Mapping High Level Constructs to
LLVM IR Documentation

Test

Oct 05, 2018

Contents:

1 About 3
2 Contributing 5

3 License 7

Mapping High Level Constructs to LLVM IR Documentation

Click here to read the book on readthedocs.org

Contents: 1

http://mapping-high-level-constructs-to-llvm-ir.rtfd.io/

Mapping High Level Constructs to LLVM IR Documentation

2 Contents:

CHAPTER 1

About

This is a gitbook dedicated to providing a description on how LLVM based compilers map high-level language con-
structs into the LLVM intermediate representation (IR).

This document targets people interested in how modern compilers work and want to learn how high-level language
constructs can be implemented. Currently the books focuses on C and C++, but contributions about other languages
targeting LLVM are highly welcome. This document should help to make the learning curve less steep for aspiring
LLVM users.

For the sake of simplicity, we’ll be working with a 32-bit target machine so that pointers and word-sized operands are
32-bits. Also, for the sake of readability we do not mangle (encode) names. Rather, they are given simple, easy-to-read
names that reflect their purpose. A production compiler for any language that supports overloading would generally
need to mangle the names so as to avoid conflicts between symbols.

Mapping High Level Constructs to LLVM IR Documentation

4 Chapter 1. About

CHAPTER 2

Contributing

The repository for this gitbook is hosted on github. All contributions are welcome. If you find an error file an Issue or
fork the repository and create a pull-request.

https://github.com/f0rki/mapping-high-level-constructs-to-llvm-ir
https://github.com/f0rki/mapping-high-level-constructs-to-llvm-ir/issues
https://github.com/f0rki/mapping-high-level-constructs-to-llvm-ir/pulls

Mapping High Level Constructs to LLVM IR Documentation

6 Chapter 2. Contributing

CHAPTER 3

License

UNLESS OTHERWISE NOTED, THE CONTENTS OF THIS REPOSITORY/DOCUMENT ARE LICENSED UN-
DER THE CREATIVE COMMONS ATTRIBUTION - SHARE ALIKE 4.0 INTERNATIONAL LICENSE

3.1

©00]

Fig. 1: https://creativecommons.org/licenses/by-sa/4.0/

A Quick Primer

Here are a few things that you should know before reading this document:

LLVM IR is not machine code, but sort of the step just above assembly. So some things look more like a high-
level language (like functions and the strong typing). Other looks more like low-level assembly (e.g. branching,
basic-blocks).

LLVM IR is strongly typed so expect to be told when you do something wrong.
LLVM IR does not differentiate between signed and unsigned integers.

LLVM IR assumes two’s complement signed integers so that say t runc works equally well on signed and
unsigned integers.

Global symbols begin with an at sign (@).
Local symbols begin with a percent symbol (%).
All symbols must be declared or defined.

Don’t worry that the LLVM IR at times can seem somewhat lengthy when it comes to expressing something;
the optimizer will ensure the output is well optimized and you’ll often see two or three LLVM IR instructions
be coalesced into a single machine code instruction.

https://creativecommons.org/licenses/by-sa/4.0/

Mapping High Level Constructs to LLVM IR Documentation

« If in doubt, consult the Language Reference'. If there is a conflict between the Language Reference and this

document, this document is wrong! Please file an issue on github then.

* All LLVM IR examples are presented without a data layout and without a target triple. You can assume it’s

usually x86 or x86_64.

* The original version of this document was written a while ago, therefore some of the snippets of LLVM IR
might not compile anymore with the most recent LLVM/clang version. Please file a bug report at github if you

encounter such a case.

3.1.1 Some Useful LLVM Tools

The most important LLVM tools for use with this article are as follows:

Name Function Reads Writes | Arguments
clang C Compiler .C .11 —emit-1lvm -S
clang++ C++ Compiler | .cpp .11 —emit-1lvm -S
opt Optimizer .bc/.11 | .bc

llvm-dis | Disassembler .bc .11

llc IR Compiler .11 .s

While you are playing around with generating or writing LLVM IR, you may want to add the option
-fsanitize=undefined to Clang/Clang++ insofar you use either of those. This option makes Clang/Clang++
insert run-time checks in places where it would normally output an ud?2 instruction. This will likely save you some
trouble if you happen to generate undefined LLVM IR. Please notice that this option only works for C and C++

compiles.

Note that you canuse .11 or . bc files as input files for clang (++) and compile full executables from bitcode files.

3.2 Basic Constructs

In this chapter, we’ll look at the most basic and simple constructs that are part of nearly all imperative/OOP languages

out there.

3.2.1 Global Variables

Global varibles are trivial to implement in LLVM IR:

int variable = 21;

int main ()

{

variable = variable » 2;

return variable;

Becomes:

Uhttp://llvm.org/docs/LangRef.html

Chapter 3. License

http://llvm.org/docs/LangRef.html

Mapping High Level Constructs to LLVM IR Documentation

@variable = global i32 21

define i32 (@main() {
$1 = load i32, i32«% (@variable ,; load the global variable
$2 = mul i32 %1, 2
store i32 %2, i32* @variable ; Store instruction to write to global variable
ret i32 %2

Globals are prefixed with the @ character. You can see that also functions, such as main, are also global variables
in LLVM. Please notice that LLVM views global variables as pointers; so you must explicitly dereference the global
variable using the 1oad instruction when accessing its value, likewise you must explicitly store the value of a global
variable using the st ore instruction. In that regard LLVM IR is closer to Assembly than C.

3.2.2 Local Variables

There are two Kkinds of local variables in LLVM:
* Temporary variables/Registers
¢ Stack-allocated local variables.

The former is created by introducing a new symbol for the variable:

5 = add i32 4, 2

The latter is created by allocating the variable on the stack:

%stack = alloca i32

Nearly every instruction returns a value, that is usually assigned to a temporary variable. Because of the SSA form of
the LLVM IR, a temporary variable can only be assigned once. The following code snippet would produce an error:

stmp add i32 4, 2
$tmp = add i32 4, 1 ; Error here

To conform to SSA you will often see something like this:

Stm

add i32 4, 2
add i32 4, 1 ,; fine now

Which can be further shortened to:

20 = add i32 4, 2
>1 = add i32 4, 1

The number of such local variables is basically unbounded. Because a real machine does have a rather limited number
of registers the compiler backend might need to put some of these temporaries on the stack.

Please notice that a1l 1oca yields a pointer to the allocated type. As is generally the case in LLVM, you must explicitly
use a 1oad or store instruction to read or write the value respectively.

The use of alloca allows for a neat trick that can simplify your code generator in some cases. The trick is to
explicitly allocate all mutable variables, including arguments, on the stack, initialize them with the appropriate initial
value and then operate on the stack as if that was your end goal. The trick is to run the “memory to register promotion”
pass on your code as part of the optimization phase. This will make LLVM store as many of the stack variables in

3.2. Basic Constructs 9

Mapping High Level Constructs to LLVM IR Documentation

registers as it possibly can. That way you don’t have to ensure that the generated program is in SSA form but can
generate code without having to worry about this aspect of the code generation.

This trick is also described in chapter 7.4, Mutable Variables in Kaleidoscope, in the OCaml tutorial on the LLVM
website.

3.2.3 Constants

There are two different kinds of constants:
 Constants that do not occupy allocated memory.
 Constants that do occupy allocated memory.

The former are always expanded inline by the compiler as there is no LLVM IR equivalent of those. In other words,
the compiler simply inserts the constant value wherever it is being used in a computation:

%1 = add i32 %0, 17 ; 17 is an inlined constant

Constants that do occupy memory are defined using the constant keyword:

@hello = internal constant [6 x i8] c"hello\0O"
$struct = type { 132, i8 }
@struct_constant = internal constant $struct { 132 16, i8 4 }

Such a constant is really a global variable whose visibility can be limited with private or internal so that it is
invisible outside the current module.

Constant Expressions

An example for constant expressions are sizeof-style computations. Even though the compiler ought to know the
exact size of everything in use (for statically checked languages), it can at times be convenient to ask LLVM to figure
out the size of a structure for you. This is done with the following little snippet of code:

%S

sStruct = type { i8, 132, i8x }
@Struct_size = constant i32 ptrtoint ($Struct+ getelementptr (%Structx null, i32 1))
—~to 132

@Struct_size will now contain the size of the structure $St ruct. The trick is to compute the offset of the second
element

in the zero-based array starting at nul1 and that way get the size of the structure.

