program it [36]. The board has a relatively small 

size, maintaining the robot as small as possible. The main advantage of the Arduino 

is the IDE and the large community. Its IDE enables fast software development due 

to the extensive collection of libraries and sample code. The large community is 

helpful in the case where a problem is encountered, there is a higher chance that 

someone else has found a solution and it is visible in one of the many forums 

available. 
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 Inertial Measurement Unit (IMU) 

The inertial measurement unit (IMU) is very important component in the robot as 

knowing the tilt angle is critical. IMUs are composed of electromechanical systems 

(MEMS). MEMS accelerometers and gyroscopes have the advantage of being 

compact, inexpensive and having low power consumption. They are however less 

accurate in comparison to optical devices [25].  

The IMU used is InvenSense’s MPU6050. The specifications mentioned of the IMU in 

this section, can be found in the data sheet [37]. It a 6 degrees of freedom IMU, 

consisting of a 3-axis gyroscope and a 3-axis accelerometer. Initially the IMU used 

was the MPU9250, however due malfunction, the sensor was replaced. These 

sensors are very similar, with the exception of the magnetometer found on the 

MPU9250. A great advantage of the sensor is that it has been used with an Arduino 

and libraries are available for it. 

The gyroscope full-scale range that can be adjusted to ±250, ±500, ±1000 or ±2000 

degrees per second. The gyroscope was set up to have the range between ±1000 

degrees per second, with these settings the gyroscope will have the lowest resolution 

but looking at equation 36 and assuming 𝐿 = 0.12𝑚, the natural frequency of the 

system is 9.04 radians/second (corresponding to 517 degrees per second), any lower 

range would cause the motion not to be detected. The gyroscope also has an 

adjustable sampling frequency between 1 to 8 kHz. Upon brief experimentation, it 

was concluded that the set sampling frequency did not have a significant impact on 

the results; it may be because the microcontroller only read data from the sensor at 

400 Hz. 

The accelerometer can also be programmed to have different full-scale ranges, these 

include to ±2, ±4 and ±6g. The range chosen is ±2g as the assumption while 

calculating the angle form the accelerometer is that gravity is the only force acting 

upon the robot. The MPU6050’s accelerometer has a sampling rate of 1 kHz. 

The communication between the microcontroller and the IMU is through the Inter-

Integrated Circuit (I2C) protocol. The protocol is used for set-up of the IMU and 

reading data from it. Further details on the communication and set-up of the IMU are 

provided in the Section 5. 
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 Motor Driver Board 

The motors chosen are designed to operate at 12V and have a stall current of 2.1 

Amps. The microcontroller cannot supply that much power, thus a Full bridge driver 

is required to allow the motor to be controller in both directions. The motor driver 

board used is the Aptinex Dual L6203 Board. The board itself has diodes to protect 

the microcontroller and battery from back EMF. The L6203 chips can operate with a 

supply voltage up to 42V, and can supply an RMS current of 4A (peak 5A). They are 

also compatible with TTL logic, meaning that the microcontroller can be connected 

directly to the control pins without the need of transistors in between. Lastly, the 

enable pins can be controller with a Pulse Width Modulation (PWM) frequency of up 

to 100 KHz [38], at higher frequencies the motor was found to have higher torque it 

may be due to higher current supplied. 

 Power Source 

To provide power while maintaining the robot mobile, a Lithium Polymer (Li-Po) 

battery was chosen as the power source. The specific battery used is Hobbyking’s 

Turnigy 3 cell 2200mAh 20C. The battery can supply a current of up to 44A. Given 

that the stall current of each of the motors is 2.1A and the remaining components 

(Arduino, IMU and encoders) have an estimated current draw of 500 mA, the battery 

can effortlessly manage [34]. The large current can be dangerous for the 

components, thus a fuse had to be put in place. 

 Overall Design 

The final design of the robot is shown in the following page. The modular design 

allowed the layers to be adjusted as needed, as mentioned, the positioning of the 

battery was moved higher up to reduce the natural frequency of the system. The 

heights were also adjusted, being composed of M3 spacers, it simply involved adding 

a few more in between the layers. The layered format also kept the components 

protected, this was particularly important with the battery as a puncture or dent on a 

Li-Po battery may cause an explosion.  

Initially, the layers were planned to be made out of MDF, however it was not 

available, they were instead made out of Acetal. Acetal can be laser cut and is easy 

to work with. Furthermore, the material has a high tensile strength without being 

brittle or dense, this means that it will not be excessively heavy and can withstand all 

the drops while the robot is being tuned. 
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Additionally, potentiometers and a switch were added. The potentiometers are to 

help tune PID and the switch is to allow the power to be cut off without having to 

unplug the battery cable every time. To hold them in place the following pieces were 

designed and 3D Printed:  

 

 

 

 

 Final Assembly 

 

Figure 19: Final Robot Assembly 
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Figure 18: 3D Printed Parts 
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 Software Implementation 

 Introduction 

This section provides in detail the key aspects of programming the robot. The code is 

composed of various sections found online, this maybe in the form of forums, blogs 

or tutorials. Throughout the project various versions of code developed, each for a 

specific purpose, for example just printing the output of the Kalman Filter and the 

accelerometer angle to view the performance of the Kalman Filter or code to 

characterize the motors. Part of the code is the same as it would be in an equation 

from, thus only the non-trivial aspects are considered here and the reasons behind 

are mentioned. To begin with, the important sections of the code are mentioned. 

Later, the block diagram of the code is given to provide a higher level view of the 

code. 

 Constant Loop Time 

A large number of the equations mentioned in the previous sections have 𝑑𝑡 

incorporated in them. Either 𝑑𝑡 can be measured or the microcontroller could be 

programmed to have a constant loop time. At first interrupts were proposed, however 

interrupts are required for encoders and prioritisation of interrupts would have to be 

considered. To solve this, the loop was kept constant using the Micros() function 

which when called returns the number or microseconds the Arduino has been 

running since being turned on. The Micros() is evaluated in a while loop condition, to 

do nothing, until the specified time is met. To test if the loop time was constant, the 

loop time was set to 2.5ms and a pin was programmed to remain HIGH for 1ms and 

then go LOW. The pin was then connected to an oscilloscope and the output is 

shown in the figure below. As can be seen this worked as expected:  

Figure 20: Oscilloscope Output 
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 Reading from IMU 

As mentioned previously, the communication between the IMU and the 

microcontroller is done through the I2C protocol. The protocol involves a series of 

rules, such as the master (Arduino) driving the clock line or the master initiating 

transfer of data. These are not of concern, as the Wire.h library accommodates for 

the rules. However, the format in which reading and writing of data is done, still 

needs to be followed [26]. This has been simplified and summarized in the table 

below: 

Read Write 

1. Send the start sequence, specifying 

the address of the slave device and the 

write bit HIGH 

1. Send the start sequence, specifying 

the address of the slave device and the 

write bit HIGH 

2. Send the internal register address 

that writing is done to 

2. Send the internal register address 

that is going to be read from 

3. Send data byte 3. Send the start sequence again, 

specifying the address of the slave 

device and the write bit LOW 

4. Send stop sequence 4. Read data from the register 

 5. Send stop sequence 

Table 3: I2C Read/Write Protocol 

The device address and the register addresses can be found in the register map [39]. 

The register map also the values to write to configure the device as desire for it to 

operate, for example writing 0x00 to register 0x1C to set the accelerometer full scale 

to ±2gs.  

Once the IMU has been set up and the reading is done from the appropriate 

registers, the values have to be scaled to a unit that is meaningful. The data read is 

the value from the Analogue to Digital Converters (ADCs) in the IMU, to convert the 

following formula can be used:  

𝑆𝑐𝑎𝑙𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝐴𝐷𝐶𝑣𝑎𝑙𝑢𝑒

𝐴𝐷𝐶𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 𝑆𝑐𝑎𝑙𝑒𝑆𝑖𝑧𝑒 (37) 

The ADCs in the IMU have a 16-bit resolution and the scale size is as configured 

[26]. 
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 KF Implementation 

From the Kalman Filtering Section, it can be seen that the algorithm involves matrix 

multiplication, addition and inversion, to do so the MatrixMath.h library could be used, 

however this would pose a significant delay in the loop iteration time. To solve the 

issue, the matrices have been expanded and simplified before writing the code. For 

example, equation X can be written as follows: 

𝐾1 =
𝑃11

𝑃11 + 𝑅
 (38) 

𝐾2 =
𝑃21

𝑃11 + 𝑅
(39) 

Separating the matrix into two sets of equations removes the need to use the library. 

