
Configureable networked computing

www.section5.ch

netpp node v0.1 quick reference
A Network Property Protocol evaluation module

Abstract

The netpp node is a FPGA based networking module with a
default firmware supporting access of registers through a UDP
network connection, based on netpp – the network property
protocol. By default, the netpp node acts as a slave device that
is accessed by a netpp master client, such as a process monitor,
a Python script or a simple command line utility.

The netpp node can be reprogrammed to have a different
personality and be adapted to a custom application. This can
either happen on a software/application specific level or on a
pure hardware level by using a different set of peripherals.

The netpp node is aware of its properties, meaning, all netpp
hardware variations can be queried for their capabilities, i.e. a
property list consisting of named items, such as ’Temperature’.

Fig. 1: netpp node top view

1 Highlights

• 32 Bit processor ’ZPUng’ v1.1, three stage pipeline
@54 Mhz, ’dagobert’ configuration (see Table 1)

• Remote access UART, GPIOs or other exported
hardware registers over the network

• Analog backend options:,

– Up to six channel 10 bit ADC

– Three channel differential 16 bit Sigma-
Delta ADC

• Add-on options (not part of evaluation kit):

– SDK with GCC and simple downloader

– High speed UDP streaming support (RTP)

– Hardware debugging (integrated JTAG ICE)

– Safety watchdog functionality for critical ap-
plications

2 Introduction

2.1 Hardware

Table 2 shows the relevant user I/O connectors and inter-
faces

The J3 pin header (left bottom) determines whether
the board is powered from the USB (Jumper position
[1-2]) or the expansion connector (J2/VEXT, Position [2-
3]). The headers can be mounted either upside (base
board configuration) or downside (plug-on configura-
tion). When using as USB-powered base board with a cus-
tom piggy back module, make sure to respect the maxi-
mum ratings of Table 40.

The msp430 analog and real time clock extension
(when present) is powered by the separate VAA pin.
When using as a standalone eval board, you can use a
jumper on pin [19-20] on J2. For industrial applications,

1

Configureable networked computing

www.section5.ch

Tab. 1: netpp node CPU configuration
dagobert SoC specifications

Memory configuration
ROM 256kB Overlay program memory (SPI)

read only
L1RAM 16kB Level one program and data

segment
L1CACHE 16kB Program memory or ROM cache

(configureable)
SRAM 2kB Dedicated Stack Memory
SPAD 2x4kB Two ScratchPad RAM buffers for

peripheral data I/O
Peripherals

SCACHE 1 SPI flash cache
SPI 2 SPI port
SIC 1 System Interrupt Controller with

six peripheral channels, four
priority levels

PWM 3 Simple PWM and timer module
DMAA 2 Autobuffer DMA for high speed

RX/TX
UART 1 UART console
TWI 1 Two wire interface (I2C

compatible)
EMAC 1 Extended Media Access Control

Core (MII/MDIO), 10/100M

Tab. 2: netpp node user I/O
Designator Description
J1, J2 Two expansion headers. For the pinout,

please see Section 8.2
SW1, SW2 Push button switches (Reboot/Reset,

User button)
D1..D4 LEDs (green, red, yellow, blue)
X1 USB B mini connector (to PC)
X2 100MBit RJ45 connector

there is the option to use a separate, decoupled voltage
supply such as a battery.

When the board is powered, LED D5 lights up and some
output should appear on the debug console (USB serial,
see Section 2.4).

2.1.1 Networking

The network ethernet interface at X2 is configured by
default according to Table 3. On the evaluation netpp
node firmware (’NetppNode*’), these can be altered us-
ing the Python script cfg_network.py. See also Section 5.1
for changing network parameters over netpp. Depend-
ing on the firmware loaded, a netpp server listens on the
indicated port.

Tab. 3: Default network properties
Property / description Default
Network.IPaddr 192.168.0.5
Network.MACaddr 00:00:de:ad:be:ef
UDP port ’golden’ Firmware 2016
UDP port ’deploy’ Firmware 2008 (netpp default)
Protocol support ARP, ICMP ping, UDP

When holding the push button SW2 at boot-up, the
default ’golden’ firmware is activated and the IP address
as well as the MAC address is set to the default. A netpp
node can then always be accessed using the URL

netpp UDP:192.168.0.5:2016

All communication with the netpp node happens over
a netpp stack using UDP for transport.

Important: Make sure you have understood the UDP
basics and why a packet may not arrive at the peer!

If a reliable connection is required, a specific UDP driver
or TCP implementation must be considered as option.

2.2 netpp basics

netpp allows a uniform netpp client to query a netpp ca-
pable device’s properties. The properties are an abstrac-
tion of register values, single bits or even function calls,
referred to by names, like ADC.Value. When querying a
netpp device, the properties represent as a tree, i.e. there
is a root node being the device with children nodes that
can be traversed recursively.

The important thing to remember:

• Property names use a C style notation

• Elements (children) are accessed by a dot ’.’ separa-
tor, like: UART.RESET

• Properties are data type aware and may require strict
specification

Further netpp details are found in the netpp HOWTO.
For a first start, it is recommended to experiment with
the netpp command line interface in Section 3.2.

Some, but not all registers are directly exposed to the
netpp server running on the netpp node. In this con-
figuration, there is no session management, i.e. several
clients can manipulate register bits at the same time.

2.2.1 netpp connections

A netpp device always has a netpp agent (UDP, TCP or
other server) listening on some communication interface.
For network connections, the agent listens on a specific
port. Depending on whether you have an eval kit or a
custom firmware edition, the ports may differ, see Table
3.

2

Configureable networked computing

www.section5.ch

netpp
node X

netpp
node B

modhub
process/http

server

X0 X4
Sensors:

A0 A4

RT Controller
(netpp node)

Actuator
C0

Fig. 2: netpp node mesh/sensor network

2.2.2 Typical network application

A typical netpp node setup is shown in Fig. 2. netpp
nodes are slaves by default and are accessed repeatedly
by a controller. For plain simple process monitoring of
sensor values, a process server polls and possibly caches
netpp node values and processes them for display on a
normal PC or hand held device. This can also work via a
classic http connection using a HTML5 gateway. The or-
ange arrows depict UDP connections with well defined
timeouts and may be implemented as a separate, pro-
tected network.

For advanced applications, the netpp node can take
a master role as well and push data to a modhub data
distribution daemon (custom application, not part of the
eval kit).