3.2.4 Structures

LLVM IR already includes the concept of structures so there isn’t much to do:

struct Foo
{
size_t x;
double y;
bi

It is only a matter of discarding the actual field names and then index with numerals starting from zero:

10 Chapter 3. License

https://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#mutable-variables-in-kaleidoscope
https://www.llvm.org
https://www.llvm.org

Mapping High Level Constructs to LLVM IR Documentation

$Foo = type {
i64, ; index 0 = x
double ; Index 1 =y

Nested Structures

Nested structures are also straightforward. They compose in exactly the same way as a C/C++ struct.

struct FooBar
{
Foo x;
charx c;
Foox y;

; index 0 = x
; 1lndex 1 = ¢
; lndex 2 =y

Incomplete Structure Types

Incomplete types are very useful for hiding the details of what fields a given structure has. A well-designed C interface
can be made so that no details of the structure are revealed to the client, so that the client cannot inspect or modify
private members inside the structure:

void Bar (struct Foo «);

Becomes:

oo = type opaque
declare void (@Bar (%Foo0)

Accessing a Structure Member

As already told, structure members are referenced by index rather than by name in LLVM IR. And at no point do
you need to, or should you, compute the offset of a given structure member yourself. The getelementptr (short
GEP) instruction is available to compute a pointer to any structure member with no overhead (the getelementptr
instruction is typically coascaled into the actual 1oad or store instruction). The getelementptr instruction
even has it’s own article over at the docs'. You can also find more information in the language reference manual’.

So let’s assume we have the following C++ struct:

struct Foo

{
int a;
char +*Db;

(continues on next page)

! The Often Misunderstood GEP Instruction
2 LangRef: getelementptr Instruction

3.2. Basic Constructs 11

http://llvm.org/docs/GetElementPtr.html
http://llvm.org/docs/LangRef.html#getelementptr-instruction

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

double c;
}i

This maps pretty straight forward to the following LLVM type. The GEP indices are in the comments beside the
subtypes.

3Foo = type {
i32, ; 0: a
i8x, ; 1: b
double ; c

Now we allocate the object on the stack and access the member b, which is at index 1 and has type char* in C++.

Foo foo;
char *+bptr = &foo.b;

First the object is allocated with the al1oca instruction on the stack. To access the b member, the GEP instruction is
used to compute a pointer to the memory location.

3foo = alloca %Foo
; char xxbptr = &foo.b
51 = getelementptr %Foo, %Foox %foo, i32 0, i32 1

Now let’s see what happens if we create an array of Foo objects. Consider the following C++ snippet:

Foo bar[100];
bar[17].c = 0.0;

It will translate to roughly something like the following LLVM IR. First a pointer to 100 Foo objects is allocated.
Then the GEP instruction is used to retrieve the second element of the 17th entry in the array. This is done within one
GEP instruction:

; Foo bar[100]

sbar = alloca %Foo, i32 100

; bar[17].c = 0.0

$2 = getelementptr %Foo, S$Foox Sbar, i32 17, i32 2
store double 0.0, doublex %2

Note that newer versions of clang will produce code that directly uses the built-in support for Array types®. This
explicitly associates the length of an array with the allocated object. GEP instructions can also have more than two
indices to compute addresses deep inside nested objects.

$bar = alloca [100 x %Foo0]

sp = getelementptr [100 x %Foo], [100 x %Foolx %bhar, i64 0, i64 17, i32 2

store double 0.000000e+00, doublex %p, align 8

It is highly recommended to read the LLVM docs about the GEP instruction very thouroughly (see'?).

3.2.5 Casts

There are nine different types of casts:

* Bitwise casts (type casts).

3 LangRef: Array type

12 Chapter 3. License

http://llvm.org/docs/LangRef.html#array-type

Mapping High Level Constructs to LLVM IR Documentation

» Zero-extending casts (unsigned upcasts).

» Sign-extending casts (signed upcasts).

* Truncating casts (signed and unsigned downcasts).
¢ Floating-point extending casts (float upcasts).

* Floating-point truncating casts (float downcasts).

* Pointer-to-integer casts.

* Integer-to-pointer casts.

* Address-space casts (pointer casts).

Bitwise Casts

A bitwise cast (bitcast) reinterprets a given bit pattern without changing any bits in the operand. For instance, you
could make a bitcast of a pointer to byte into a pointer to some structure as follows:

typedef struct
{

int a;
} Foo;

extern void smalloc(size_t size);
extern void free (void xvalue);

void allocate ()

{
Foo #foo = (Foo %) malloc (sizeof (Foo));
foo.a = 12;
free (foo)

’

Becomes:

$Foo = type { i32 }

declare i8x (@malloc (i32)

declare void (@free (1i8%)

define void (Callocate () nounwind {
%1 = call i8x (@malloc (i32 4)

$foo = bitcast i8x %1 to SFoox

$2 = getelementptr %Foox $foo, 132 0, 132 0
store i32 12, i32* %2

call void (@free (i8« %1)

ret void

L

Zero-Extending Casts (Unsigned Upcasts)

To upcast an unsigned value like in the example below:

3.2. Basic Constructs 13

Mapping High Level Constructs to LLVM IR Documentation

uint8 byte = 117;
uint32 word;

void main ()

{
/#+ The compiler automatically upcasts the byte to a word. =/
word = byte;

You use the zext instruction:

@byte = global i8 117
@word = global i32 0

define void (@main () nounwind {
%1 = load i8x (byte
$2 = zext i8 %1 to i32
store 132 %2, i32x (word

ret void

Sign-Extending Casts (Signed Upcasts)

To upcast a signed value, you replace the zext instruction with the sext instruction and everything else works just
like in the previous section:

@char = global i8 -17
@int global i32 0

define void (@main () nounwind {
%1 = load i8x (@char
%2 = sext i8 %1 to i32
store i32 %2, i32* @int
ret void

Truncating Casts (Signed and Unsigned Downcasts)

Both signed and unsigned integers use the same instruction, t runc, to reduce the size of the number in question. This
is because LLVM IR assumes that all signed integer values are in two’s complement format for which reason t runc
is sufficient to handle both cases:

@int = global i32 -1
@char = global i8 0

define void @main () nounwind ({
%1 = load i32x (@int
$2 = trunc i32 %1 to i8
store i8 %2, i8x (char
ret void

14 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

Floating-Point Extending Casts (Float Upcasts)

Floating points numbers can be extended using the fpext instruction:

float small = 1.25;
double large;

void main ()

{

/+ The compiler inserts an implicit float upcast. x/
large = small;

}

Becomes:

@small = global float 1.25

@large = global double 0.0
define void (@main () nounwind {
%1 = load floatx (@smal

32 = fpext float %1 to double
store double %2, doublex (@large
ret void

Floating-Point Truncating Casts (Float Downcasts)

Likewise, a floating point number can be truncated to a smaller size:

@large = global double 1.25
@small = global float 0.0

define void (@main () nounwind {
%1 = load doublex (large
$2 = fptrunc double %1 to float
store float %2, floatx @small
ret void

Pointer-to-Integer Casts

Pointers do not support arithmetic, which is sometimes needed when doing systems programming. LLLVM has support

for casting pointer types to integer types using the pt rtoint instruction (reference)

Integer-to-Pointer Casts

The inttoptr instruction is used to cast an integer back to a pointer (reference).

3.2. Basic Constructs

15

http://llvm.org/docs/LangRef.html#ptrtoint-to-instruction
http://llvm.org/docs/LangRef.html#inttoptr-to-instruction

Mapping High Level Constructs to LLVM IR Documentation

Address-Space Casts (Pointer Casts)

3.2.6 Function Definitions and Declarations

The translation of function definitions depends on a range of factors, ranging from the calling convention in use,
whether the function is exception-aware or not, and if the function is to be publicly available outside the module.

Simple Public Functions

The most basic model is:

int Bar (void)
{

return 17;

}

Becomes:
define i32 (@Bar () nounwind {
ret i32 17

}

Simple Private Functions

A static function is a function private to a module that cannot be referenced from outside of the defining module:

define private i32 (Foo() nounwind {
ret i32 17

}

Note that this does not directly map to public/private in the context of C++. Two C++ classes in side one LLVM
module can call each other private methods, because they’re simply module-level private functions for LLVM.