Furthermore, changing the inverse to division will decrease the computation required 

by the microcontroller as the library would have used the Gauss-Jordan elimination 

with partial pivoting. Changing inversion to multiplication is only allowed in this case, 

as the values inside the parentheses simplify into a scalar. Making such changes is 

important with the Arduino Uno as it is an 8-bit microcontroller and has no floating-

point unit.  

 Displacement and Angular Velocity from Encoders 

The encoders in the motors are quadrature encoders. There are two signals and the 

rising edges are counted to establish the displacement and angular velocity. The 

direction in which the shaft is rotating is determined by the phase difference between 

the two signals. This is shown in the diagram below: 

To count the edges and determine the phase different, rising edge interrupts were 

setup on channel A. In which if, channel B is HIGH then increment the number of 

pulses or if B is LOW decrement the number of pulses. This method simplifies the 

Figure 21: Shows the direction is determined with quadrature encoders [41] 
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code and reduces the number interrupt pins needed, however, it increases the 

quantisation error as the number of ticks per revolution falls from 2248 to 562. 

To convert the number of pulses, 𝑁, to rotor displacement and angular velocity the 

following formulae are used:  

𝑅𝑜𝑡𝑜𝑟 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 [𝑑𝑒𝑔𝑟𝑒𝑠𝑠] = 𝑒𝑑𝑔𝑒 𝑐𝑜𝑢𝑛𝑡 ∙
360

𝑁𝑃𝑃𝑅
+  𝛼0 (40) 

𝜔𝑠ℎ𝑎𝑓𝑡 [
𝑟𝑎𝑑

𝑠
] =

2𝜋 ∙ 𝑁

𝑁𝑃𝑃𝑅 ∙ 𝑇
 (41) 

Where 𝑁𝑃𝑃𝑅 is the number of pulses per revolution of the encoder, 𝛼0 is the initial 

position (assumed to be zero), and 𝑇 is the time window between readings. The 

quantisation error is also inversely proportional to 𝑇. To reduce the quantisation error, 

the time window was set to 10 loop iterations. 

 Overall Diagram 

The complete software loop is given in the following page. Most of the code is 

sequential with the only exception being the encoder interrupts, as these are 

asynchronous. In the diagram, the interrupt is shown as a grey box, with grey arrows 

to and from it. The dashed arrows show that it can happen anywhere in the code, at 

any given moment. 

The initialisation involves the following: setting up the serial communication with the 

computer, setting up the IMU, declaring the input and output pins, setting the PWM 

frequency, and estimating the bias and initial position for the Kalman Filter. 

The output to the motor driver board simply involves setting which part of the H-

bridge is going to be on, to have the correct direction of motion of the wheels. In 

addition, setting the PWM duty cycle for the appropriate angular velocity of the 

wheels. 
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Code Block Diagram 
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Figure 22: Code Block Diagram 
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 Control 

 Introduction 

This chapter focusses on the control aspect of the self-balancing robot designed. 

Firstly the state space model of the robot is shown and the how the parameters were 

established. Then a discussion on stability of the plant and control of the plant in 

simulation. Finally, the robot’s physical performance is shown and analysed. 

 State-Space Model 

Developing the model is a tedious task, thus the model developed by Bonafilia et al 

was used. The model has been developed from the three models shown below: 

 

The model is based upon the following assumptions: No yaw is considered, the body 

and wheel are represented by point masses, no slipping between the ground and 

wheels, and the mechanical system is slower than the electrical system [17].  

The linearized model given in the following state-space format 

𝜉̇ = 𝐴𝜉 + 𝐵𝑢 (42) 

𝑦 = 𝐶𝜉 + 𝐷𝑢 (43) 

With the following states: 

𝜉 = [𝑥 𝑥̇ 𝜃 𝜃̇]  

Figure 23: [a] diagram of force and torque on the wheels, [b] diagram of upper body 

of the robot, [c] diagram of electrical sub-system [14] 

 (44) 
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Where 𝑥 is the displacement, 𝑥̇ is the velocity, 𝜃 is the tilt angle and 𝜃̇ is the angular 

velocity. The Matrices 𝐴, 𝐵, 𝐶 and 𝐷 are shown below and the parameters are given 

in table 4. 

𝐴 =  [

0 1
0 𝛼

0 0
𝛽 −𝑟𝛼

0 0
0 𝛾

0 1
𝛿 −𝑟𝛾

] (45) 

𝐵 =  [0 𝛼𝜀 0 𝛾𝜀]𝑇 (46) 

𝐶 =  [
0 0
0 0

1 0
0 1

] (47) 

𝐷 =  [0 0]𝑇 (48) 

Where 

𝛼 =  
2(𝑅𝑏 − 𝐾𝑒𝐾𝑚)(𝑀𝑏𝐿2 + 𝑀𝑏𝑟𝐿 + 𝐽𝑏)

𝑅(2(𝐽𝑏𝐽𝑤 + 𝐽𝑤𝐿2𝑀𝑏 + 𝐽𝑏𝑀𝑤𝑟2 +  𝐿2𝑀𝑏𝑀𝑤𝑟2) + 𝐽𝑏𝑀𝑏𝑟2)
(49) 

𝛽 =  
−𝐿2𝑀𝑏

2𝑔𝑟2

𝐽𝑏(2𝐽𝑤 + 𝑀𝑏𝑟2 + 2𝑀𝑤𝑟2) + 2𝐽𝑤𝐿2𝑀𝑏 + 2𝐿2𝑀𝑏𝑀𝑤𝑟2
(50) 

𝛾 =
2(𝑅𝑏 − 𝐾𝑒𝐾𝑚)(2𝐽𝑤 + 𝑀𝑏𝑟2 + 2𝑀𝑊𝑟2 + 𝐿𝑀𝑏𝑟)

𝑅𝑟(2(𝐽𝑏𝐽𝑤 + 𝐽𝑤𝐿2𝑀𝑏 + 𝐽𝑏𝑀𝑤𝑟2 + 𝐿2𝑀𝑏𝑀𝑤𝑟2) + 𝐽𝑏𝑀𝑏𝑟2)
(51) 

𝛿 =  
𝐿𝑀𝑏𝑔(2𝐽𝑤 + 𝑀𝑏𝑟2 + 2𝑀𝑤𝑟2)

2𝐽𝑏𝐽𝑤 + 2𝐽𝑤𝐿2𝑀𝑏 + 𝐽𝑏𝑀𝑏𝑟2 + 2𝐽𝑏𝑀𝑤𝑟2 + 2𝑗𝑏𝑀𝑤𝑟2 + 2𝐿2𝑀𝑏𝑀𝑤𝑟2
 (52) 

𝜀 =  
𝐾𝑚𝑟

𝑅𝑏 − 𝐾𝑒𝐾𝑚
 (53) 

Table 4: Parameters of the robot 

Parameter Value Description 

𝑴𝒃 0.987 Mass of the robot [kg] 

𝑴𝒘 0.025 Mass of the wheels [kg] 

𝑱𝒃 3.83e-3 Moment of inertia about the centre of mass [kgm2] 

𝒓 0.04 Radius of the wheels [m] 

𝑱𝒘 4e-05 Moment of inertia for the wheels [kgm2] 

𝑳 0.102 Distance of wheel to centre of Mass 

𝑲𝒆 0.855 EMF constant [Vs/rad] 

𝑲𝒎 0.316 Torque constant [Nm/A] 

𝑹 7.2 Motor resistance [Ω] 

𝒃 0.002 Viscous friction constant [Nm s / rad] 

𝒈 9.81 Gravitational constant [m / s2] 
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 Estimation of the Robot’s Parameters 

Estimation of some of the parameters is simple, such as the mass of the robot using 

a scale or the resistance of the motors using a multimeter. The viscous friction 

constant was assumed to be the same as the one found by Bonafilia et al.  The 

inertia value for the wheel was calculated by assuming the wheel is solid cylinder 

rotating around its centre and using the formula below [40]: 

𝐽𝑤 =
1

2
𝑀𝑤𝑟2 =

1

2
(0.025 × 2)(0.04)2 = 4 × 10−5 kgm2 (54) 

The robot’s body was assumed to be a homogenous parallelepiped and was 

calculated using the formula below, where ℎ is the height and 𝑤 is the width: 

𝐽𝑏 =
𝑀𝑏

12
(ℎ2 + 𝑤2) =

0.987

12
(0.2042 + 0.072) = 3.83 × 10−3 kgm2 (55) 

The torque constant,𝐾𝑚, is 1/gradient of the 

current/torque graph shown to the right. The 

values provided in the data sheet are the stall 

current, stall torque and the free running current. 