When implementing a sensor network of more com-
plexity, note that network layout planning is important
and that it is recommended to clearly separate the net-
works according to traffic and routing expectations.

The netpp node eval kit does not have a registered
MAC address vendor class, therefore it is recommended
to not plug in a netpp node to a running network with-
out verifying that all MAC addresses on the physical LAN
are unique. The MAC address can be reprogrammed by
the user.

Fig. 3: Pinout netpp node rev0.1

2.3 Pin map

The connectors J1 and J2 (see Fig. 3) provide the I/O sig-
nals for expansion hardware:

GPIO_A[0..15]
General purpose I/O pin port A. Controlled by GPIO[0]
property.

GPIO_B[0..15]
General purpose I/O pin port B, multiplexed. Con-
trolled by GPIO[1] property.

IOA[0..5]
Analog input channels

IOD[0..7]
Digital auxiliary pins. Exposure to properties is cus-
tom specific.

SCL, SDA
I2C bus for external devices

The IO* signals are only relevant when U3 is populated.
Depending on the deployed chip variant, functionality is
different, see also Section 2.5.

2.3.1 Port multiplexing

The pin functionality of ports A and B is defined by a cor-
responding MUX bit in the SysCtrl container, as shown in
Table 4. Fig. 4 and Fig. 5 show the pin layout in a pseudo
register schematic when the corresponding MUX bits are
set. The LCDIO multiplexing is not supported in the de-
fault eval firmware.

When the SysCtrl::UART_?X_SEL (see Table 14) flags are
set, the console UART transmit functionality is deacti-
vated and the pins are routed to the corresponding pins
on the Port B connector. However, the receive function-
ality on the console is always present. When the system
is configured for two UARTs, UART0 always remains the
console and UART1 is rerouted instead. The peripheral
configuration is obtained from Table 1 and can also be

3

Configureable networked computing

www.section5.ch

Fig. 4: Pin map GPIO_A

Fig. 5: Pin map GPIO_B

polled from the UART property, if it is an array, UART.Size
will show you the number of UARTs implemented.

2.4 Debug console

The debug console (UART0) is mapped by default to the
USB-to-serial channel, accessible at X1. When plugged in
to a PC, a virtual COM device is typically present which
can be accessed by a terminal program (via the second
TTY port of the device), for example minicom (Linux) or
teraterm (Windows). The default communication param-
eters are: 115200 8N1. Programming of a new firmware
also occurs via the USB connection.

Upon start and a valid ethernet link, the console should
output something the text below:

netpp OS ’$VERSION_TAG’
(c) 2004-2019 section5.ch
Reserve Hub ’UDP#1’ with 1 ports
Reserve Hub ’UDP#2’ with 2 ports
IPaddr: 192.168.0.9:2016
Link active
The debug console can be turned off by setting the

Property SysCtrl.ConsoleOn to 0 (false).

2.5 Optional analog inputs

U3 on the PCB can be populated with a few msp430 vari-
ants that are programmed via the P1 port. Depending on
the model, extra functionality is available. Table 5 shows
the supported configurations. By default, TWI commu-
nication is implemented towards the msp430 units, un-
less noted otherwise. In the default configuration, the
msp430 are just used as intelligent ADCs without any fil-
tering, however they can be reprogrammed by a devel-
oper for special purposes. The sampling value query is
limited by the number of asynchronous I2C requests.

The effective maximum sample rate towards the netpp
node SoC is determined by the communication interface
speed. See also interface specifications in Table 6.

Tab. 6: Interface specifications
Interface Typical sample rate limit
SPI (msp430 master) 200 ksps (10 bit)
I2C (msp430 slave) 1 ksps (10 bit)
UART (bidirectional) 200 ksps (8 bit)

If a msp430 extension is present, it can be probed
through the field below. The analog extension type is
encoded in the netpp node device name. For supported
netpp node configurations, see also Section 7.1.1.

SysCtrl.MSP430Type
Read-only ’STRING’ property listing the identifier of
the installed msp430

2.6 Real time clock

When X4 is populated with a 32768 Hz quartz and the
RTC property container is present, the system can run a
real time clock (optionally battery powered) via the VAA
pin. The system can be altered by modifying the Rmx2
resistor configuration such that the external PWREN pin
can be used by the real time clock logik to turn on power
at specific occasions as well as soft powerup/powerdown
functionality.

4

Configureable networked computing

www.section5.ch

Tab. 4: Pin map GPIO_B
Pin MUX = 0 MUX = 1 MUX Property
J1[22..24] GPIO[1][0..2] PWM[0..2] (out) PWMxOutEn
J2[2] GPIO[1][8] UART0_RX (in) UART_RX_SEL
J2[1] GPIO[1][9] UART0_TX (out) UART_TX_SEL

Tab. 5: Supported MSP430 types
msp430 ADC/Ch ADC type I2C SPI UART
F2012 5 10 bit SAR, 200 ksps y (y) n
F2013 3(4) 16 bit sigma delta y (y) n
G2553 5 10 bit SAR, 200 ksps y y y

3 Software

3.1 Installation

When using the section5 netpp node SDK docker con-
tainer, all relevant netpp utilities are preinstalled. How-
ever, there are also specific clients available as installer
package.

3.1.1 Windows 32 bit

Please follow the instructions from
http://section5.ch/index.php/2017/09/12/netpp-for-
windows-quick-start/

Note that a property transaction may fail using UDP
(default firmware). This can happen more often when:

• The netpp node is not directly connected to the PC
(i.e. a router is in between)

• The network traffic is high

• The netpp client is run from within a virtual machine

3.2 netpp command line interface

The netpp command line interface is a session based con-
sole tool to manipulate remote netpp devices.

1. Run the netpp command line interface:

netpp-cli UDP:192.168.0.5:2016

2. Type ? to see all properties:

Connected to ’NetppNodeSD16’ device class
Child: (u) [20000001] ’ADCValue’
Child: (S) [20000002] ’SD16’
Child: (S) [00000001] ’SysCtrl’

...

3. Type a property name to see its value or possible chil-
dren:

netpp> Flash
’Flash’ not in cache, querying...
Type : {Struct} [RW.]
Child: (c) [0000000b] ’EraseSector’
Child: (u) [0000000c] ’Addr’
Child: (B) [0000000d] ’Buffer’
Child: (m) [0000000e] ’Mode’
Child: (u) [0000000f] ’CRC’

The properties have specific data types and follow a
classic namespace scheme found in most programming
languages. Properties that have children can be contain-
ers whose members are accessed by the dot notation, like
SysCtrl.RESET. In particular, there are the following com-
plex types:

STRUCT {Struct}
This container has arbitrary children. They are simply
accessed using a ’.’ notation, like Flash.Addr.