Function Prototypes

A function prototype, aka a profile, is translated into an equivalent declare declaration in LLVM IR:

’int Bar (int value);

Becomes:

’declare i32 @Bar (132 Svalue)

Or you can leave out the descriptive parameter name:

’declare i32 @RBar (i32)

Functions with a Variable Number of Parameters

To call a so-called vararg function, you first need to define or declare it using the elipsis (...) and then you need
to make use of a special syntax for function calls that allows you to explictly list the types of the parameters of the
function that is being called. This “hack” exists to allow overriding a call to a function such as a function with variable

16 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

parameters. Please notice that you only need to specify the return type once, not twice as you’d have to do if it was a
true cast:

declare i32 (@printf (i8%, ...) nounwind

@.textstr = internal constant [20 x i8] c"Argument count: %d\0A\00"

define i32 @main(i32 %argc, i8x* %argv) nounwind {

; printf ("Argument count: %d\n", argc)

$1 = call i32 (i8%, ...) @printf (i8+ getelementptr ([20 x i8], [20 x i8]« (.
—textstr, i32 0, i32 0), 132 %argc)

ret i32 0

Function Overloading

Function overloading is actually not dealt with on the level of LLVM IR, but on the source language. Function names
are mangled, so that they encode the types they take as parameter and return in their function name. For a C++
example:

int function(int a, int b) {
return a + Db;

double function (double a, double b, double x) {
return axb + x;

For LLVM these two are completely different functions, with different names etc.

define i32 (@ _78functionii(i32 %a, i32 %$b) #0 {
A |
ret i32 %5

define double (@_78functionddd (double %a, double %b, double %x) #0 {
; o[...]
ret double %8

Struct by Value as Parameter or Return Value

Classes or structs are often passed around by value, implicitly cloning the objects when they are passed. But they are
not

struct Point {
double x;
double y;
double z;
}i

Point add_points (Point a, Point b) {

Point p;
p.x = a.x + b.x;
.y a.y + b.y;

(continues on next page)

3.2. Basic Constructs 17

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

p.z = a.z + b.z;
return p;

This simple example is in turn compiled to

$struct.Point = type { double, double, double }

define void (@add points($struct.Point* noalias sret %agg.result,
$struct.Point+ byval align 8 %a,
$struct.Pointx byval align 8 %b) #0 {
; there is no alloca here for Point p;
; pP.Xx = a.x + b.x;
%1 = getelementptr inbounds %struct.Point, S%$struct.Point* %a, i32 0, i32 0
%2 = load double, doublex %1, align 8
%3 = getelementptr inbounds %struct.Point, $struct.Pointx
%4 = load double, doublex %3, align 8
%5 = fadd double %2, %4
%6 = getelementptr inbounds %struct.Point, %$struct.Point* %agg.result, i32 0, i32 0
store double %5, doublex %6, align 8

o\
o
~

i32 0, i32 0

; p.y = a.y + b.y;
%7 = getelementptr inbounds %struct.Point, $%$struct.Point* %a, i32 0, i32 1
%8 = load double, doublex %7, align 8
$9 = getelementptr inbounds %struct.Point, S$struct.Pointx %$b, i32 0, i32 1
%10 = load double, doublex %9, align 8
%11 = fadd double %3, %10
$12 = getelementptr inbounds %struct.Point, %struct.Pointx %agg.result, i32 0, i32 1

store double %11, doublex %12, align 8
; p.z = a.z + b.z;
%13 = getelementptr inbounds %struct.Point, S%$struct.Point* %a, i32 0, i32 2
%14 = load double, doublex %13, align 8
%15 = getelementptr inbounds %struct.Point, S%$struct.Pointx %b, i32 0, 1i32 2
%16 = load double, doublex %15, align 8
%17 = fadd double %14, %16
%18 = getelementptr inbounds %struct.Point, S%$struct.Point* %agg.result, i32 0, 1i32 2
store double %17, doublex %18, align 8
; there is no real returned value, because the previous stores directly wrote
; to the caller allocated value via %agg.result
ret void

We can see that the funtion now actually returns void and another parameter was added. The first parameter is a
pointer to the result, which is allocated by the caller. The pointer has the attirbute noalias because there is no way
that one of the parameters might point to the same location. The sret attribute indicates that this is the return value.

The parameters have the byval attribute, which indicates that they are structs that are passed by value.

Let’s see how this function would be called.

int main () {
Point a = {1.0, 3.0, 4.0};
Point b = {2.0, 8.0, 5.0};
Point ¢ = add_points(a, b);
return 0;

is compiled to:

18 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

define i32 @main() #1 {
; these are the a, b, ¢ in the scope of main

%a = alloca S$struct.Point, align 8

$b = alloca %struct.Point, align 8

%c = alloca S%struct.Point, align 8
; these are copies, which are passed as arguments

%1 = alloca S%struct.Point, align 8

%2 = alloca S%struct.Point, align 8
; copy the global initializer main::a to %a

%3 = bitcast %struct.Pointx %a to i8x

call void @llvm.memcpy.p0i8.p01i8.164 (i8x %3, 1i8x bitcast (%struct.Point* @main.a to,
—i8x), i64 24, i32 8, il false)
; copy the global initializer main::b to $b

%4 = bitcast S$struct.Point* %b to i8«

call void @llvm.memcpy.p0i8.p0i8.164 (i8x %4, i8x bitcast (%struct.Pointx @main.b to,
—i8x), i64 24, i32 8, il false)
; clone a to %1

%5 = bitcast %struct.Pointx %1 to i8«

%6 = bitcast %struct.Pointx %a to i8x

call void @llvm.memcpy.p0i8.p0i8.164 (i8x %5, i8x %6, 164 24, i32 8, il false)
; clone b to %1
%7 = bitcast Sstruct.Pointx %2 to i8x
$8 = bitcast %struct.Pointx %b to i8x

call void @llvm.memcpy.p0i8.p0i8.164 (i8« %7, i8x %8, 164 24, i32 8, il false)
; call add _points with the cloned values

call void (@add_points($struct.Pointx sret %c, %struct.Points byval align 8 %1,
—%struct.Pointx byval align 8 %2)

;o o[...]

g

o\°

We can see that the caller, in our case main, allocates space for the return value $c and also makes sure to clone the
parameters a and b before actually passing them by reference.

Exception-Aware Functions
A function that is aware of being part of a larger scheme of exception-handling is called an exception-aware function.
Depending upon the type of exception handling being employed, the function may either return a pointer to an ex-

ception instance, create a set jmp/longjmp frame, or simply specify the uwtable (for UnWind Table) attribute.
These cases will all be covered in great detail in the chapter on Exception Handling below.

Function Pointers

Function pointers are expressed almost like in C and C++:

’int (#Function) (char xbuffer);

Becomes:

@Function = global i32(i8«)* null

3.2.7 Unions

Unions are getting more and more rare as the years have shown that they are quite dangerous to use; especially the C
variant that does not have a selector field to indicate which of the union’s variants are valid. Some may still have a

3.2. Basic Constructs 19

Mapping High Level Constructs to LLVM IR Documentation

legacy reason to use unions. In fact, LLVM does not support unions at all:

union Foo

{
int a;
char +Db;
double c;

}i

Foo Union;

Becomes this when run through clang++:

$union.Foo = type { double }
@Union = %union.Foo { 0.0 }

What happened here? Where did the other union members go? The answer is that in LLVM there are no unions; there
are only structs that can be cast into whichever type the front-end want to cast the struct into. So to access the above
union from LLVM IR, you’d use the bitcast instruction to cast a pointer to the “union” into whatever pointer you’d
want it to be:

%1 = bitcast %union.Foo* @Union to 1i32%
store i32 1, i32x
%2 = bitcast %union.Foox (@Union to i8xx

store i8% null, i8xx %2

This may seem strange, but the truth is that a union is nothing more than a piece of memory that is being accessed
using different implicit pointer casts. There is no type-safety when dealing with unions.

If you want to support unions in your front-end language, you should simply allocate the total size of the union (i.e.
the size of the largest member) and then generate code to reinterpret the allocated memory as needed.

The cleanest approach might be to simply allocate a range of bytes (1 8), possibly with alignment padding at the end,
and then cast whenever you access the structure. That way you’d be sure you did everything properly all the time.

Tagged Unions
When dealing with unions in C, one typically adds another field that signals the content of the union, since accidently
interpreting the bytes of a double as a char«, can have disastrous consequences.

Many modern programming languages feature type-safe tagged unions. Rust has enum types, that can optionally
contain values. C++ has the variant type since C++17.

Consider the following short rust program, that defines an enum type that can hold three different primitive types.

enum Foo {
ABool (bool),
AlInteger (1i32),
ADouble (£64),

fn main() {
let x = Foo::Alnteger(42);
let y = Foo::ADouble(1337.0);
let z = Foo::ABool (true);

if let Foo::ABool (b) = x {

(continues on next page)

20 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

println! ("A boolean! {}", Db)
}
if let Foo::ABool(b) =y {
println! ("A boolean! {}", Db)
}
if let Foo::ABool(b) = z {
println! ("A boolean! {}", Db)

rustc generates something similar to the following LLVM IR to initialize the Foo variables.