From these value 𝐾𝑚 was found to be 0.316 

Nm/A.  

To find 𝐾𝑒 different voltages were applied to 

the motors and the values of angular velocity were plotted (Figure 26). Using the 

method of Least squares estimation the equation of the line of best fit was found and 

is given on the graph legend in the format of 𝑦 = 𝐴 + 𝐵𝑥.  

 

Figure 24: Current vs Torque Graph 

Figure 25: Graph of Speed vs Voltage 
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𝐾𝑒 is the inverse of the gradient, hence given by 

𝐾𝑒 =
1

𝐵
=  0.855

𝑉𝑠

𝑟𝑎𝑑
(56)  

 Analysis of the System 

Using the MATLAB toolbox to covert the state space model into a transfer function 

and pole-zero plotting function, the figure below was generated: 

As it can be seen, there are positive poles in the plant, once again showing that the 

plant is unstable. Unlike as expected, non-minimum phase zeros are not present in 

the system, it may be due to how the system model was derived. Furthermore, 

dissimilar to the inverted pendulum on a cart there are no positive real poles to the 

right of the non-minimum phase zero, hence a stable controller can be used to 

control the plant. 

 LQR in MATLAB 

In the robot designed, all of the states can be measured thus  

𝐶 =  [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

] (57) 

Figure 26: Pole-Zero Plot 
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Standard selection of 𝑄 is given by  

𝑄 = 𝐶𝑇𝐶 (58) 

Thus 𝑄 will be the same as (55). The value of 𝑅 was selected arbitrarily to one. 

Using the LQR function in MATLAB, the following 𝐾 matrix was obtained: 

𝐾 =  [1.0000    0.1129  − 37.7177   − 1.4959] (59) 

To view the system’s performance and the input signal the Simulink diagram in 

Figure 27 was employed. The initial conditions were set such that all the states were 

zero, except the tilt angle was set to 0.15 radians. The system states and the system 

input are shown in Figures 28 and 29 respectively. 

 

Figure 27: Simulink Diagram 

Figure 28: System states vs Time 
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From Figure 29, it can be seen that the voltage does not exceed ±12V; hence, the 

calculated 𝐾 values may be used in the actual robot. Figure 28 shows that the robot 

is expected to return to equilibrium and the initial position within a fraction of a 

second. 

 Physical Performance 

Once the robot was assembled and the Kalman Filter tuned, then a PID controller 

was implemented. The code can be found in Appendix 1. The recorded performance 

is shown in the diagram below: 

The performance is very poor; the robot was oscillating between ±4 degrees. The 

values were recorded through a USB cable, which dampened the oscillations of the 

robot. Without the USB cable the robot will vibrate attempting to balance for a few 

seconds and then fall. The issue is suspected to be due to the backlash in the motors 

that became progressively worse as the motors were worn in, and an initial dead 

Figure 30: Robot Tilt angle 

Figure 29: System Input (Voltage) vs Time 
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zone in the Voltage against RPM graph. As an attempt to compensate, an offset was 

set to in the PMW duty cycle in the each given direction. According to Bonafilia et al, 

this problem was faced in their robot as well and an attempt to set an offset resulted 

in a shaky behaviour.  

LQR was also implemented in the robot using the 𝐾 values calculated in MATLAB, 

the code is given in Appendix 4. However, the robot did not maintain itself upright. 

 Conclusions 

 Project Achievements 

The objectives set in the beginning of the project were met, with the exception of 

making the robot balance by itself using PID. The project as whole was a steep 

learning due to the wide array of disciplines involved from construction and design, to 

control and software implementation.  

 Project Limitations and Final Remarks 

The robot not balancing is certainly a large limitation of the project. The focus was 

control and data fusion, hardware selection was rushed and an aside which caused 

the need to have to change battery position and the wheels. Furthermore, the motors 

were found to have significant backlash, which was a complaint in the manufacturer’s 

forums.  Deeper analysis could have been conducted prior to purchasing the 

components. Instead of using standard motors with spur gears, motors with planetary 

gearboxes generally tend to have less backlash. In addition, instead of the Arduino a 

Teensy microcontroller could have been used, the cost is similar with higher 

performance, and the same IDE and libraries can be used to program it. This would 

have resulted in less time attempting to optimise the code. 

In terms of delivery, in comparison to set plan, an attempt was made to complete the 

targets for each given week. For example, if by week 2 Kalman tuning had to be 

completed and it was only finished in week 4, the targets for weeks 3 and 4 were met 

whilst I was trying to meet the targets for week 2. This however was also a 

disadvantage as it led to exploring aspects that were not included in the final robot 

such as LabVIEW for data visualisation or Bluetooth communication. The weeks set 

aside for contingency planning were very useful, major hindrance was found when 

the IMU stopped working. 
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Given more time and resources, better motors could be purchased to make the robot 

balance. The development of a self-balancing robot may extended in many directions 

for future work, the yaw can be considered, LQG controller can be implemented or 

remote control using Bluetooth communication. 

Ultimately, it can be summarised that a learning platform was developed rather than 

designing and development of an optimally performing self-balancing robot.  
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 Appendices 

 Appendix 1 – MATLAB code 

%robot parameters 
mb = 0.987; %mass of robot 
mw = 0.025; %mass of wheels 
jb = 0.00383; %moment of inertia about the centre of mass 
r = 0.04; %radius of wheels  
jw = 4E-05; %moment of inertia for the wheels 
l = 0.102; %distance from wheel axle to CoM 
ke = 0.855; 
km = 0.316;  
R = 7.2; %motor resistance 
b = 0.002; %Viscous friction constant 
g = 9.81; %gravity 

  
alp = (2*(R*b - ke*km)*(mb*l*l + mb*r*l +jb))/ R*(2*(jb*jw + jw*l*l*mb + 

jb*mw*r*r + l*l*mb*mw*r*r)+jb*mb*r*r); 

  
bet = (-l*l*mb*mb*g*r*r)/(jb*(2*jw + mb*r*r + 2*mw*r*r) + 2*jw*l*l*mb + 

2*l*l*mb*mw*r*r);  

  
gam = (-2*(R*b -ke*km)*(2*jw + mb*r*r + 2*mw*r*r + l*mb*r))/(R*r*(2*(jb*jw 

+ jw*l*l*mb + jb*mw*r*r + l*l*mb*mw*r*r)+jb*mb*r*r)); 

  
delt = (l*mb*g*(2*jw + mb*r*r + 2*mw*r*r))/(2*jb*jw + 2*jw*l*l*mb + 

jb*mb*r*r +2*jb*mw*r*r + 2*l*l*mb*mw*r*r); 

  
chi = (km*r)/(R*b - ke*km); 

  

  
A = [0  1  0  0; 
    0 alp bet -r*alp; 
    0 0 0 1; 
    0 gam delt -r*alp]; 

  
B = [0; alp*chi; 0; gam*chi]; 

  
C = [1 0 0 0; 
    0 1 0 0; 
    0 0 1 0; 
    0 0 0 1] 
D = [0;0;0;0] 

  
Q=C'*C 

  
[n,d]=ss2tf(A,B,C,D) 

  
G = ss(A,B,C,D) 

  
R = 1; 

  
[K,S,e] = lqr(G,Q,R) 

 

 



School of Electrical and Electronic Engineering Page 46 

 Appendix 2 – Arduino PID code 

//Sources used in code development 

//http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-

to-implement-it/ 

//http://playground.arduino.cc/Main/RotaryEncoders 

//http://www.geekmomprojects.com/mpu-6050-redux-dmp-data-fusion-vs-

complementary-filter/ 

//http://www.x-firm.com/?page_id=191 

//http://playground.arduino.cc/Code/PwmFrequency 

// http://tom.pycke.be/mav/71/kalman-filtering-of-imu-data 

#include <Wire.h> 

#define Q_angle 0.03 

#define Q_gyro  0.01   

#define R 0.05  

 