ARRAY {Array}
This container always has a Size property. The sec-
ond property is a prototype of the actual array items.
When accessing an item instance, the indexing no-
tation ’[i]’ is used, like: GPIO[0].Dir. The prototype
property itself is no more specified in the index nota-
tion.

For a detailed explanation of the netpp master com-
mand line interface, see the netpp HOWTO (Section 9).

In Section 7 you find a reference of all properties exist-
ing on this netpp target.

3.2.1 Device classes

Depending on the installed analog backend, different
device variants exist with a possibly different property

5

http://section5.ch/index.php/2017/09/12/netpp-for-windows-quick-start/
http://section5.ch/index.php/2017/09/12/netpp-for-windows-quick-start/

Configureable networked computing

www.section5.ch

Fig. 7: netpp for LabView ’get property’

set. The device name represents the corresponding de-
vice class (’NetppNodeSD16’ in the above example). See
Section 7.1.1 for supported devices. The base device class
properties (Section 7.2) are common to all netpp node
devices.

3.3 Python

For scripted remote control, a Python API is included in
the SDK.

3.4 HTML5 gateway add-on

For embedded targets with Python and TCP support, a
web interface can be dynamically derived from a the
netpp property list, running with a tiny memory foot-
print. This enables remote control from a mobile device
via a Raspberry Pi or some industrial embedded Linux so-
lution, for instance. HTML code can also be embedded
into the netpp node using simple string template proper-
ties.

3.5 Third party tool integration

3.5.1 process view server (pvhub)

For process monitoring or control using a master PC, a
server utility is available to display a graphical user inter-
face for the netpp node. This can be accessed through
the publicly available ’pvbrowser’. It is also included in
the SDK docker container. An example is provided for
the default stock firmware.

3.5.2 NI Labview

Based on the OpenG Python scripting VI plugin, a netpp
VI wrapper is available that allows access from within
Labview. For example, a value query works simply by the
schematic in Fig. 7.

3.5.3 OpenLab

This is an OpenSource Labview-like environment. Netpp
Java wrappers are available for this project for interested
Java Developers under an Open Source license.

3.6 msp430 firmware development

For msp430 firmware development, there is no ’built-in’
support. Experienced users however have the possibility
to flash the on-board msp430 using a SBW adapter such
as the msp430 LaunchPad or a TI FET430UIF. Table 7 below
shows the driver names supported by the mspdebug tool
(Linux SDK).

Tab. 7: msp430 SBW support table
msp430 type Driver
G2553 rf2500
F201x uif

4 Usage

This section covers the basic functionality and property
manipulation sequences for the built-in peripherals.

4.1 LED test

• Set SysCtrl.TEST_EN to enable LED testing

• Set the LED properties

• Clear SysCtrl.TEST_EN to activate system status LED
mode

Note that when the system is compiled in debug mode,
the internal state machine modifies the Status LEDs, thus
possibly interfering with user settings. See for the differ-
ent LED roles in dependence of the operation mode.

Tab. 8: LED role
Dbg TEST_EN D1[G] D2[R] D3[Y] D4[B]

* 0 off Break Emu IRQ
No 1 Green Red Yellow Blue
Yes 1 Link

up
Init.. Illegal

Pkt
Blue

When UDP packets are sent to the netpp node other
than to the netpp service, D3 will light up in Debug mode
and turn off when the next valid packet is received.

4.2 Analog inputs (ADC10)

This section covers the ADC10 variant of the netpp node
only.

The analog inputs [A0..A5] are by default available via
the IOA0..IOA5 pins as shown in the schematic Fig. 10.
Prior to sampling, the ADC is configured as follows:

• Turn ADC.ENC off

6

Configureable networked computing

www.section5.ch

Fig. 6: pvbrowser screen shot

• Configure conversion mode: ADC.SHS.

• Choose reference voltage RefVoltage and reference
voltage mode VrefMode.

• Turn on ADC.ENC to start ADC

The ADC.SHS property determines the trigger behaviour:

MANUAL_TRIGGER
In this mode, a Trigger toggle is required to start a
conversion

TIMER_A modes
The timer A determines the timing of the sample con-
version. It is preset at approx. 5kHz in the default
firmware and has limited timing accuracy. In the
demo firmware, there is no difference between the
TIMER_A modes, timed sampling is not supported.

4.2.1 Channels and References

Apart from the external analog inputs (A0..A4), internal
voltages can also be selected for testing and calibration.
This is done by setting the ADC.Channel property in Debug
mode (ADC.AcqMode = RepeatSingle). Example scenarios:

• When ADC.VrefMode is 0 (’VCC_VSS’) and channel 11 is
selected, the measured ADC value should be around
512.

• When in ’VREFp_VSS’ mode and ADC.RefVoltage =
’2500mV’, the value should be around 725.

For external voltage reference modes, pins (IO)A3 and
A4 take an alternate role as displayed in Table 9. When
RefOut is set, the pins are turned into outputs of the
RefVoltage. A5 can be used as an option on HW rev 0.1
when R28 is not populated and the msp430 is not config-
ured for SPI mode.

Tab. 9: VRef roles
Pin VeREF[m,p] mode RefOut
A3 VeREF- (input) VREF- (output of

RefVoltage)
A4 VeREF+ (input) VREF+ (output of

RefVoltage)

Detailed information for direct register access is found
in the msp430g2553 datasheet at the Texas Instru-
ments website www.ti.com and the family datasheet
slau144j.pdf.

4.3 Analog inputs (SD16)

This section covers the SD16 variant of the netpp node.
The analog inputs [A0..A1] are by default available via

the IOA0..IOA4 pins as shown in the schematic Fig. 10.
For a quick start, follow the steps below:

1. Select channel 5 (’AVcc_AVssby11’) in SD16.Channel.

2. Make sure SD16.SSEL is set to 0 (’MCLK’) or 1 and
SD16.REFON is set.

3. Turn on the SD16.SC (’Convert’)

7

http://www.ti.com

Configureable networked computing

www.section5.ch

00

01

10

11

00
01
10
11

Divider
[1,2,4,8]

Divider
[1,3,16,48]

XDIV

MCLK
SMCLK
ACLK
TACLK

SSEL

DIV

Fig. 8: Clock selection and division

4. Poll the ADCValue property

Unlike the ADC10 units, the SD16 uses differential in-
puts according to Table 10.