; basic type definition
$Foo = type { i8, [8 x i8] }

; Variants of Foo

$Foo_ABool = type { i8, i8 } ; tagged with 0
$Foo_Alnteger = type { i8, i32 } ; tagged with 1

$Foo_ADouble = type { i8, double } ; tagged with 2

allocate the first Foo

z = alloca %Foo

pointer to the first element of type 18 (the tag)

0 = getelementptr inbounds %Ffoo, %Foox %$x, i32 0, i32 O
; set tag to '1'

store i8 1, i8x* %0

; bitcast Foo to the right Foo variant

%1 = bitcast %Foox %x to SFoo_Alnteger=

; Store the constant '42'

%2 = getelementptr inbounds %Foo AlInteger, %Foo_Alnteger* %1, i32 0, i32 1
store i32 42, i32x %2

o0 N

oo .

allocate and initialize the second Foo

o0 do N

y = alloca %Foo

3 = getelementptr inbounds %Foo, SFoox %y, i32 0, i32 0

; this time the tag is '2'

store i8 2, i8x %3

; cast to variant and store double constant

%4 = bitcast %Foox %y to %Foo_ADoublex

%5 = getelementptr inbounds %Foo_ ADouble, %Foo_ ADoublex %4, i32 0, i32 1
store double 1.337000e+03, doublex %5

To check whether the given Foo object is a certain variant, the tag must be retrieved and compared to the desired
value.

9 = getelementptr inbounds %Foo, %$Foox %x, 132 0, i32 0
10 = load i8, i8x %9

; check if tag is '0', which identifies the variant Foo_ABool
%11 = icmp i8 %10, O

br il %11, label %bbl, label %bb2

o
°
o
)

bbl:
; cast to variant
%12 = bitcast %Foox %$x to %Foo_ ABRoolx*
; retrieve boolean
%13 = getelementptr inbounds %Foo ABool, S%$Foo ABoolx %12, i32 0, i32 1
%14 = load i8, i8«* %13,

(continues on next page)

3.2. Basic Constructs 21

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

%15 = trunc i8 %14 to il
<...0>

3.3 Control-Flow Constructs

Similar to low-level assembly languages, LLVM’s IR consists of sequences of instructions, that are executed sequen-
tially. The instructions are grouped together to form basic blocks. Each basic block terminates with an instruction that
changes the control flow of the program.

3.3.1 Simple “if-then-else” Branching

First let’s take a look at a very simple function, that computes the maximum of two integers. This is implemented
using a single if control statement.

int max (int a, int b) {
if (a > b) {
return 3a;
} else {
return b;

Remember that in LLVM IR control-flow is implemented by jumping between basic blocks, which contain instruction
sequences that do not change control flow. Each basic block ends with an instruction that changes the control flow. The
most common branching instruction is br’. br can be used conditionally, then it implements a simple if-then-else,
taking a boolean condition flag and two basic block labels as parameter.

’br il %cond, label %iftrue, label %iffalse

br can also be used to unconditinally jump to a certain destination:

’br label %d

define i32 (@max (i32 %a, i32 %b) {

entry:
$retval = alloca i32, align 4
50 = icmp sgt i32 %a, %b
br il %0, label %btrue, label %bfalse

btrue: ; preds = %2
store i32 %a, i32x %retval, align 4
br label ¢

bfalse: ; preds = %2
store i32 %b, i32x %retval, align 4
br label %end

end: ; preds = $%btrue, $%bfalse
31 = load i32, i32x %retval, align 4
ret i32 %I

}

2 LangRef: br

22 Chapter 3. License

http://llvm.org/docs/LangRef.html#br-instruction

Mapping High Level Constructs to LLVM IR Documentation

In the example above, there are 4 basic blocks. The first one is the function entry block. There space is allocated
on the stack with alloca', which acts as a temporary storage for the bigger value. Then the two paramter $a and
$b are compared using the icmp instruction’. The result is a boolean (i1) flag, which is then used as condition
for the br instruction. Then depending on the taken branch, either $a or %b is stored into the temporary $retval
variable. Each of the branches then end with a unconditional branch to the last basic block $end. There the value
from $retval is loaded and returned.

You can get a graphical representation of the control-flow in the form of a control-flow graph (CFG). This can be
generated by using opt —-dot-cfg input.ll.

entry:

Yeretval = alloca 132, align 4

%0 = icmp sgt 132 %a, %b

br il %0, label %btrue, label % bfalse

T F
btrue: bfalse:
store 132 Ya, 132* Yeretval, align 4 store 132 %b, i32* %retval, align 4
br label %end br label %end
end:
%1 = load 132, i32* Yretval, align 4
ret 132 %1

Fig. 2: Control-Flow Graph of the max function

LLVM IR is a rather rich intermediate code format. So when compiling the above snippet with higher optimization
levels, LLVM will optimize the code to use the select instruction® instead of generating branches. The select
instruction simply chooses between two values, based on a boolean condition. This shortens the code significantly.

define i32 (@max(i32 %a, i32 %b) {
$1 = icmp sgt i32 %a, %b
$2 = select il %1, i32 %a, i32 %b
ret i32 %2

3.3.2 Single-Static Assignment Form and PHI

We’ll take a look at the same very simple max function, as in the previous section.

! ‘LangRef: alloca <http://llvm.org/docs/LangRef.html#alloca-instruction> ¢__
3 LangRef: icmp
4 LangRef: select

3.3. Control-Flow Constructs 23

http://llvm.org/docs/LangRef.html#alloca-instruction
http://llvm.org/docs/LangRef.html#icmp-instruction
http://llvm.org/docs/LangRef.html#select-instruction

Mapping High Level Constructs to LLVM IR Documentation

int max (int a, int b) {
if (a > b) |
return a;
} else {
return b;

Translated to LLVM IR:

define i32 (@max (i32 %a, i32 %b) {
entry:

$retval = alloca i32, align 4

$0 = icmp sgt i32 %a, %b

br il %0, label %btrue, label S$bfalse

btrue: ; preds = %2
store i32 %a, i32x %retval, align 4
br label %end
bfalse: ; preds = %2
store i32 % i32x Sretval, align 4
br label %end
end: ; pbreds = 3%btrue, %bfalse
$1 = load i32, i32x %retval, align 4
ret i32 %1

We can see that the function allocates space on the stack with alloca”, where the bigger value is stored. In one
branch %a is stored, while in the other branch $b is stored to the stack allocated memory. However, we want to avoid
using memory load/store operation and use registers instead, whenever possible. So we would like to write something
like this:

define i32 (@max (i32 %a, i32 %b) {
entry:

$0 = icmp sgt i32 %a, %b

br il %0, label %btrue, label S$bfalse

btrue:

bfalse:
Sretval = %

br label %

end:
ret i32 %Sretval

This is not valid LLVM IR, because it violates the static single assignment form (SSA,") of the LLVM IR. SSA form
requires that every variable is assigned only exactly once. SSA form enables and simplifies a vast number of compiler
optimizations, and is the de-facto standard for intermediate representations in compilers of imperative programming
languages.

2 LangRef: alloca
! Wikipedia: Static single assignment form

24 Chapter 3. License

http://llvm.org/docs/LangRef.html#alloca-instruction
https://en.wikipedia.org/wiki/Static_single_assignment_form

Mapping High Level Constructs to LLVM IR Documentation

Now how would one implement the above code in proper SSA form LLVM IR? The answer is the magic phi instruc-
tion. The phi instruction is named after the ¢ function used in the theory of SSA. This functions magically chooses
the right value, depending on the control flow. In LLVM you have to manually specify the name of the value and the
previous basic block.

end:
$retval = phi i32 [%a, %btruel], [%b, %bfalsel]

Here we instruct the phi instruction to choose %$a if the previous basic block was $btrue. If the previous basic
block was $bfalse, then $b will be used. The value is then assigned to a new variable $retval. Here you can see
the full code listing:

define i32 (@max (i32 %a, i32 %b) {
entry:

$0 = icmp sgt i32 %a, %b

br il %0, label %btrue, label %bfalse

btrue: ; preds = %2
br label %end

bfalse: ; preds = %2
br label %end

end: ; preds = 3%btrue, %bfalse
$retval = phi 132 [%a, %btruel], [%b, S%S$bfalse]
ret i32 Sretval