#define EN34  9  //m2 enable 

#define EN12  10  //m1 enable 

#define M2neg  6 

#define M2pos  7 

#define M1neg  5 

#define M1pos  4 

 

float summation=0; 

float kp=100.0, ki=0.0, kd=0.0, output=0;  

char offset = 0; 

 

double gyroX, gyroY, gyroZ;//raw values 

long accelX, accelY, accelZ;  

float acc_x_zero, acc_y_zero, acc_z_zero, gyro_x_zero; 

 

float g_x, g_y, g_z; //scalled values 

float ang_vel_x, ang_vel_y, ang_vel_z; 

 

float P_00 = 5, P_01 = 0, P_10 = 0, P_11 = 5; 

double tilt_angle; 
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float bias_x; 

float angle; 

uint32_t timer; 

uint32_t Test_timer; 

 

void setPwmFrequency(int pin, int divisor) { 

  byte mode; 

  if(pin == 5 || pin == 6 || pin == 9 || pin == 10) { 

    switch(divisor) { 

      case 1: mode = 0x01; break; 

      case 8: mode = 0x02; break; 

      case 64: mode = 0x03; break; 

      case 256: mode = 0x04; break; 

      case 1024: mode = 0x05; break; 

      default: return; 

    } 

    if(pin == 5 || pin == 6) { 

      TCCR0B = TCCR0B & 0b11111000 | mode; 

    } else { 

      TCCR1B = TCCR1B & 0b11111000 | mode; 

    } 

  } else if(pin == 3 || pin == 11) { 

    switch(divisor) { 

      case 1: mode = 0x01; break; 

      case 8: mode = 0x02; break; 

      case 32: mode = 0x03; break; 

      case 64: mode = 0x04; break; 

      case 128: mode = 0x05; break; 

      case 256: mode = 0x06; break; 

      case 1024: mode = 0x07; break; 

      default: return; 

    } 

    TCCR2B = TCCR2B & 0b11111000 | mode; 

  } 

} 

void zero_calculation(){ 
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//Serial.println("Begin Bias Measurement"); 

  for(int i =0; i<50; i++){ 

    ReadData(); 

    gyro_x_zero= gyro_x_zero+ ang_vel_x; 

 

    acc_x_zero = acc_x_zero + g_x; 

    acc_y_zero = acc_y_zero + g_y; 

    acc_z_zero = acc_z_zero + g_z; 

     

    delayMicroseconds(2500); 

  } 

 gyro_x_zero = gyro_x_zero/50; 

 

 acc_x_zero = acc_x_zero/50; 

 acc_y_zero = acc_y_zero/50; 

 acc_z_zero = (acc_z_zero/50) - 1; 

 

 bias_x = gyro_x_zero; // initialzing the bias 

  

//Serial.println("Sequence Completed"); 

} 

void KF(float newAngle, float newRate, float dt) { 

    tilt_angle += dt * (newRate - bias_x); 

 

    P_00 += dt * (dt*P_11 - P_01 - P_10 + Q_angle); 

    P_01 -= dt * P_11; 

    P_10 -= dt * P_11; 

    P_11 += Q_gyro * dt; 

 

    float S = P_00 + R;  

     

    float K_0 = P_00 / S; 

    float K_1 = P_10 / S; 

 

    float y = newAngle - tilt_angle;  
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    tilt_angle += K_0 * y; 

    bias_x += K_1 * y; 

 

    float P00_temp = P_00; 

    float P01_temp = P_01; 

 

    P_00 -= K_0 * P00_temp; 

    P_01 -= K_0 * P01_temp; 

    P_10 -= K_1 * P00_temp; 

    P_11 -= K_1 * P01_temp; 

}; 

void motorctrl(int torque){        //torque between 0-255 

  if (torque >= 0)  {                                        // drive motors forward 

    digitalWrite(M1neg, LOW); 

    digitalWrite(M1pos, HIGH); 

    digitalWrite(M2neg, HIGH); 

    digitalWrite(M2pos, LOW); 

    torque = abs(torque)+ offset; 

  }   

  else{                                                  // drive motors backward 

    digitalWrite(M1neg, HIGH); 

    digitalWrite(M1pos, LOW); 

    digitalWrite(M2neg, LOW); 

    digitalWrite(M2pos, HIGH); 

    torque = abs(torque)+ offset; 

    } 

     

   

    analogWrite(EN12,torque); 

    analogWrite(EN34,torque); 

    } 

void MPUsetup(){ 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x19); // Set Sample rate to 1000Hz 

  Wire.write(0x00); //  

  Wire.endTransmission();   
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  Wire.beginTransmission(0x1A); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x00); // Disable FSYNC 

  Wire.write(0x00); //  

  Wire.endTransmission();   

 

  //SETTING UP POWER 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x6B); // Power Management 1  

  Wire.write(0x00); // pg 40 

  Wire.endTransmission();   

   

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x6C); // Power Management 2  

  Wire.write(0x00); // pg 41 - enables gyro and acc x,y,z 

  Wire.endTransmission();   

 

  //GYRO CONFIGURATION 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x1B); // gyro configuration 

  Wire.write(0x02); // pg 14 - sets the full scale to +/- 1000 degress/second 

  Wire.endTransmission();   

 

   

  //ACC CONFIGURATION 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x1C); // acc configuration 

  Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs 

  Wire.endTransmission();   

} 

void ReadData(){ 

  //get raw data (does not represent gs or dps, needs to be scalled depending on 

setup) 

 

//accelerometer readings 

  Wire.beginTransmission(0x68); //I2C address of the MPU 
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  Wire.write(0x3B); //Starting register for Accel Readings 

  Wire.endTransmission(); 

  Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40) 

  while(Wire.available() < 6); 

  accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX 

  accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY 

  accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ 

 

//gyro data 

 

  Wire.beginTransmission(0x68); //I2C address of the MPU 

  Wire.write(0x43); //Starting register for Gyro Readings 

  Wire.endTransmission(); 

  Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48) 

  while(Wire.available() < 6); 

  gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into gyroX 

  gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into gyroY 

  gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into gyroZ 

 

  // scalling based on the set up full range 

  g_x = accelX / 16384.0;  

  g_y = accelY / 16384.0; 

  g_z = accelZ / 16384.0; 

 

  ang_vel_x = gyroX / (131.0); 

  ang_vel_y = gyroY / (131.0); 

  ang_vel_z = gyroZ / (131.0); 

} 

void setup() { 

  Serial.begin(115200); 

  Wire.begin(); 

  Wire.setClock(400000UL); // Set I2C frequency to 400kHz 

  MPUsetup(); 

  delay(100); // Wait for sensor to stabilize 

  setPwmFrequency(10, 1); 

  pinMode(EN34, OUTPUT); 
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  pinMode(EN12, OUTPUT); 

  pinMode(M2neg, OUTPUT); 

  pinMode(M2pos, OUTPUT); 

  pinMode(M1neg, OUTPUT); 

  pinMode(M1pos, OUTPUT); 

   

  ReadData(); 

  zero_calculation(); //estimation of bias 

   

  float acc_xangle  = atan2(g_y - acc_y_zero, g_z - acc_z_zero) * 57.3; 

  tilt_angle = acc_xangle; // Set starting angle 

} 

void loop() { 

  ReadData(); 

  float  dt =  micros()- Test_timer; 

  Test_timer = micros(); 

 

  dt /= 1000000; 

   

  float acc_xangle  = atan(g_y /g_z) * 57.3; 

   

  KF(acc_xangle, ang_vel_x, dt); 

 

  Serial.println(tilt_angle); 

 

  kp =  analogRead(A0)/4.0; 

  kd= analogRead(A1)/128.0; 

  ki= analogRead(A2)/128.0; 

 

  summation = constrain( summation + tilt_angle*dt, 40, 40) ; 

  int tiltoutput =constrain( kp*(tilt_angle) + kd*(ang_vel_x-bias_x) + ki*summation, -

254+offset, 254-offset) ; 

  motorctrl(tiltoutput); 

  while(micros() - timer < 5000); //200Hz                         

  timer = micros(); } 
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 Appendix 3 – Arduino Motor Characterisation Code 

#include <Wire.h> 

 

#define EN34  9  //m2 enable 

#define EN12  10  //m1 enable 

#define M2neg  6 

#define M2pos  7 

#define M1neg  5 

#define M1pos  4 

 int offset =10; 

 int encoder0PinA = 2; 

 int encoder0PinB = 12; 

 volatile long counter=0; 

 double outer; 

 int prev_counter; 