Tab. 10: Channel functions
Channel Input pin pair Comment

0 IOA0+, IOA1- -
1 IOA2+, IOA3- -
2 IOA4+, IOA5- Not usable on HW

revision 0.0, see also
Section 8.3.3

3 IOA6+, IOA7- Not supported (I2C)
4 IOA1+, IOA2- -

In order to avoid artefacts, sampling according to a spe-
cific input clock may be required by the application. Fig.
8 shows the input clock schematic and mode selection.

For detailed function of the analog input pins,
please see SD16 documentation in the family datasheet
slau144j.pdf.

4.4 PWM

The dagobert SoC has three simple PWM controllers built
in. PWM0 has a special role and is connected to the sys-
tem timer. The PWM property is an array of a property
structure where each members is a direct proxy to the
hardware registers. A short stepwise example:

1. Set Period to period length in cycles minus one

2. Set Width to pulse width (must be <= Period)

3. Set PWMStartAll to start PWMs simultaneously

4. Poll Count to verify the PWM is running

5. Stop single PWM (except unit 0) using PWM1Stop,
PWM2Stop

On the default firmware, the timer unit 0 (correspond-
ing to PWM[0]) also functions as system timer. It is
therefore recommended to not change the PWM[0].Period
value, as this would change the timeout behaviour of the
netpp main loop and protocol handler.

4.5 UART I/O

The UART0 is by default used as console I/O over the built-
in USBserial (/dev/ttyUSB1 on Linux). To turn off the con-
sole and use it for raw I/O, disable the SysCtrl.ConsoleOn
property. Also, you might want to reroute the UART to
the I/O pins using the port muxer, see Section 2.3.

• Pull UART into reset using UART.UART_RESET.

• Configure UART.Bps

• Send data by setting the UART.TxData property. The
UART buffer has a limited size, when the error
DCERR_PROPERTY_SIZE_MATCH (’Property size mismatch ’)
is received, you will have to break up the buffer in
chunks.

• Receive data by querying the UART.RxData property.
This returns the currently available bytes in the
buffer up to a maximum length. Read repeatedly un-
til you receive an empty string.

• Check for possible errors (readonly-Flags of the UART
container property) when getting a bad return code

4.6 Push buttons

The SW1 button is hard wired to the FPGA reset. The
SW2 user button function is determined by the firmware
and is by default configured as custom configuration by-
pass. In case an IP address was configured and can not be
determined via the debug console, holding SW2 during
reboot uses the default network properties from Table 3.

4.7 I2C interface

The I2C port’s SCL and SDA pins are exposed on the J2
header (see Fig. 3). When attaching an external device,
you should run through this check list:

• Pullups required? (see Section 8.3.3). When a msp430
(U3) is present, the internal pullups are normally suf-
ficient and R1, R2 are not populated.

• i2c slave address not equal 0x10 (when msp430 unit
populated)?

• netpp description for this device present?

Note that there is no default support in the eval
firmware for external devices.

4.8 Flash access

The SPI flash can be written using simple property ac-
cesses. Follow these steps to write data to the user flash
area (see Table 12) using the Flash container properties:

8

Configureable networked computing

www.section5.ch

1. Set Flash.Addr to the sector to erase (if erasing re-
quired)

2. Set Flash.EraseSector command to any value

3. Set Flash.Buffer with the data. Flash.Addr will auto-
increment by the size of the written buffer.

Likewise, data can be read by setting Addr and reading
the Buffer property.

See also flash.py script (Section 5.2.2).

5 Configuration

This section covers the boot-up configuration of the
netpp node and firmware updates.

5.1 Boot Configuration

Some internal (as well as netpp-exported) parameters
have a user shadow instance in a non-volatile flash (NV)
area. If the SysCtrl.StoreNV command property is set to 1,
the current configuration is stored into the NV area and
is active on the next Reboot. See Table 11 for the con-
figuration properties. In the firmware source, more non-
volatile configuration variables can be added by specific
C compiler attributes.

Examples:

5.1.1 Change IP address

To change the IP address, use this property setting se-
quence, for example using netpp-cli:

$ netpp-cli UDP:192.168.0.26:2016
netpp> Network.IPaddr 0xc0a80009
netpp> SysCtrl.StoreNV 1
netpp> SysCtrl.Reboot 0

Upon reboot, all further commands will cause a com-
munication timeout and a new connection will have to
be initiated.

5.1.2 Enable custom firmware

Assume, you have loaded your custom firmware using
flash.py (see Section 5.2.2) into the user area and tested it
by setting SysCtrl.Reboot to 1. To permanently boot this
firmware, use this sequence:

netpp> SysCtrl.BootMode 1
netpp> SysCtrl.StoreNV 1
netpp> SysCtrl.Reboot 0

5.2 Firmware update

5.2.1 Local update

To download a firmware (Bit-File) onto the target,
you typically run the make download command in
your platform project directory of the SDK, like
$(SDK)/syn/xilinx/netpp_node/. This is currently sup-
ported in Linux only.

When the SDK is not present, you will need a cus-
tomized papilio-prog executable. Then you can down-
load a bit file for testing:

papilio-prog -f netpp_node_fw.bit

For permanent installation, you need to write the bit
file into flash using

NETPP_NODE=$MASOCIST_SDK/syn/xilinx/netpp_node
papilio-prog -b $(NETPP_NODE)/bscan_spi_lx9.bit \
-s a -f netpp_node_fw.bit

5.2.2 Network update

Using the Flash property, sectors on the SPI flash can
be modified, like for a secondary image to boot from.
This secondary image is a standard FPGA binary gener-
ated from a bit file. This file is written to the UserROM
area of the SPI flash (see Table 12). Upon setting the
SysCtrl.Reboot property to 1 (see also BootMode choices),
the system will warm-boot into this new image. If the
flash was not written correctly, the boot procedure will
fall back into the default BootROM image (which should
never be modified). Setting SysCtrl.Reboot to 0 will re-
boot into the default BootROM image, provided that the
property is existing in the current design.

If the system fails due to an invalid firmware image, it
can be restored to default bootloader mode by holding
USER_RESET (SW2) upon reset (SW1). It is then accessible
by the default network configuration.

Note that on the netpp node eval platform, Flash access
to all areas is enabled by default.