PHI in the Back End

Let’s have a look how the @max function now maps to actual machine code. We’ll have a look what kind of assembly
code is generated by the compiler back end. In this case we’ll look at the code generated for x86 64-bit, compiled
with different optimization levels. We’ll start with a non-optimizing backend (11c -00 -filetype=asm). We
will get something like this assembly:

max: # @max
$bb.0: # %entry

cmpl esi, %edi # %edi = %a, %esi = $b
$bb.1: # Sbtrue

movl edi, -4 (%rsp) # mov src, dst
.LBBO_2: # %$bfalse

movl sesi, —4(%rsp) # mov src, dst
.LBBO_3: # %end

movl -4 (%rsp), %eax # return value 1in eax

The parameters $a and %$b are passed in $edi and %esi respectively. We can see that the compiler back end
generated code that uses the stack to store the bigger value. So the code generated by the compiler back end is not
what we had in mind, when we wrote the LLVM IR. The reason for this is that the compiler back end needs to
implement the phi instruction with real machine instructions. Usually that is done by assigning to one register or
storing to one common stack memory location. Usually the compiler back end will use the stack for implementing the
phi instruction. However, if we use a little more optimization in the back end (i.e., 11c —-01), we can get a more
optimized version:

3.3. Control-Flow Constructs 25

Mapping High Level Constructs to LLVM IR Documentation

max: # @max

S$bb.0: # %entry
cmpl %esi, %edi
jg

S$bb.1: # S$bfalse
movl %$esi, %edi

.LBBO_2: # %end
movl edi, %eax
retg

Here the phi function is implemented by using the $edi register. In one branch $edi already contains the desired
value, so nothing happens. In the other branch $esi is copied to $edi. At the $end basic block, $edi contains the
desired value from both branches. This is more like what we had in mind. We can see that optimization is something
that needs to be applied through the whole compilation pipeline.

3.4 Object-Oriented Constructs

In this chapter we’ll look at various object-oriented constructs and see how they can be mapped to LLVM IR.

3.4.1 Classes

A class is nothing more than a structure with an associated set of functions that take an implicit first parameter, namely
a pointer to the structure. Therefore, is is very trivial to map a class to LLVM IR:

#include <stddef.h>

class Foo

{

public:
Foo ()

{
_length = 0;

size_t GetLength () const
{

return _length;

void Setlength(size_t value)

{

_length = value;

private:
size_t _length;
}i

We first transform this code into two separate pieces:
* The structure definition.

¢ The list of methods, including the constructor.

26 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

; The structure definition for class Foo.
$Foo = type { i32 }

; The default constructor for class Foo.

define void (@Foo_Create Default ($Foo*x %this) nounwind {
%1 = getelementptr %$Foox %this, i32 0, i32 0
store i32 0, i32% %1
ret void

; The Foo::GetLength () method.

define i32 (@Foo_GetLength ($Foo* %$this) nounwind {
$1 = getelementptr S%Foox %this, i32 0, i32 0
%2 = load i32x %1
ret i32 %2

; The Foo::SetLength () method.

define void (@Foo_SetlLength ($Foox $this, 132 %value) nounwind {
$1 = getelementptr %Foox %this, 132 0, i32 0
store i32 %value, i32x %I
ret void

Then we make sure that the constructor (Foo_Create_Default) is invoked

whenever an instance of the structure is created:

Foo foo;

foo = alloca 5%Foo
call void (@Foo_ Create Default (%Foox %foo)

3.4.2 Virtual Methods

A virtual method is no more than a compiler-controlled function pointer. Each virtual method is recorded in the
vtable, which is a structure of all the function pointers needed by a given class:

class Foo

{
public:
virtual int GetLengthTimesTwo () const
{
return _length x 2;
}
void SetLength(size_t value)
{
_length = value;
}
private:

int _length;
}i

(continues on next page)

3.4. Object-Oriented Constructs 27

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

int main ()
{
Foo foo;
foo.SetLength (4);
return foo.GetLengthTimesTwo () ;

This becomes:

$Foo_vtable type = type { i32(%Foox)«* }

)

$Foo = type { %Foo_vtable typex, i32 }

define i32 (@Foo_GetLengthTimesTwo ($Foo*x %this) nounwind {
%1 = getelementptr S$Foox %this, i32 0, i32 1
%2 = load 132« %1
$3 = mul i32 %2, 2
ret i32 %3

@Foo_vtable_data = global %Foo_vtable_type {
i32 ($Foo*)* @Foo_GetLengthTimesTwo

define void (@Foo Create Default (%Foo*x %$this) nounwind {
%1 = getelementptr %Foox %$this, i32 0, i32 0
store %$Foo_vtable_typex (@Foo_vtable_data, %Foo_vtable_typexx %1
%2 = getelementptr %Foox %$this, i32 0, i32 1
store i32 0, i32x %2
ret void

define void @Foo_SetLength ($Foox $this, 132 %value) nounwind ({
%1 = getelementptr %Foox %$this, i32 0, i32 1
store i32 %value, 132+ %1
ret void

define i32 (@main(i32 %argc, 1i8+%x %$argv) nounwind {
%$foo = alloca %FooO
call void (@Foo_Create Default ($Foox %$foo0)
call void (@Foo_SetLength ($Foox %$foo, i32 4)
%1 = getelementptr %Foox %$foo, 132 0, i32 0
%2 = load %Foo_vtable_ typexx %1
%3 = getelementptr %$Foo_vtable typex %2, i32 0, i32 0
%4 = load i32 (%Foox)*x%x %3
%5 = call i32 %4 (%Foox %foo0)
ret i32 %5

Please notice that some C++ compilers store _vtable at a negative offset into the structure so that things like
memset (this, 0, sizeof (xthis)) work, even though such commands should always be avoided in an OOP
context.

28 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

3.4.3 Single Inheritance

Single inheritance is very straightforward: Each “structure” (class) is laid out in memory after one another in declara-
tion order.

class Base

{
public:
void SetA (int value)
{
_a = value;
}
private:
int _a;
bi
class Derived: public Base
{
public:
void SetB(int value)
{
SetA (value) ;
_b = wvalue;
}
protected:
int _b;
}

Here, a and b will be laid out to follow one another in memory so that inheriting from a class is simply a matter of

declaring a the base class as a first member in the inheriting class:

sBase = type ({
i32 ; '_a' in class Base

define void (@Rase SetA (%$Basex %thi
31 = getelementptr %Basex %thi
store i32 %Svalue, i32x %1

s, 132 %$value) nounwind ({
s, i32 0, i32 0

ret wvoid

}

$Derived = type {
i32, ; '_a' from class Base
i32 ; '_b' from class Derived

define void (@Derived_SetB(%Derived* %this, 132 %value) nounwind ({
$1 = bitcast %Derive
call void (@Base_SetA (%Basex %1, 132 %Svalue)
$2 = getelementptr %Deriveds S$this, i32 0, i32 1
store i32 %value, i32* %2
ret void

d+* %this to %Basex

So the base class simply becomes plain members of the type declaration for the derived class.

3.4. Object-Oriented Constructs 29

Mapping High Level Constructs to LLVM IR Documentation

And then the compiler must insert appropriate type casts whenever the derived class is being referenced as its base

class as shown above with the bitcast operator.

3.4.4 Multiple Inheritance

Multiple inheritance is not that difficult, either, it is merely a question of laying out the multiply inherited “structures”

in order inside each derived class.

class BaselA

{

public:
void SetA (int value)
{

_a = value;

private:
int _a;
}i

class BaseB: public BaseA
{
public:
void SetB(int value)
{
SetA (value) ;
_b = value;

private:
int _b;
i

class Derived:
public BaseA,
public BaseB
{
public:
void SetC (int wvalue)
{
SetB(value) ;
_c = value;

private:
int _c;

}i

This is equivalent to the following LLVM IR:

$BaseA = type {
i32 ; '_a' from BaseA

define void (@BaseA_ SetA (%BaseA
$1 = getelementptr %Ba
store i32 %value, i32«

%this,

$this,

i32 %

i32 o,

value)
i32 0

nounwind {

(continues on next page)

30

Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

ret wvoid

}

$BaseB = type {
i32, ; '_a' from BaseA
i32 ; '_b' from BaseB

define void (@BaseB_SetB(%BaseB* %$this, 132 %value) nounwind {
%1 = bitcast %BaseB* %this to %BaselAx
call void (@RaseA_SetA (%RBaselAx %1, 132 %value)
$2 = getelementptr %$BaseBx %$this, 132 0, i32 1
store i32 %value, i32% %2

ret void

}

$Derived = type {
i32, ; '_a' from BaseA
i32, ; '_b' from BaseB
i32 ; '_c' from Derived

define void (@Derived_SetC (%Derivedx %this, i32 %value) nounwind {
%1 = bitcast %Derivedx Sthis to %BaseBx*
call void (@BaseB_SetB(%BaseB*x %1, 132 %Svalue)
$2 = getelementptr %Deriveds S$this, i32 0, i32 2
store i32 %value, i32x %2
ret void

And the compiler then supplies the needed type casts and pointer arithmentic whenever baseB is being referenced as
an instance

of BaseB. Please notice that all it takes is a bitcast from one class to another as well as an adjustment of the last
argument to getelementptr.