 

void setPwmFrequency(int pin, int divisor) { 

  byte mode; 

  if(pin == 5 || pin == 6 || pin == 9 || pin == 10) { 

    switch(divisor) { 

      case 1: mode = 0x01; break; 

      case 8: mode = 0x02; break; 

      case 64: mode = 0x03; break; 

      case 256: mode = 0x04; break; 

      case 1024: mode = 0x05; break; 

      default: return; 

    } 

    if(pin == 5 || pin == 6) { 

      TCCR0B = TCCR0B & 0b11111000 | mode; 

    } else { 

      TCCR1B = TCCR1B & 0b11111000 | mode; 

    } 

  } else if(pin == 3 || pin == 11) { 

    switch(divisor) { 

      case 1: mode = 0x01; break; 

      case 8: mode = 0x02; break; 
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      case 32: mode = 0x03; break; 

      case 64: mode = 0x04; break; 

      case 128: mode = 0x05; break; 

      case 256: mode = 0x06; break; 

      case 1024: mode = 0x07; break; 

      default: return; 

    } 

    TCCR2B = TCCR2B & 0b11111000 | mode; 

  } 

} 

 

void motorctrl(int torque){        //torque between 0-255 

  if (torque >= 0)  {                                        // drive motors forward 

    digitalWrite(M1neg, LOW); 

    digitalWrite(M1pos, HIGH); 

    digitalWrite(M2neg, HIGH); 

    digitalWrite(M2pos, LOW); 

    torque = abs(torque)+ offset; 

  }   

  else{                                                  // drive motors backward 

    digitalWrite(M1neg, HIGH); 

    digitalWrite(M1pos, LOW); 

    digitalWrite(M2neg, LOW); 

    digitalWrite(M2pos, HIGH); 

    torque = abs(torque)+ offset; 

    } 

     

   

    analogWrite(EN12,torque); 

    analogWrite(EN34,torque); 

    } 

void setup() { 

  attachInterrupt(digitalPinToInterrupt(encoder0PinA), rotary, RISING); 

  pinMode (encoder0PinB,INPUT); 

   

  Serial.begin(115200); 
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  Wire.begin(); 

  Wire.setClock(400000UL); // Set I2C frequency to 400kHz 

  delay(100); // Wait for sensor to stabilize 

 

  setPwmFrequency(10, 1); 

     

  pinMode(EN34, OUTPUT); 

  pinMode(EN12, OUTPUT); 

  pinMode(M2neg, OUTPUT); 

  pinMode(M2pos, OUTPUT); 

  pinMode(M1neg, OUTPUT); 

  pinMode(M1pos, OUTPUT); 

} 

void loop() { 

 

  for (int x = 0; x<52; x++){ 

  counter =0; 

  motorctrl(x*5); 

  delay(5000); 

  motorctrl(0*5); 

  float rads = counter*((2*3.14159)/(562*5)); 

  Serial.print(x*5); 

  Serial.print("\t"); 

  Serial.println(rads); 

  } 

                                       

} 

 

 void rotary() { 

//  Serial.println(counter); 

  if(digitalRead(encoder0PinB)) { 

    counter++; 

  } else { 

    counter--; 

  } 

 } 
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 Appendix 4 – Arduino LQR Code 

//http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-

to-implement-it/ 

//http://playground.arduino.cc/Main/RotaryEncoders 

//http://www.geekmomprojects.com/mpu-6050-redux-dmp-data-fusion-vs-

complementary-filter/ 

//http://www.x-firm.com/?page_id=191 

 

#include <Wire.h> 

#define Q_angle 0.03 

#define Q_gyro  0.01   

#define R 0.05  

 

#define Pi 3.14159 

 

#define EN34  9  //m2 enable 

#define EN12  10  //m1 enable 

#define M2neg  6 

#define M2pos  7 

#define M1neg  5 

#define M1pos  4 

 

int encoder0PinA = 2; 

int encoder0PinB = 12; 

volatile long counter=0; 

uint32_t previous_counter=0; 

 

int loop_itteration =0; 

char offset = 0; 

 

float K1 = 1.0000, K2=0.1129, K3=-37.7177, K4=-1.4959; 

 

float x1, x2, x3, x4; 

 

double gyroX, gyroY, gyroZ;//raw values 

long accelX, accelY, accelZ;  
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float acc_x_zero, acc_y_zero, acc_z_zero, gyro_x_zero; 

 

float g_x, g_y, g_z; //scalled values 

float ang_vel_x, ang_vel_y, ang_vel_z; 

 

float P_00 = 5, P_01 = 0, P_10 = 0, P_11 = 5; 

double tilt_angle; 

float bias_x; 

float angle; 

uint32_t timer; 

uint32_t Test_timer; 

 

void setPwmFrequency(int pin, int divisor) { 

  byte mode; 

  if(pin == 5 || pin == 6 || pin == 9 || pin == 10) { 

    switch(divisor) { 

      case 1: mode = 0x01; break; 

      case 8: mode = 0x02; break; 

      case 64: mode = 0x03; break; 

      case 256: mode = 0x04; break; 

      case 1024: mode = 0x05; break; 

      default: return; 

    } 

    if(pin == 5 || pin == 6) { 

      TCCR0B = TCCR0B & 0b11111000 | mode; 

    } else { 

      TCCR1B = TCCR1B & 0b11111000 | mode; 

    } 

  } else if(pin == 3 || pin == 11) { 

    switch(divisor) { 

      case 1: mode = 0x01; break; 

      case 8: mode = 0x02; break; 

      case 32: mode = 0x03; break; 

      case 64: mode = 0x04; break; 

      case 128: mode = 0x05; break; 

      case 256: mode = 0x06; break; 
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      case 1024: mode = 0x07; break; 

      default: return; 

    } 

    TCCR2B = TCCR2B & 0b11111000 | mode; 

  } 

} 

void zero_calculation(){ 

//Serial.println("Begin Bias Measurement"); 

  for(int i =0; i<50; i++){ 

    ReadData(); 

    gyro_x_zero= gyro_x_zero+ ang_vel_x; 

 

    acc_x_zero = acc_x_zero + g_x; 

    acc_y_zero = acc_y_zero + g_y; 

    acc_z_zero = acc_z_zero + g_z; 

     

    delayMicroseconds(2500); 

  } 

 gyro_x_zero = gyro_x_zero/50; 

 

 acc_x_zero = acc_x_zero/50; 

 acc_y_zero = acc_y_zero/50; 

 acc_z_zero = (acc_z_zero/50) - 1; 

 

 bias_x = gyro_x_zero; // initialzing the bias 

  

//Serial.println("Sequence Completed"); 

} 

void KF(float newAngle, float newRate, float dt) { 

    tilt_angle += dt * (newRate - bias_x); 

 

    P_00 += dt * (dt*P_11 - P_01 - P_10 + Q_angle); 

    P_01 -= dt * P_11; 

    P_10 -= dt * P_11; 

    P_11 += Q_gyro * dt; 
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    float S = P_00 + R;  

     

    float K_0 = P_00 / S; 

    float K_1 = P_10 / S; 

 

    float y = newAngle - tilt_angle;  

  

    tilt_angle += K_0 * y; 

    bias_x += K_1 * y; 

 

    float P00_temp = P_00; 

    float P01_temp = P_01; 

 

    P_00 -= K_0 * P00_temp; 

    P_01 -= K_0 * P01_temp; 

    P_10 -= K_1 * P00_temp; 

    P_11 -= K_1 * P01_temp; 

}; 

void motorctrl(int torque){        //torque between 0-255 

  if (torque >= 0)  {                                        // drive motors forward 

    digitalWrite(M1neg, LOW); 

    digitalWrite(M1pos, HIGH); 

    digitalWrite(M2neg, LOW); 

    digitalWrite(M2pos, HIGH); 

    torque = abs(torque)+ offset; 

  }   

  else{                                                  // drive motors backward 

    digitalWrite(M1neg, HIGH); 

    digitalWrite(M1pos, LOW); 

    digitalWrite(M2neg, HIGH); 

    digitalWrite(M2pos, LOW); 

    torque = abs(torque)+ offset; 

    } 

     

   

    analogWrite(EN12,torque); 