An example on how to upgrade and boot into a custom
image is found in the SDK docker container:

cd $HOME/src/netpp/devices/netpp_node
make all DEPLOY=y # Build deployment version of firmware
make image # Build binary
python flash.py # Write into flash

6 Troubleshooting

When SysCtrl.TEST_EN is not enabled, the LEDs D1..D4 dis-
play the current system Status, see also LED property. To
test for errors during development, make sure TEST_EN is
off.

9

Configureable networked computing

www.section5.ch

Tab. 11: Configuration properties
Property Description
Network.IPaddr IPv4 address
Network.MACaddr Hardware address, immutable from Bootloader
SysCtrl.BootMode Boot mode (0: boot loader, 1: deployment firmware)

Tab. 12: SPI flash map
ID[Size] Addr Access Description
BootROM 0x000000 RO Boot ROM area (FPGA image)
CodeROM 0x054000 RO Code ROM
ConfigBase 0x0C0000 RW Configuration area
UserROM 0x0D0000 RW User ROM area (second FPGA image)

System no longer responding and Red LED on
System entered a BREAK condition. When the system
is in BREAK state, the cause can be only determined
by the hardware debugger interface. Otherwise, re-
set the system using the SW1 reset button. This con-
dition is ONLY to be expected in experimental, non-
verified evaluation firmware or when a hardware
mismatch is detected.

Communication errors and slow response
Check the blue D3 LED for high packet/IRQ activity,
likewise verify the LEDs on the connector or use Wire-
shark to monitor packet rates.

Green LED on X2 connector blinking fast, no response
from target

The system was reset and is not booting correctly. If
a manual reset does not recover, the firmware may
have been damaged and reprogramming may be re-
quired.

10

Configureable networked computing

www.section5.ch

7 Property reference

This section contains a list of the available properties,
listed by group. The property naming follows a partic-
ular style, for example:

BIT_SPECIFICATION
A property that maps directly to a register bit (field)

MoreAbstractProperty
A more abstracted property that does not necessarily
match a hardware register

This property reference is valid for the ’NetppNode*’
classes with:

Device Revision: 0.4
Make sure to check against the device revision

(DeviceRevision property), if you find a mismatch be-
tween documentation and device properties.

Note that with 0.x version (developer) releases, the
properties can change without warning and the De-
viceRevision property is not present. If you are develop-
ing a GUI application based on a specific property set,
make sure to handle non-existing properties or synchro-
nize explicitely using the builtin checksum property (See
TOKEN_CHECK in the netpp programmer API documenta-
tion).

7.1 Reading the property reference

As the Property interface is hierarchy aware, there are so
called ’top level properties’ inside a device’s property list
query that is normally occuring at the start of a session.

All top level properties seen from a query are listed in
groups in this reference. If a top level property is more
complex (like a STRUCT, ARRAY, or MODE property) or
has documented children in general, it may refer to an-
other table containing the description of its children. In
the PDF file of this documentation, simply jump to the
table of the referred property by clicking on the property
(possibly marked as a hyperlink in some PDF viewers).

The full property identication for a specific property
represents the entire node hierarchy, for example:

PWM[0].Invert

Specific for mode properties, legal values can be
queried from the ’choice’ children of a MODE property,
for example in netpp-cli:

netpp> ADC.AcqMode.Single
’ADC.AcqMode.Single’ not in cache, querying...
Type : Mode [R..]
Value: #0
netpp> ADC.AcqMode 0

7.1.1 Derived device classes

The default netpp node device ’NetppNodev1’ is consid-
ered the ’Base class’, as all netpp nodes have these prop-
erties. When an analog extension is present, the devices
have different names and additional properties, as found
in the corresponding sections:

NetppNodeADC10
10 bit SAR analog extension, see Section 7.3.

NetppNodeSD16
16 bit sigma delta analog extension, see Section 7.4.

7.2 Base class properties

The base class (NetppNodev1) properties

7.2.1 System configuration

Tab. 13: Property group ’System configuration’
Property Type Flags Description
SysCtrl STRUCT RW System control container
Network STRUCT RW Network parameters,

non-volatile
Flash STRUCT RW Direct low level flash

access. Experimental.

Configuration and status query
See Table 13

Tab. 17: Mode SysCtrl.BootMode – possible values
Value Mode name Description
0 BOOTLOADER Boot into bootloader

(primary firmware)
1 SECONDARY Boot into secondary

firmware

7.2.2 GPIO

Port input/output control properties that are non-system
specific.

See Table 18

7.2.3 Low Level register access

Properties for direct low level register access
See Table 22

11

Configureable networked computing

www.section5.ch

Tab. 14: Struct SysCtrl
Property Type Flags Description
TEST_EN BOOL RW Enable LED testing (user access)
HWRevision REGISTER RO Hardware version register
Reboot COMMAND WO Issues reboot (0: bootrom, 1: secondary image)
ConsoleOn BOOL RW Set to enable console (Default = on)
MSP430Type STRING RO MSP430 type identifier
ReleaseTag STRING RO System release version tag
BootMode MODE RW Boot mode (non-volatile)
StoreNV COMMAND WO Store configuration in Flash

Tab. 15: Struct Network
Property Type Flags Description
MACaddr BUFFER RO MAC (hardware ethernet) address
IPaddr REGISTER RW IPv4 address, in 32 bit big endian format

Tab. 18: Property group ’GPIO’
Property Type Flags Description
UartTxEn BOOL RW Enable UartTX on

Port B
UartRxEn BOOL RW Enable UartRX on

Port B
PWM0OutEn BOOL RW When set, enable

PWM function on
GPIO

PWM1OutEn BOOL RW When set, enable
PWM function on
GPIO

PWM2OutEn BOOL RW When set, enable
PWM function on
GPIO

PWM1Stop COMMAND WO Stop PWM1
PWM2Stop COMMAND WO Stop PWM2
PWMStartAll COMMAND WO Start all PWMs

synchronously
UART STRUCT RW UART I/O

handling for
primitive buffer
based remote
control

GPIO ARRAY RW The GPIO ports
PWM ARRAY RW The PWM unit

array property

Tab. 22: Property group ’Low Level register access’
Property Type Flags Description
LED STRUCT RW User LEDs D1..D4