3.4.5 Virtual Inheritance

Virtual inheritance is actually quite simple as it dictates that identical base classes are to be merged into a single
occurence. For instance, given this:

class BaseA

{

public:
int a;

}i

class BaseB: public BaseA

{

public:
int b;

}i

class BaseC: public BaseA

{

(continues on next page)

3.4. Object-Oriented Constructs 31

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

public:
int c;

}i

class Derived:
public virtual BaseB,
public virtual BaseC

int d;
}i

Derived will only contain a single instance of BaseA even if its inheritance graph dictates that it should have two

instances. The result looks something like this:

class Derived

{

public:
int a;
int b;
int c;
int d;

bi

So the second instance of a is silently ignored because it would cause multiple instances of BaseA to exist in
Derived,

which clearly would cause lots of confusion and ambiguities.

3.4.6 Interfaces

An interface is nothing more than a base class with no data members, where all the methods are pure virtual (i.e. has
no body).

As such, we’ve already described how to convert an interface to LLVM IR - it is done precisely the same way that you
convert a virtual member function to LLVM IR.

3.4.7 Boxing and Unboxing
Boxing is the process of converting a non-object primitive value into an object. It is as easy as it sounds. You create a
wrapper class which you instantiate and initialize with the non-object value:

Unboxing is the reverse of boxing: You downgrade a full object to a mere scalar value by retrieving the boxed value
from the box object.

It is important to notice that changes to the boxed value does not affect the original value and vice verse. The code
below illustrates both steps:

@Boxee = global i32 17
*Integer = type { 132 }
define void @Integer Create(%$Integer* $this, i32 %value) nounwind {

; you might set up a vtable and associated virtual methods here
$1 = getelementptr $Integerx %$this, i32 0, i32 0

(continues on next page)

32 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

store 132 %value, 1i32* %1
ret void

define i32 (@Integer_GetValue ($¥Integer* %this) nounwind ({
%1 getelementptr $Integerx %$this, 132 0, 132 0
$2 = load i32x %1
ret 132 32

define i32 (@main () nounwind {
; box (@Boxee 1in an instance of $Integer
$1 = load i32+ (@Boxee
= alloca I
call void @Int

oL

$2, i32 %1)

; unbox (@Boxee from an instance of %Integer
$3 = call i32 (@Integer_GetValue ($Integerx %2)

ret i32 0

3.4.8 Class Equivalence Test

There are two ways of doing this:
* If you can guarantee that each class a unique vtable, you can simply compare the pointers to the vtable.

« If you cannot guarantee that each class has a unique vtable (because different vtables may have been merged by
the linker), you need to add a unique field to the vtable so that you can compare that instead.

The first variant goes roughly as follows (assuming identical strings aren’t merged by the compiler, something that
they are most of the time):

bool equal = (typeid(first) == typeid(other));

As far as I know, RTTI is simply done by adding two fields to the _vtable structure: parent and signature. The
former is a pointer to the vtable of the parent class and the latter is the mangled (encoded) name of the class. To
see if a given class is another class, you simply compare the signature fields. To see if a given class is a derived
class of some other class, you simply walk the chain of parent fields, while checking if you have found a matching
signature.

3.4.9 Class Inheritance Test

A class inheritance test is a question of the form: Is class X identical to or derived from class Y?
To answer that question, we can use one of two methods:

* The naive implementation where we search upwards in the chain of parents.

* The faster implementation where we search a preallocated list of parents.

The naive implementation is documented in the first two exception handling examples as the Object_IsA function.

3.4. Object-Oriented Constructs 33

Mapping High Level Constructs to LLVM IR Documentation

3.4.10 The New Operator

The new operator is generally nothing more than a type-safe version of the C malloc function - in some implemen-
tations of C++, they may even be called interchangeably without causing unseen or unwanted side-effects.

The Instance New Operator

All calls of the form new X are mapped into:

declare i8x% (@malloc (i32) nounwind
X = type { i8 }

define void (@X Create_ Default ($X*x %this) nounwind ({
%1 = getelementptr $Xx %$this, i32 0, i32 0
store i8 0, i8x %1
ret void

define void (@main () nounwind {
%1 = call i8« (Emalloc(i32 1)
%2 = bitcast i8* %1 to %X«
call void (@X_ Create_Default (%$Xx %2)
ret void

Calls of the form new X (Y, Z) are the same, except Y and Z are passed into the constructor as arguments.

The Array New Operator

New operations involving arrays are equally simple. The code new X[100] is mapped into a loop that initializes
each array element in turn:

declare i8x (@malloc (i32) nounwind
X = type { i32 }

define void (@X Create Default (%$X*x %this) nounwind ({
%1 = getelementptr $Xx %$this, i32 0, i32 0
store i32 0, i32* %1
ret void

define void (@main () nounwind {
%n = alloca i32 ; %n = ptr to the number of elements in the array
store i32 100, i32x %n
%1 = alloca i32 ; %1 = ptr to the loop index into the array

store i32 0, i32x %i

%1 = load i32x %n ; %1 = *%n

%2 = mul i32 %1, 4 ; %2 = %1 x sizeof (X)

%3 = call i8x (@malloc (i32 %2) ; %3 = malloc (100 % sizeof (X))
%4 = bitcast i8* %3 to %X« ; %4 = (X*) %3

br label %.loop_head

(continues on next page)

34 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

.loop_head: ; for (; %1 < %n; %i++)
$5 = load i32x %1

%6 = load i32* %n

$7 = icmp slt i32 %5, %6

br il %7, label %.loop_body, label %.loop_tail
.loop_body:

$8 = getelementptr %Xx %4, i32 %5

call void @X_Create_Default (%$X*x %8)

$9 = add i32 %5, 1
store i32 %9 i32% %1

br label %.loop_head

.loop_tail:
ret void

3.5 Exception Handling

Exceptions can be implemented in one of three ways:
* The simple way, by using a propagated return value.
* The bulky way, by using set jmp and longjmp.
* The efficient way, by using a zero-cost exception ABI.

Please notice that many compiler developers with respect for themselves won’t accept the first method as a proper way
of handling exceptions. However, it is unbeatable in terms of simplicity and can likely help people to understand that
implementing exceptions does not need to be very difficult.

The second method is used by some production compilers, but it has large overhead both in terms of code bloat and
the cost of a t ry—catch statement (because all CPU registers are saved using set jmp whenever a t ry statement
is encountered).

The third method is very advanced but in return does not add any cost to execution paths where no exceptions are
being thrown. This method is the de-facto “right” way of implementing exceptions, whether you like it or not. LLVM
directly supports this kind of exception handling.

In the three sections below, we’ll be using this sample and transform it:

#include <stdio.h>
#include <stdlib.h>

class Object {

public:

virtual ~Object () {}
}i

class Exception : public Object {
public:
Exception (const charx text)
_text (text)

(continues on next page)

3.5. Exception Handling 35

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

const char+ GetText (const) { return _text; }

private:
const char* _text;

class Foo {
public:
int GetLength() const { return _length; }

void SetLength (int value) { _length = value; }

private:
int _length;
}i

int Bar (bool fail)
{
Foo foo;
foo.SetLength (17);
if (fail)
throw new Exception ("Exception requested by caller");
foo.SetLength (24);
return foo.GetLength();

int main(int argc, const charx argvl])

{

int result;

try {
/#+ The program throws an exception if an argument 1is specified. */
bool fail = (argc >= 2);

/+ Let callee decide if an exception is thrown. x/
int value = Bar (fail);

result = EXIT_SUCCESS;
} catch (Exception* that) {
printf ("Error: %s\n", that->GetText ());
result = EXIT_FAILURE;
} catch (...) {
puts ("Internal error: Unhandled exception detected");
result = EXIT_FAILURE;

return result;

3.5.1 Exception Handling by Propagated Return Value

This method is a compiler-generated way of implicitly checking each function’s return value. Its main advantage is
that it is simple - at the cost of many mostly unproductive checks of return values. The great thing about this method

36 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

is that it readily interfaces with a host of languages and environments - it is all a matter of returning a pointer to an
exception.