School of Electrical and Electronic Engineering Page 60 

    analogWrite(EN34,torque); 

    } 

void MPUsetup(){ 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x19); // Set Sample rate to 1000Hz 

  Wire.write(0x00); //  

  Wire.endTransmission();   

 

  Wire.beginTransmission(0x1A); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x00); // Disable FSYNC 

  Wire.write(0x00); //  

  Wire.endTransmission();   

 

  //SETTING UP POWER 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x6B); // Power Management 1  

  Wire.write(0x00); // pg 40 

  Wire.endTransmission();   

   

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x6C); // Power Management 2  

  Wire.write(0x00); // pg 41 - enables gyro and acc x,y,z 

  Wire.endTransmission();   

 

  //GYRO CONFIGURATION 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x1B); // gyro configuration 

  Wire.write(0x02); // pg 14 - sets the full scale to +/- 1000 degress/second 

  Wire.endTransmission();   

 

   

  //ACC CONFIGURATION 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x1C); // acc configuration 

  Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs 

  Wire.endTransmission();   
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} 

void ReadData(){ 

  //get raw data (does not represent gs or dps, needs to be scalled depending on 

setup) 

 

//accelerometer readings 

  Wire.beginTransmission(0x68); //I2C address of the MPU 

  Wire.write(0x3B); //Starting register for Accel Readings 

  Wire.endTransmission(); 

  Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40) 

  while(Wire.available() < 6); 

  accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX 

  accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY 

  accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ 

 

//gyro data 

 

  Wire.beginTransmission(0x68); //I2C address of the MPU 

  Wire.write(0x43); //Starting register for Gyro Readings 

  Wire.endTransmission(); 

  Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48) 

  while(Wire.available() < 6); 

  gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into gyroX 

  gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into gyroY 

  gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into gyroZ 

 

  // scalling based on the set up full range 

  g_x = accelX / 16384.0;  

  g_y = accelY / 16384.0; 

  g_z = accelZ / 16384.0; 

 

  ang_vel_x = gyroX / (32.768); 

  ang_vel_y = gyroY / (32.768); 

  ang_vel_z = gyroZ / (32.768); 

} 

void setup() { 
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  attachInterrupt(digitalPinToInterrupt(encoder0PinA), rotary, RISING); 

  pinMode (encoder0PinB,INPUT); 

   

  Serial.begin(115200); 

  Wire.begin(); 

  Wire.setClock(400000UL); // Set I2C frequency to 400kHz 

  MPUsetup(); 

  delay(100); // Wait for sensor to stabilize 

  setPwmFrequency(10, 1); 

  pinMode(EN34, OUTPUT); 

  pinMode(EN12, OUTPUT); 

  pinMode(M2neg, OUTPUT); 

  pinMode(M2pos, OUTPUT); 

  pinMode(M1neg, OUTPUT); 

  pinMode(M1pos, OUTPUT); 

   

  ReadData(); 

  zero_calculation(); //estimation of bias 

   

  float acc_xangle  = atan2(g_y - acc_y_zero, g_z - acc_z_zero) * 57.3; 

  tilt_angle = acc_xangle; // Set starting angle 

 

  timer = micros(); 

} 

 void rotary() { 

//  Serial.println(counter); 

  if(digitalRead(encoder0PinB)) { 

    counter++; 

  } else { 

    counter--; 

  } 

 } 

void loop() { 

  ReadData(); 

  float  dt =  micros()- Test_timer; 
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  Test_timer = micros(); 

  dt /= 1000000; 

   

  float acc_xangle  = atan(g_y /g_z) * 57.3; 

  KF(acc_xangle, ang_vel_x, dt); 

 

 

  if (loop_itteration==10){ 

  x2 = ((counter-previous_counter)*2*Pi)/0.05;//linear velocity 

  counter=previous_counter; 

  loop_itteration=0;} 

  loop_itteration++; 

   

  x1 = (counter*2*Pi*0.04)/562; //displacement 

  x3 = (tilt_angle)/57.3; //tilt angle in radians 

  x4 = (ang_vel_x - bias_x)/0.0174533; //angular velocity in rad/s 

 

  float tiltoutput = constrain(-(x1*K1+x2*K2+x3*K3+x4*K4)*(255/12), -254, 254); 

  motorctrl(tiltoutput); 

 

  while(micros() - timer < 5000); //200Hz                         

  timer = micros();                                        

}
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 Introduction and Motivation 

Self-balancing robots have sparked interest of many researchers, students and 

hobbyist worldwide. From an engineer’s perspective, it is an inverted pendulum on 

wheels. The inverted pendulum is a classical problem in control systems due its 

unstable nature. To the average individual, one of the triggers for the curiosity 

towards the self-balancing robots was the release of the Segway PT (Personal 

Transporter). These robots became very popular because of their manoeuvrability, in 

particular their short turning radius [1]. The Segway has been used in many 

industries, from tourism in the park, police, and even ambulances. In recent times, a 

derivative of the Segway, the hoverboard, has been a headline in social media, once 

again directing the attention of many towards the engineering behind. 

In any balancing robot knowing the tilt angle is critical, thus an inertial measurement 

unit (IMU) is a necessity. The IMU is predominantly composed of a gyroscope and an 

accelerometer. Both sensors have their advantages and disadvantages, therefore to 

obtain a more accurate measurement the data has to be fused. As part of the project, 

a technique known as Kalman filtering will be explored. If implemented and tuned 

correctly, the Kalman Filter best possible (optimal) estimator for a large class of 

problems.” [2] 

As a Mechatronics student, making a self-balancing robot is the ideal project. The 

core of the project is control, thus it will allow the application what has been covered 

to date and exploration of new material such as alternative controllers, data fusion or 

odometry. In addition, the project is sufficiently broad to refine knowledge in the 

areas of embedded systems, programming, PCB and mechanical design. The 

material to be covered has a broad range of applications, developing many skills 

transferrable to future projects. 

The purpose of this report is to outline the plan of the project and to summarize the 

progress achieved to date. 
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 Aims and Objectives 

The aim of the project is to design, make and program a Self-Balancing Robot with a 

self-developed Kalman Filter. In order to successfully complete the project, the 

following objectives need to be met: 

 Perform Literature review on Kalman Filters and implement in MATLAB 

 Develop a Kalman Filter to fuse data from the gyroscope and accelerometer 

 Design and assemble the chassis of the robot 

 Develop a PID controller to enable the robot to stay upright 

If time permits, the list below outlines the possible additional targets: 

 Explore the use of a LQR or Fuzzy Logic controller 

 Create a remote controller for the robot 

 Improve the control algorithm to be able to support loads including 

asymmetrical loads 

 Create Autonomous Pre-programmed paths using odometry 

 Existing Work 

Balancing Robots have existed for several years, thus many papers and theses have 

been written about them. Some are purely for learning purposes, as is the case. 

Others are to research the application of certain theory such as the LQH controller or 

fuzzy logic. And in certain theses, it is develop a robot for a specific purpose, this 

includes a butler robot or an interactive balancing robot to be used in exhibitions. 

In most cases, students would focus on a certain aspect, such as data fusion, 

analysis of dynamics or controller design, and the rest of the robot would be built 

using simpler techniques. For example, they would focus on using a Kalman filter 

and use a PID controller or focus on LQR controller and use a Complementary filter. 

For sensor fusion, the complementary filter and the Kalman filter are the most 

commonly techniques. The Kalman filter will be further explained in section 4. The 

complementary filter, simply consists of a low pass filter for the gyroscope and high 

pass filter for the accelerometer. Whilst, the Kalman filter is accepted as the best 

estimator, in a specific case the complementary filter appeared to perform better. [3] 

To maintain the robot upright, the commonly mentioned controllers are Proportional-
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integral-derivative (PID) and the Linear Quadratic Regulator (LQR). A Linear 

Quadratic-Gaussian controller has also been tested, however, due to a slow 

microcontroller, it was not successful. [1] In more complex balancing robots, which 

the robot also moves around, two controllers are used. For example an LQR 

controller to balance the robot and a PID controller to control yaw. [4] 

 Kalman Filter 

The Kalman Filter (KF) was first introduced in 1960 by Rudolf E. Kalman [5].  Since 

then, due to its adaptability and usefulness, research and development has 

continued creating variants such as the Extended Kalman Filter or the Unscented 

Kalman Filter [2]. The KF was famously used in the Apollo program, ultimately taking 

Neil Armstrong to the moon [6]. “The Kalman Filter is over 50 years old but is still one 

of the most important data fusion algorithms in use today [7].”  Its use ranges from 

navigation and object tracking to investment banking and economics.  