12

Configureable networked computing

www.section5.ch

Tab. 16: Struct Flash
Property Type Flags Description
EraseSector COMMAND WO Erase sector at address ’Addr’
Addr REGISTER RW Flash address pointer
Buffer BUFFER RW Flash data buffer. Reads/writes a chunk of bytes from/to ’Addr’.
Count INT WO Count of bytes for some operations

Tab. 19: Array item GPIO[i]
Property Type Flags Description
In REGISTER RO GPIO input register
Dir REGISTER RW GPIO direction register, set ’1’ for output
Out REGISTER RW GPIO output register
Set REGISTER WO Atomic GPIO SET register, write one to set corresponding bit
Clr REGISTER WO Atomic GPIO CLEAR register, write one to clear corresponding bit

Tab. 20: Array item PWM[i]
Property Type Flags Description
Invert BOOL RW When set, invert PWM output
Count REGISTER RO Current counter value
Width REGISTER RW PWM pulse width register, should be smaller than Period
Period REGISTER RW PWM period register
Running BOOL RO Set when the PWM/Timer is running

Tab. 21: Struct UART
Property Type Flags Description
RXREADY BOOL RO Set when data ready in RX FIFO
TXREADY BOOL RO Set when TX FIFO ready for data
TXBUSY BOOL RO ’1’ when TX in progress
FRERR BOOL RO Sticky framing error. Set when stop bit not null. Reset by UART_RESET.
TXOVR BOOL RO Transmitter FIFO overrun. Cleared by UART_RESET.
RXOVR BOOL RO Receiver FIFO overrun. Cleared by UART_RESET.
UART_RESET BOOL RW ’1’: Reset UART. Clear to run.
Bps INT RW Bit per second. When writing this value, running transfers might end up with

broken data.
TxData BUFFER WO Buffered write to UART_TX
RxData BUFFER RO Buffered read from UART_RX

Tab. 23: Struct LED
Property Type Flags Description
Green BOOL RW Green: Ready
Red BOOL RW Red: Error/Break
Yellow BOOL RW Yellow: Warning
Blue BOOL RW Blue: Activity.

13

Configureable networked computing

www.section5.ch

7.3 ADC10 extension

The additional properties for the ’NetppNodeADC10’ de-
vice

7.3.1 ADC10 Analog I/O

Tab. 24: Property group ’ADC10 Analog I/O’
Property Type Flags Description
ADC STRUCT RW ADC parameters
ADCBuf ARRAY RW ADC channel value array

Properties for analog I/O based on the msp430 exten-
sion

See Table 24

Tab. 26: Mode ADC.VrefMode – possible values
Value Mode name Description
0 VCC_VSS Range V_CC to V_SS
1 VREFp_VSS V_REF+ to V_SS
2 VeREFp_VSS V_eREF+ (external) to

VSS
3 VeREFpbuf_VSS Buffered V_eREF+ to

VSS
4 VCC_VREFm V_CC to VREF-
5 VREFp_VREFm V_REF+ to V_REF-
6 VeREFp_VREFm V_eREF+ (external) to

VREF-
7 VeREFpbuf_VREFm V_eREF+ (external,

buffered) to VREF-

Tab. 27: Mode ADC.SHS – possible values
Value Mode name Description
0 MANUAL_TRIGGER Software-Trigger (via

’Trigger’ property)
1 TIMER_A_OUT1 TIMERA1 output
2 TIMER_A_OUT0 TIMERA0 output
3 TIMER_A_OUT2 TIMERA2 output

Tab. 28: Mode ADC.SHT – possible values
Value Mode name Description
0 4X Four clock cycles
1 8X Eight clock cycles
2 16X ..
3 64X

Tab. 29: Mode ADC.RefVoltage – possible values
Value Mode name Description
0 1500mV 1.5V Reference voltage
1 2500mV 2.5V Reference voltage

Tab. 30: Mode ADC.ClkDiv – possible values
Value Mode name Description
0 DIV1 No division
1 DIV2 Clock divided by 2
2 DIV3 ..
3 DIV4
4 DIV5
5 DIV6
6 DIV7
7 DIV8

14

Configureable networked computing

www.section5.ch

Tab. 25: Struct ADC
Property Type Flags Description
Reset BOOL RW
Busy BOOL RO When set, ADC is running
VrefMode MODE RW Voltage reference selection
MSC BOOL RW When set, auto-repeat conversion regardless of timer frequency. Turn off by

default.
SHS MODE RW Conversion trigger mode
SHT MODE RW Sample&Hold timing
ENC BOOL RW Encoding when 1. Turn off to change ADC settings.
RefVoltage MODE RW Selection of internal reference voltage
RefOut BOOL RW Enable reference voltage output on A3/A4
ClkDiv MODE RW Clock divider for analog conversion input clock
IRQen BOOL RW IRQ enable. Upon completion of a conversion, the IFG property is set, when this

bit is enabled, the corresponding IRQ routine is entered.
IFG BOOL RO Interrupt flag. When IRQen=FALSE, it remains flagged until cleared by software

routines.
Trigger BOOL WO Software trigger to start conversion
SC BOOL RO Single conversion trigger ACK bit. Cleared after successful single trigger action.

7.4 ADC_SD16 extension

These are the additional properties of the ’NetppN-
odeSD16’ backend.

7.4.1 SD16 Analog I/O

Tab. 31: Property group ’SD16 Analog I/O’
Property Type Flags Description
ADCValue REGISTER RO ADC 16 bit value
SD16 STRUCT RW ADC parameters

Properties for analog I/O based on the msp430 exten-
sion

See Table 31

Tab. 33: Mode SD16.Gain – possible values
Value Mode name Description
0 X1 No amplification
1 X2 Gain x2
2 X4 ..
3 X8
4 X16
5 X32

Tab. 34: Mode SD16.Channel – possible values
Value Mode name Description
0 A0p_A1m Inputs A0+,A1-
1 A2p_A3m Inputs A2+,A3-
2 A4p_A5m Inputs A4+,A5-
3 A6p_A7m N/A with i2c interface
4 A1p_A2m Inputs A1+,A2-
5 AVcc_AVssby11 A5 - (AVcc - AVss)/11
6 TEMP Temperature channel
7 PGAOFFS PGA offset measurement

Tab. 35: Mode SD16.BufMode – possible values
Value Mode name Description
0 OFF High impedance buffer off
1 SLOW Slow speed/current
2 MEDIUM Medium speed/current
3 HIGH High speed/current

Tab. 36: Mode SD16.OSR – possible values
Value Mode name Description
0 OSR256 256x oversampling
1 OSR128 ..
2 OSR64
3 OSR32