The C++ example from the beginning of the section maps to the following code:

J Kk Kk Kk ok ok ok ok ok ok ok kA ok Ak Ak External and Utility FTUNCEIONS ## %k s ok ko ok ok ok ok ok ok ok &k & kA &
declare i8x (@malloc (i32) nounwind

declare void (@free (1i8x) nounwind

declare i32 @printf (i8% noalias nocapture, ...) nounwind

declare i32 (@puts (i8+ noalias nocapture) nounwind

JAAKKAAAA A Ak AR AAAAAA A A Ak kA AA ODJECE CLASS 4% %k k sk sk ok sk ok ok ok & & & &k ke ok ko ok ok ok A A A A A,

$Object_vtable type = type {

%0Object_vtable_typex, ; 0: above: parent class vtable pointer
i8« ; 1: class: class name (usually mangled)

; virtual methods would follow here

@.0bject_class_name = private constant [7 x i8] c"Object\00"

@.0Object_vtable = private constant %Object_vtable type {

%$0bject_vtable_typex null, ; This is the root object of the object,,
—hierarchy

i8« getelementptr([7 x i8] (@.Object_class_name, i32 0, i32 0)

$0bject = type {

%$0bject_vtable_typex ; 0: vtable: class vtable pointer (always non-
—null)

; class data members would follow here

; returns true if the specified object is identical to or derived from the
; class with the specified name.
define il (@Object_IsA (%0bject* %object, i8x %name) nounwind {

.init:
; 1f (object == null) return false
%0 = icmp ne %Objectx %object, null
br il %0, label %.once, label %.exit_false
.once:
%1 = getelementptr %Objectx %object, i32 0, i32 O
br label %.body
.body:
; 1f (vtable->class == name)
%2 = phi %Object_vtable_type** [%1, %.once], [%7, %.next]
%3 = load %0bject_vtable_typexx %2
%4 = getelementptr %Object_vtable typex %3, 132 0, 132 1
%5 = load i8xx %4
%6 = icmp eq i8x %5, %name
br il %6, label %.exit_true, label %.next
.next:

; object = object->above
%7 = getelementptr %Object_vtable typex %3, 132 0, 132 0

(continues on next page)

3.5. Exception Handling 37

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

; while (object != null)
%8 = icmp ne %Object_vtable typex $3, null
br il %8, label %.body, label %.exit_false

.exit_true:
ret il true

.exit_false:
ret il false

JAAAAAAAA A A KA A AAAAAAA A A A A A A EXCEPLEION CLASS 4% 4k k sk sk sk h k& & & & &k k ok h ok ok kA A A A A A 4

$Exception_vtable_type = type {

%$0bject_vtable_typex, ; 0: parent class vtable pointer
i8« ; 1: class name

; virtual methods would follow here.

@.Exception_class_name = private constant [10 x i8] c"Exception\00"

@.Exception_vtable = private constant %Exception_vtable_type {

%0Object_vtable_type* @.Object_vtable, ; the parent of this class 1is,,
—the Object class

i8x getelementptr ([10 x i8] (@.Exception_class_name, i32 0, i32 0)

$Exception = type {
$Exception_vtable_typex, ; 0: the vtable pointer
i8« ; 1: the _text member

define void (Exception_Create_String($Exceptionx $this, i8x S$text) nounwind {
; set up vtable
%1 = getelementptr %$Exception* %$this, i32 0, i32 0
store %Exception_vtable_typex @.Exception_vtable, %$Exception_vtable_typex*x* %1

; save input text string into _text
%2 = getelementptr %Exception* $this, i32 0, i32 1
store i8x %text, i8xx %2

ret wvoid

define i8x (@Exception_GetText ($Exceptionx %$this) nounwind {
%1 = getelementptr S$Exception* %this, 132 0, i32 1
%2 load i8x*x* %1
ret i8« %2

JAAAAAA KA A A AAA A KA A A KA AR A A A AR A AR, FOO CLASS Hkhhkk Ak ok ko k ks h ok ok hk ok ok h k& A A Ak A A A A

$Foo = type { i32 }

define void (@Foo_Create_ Default ($Foo* %$this) nounwind {
%1 = getelementptr %Foox %this, i32 0, i32 0

(continues on next page)

38 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

store i32 0, i32x% %1
ret void

define i32 (@Foo_GetLength (%Foo* %this) nounwind {

1 getelementptr $Foox Sthis, 132 0, 132 0
%2 = load i32x %1

ret i32 %2

define void @Foo_SetlLength ($Foox $this, 132 %value) nounwind {
%1 = getelementptr S$Foox Sthis, 132 0, 132 0

store 132 %value, i32* %1

ret void

JAAAAAAAAA KA A KA KA KA KA A A AA A KA A A A AN A FOO FUNCEION Ak kh ks hk ok hkhkkkkkkk kA k*

@.messagel = internal constant [30 x i8] c"Exception requested by caller\00"

define %Exception* (@Bar (il %$fail, i32% %$result) nounwind {
; Allocate Foo instance

%$foo = alloca %Foo

call void (@Foo_Create_ Default ($Foo* %$foo)

call void @Foo_SetLength ($Foox %$foo, 132 17)

; if (fail)
%1 = icmp eq il %fail, true
br il %1, label %.if begin, label %.if close

.if begin:
; throw new Exception(...)
%2 call i8+ (@malloc (i32 8)
%3 bitcast i8x %2 to %Exceptionx
%4 = getelementptr [30 x i8]+ (@.messagel, i32 0, i32 0
call void @Exception_Create_String($Exceptionx %3, 1i8x% %4)
ret 3%Exceptionx %3

.if_ close:
; foo.SetLength (24)
call void @Foo_SetLength ($Foo* %$foo, i32 24)
%5 = call i32 @Foo_GetLength (%Foo* %$foo0)
store i32 %5, 1i32x S%result
ret S$Exceptions null

R R R R R R R R R R Sk i Ma_]_n program B b i e e i e b b b i b i b e g i e g b b g

@.message?2 = internal constant [11 x i8] c¢"Error: %s\0A\0O"
@.message3 = internal constant [44 x i8] c"Internal error: Unhandled exception_

—detectd\00"

define i32 (@main(i32 %argc, i8xx %argv) nounwind {
"try" keyword expands to nothing.

; Body of try block.

(continues on next page)

3.5. Exception Handling 39

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

; fail = (argc >= 2)
$fail = icmp uge i32 %argc, 2

; Function call.
5 1 alloca i32

call SException* @Bar (il $fail, i32x %1)
= icmp ne %Exceptionx %2, null
loc

br il %3, label %.catch_block, label %.exit

0 00 o0 N
w Nt
It

.catch_block:
%4 = bitcast %Exceptionx %2 to %0Objectx
= getelementptr [10 x i8]+ (@.Exception class_name, i32 0, i32 O
call il @Object_IsA(%$0Objectx %4, 1i8% %5)
br il %6, label %.catch_exception, label %.catch_all

o
]

\o
o U1
Il

.catch_exception:

= getelementptr [11 x i8]~ (@.message2, i32 0, i32 0
call i8+ (@Exception_GetText ($Exceptionx %2)

call i32 (i8x, ...)* (@printf (i8x %7, i8x %8)

br label %.exit

00 oo

oe
O 00 J

.catch_all:
%10 getelementptr [44 x i8] (@.message3, i32 0, i32 0
%11 = call i32 (@puts (i8«% %10)
br label %.exit

.exit:

Q

$result = phi i32 [0, %0 1, [1, %.catch_exception 1, [1, %.catch_all]
ret i32 %result

3.5.2 Setjmp/Longjmp Exception Handling

The basic idea behind the set jmp and 1 ong jmp exception handling scheme is that you save the CPU state whenever
you encounter a t ry keyword and then do a 1ongjmp whenever you throw an exception. If there are few t ry blocks
in the program, as is typically the case, the cost of this method is not as high as it might seem. However, often there
are implicit exception handlers due to the need to release local resources such as class instances allocated on the stack
and then the cost can become quite high.

set jmp/longjmp exception handling is often abbreviated S L7 for Set Jmp/LongJmp.