Data fusion in essential in this case due to the nature of the gyroscope and 

accelerometer. The accelerometer measurements are more susceptible to noise, 

whilst the gyroscope drifts over time. This makes the accelerometer readings more 

accurate in the long run, and the gyroscope more accurate over a short space of time 

[8]. To resolve the dilemma the KF can be used.  

In addition to the accuracy of estimation, the KF is appealing because it is a recursive 

method. The current state is dependent on the previous state, which means that not 

all the data is necessary, allowing it to be implemented in a simple microcontroller 

without large storage [9]. One of the barriers for use of the KF is difficulty in 

understanding due to the lack of standard notation.  

 Creating a Model 

To implement a KF, the system needs to be modelled in state-space form. The 

difference equation (1) that can be used to represent the process state and equation 

(2) models the measurements [2].  

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘−1……………………………………………………………… (1) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘…………………………………………………………………………… (2) 

Where [6]:  
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𝑥𝑘 is the state vector, contains variables to be estimated i.e. angle or bias 

𝑢𝑘 is the vector containing control inputs i.e. angular acceleration 

A is the transition matrix, which maps the state parameters at t-1 to t 

B is the control input matrix, maps the controlled inputs 𝑢𝑘 to the state vector 

𝑧𝑘 is the measurements matrix 

H is matrix that transforms the state vector into measurements  

𝑤𝑘  and 𝑣𝑘 are the vectors containing the process noise and measurement noise 

respectively. The noise is assumed to be zero mean Gaussian distributed with a 

covariance Q and R, respectively i.e.  𝑤𝑘~ (0, Q) and 𝑣𝑘~ (0, R).   

 The Kalman Filter Algorithm 

The KF is composed of two sets of equations, time update and measurement update 

equations.  

4.2.1. Time Update 

The following equations describe the time update stage, also known as prediction 

stage: 

𝑥̂𝑘|𝑘−1 = 𝐴𝑥̂𝑘−1|𝑘−1 + 𝐵𝑢𝑘…………………………………………..……………………. (3) 

𝑃𝑘|𝑘−1 = 𝐴𝑘 𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘………………………...…………...………………………. (4) 

Where: 

𝑥̂ is the state estimate 

P is the process covariance matrix 

A note on the subscript: a | b would mean a given b and all previous states before b. 

For example 𝑥̂𝑘|𝑘−1, is the estimate at k based on k-1 and on all the states before k-1. 

 𝑥̂𝑘|𝑘−1 is known as the priori state,  𝑥̂𝑘−1|𝑘−1 is the previous state and  𝑥̂𝑘|𝑘 is the 

posteriori state. 
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4.2.2. Measurement Update 

The following equations are used in the measurement update: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1…………………………………………………….. (5) 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘|𝑘−1) ……………………………………………………….. (6) 

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 ……………………………………………………………… (7) 

Where: K is the Kalman Gain Matrix 

 Overall Diagram 

The KF runs in a loop shown in the diagram below: 

 

 

 

 

 

 

 Kalman Filter Practice in MATLAB  

In order to better understand how KFs are implement, examples were done in 

MATLAB. The first example was following a tutorial, which the ‘real’ measurement 

was a constant voltage [10]. In the tutorial the computation was shown, but no code 

was given. Implementing it MATLAB helped visualize how the KF can be realised in 

code. The MATLAB can be found in Appendix B. The figure in the following shows 

the output:

Initialisation: 

𝑥0 

𝑃0 

𝑥𝑘−1 

𝑃𝑘−1 

Time Update 

“Prediction” 

Measurement Update 
Measurement 

Input 

Output: 

𝑥𝑘 

𝑃𝑘 

k=>k-1 

current becomes 

previous 
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To further aid understanding, a simple example was created and implemented. It 

consists of measuring the displacement of an object travelling in 1-D at a constant 

velocity of 1.5m/s. The MATLAB code can be found in Appendix C. The figure below 

shows the output: 
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 Hardware 

 Microcontroller 

The microcontroller chosen was the Arduino Uno. It has a relatively small footprint, 

keeping the robot compact. The main advantage of the Arduino is large community 

and extensive collection of libraries, if any problems are stumbled upon, there is a 

higher chance that someone else has found a solution. 

 Motors 

In order to establish the motors required, a calculation of 

the required torque is necessary. The diagram to the right 

shows a sketch of the balancing robot. 

𝜏 =  ‖𝒓‖‖𝑭‖𝑠𝑖𝑛𝜃 ………..……………..……………….... (1) 

Where: 𝜏 is magnitude of the torque, F is the force vector, 

r is the position vector and 𝜃 is the angle between force 

and position vectors. 

Assuming the distance between the pivot point and the centre of mass (L) is 12cm, 

the maximum tilt angle (θmax) is 40° and the mass of the robot (m) is 0.7kg. 

𝜏 =  𝐿 ∗ 𝑚𝑔 ∗ 𝑠𝑖𝑛𝜃 = 0.12 ∗ 0.7 ∗ 9.81 ∗ sin(40) = 0.530 𝑁𝑚 …………………………. (2) 

Since there will be two motors, the minimum torque required is 0.265Nm. This 

assumes the robot is going to start moving at the maximum tilt angle, in reality inertia 

also has to be considered.  

Looking at practical example, Gornicki used motors with a stall torque of 0.224Nm 

and a gear with a 3:1 ratio [11]. Assuming 15% inefficiency [12], that equates to 

0.5712Nm.  

To fit the requirements, the chosen motor is the Pololu medium power 47:1 Metal 

Gearmotor with 48 CPR Encoder. The stall torque of the motor is 0.611Nm and the 

encoder outputs 2248.86 counts per revolution [13], corresponding to a resolution of 

up to 0.16°. The encoders are necessary for odometry, without the encoders the 

robot may balance but it will be moving around constantly.  

θmax 

mg 
L 
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 Power Source 

The considered power sources were lithium polymer (Li-Po) batteries and AA 

batteries. Li-Po batteries were found the most appropriate power source, as AA 

batteries generally have a lower maximum discharge current [14]. Li-Po batteries 

also have a relatively high specific energy and energy density [15]. There are some 

dangers associated with them, these have been addressed in the Health and Safety 

Risk Assessment (Appendix x). The specific battery to be used is the Turnigy 3 cell 

2200mAh 20C. The stall current for each motor is 2.1A at 12V [13] and power also 

needs to be supplied to the other devices (Arduino, IMU and encoders). As a rough 

estimate, the power source should be able to supply a minimum of 5A. The Li-Po 

battery can supply up to 44A [16].  

 Motor Driver Board 

The L298 dual full bridge driver was initial choice. According to the datasheet the 

motor driver has peak output current per channel of 2A in DC operation and up to 3A 

non-repetitive [17]. In practice, the L298 would go into thermal shut down at 0.8A 

[18], making it unsuitable for the robot. To avoid deceit from manufacturers, the 

L6203 was chosen, theoretically it can supply 5A [19]. In order not to damage the 

motors resettable fuses will be used. 

 IMU  

The selected IMU is the MPU 9250 by InvenSense. It has 9 degrees of freedom, 

consisting of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer. The 

magnetometer is not necessary, but the IMU without the magnetometer costs twice 

the price. By accessing the configuration register, the gyroscope full scale range can 

adjusted from ±250 to 1000 degrees per second. The accelerometer can also be 

programmed from ±2 to 6 g. This device has a built in Digital Motion Processor 

(DMP), but for this project it will not be used. A great advantage of this IMU is that it 

has been used with the Arduino and libraries are available for it. [20] 

Communication between the Arduino and the IMU is through the Inter-Integrated 

Circuit (I2C) protocol. To read the values form the gyroscope and accelerometer, 

specific memory addresses need to be accessed (the register map is in the 

appendix). Following a tutorial for the MPU6050, the raw data values were read. 

Surprisingly, the register map for MPU9250 is identical to the MPU6050.  The code to 

read the values and the output window is in the Appendix X. 
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 Overall Design 

The overall planned format of the robot can be seen in the Solidworks render below: 

 

 

The design is an adaptation of the SainSmart self-balancing robot [21].  The design is 

entirely modular. The layer heights can be changed by changing the spacer lengths 

and the box for loads can be removed. Having the layers also protects the 

components, specifically the Li-Po battery. The battery is shielded from heat from the 

motor drivers and it is also protected from impacts.  