15

Configureable networked computing

www.section5.ch

Tab. 32: Struct SD16
Property Type Flags Description
Gain MODE RW Preamplifier gain
Channel MODE RW Analog input channel
BufMode MODE RW High impedance buffer
SingleConv BOOL RW Single conversion
OSR MODE RW OversamplingRate
Unipolar BOOL RW Unipolar measurement format (see SD16 chapter in slau144j.pdf)
IFG BOOL RO Interrupt flag for ADC conversion
IE BOOL RW Enable IRQ upon conversion result
REFON BOOL RW Enable 1.2V reference. Must be enabled for conversion.
VMIDON BOOL RW Enable VRef output on IOA3
DIV MODE RW Clock division register bitfield 0
XDIV MODE RW Clock division register second divider
SSEL MODE RW Conversion clock selection
SC BOOL RW Start Conversion (toggle for single conversion mode)

Tab. 37: Mode SD16.DIV – possible values
Value Mode name Description
0 DIV1
1 DIV2
2 DIV4
3 DIV8

Tab. 38: Mode SD16.XDIV – possible values
Value Mode name Description
0 DIV1
1 DIV3
2 DIV16
3 DIV48

Tab. 39: Mode SD16.SSEL – possible values
Value Mode name Description
0 MCLK Main clock
1 SMCLK Sub-Main clock
2 ACLK Auxiliary clock (32768 Hz)
3 ExtTACLK External TACLK (Pin IOA0)

16

Configureable networked computing

www.section5.ch

8 Technical specifications

8.1 Electrical

Table 40 shows the electrical characteristics and maximum
ratings.

Tab. 40: Electrical characteristics
Electrical characteristics

Standard operation
VDD 5V Supply voltage (USB) or J2:VEXT pin
VIO 3.3V I/O voltage
Iidle 104mA Power consumption with PHY

disabled, CPU@54Mhz
Inet 154mA Typical power consumption of bare

netpp node (54 MHz, no peripherals)
during network operation
Maximum ratings

Imax 500 mA Maximum current that board
including piggy back can draw from
USB connector

VDD 6 V Absolute maximum supply voltage
from J2:VEXT pin

8.2 Drawings

• Top level schematic: Fig. 10

• Mechanical outline: Fig. 9

Fig. 9: Mechanical outline

8.3 Revision/changes

The HW revision tag is found on the bottom layer under-
neath X2. Do not confuse with the netpp node version
listed on the top of the board near TP1.

8.3.1 Hardware Revisions

Rev 0.0proto First Prototype, limited releases

Rev0.1 Changes:

1. Improved capacitor buffering

2. PAD changes U5

3. IOA5 option

4. J2 layout changed (SCL and SDA exported)

8.3.2 dagobert SoC revisions

The dagobert CPU/System on chip revisions are deter-
mined by the SysCtrl.HWRevision property. The lower
16 bit word denotes the major:minor revision bytes, i.e.
0x0003 stands for Rev 0.3.

The complete errata and revision specification is found
in the dagobert SoC manual (Section 9).

17

Configureable networked computing

www.section5.ch

0.1 development revision First spartan6 backport, lim-
ited releases

0.2 ’Improved IRQ’ Removed JPEG I/O signals, improved
network I/O

0.3 LCD engine support Added LCD I/O engine and port
muxing for Port A

8.3.3 Population options

R1, R2
Use 1.5k resistors for bus pullup when needed (no U2
installed)

R28
Use 0-100 Ohm for SPI mode setup (custom FPGA im-
age required)

Rmx1
HSWAP behaviour, please refer to the Spartan6
datasheet

Rmx2
Option for external power control (msp430 soft
start/FPGA shutdown)

9 Further pointers

Web link
http://section5.ch/index.php/2017/08/21/netpp-node-
evaluation-platform/

netpp HOWTO
http://section5.ch/index.php/dokumentation/

netpp node SDK evaluation docker container
http://section5.ch/index.php/product/masocist-
evaluation-docker-container/

Reference designs
netpp node piggy back KiCAD example designs on
request

dagobert Hardware Reference soc-dagobert.pdf
On request only (NDA required)

18

http://section5.ch/index.php/2017/08/21/netpp-node-evaluation-platform/
http://section5.ch/index.php/2017/08/21/netpp-node-evaluation-platform/
http://section5.ch/index.php/dokumentation/
http://section5.ch/index.php/product/masocist-evaluation-docker-container/
http://section5.ch/index.php/product/masocist-evaluation-docker-container/

Configureable networked computing

www.section5.ch
1

2
3

4
5

6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:
 2

01
7-

09
-0

5
K

iC
ad

 E
.D

.A
.

ki
ca

d
4.

0.
7-

e1
-6

37
45

8u
bu

nt
u1

4.
04

.1
R

ev
:

0.
1

S
iz

e:
 A

4
Id

: 1
/6

T
it

le
:

T
o

p
 le

ve
l

F
ile

: f
em

un
de

n.
sc

h
S

he
et

: /
se

ct
io

n
5.

ch

R
4

47
0

+
3.

3V

G
N

D

R2
1.5k

+
3.

3V

G
P

IO
_A

[0
..1

5]

U
S

B
 U

A
R

T
/J

T
A

G

us
bi

o_
pl

us
.s

ch

P
W

R
E

N
U

_C
LK

U
S

B
_G

N
D

U
S

B
_V

C
C

U
S

B
_D

+
U

S
B

_D
-

V
C

C
IO

F
IF

O
_S

I

F
IF

O
_C

[0
..3

]
F

IF
O

_D
[0

..7
]

T
D

I
T

D
O

T
M

S

T
R

S
T

T
C

K

IO
A

[0
..4

]

+
1V

2

+
3.

3V

+
1V

2
+

3V
3

+
3V

3

D
+ D
-

ID

G
N

D

V
B

U
S

X
1

USB-AB-SMD

D
N

P
 b

y
de

fa
ul

t

IO
D

[0
..7

]

A
na

lo
g

I/O
 M

ux

io
.s

ch

S
D

A

S
C

L
M

S
P

_I
O

A
[0

..4
]

U
C

B
_S

C
LK

M
S

P
_I

O
D

[0
..7

]

T
P

1

T
E

S
T

P
A

D

R
3

47
0

+
3.

3V

P
W

R
_F

LA
G

G
P

IO
_B

[0
..1

5]

F
P

G
A

 a
nd

 b
us

fp
ga

_l
x9

.s
ch

T
C

K
T

D
I

T
D

O
T

M
S

F
IF

O
_D

[0
..7

]

I2
C

_S
D

A

I2
C

_S
C

L

U
C

B
_S

C
LK

1V
2

F
IF

O
_C

[0
..3

]

U
C

LK

V
C

C
0

U
_P

W
R

E
N

G
P

IO
B

[0
..1

5]

F
IF

O
_S

I

M
A

C
_M

D
IO

M
A

C
_M

D
C

M
A

C
_P

H
Y

R
S

T

M
A

C
_C

O
L

M
A

C
_R

X
D

[0
..3

]

M
A

C
_T

X
D

[0
..3

]

M
A

C
_R

X
E

R

M
A

C
_T

X
E

N

M
A

C
_C

R
S

M
A

C
_R

X
C

M
A

C
_T

X
C

M
A

C
_R

X
D

V

M
A

C
_I

N
T

R
P

G
P

IO
A

[0
..1

5]

LE
D

[0
..3

]

1
2

3
4

5
6

7
8

9
10 20 30

11 21 31

12 22 32

13 23

14 24

15 25

16 26

17 27

18 28

19 29

J1 C
O

N
N

_0
2x

16

1
2

3
4

5
6

7
8

9
10 20 30

11 21 31

12 22 32

13 23

14 24

15 25

16 26

17 27

18 28

19 29

J2 C
O

N
N

_0
2x

16

N
et

w
or

k
P

hy
 M

II

ne
t.s

ch

R
S

T
_P

H
Y

M
A

C
_M

D
IO

M
A

C
_M

D
C

R
J_

T
X

-
R

J_
T

X
+

R
J_

R
X

+
R

J_
R

X
-

R
J_

LE
D

0
M

A
C

_R
X

D
[0

..3
]

M
A

C
_T

X
D

[0
..3

]

M
A

C
_R

X
E

R

M
A

C
_T

X
E

N

M
A

C
_C

R
S

M
A

C
_C

O
L

M
A

C
_R

X
C

M
A

C
_T

X
C

M
A

C
_R

X
D

V

M
A

C
_I

N
T

R
P

R
J_

LE
D

1

V
C

C
_I

N

G
N

D

G
P

IO
_A

0
G

P
IO

_A
1

G
P

IO
_A

2
G

P
IO

_A
3

G
P

IO
_A

4
G

P
IO

_A
5

G
P

IO
_A

6
G

P
IO

_A
7

G
P

IO
_A

8
G

P
IO

_A
9

G
P

IO
_A

10
G

P
IO

_A
11

G
P

IO
_A

12
G

P
IO

_A
13

G
P

IO
_A

14
G

P
IO

_A
15

G
P

IO
_B

0
G

P
IO

_B
1

G
P

IO
_B

2
G

P
IO

_B
3

G
P

IO
_B

4
G

P
IO

_B
5

G
P

IO
_B

6
G

P
IO

_B
7

G
P

IO
_B

8
G

P
IO

_B
9

G
P

IO
_B

10
G

P
IO

_B
11

G
P

IO
_B

12
G

P
IO

_B
13

G
P

IO
_B

14
G

P
IO

_B
15

G
N

D
G

N
D

G
N

D
G

N
D

V
C

C
_3

_3

+
3V

3

V
C

C
_3

_3

IO
A

0
IO

A
1

IO
A

2
IO

A
3

IO
A

4

IO
D

0
IO

D
1

IO
D

2
IO

D
3

IO
D

4
IO

D
5

IO
D

6
IO

D
7

G
N

D

1
2

D
1

gr
ee

n
R

5
47

0

+
3.

3V

R
6

47
0

R
7

47
0

R
8

47
0

LE
D

0

LE
D

1

LE
D

2

LE
D

3

LE
D

[0
..3

]

1
2

D
2

re
d

1
2

D
3

ye
llo

w
1

2
D

4
bl

ue

V
U

S
B

1 2 3

J3 C
O

N
N

_0
1x

03

V
U

S
B

V
C

C
_I

N
V

E
X

T

V
C

C
_3

_3

P
W

R
E

N

P
W

R
E

N
G

N
D

V
E

X
T

V
A

A

V
C

C
_3

_3
G

N
D

V
E

X
T

P
ow

er
 s

up
pl

y

po
w

er
.s

ch

V
3_

3_
O

U
T

V
1_

2_
O

U
T

V
C

C
IN

P
W

R
E

N

P
W

R

A
lt:

D
ig

ik
ey

 1
41

9-
10

46
-N

D

gr
ee

n

ye
llo

w
LE

D
1+

L1

R
X

+
P

1

LE
D

1-
L2

R
X

-
P

2

LE
D

2+
L3

R
X

0
P

3

LE
D

2-
L4

T
X

0
P

4

T
X

+
P

5
T

X
-

P
6

G
N

D
P

8

C
A

S
E

G
N

D
C

A
S

E

X
2

1X
R

J4
5_

M
M

_J
A

C
K

R1
1.5k

G
N

D

IO
A

5

IO
A

5

S
D

A

S
C

L

S
D

A
S

C
L

R
280

Fi
g

.1
0:

To
p

le
ve

ls
ch

em
at

ic

19

	Highlights
	Introduction
	Hardware
	Networking

	netpp basics
	netpp connections
	Typical network application

	Pin map
	Port multiplexing

	Debug console
	Optional analog inputs
	Real time clock

	Software
	Installation
	Windows 32 bit

	netpp command line interface
	Device classes

	Python
	HTML5 gateway add-on
	Third party tool integration
	process view server (pvhub)
	NI Labview
	OpenLab

	msp430 firmware development

	Usage
	LED test
	Analog inputs (ADC10)
	Channels and References

	Analog inputs (SD16)
	PWM
	UART I/O
	Push buttons
	I2C interface
	Flash access

	Configuration
	Boot Configuration
	Change IP address
	Enable custom firmware

	Firmware update
	Local update
	Network update

	Troubleshooting
	Property reference
	Reading the property reference
	Derived device classes

	Base class properties
	System configuration
	GPIO
	Low Level register access

	ADC10 extension
	ADC10 Analog I/O

	ADC_SD16 extension
	SD16 Analog I/O

	Technical specifications
	Electrical
	Drawings
	Revision/changes
	Hardware Revisions
	dagobert SoC revisions
	Population options

	Further pointers