The layers will be made of Medium Density Fibreboard (MDF). It is relatively light, 

inexpensive, easy to manufacture and readily available in the university. In addition 

MDF should be able to withstand the drops and hits that might happen when the 

robot controller is being tuned. 

The wheels will be from Remote Controlled (RC) cars. They are wide and the tyres 

made of soft rubber. This enables the wheels to have good grip, which is not 

surprising as often RC hobbyists compete with each other. 

 

 

Box for additional 
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Motor driver board 

Geared Motor with 

encoders 

Arduino and IMU 
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 Conclusion 

A basic understanding of Kalman filters has been achieved and the robot’s physical 

design has been completed. The next step this semester is to implement the KF in C 

code to fuse the data from the gyroscope and accelerometer. A comparison can then 

be made between the data from the output of the KF and the built in DMP. Once the 

Kalman filter is well tuned and a good estimate of the tilt angle is obtained, the PID 

controller can then be developed to maintain the robot upright. 

The progress achieved to date is as planned, this suggests that the aim of the project 

is realistic. Based on the Gantt chart in Appendix A, the project should be completed 

by the end of week 6 in second semester, allowing some time to adjust for 

unpredicted scenarios or to be dedicated in meeting the additional objectives. 
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 Appendices 

 Appendix 1 –Technical Risk Assessment 

As mentioned previously, the Arduino makes it an easy platform to program in due to 

large community and extensive collection of libraries. Furthermore, Kalman filters and 

balancing robots have been realized using an Arduino, this suggests a lower 

technical risk. However, due to low processing capability the Arduino itself may be a 

liability. Christian Sundin mentions that the Arduino could not execute the algorithm 

for an LQG controller fast enough [1]. If met with such scenario, a solution may be to 

use two Arduinos in master-slave configuration or a faster microcontroller such as the 

STM32 Nucleo.  

Another risk for the project would be slow order processing time and delivery. If the 

required components do not arrive within the expected time frame, the project will 

have to be put on hold. To minimize this risk, component orders were placed early 

this semester.  
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 Appendix 2 – Health and Safety Risk Assessment 
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 Appendix 3– Project Plan 
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 Appendix 4 -Kalman Filter Code 1 – Constant 

%Example from http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies 
zk = zeros (1,200); 
y = 4 * ones (1,200); 

  
for n=1:200 
    zk (n) = 4 + 0.5*randn; 
end 

  
x0=0; 
P0=1; 
R=0.25; 
A=1; 
Q=0; 

  
x = zeros (1,200); 
k = zeros (1,200); 
p = zeros (1,200); 

  
k(1)= P0/(P0+R); 

  
x(1)= x0 + k(1)*(zk(1)-x0); 
p(1)= (1-k(1))*P0; 

  

  
for t=2:200 

     
   k(t)= p(t-1)/(p(t-1)+R); 
   x(t)= x(t-1) + k(t)*(zk(t)-x(t-1)); 
   p(t)=(1-k(t))*p(t-1); 

   
end 
subplot(121) 
plot(x) 
hold on 
plot (y, 'Color','r') 

  
subplot(122) 
plot(x-4) 
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 Appendix 5 - Kalman Filter Code 2 – Linear  

%An object travelling in 1D at a constant velocity of 1.5m/s 

  
yk = zeros (1,200); 
for n=1:200yk 
    yk (n) = 1.5*n + 3*randn ; 
end  % creates 'measured' inputs with 'measurements' being independent  
       %of each other i.e. erros don't propagate 

  
R=1; %the function 'randn' ouputs normally distributed random numbers 
     %this makes the standard deviation=1, therefore variance=1 

      
X0=0; %starting at origin 
P0=1; %any non-zero value otherwise K=0 
A=1; 
Q=0;                                      
U=1.5; %travelling speed 
W=0;   %Assuming no white noise 
H=1; %1 as just numbers not matrices 

  
B = zeros (1,200); 
for n=1:200 
    B(n)= n; 
end    %for elapsed time 

  
xkp = zeros (1,200); 
x = zeros (1,200); 
k = zeros (1,200); 
pkp = zeros (1,200); 
pk = zeros (1,200); 

  
%t1 Predicted state 
xkp(1)= A*X0 +  B(1)*U + W; 
pkp(1)= A*P0*A + Q; 

  
%update w/ new measurements and kalman gain 
k(1)=(pkp(1)*H)*inv(H*pkp(1)*H + R); 
x(1)= xkp(1) + k(1)*(yk(1)-H*xkp(1)); 
pk(1)= (1-k(1)*H)*pkp(1); 

  
for t=2:200 
    %t(n) Predicted state 
    xkp(t)= A*x(t-1) +  1*U + W; 
    pkp(t)= A*pk(t-1)*A + Q; 
    %update w/ new measurements and kalman gain 
    k(t)=(pkp(t)*H)*inv(H*pkp(t)*H + R); 
    x(t)= xkp(t) + k(t)*(yk(t)-H*xkp(t)); 

  
    pk(t)= (1-k(t-1)*H)*pkp(t-1); 
end 

  
test = linspace(0,300,200); 

  
subplot(121) 
plot(x) 
hold on 
plot (yk, 'Color','r') 
subplot(122) 
plot(x-test) 
hold on 
plot(yk-test, 'Color','r') 
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 Appendix 6 - MPU 9250 Register Map 
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 Appendix 7 - IMU Code to obtain raw values 

// code modified from https://www.youtube.com/watch?v=M9lZ5Qy5S2s 

#include <Wire.h> 

long accelX, accelY, accelZ; //accelerometer 

long gyroX, gyroY, gyroZ;//gyro 

 

void setup() { 

  Serial.begin(9600); 

  Wire.begin(); // starting I2C communication 

 

  // initialising the sensor  //SETTING UP POWER 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x6B); // Power Management 1  

  Wire.write(0x00); // pg 40 

  Wire.endTransmission();   

   

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x6C); // Power Management 2  

  Wire.write(0x00); // pg 41 - enables gyro and acc x,y,z 

  Wire.endTransmission();   

 

  //GYRO CONFIGURATION 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x1B); // gyro configuration 

  Wire.write(0x00); // pg 14 - sets the full scale to +/- 250 degress/second 

  Wire.endTransmission();   

   

  //ACC CONFIGURATION 

  Wire.beginTransmission(0x68); //I2C address of the MPU (as SJ2 is in place) 

  Wire.write(0x1C); // acc configuration 

  Wire.write(0x00); // pg 14 - sets the full scale to +/- 2gs 

  Wire.endTransmission();   

} 

 

void loop() { 

//get raw data (does not represent gs or dps, needs to be scaled depending on setup) 
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//accelerometer readings 

  Wire.beginTransmission(0x68); //I2C address of the MPU 

  Wire.write(0x3B); //Starting register for Accel Readings 

  Wire.endTransmission(); 

  Wire.requestFrom(0b1101000,6); //Request Accel Registers (3B - 40) 

  while(Wire.available() < 6); 

  accelX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX 

  accelY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY 

  accelZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ 

 

//gyro data 

  Wire.beginTransmission(0x68); //I2C address of the MPU 

  Wire.write(0x43); //Starting register for Gyro Readings 

  Wire.endTransmission(); 

  Wire.requestFrom(0b1101000,6); //Request Gyro Registers (43 - 48) 

  while(Wire.available() < 6); 

  gyroX = Wire.read()<<8|Wire.read(); //Store first two bytes into accelX 

  gyroY = Wire.read()<<8|Wire.read(); //Store middle two bytes into accelY 

  gyroZ = Wire.read()<<8|Wire.read(); //Store last two bytes into accelZ 

 

  Serial.print("Gyro"); 

  Serial.print(" X="); 

  Serial.print(gyroX); 

  Serial.print(" Y="); 

  Serial.print(gyroY); 

  Serial.print(" Z="); 

  Serial.print(gyroZ); 

  Serial.print(" Accel"); 

  Serial.print(" X="); 

  Serial.print(accelX); 

  Serial.print(" Y="); 

  Serial.print(accelY); 

  Serial.print(" Z="); 

  Serial.println(accelZ); 

} 
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 Appendix 8 – IMU Output 

 

 