The sample translates into something like this:

; Jmp_buf is very platform specific, this is for illustration only...
$jmp_buf = type { i32 }

declare i32 (@setjmp ($jmp_buf* %env)

declare void (@longijmp ($Jmp_bufx %env, i32 %val)

JAAAAAA KA A KA A A XA A XA A A+ EXternal and Utility FUNCEIONS # k% sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok Ak

declare i8x% (@malloc (i32) nounwind

declare void (@free (i8x) nounwind

declare i32 (@printf (i8% noalias nocapture, ...) nounwind
declare i32 (@puts (i8% noalias nocapture) nounwind

(continues on next page)

40 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

JAAAKAAAA A A kA A AR AAAAA A A Ak AAA ODJECE CLASS 4% & &k sk sk sk sk ok ok ok ok & & &k ko ko h kA A A A A

$Object_vtable type = type {

%$0bject_vtable_typex, ; 0: above: parent class vtable pointer
i8« ; 1: class: class name (usually mangled)

; virtual methods would follow here

@.0bject_class_name = private constant [7 x i8] c"Object\00"

@.0Object_vtable = private constant %Object_vtable type {

%$0bject_vtable_typex null, ; This is the root object of the object,
—hierarchy

i8x getelementptr([7 x i8] (@.Object_class_name, i32 0, i32 0)

$0Object = type {

%$0bject_vtable_typex ; 0: vtable: class vtable pointer (always non-
—null)

; class data members would follow here

; returns true if the specified object is identical to or derived from the
; class with the specified name.
define il (@Object_TIsA (%0bject* %object, i8x %name) nounwind {

.init:
; 1f (object == null) return false
%0 = icmp ne %Objectx %object, null
br il %0, label %.once, label %.exit_false
.once:
%1 = getelementptr %Objectx %object, i32 0, i32 0
br label %.body
.body:
; 1f (vtable->class == name)
%2 = phi %0Object_vtable_type** [%1, %.once], [%7, %.next]
%3 = load %0bject_vtable_typexx %2
%4 = getelementptr %Object_vtable typex %3, 132 0, 132 1
%5 = load i8xx %4
%6 = icmp eq i8x %5, %name
br il %6, label %.exit_true, label %.next
.next:
object = object->above

;
%7 = getelementptr %Object_vtable typex %3, 132 0, 132 0

; while (object != null)
%8 = icmp ne Object_vtable typex %3, null
br il %8, label %.body, label %.exit_ false

.exit_true:
ret il true

.exit_false:
ret il false

(continues on next page)

3.5. Exception Handling 41

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

[KKKk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko kA ko Exception CLASS Hhkkkskokok sk hk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kA
$Exception_vtable_type = type {
%$0bject_vtable_typex, ; 0: parent class vtable pointer
i8« ; 1: class name
; virtual methods would follow here.

@.Exception_class_name = private constant [10 x i8] c"Exception\00"
@.Exception_vtable = private constant $Exception_vtable type {
%0Object_vtable_type* @.Object_vtable, ; the parent of this class 1is_,

—~the Object class
i8+ getelementptr ([10 x i8]x (.Exception class_name, 132 0, i32 0)

$Exception = type {

$Exception_vtable_typex, ; 0: the vtable pointer
i8« ; 1: the _text member

define void @Exception_ Create_ String(%$Exception* $this, 18+« %text) nounwind {
; set up vtable
%1 = getelementptr S$Exception* %this, 132 0, i32 0
store %Exception_vtable_typex @.Exception_vtable, %Exception_vtable_typexx %1

; save input text string into _text
%2 = getelementptr $Exception* %$this, i32 0, i32 1
store i8x Stext, i8xx %2

ret void

define i8x (@Exception_GetText (%Exception* %this) nounwind ({
%1 = getelementptr %Exception* $this, i32 0, i32 1
%2 = load i8xx %1
ret i8x %2

7K kR Sk ok ok ok ok ok ok ok ok o ok ok ok b Sk ok ok b ok ok b b ok ok b b ok Foo Class B e i b b e b b b b b b b b b b b b b e b b g b

$Foo = type { 132 }

define void (@Foo_Create_Default ($Foo* %$this) nounwind {
%1 = getelementptr $Foox %this, i32 0, i32 O
store 132 0, i32x% %1
ret void

define i32 (@Foo_GetLength (%Foo* %$this) nounwind {
%1 = getelementptr %Foox %this, 132 0, 132 0
%2 = load i32« %1
ret i32 %2

(continues on next page)

42 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

define void (@Foo_SetlLength (%$Foox $this, 132 %value) nounwind {
%1 = getelementptr %Foox %$this, i32 0, i32 O
store i32 S%Svalue, i32% %1
ret void

7R R Sk ok ok ok ok ok ok ok ok o ok ok ok o ok ok o ok ok ok o ok ok ok b b ok A Foo function B R i e b b b b b b e b b b b i b b b g g
@.messagel = internal constant [30 x i8] c"Exception requested by caller\00"

define 132 @Bar (%$jmp_bufx %throw, il %$fail) nounwind ({
; Allocate Foo instance
$foo = alloca %Foo
call void (@Foo_Create Default ($Foo* %foo0)

call void @Foo_SetLength ($Foo*x %$foo, i32 17)

; 1f (fail)
%51 = icmp eq il %fail, true
br il %1, label %.if _begin, label %.if close

.if_begin:
; throw new Exception(...)
%2 = call i8+% (@malloc(i32 8)
%3 = bitcast i8x %2 to S$Exceptionx
%4 = getelementptr [30 x i8] (@.messagel, i32 0, i32 0
call void @Exception_Create_String($Exception* %3, i8x %4)
%5 = ptrtoint %Exceptionx %3 to i32
call void @longjmp (%$Jmp_bufx $throw, 132 %5)
; we never get here
br label %.if close

.if close:
; foo.SetLength (24)
call void @Foo_SetLength ($Foox %$foo, 132 24)
%6 = call i32 (@Foo_GetLength (%Foox %foo)
ret i32 %6

JOAAARAAAA A AR A AAAAAAA A A A kA A A KA KA A MATN DEOGLAM 4k sk ok ok ok ok k& & & & ok ok ko ok ok ok A A A A A A K

@.message? internal constant [11 x i8] c"Error: %$s\0A\0O0O"
@.message3 = internal constant [44 x i8] c"Internal error: Unhandled exception,
—~detectd\00"

define i32 @main(i32 %argc, 1i8%x %argv) nounwind {
"try" keyword expands to a call to (@setjmp
$env = alloca % jmp_buf
$status = call i32 @setjmp (%$jmp_bufx %env)
%1 = icmp eq 132 %status, O
br il %1, label %.body, label %.catch_block

.body:
; Body of try block.
; fail = (argc >= 2)
$fail = icmp uge i32 %argc, 2

(continues on next page)

3.5. Exception Handling 43

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

; Function call.
%2 = call i32 @Bar ($jmp_bufx %env, il %fail)
br label %.exit

.catch_block:

%3 inttoptr i32 S$status to %Objectx
%4 getelementptr [10 x i8] (@.Exception_class_name, i32 0, i32 0
%5 = call il @Object_TIsA(%0Objectx %3, i8x %

)

br il %5, label %.catch_exception, label %.c

4)

atch_all

.catch_exception:

= inttoptr i32 %status to %$Exception=

= getelementptr [11 x i8]« (@.message2, 132 0, 132 0
call i8x (@Exception_GetText ($Exception* %6)

= call i32 (i8%, ...)x (@printf(i8x %7, i8«* %8)

br label %.exit

90 oo
w -1 o)
Il

o0 oo
O

.catch_all:

%10 getelementptr [44 x i8] (@.message3, i32 0, i32 0
11 call i32 (@puts (i8x% %10)

br label %.exit

o\

o0
I

;

.exit:
$result = phi i32 [0, %$.body], [1, %.catch_exception], [1, %.catch_all]
ret i32 Sresult

3.5.3 Zero Cost Exception Handling

3.5.4 Resources

e Compiler Internals - Exception Handling.

* Exception Handling in C without C++.

* How a C++ Compiler Implements Exception Handling.
* DWARF standard - Exception Handling.

e Jtanium C++ ABI.

3.6 Advanced/Functional Constructs

In this chapter, we’ll look at various non-OOP constructs that are highly useful and are becoming more and more
widespread in use.

3.6.1 Lambda Functions

A lambda function is an anonymous function with the added spice that it may freely refer to the local variables (in-
cluding argument variables) in the containing function. Lambdas are implemented just like Pascal’s nested functions,
except the compiler is responsible for generating an internal name for the lambda function. There are a few different
ways of implementing lambda functions (see Wikipedia on Nested Functions for more information).

44 Chapter 3. License

www.on-time.com/ddj0011.htm
wiki.dwarfstd.org/index.php?title=Exception_Handling
refspecs.linuxfoundation.org/cxxabi-1.86.html

Mapping High Level Constructs to LLVM IR Documentation

int foo(int a)

{
auto function = [a] (int x) { return x + a; };
return function (10);

Here the “problem” is that the lambda function references a local variable of the caller, namely a, even though the
lambda function is a function of its own. This can be solved easily by passing the local variable in as an implicit
argument to the lambda function:

define internal i32 (@lambda (i32 %a, i32 %x) {
%1 = add i32 %a, %x

ret i32 %1

}

define i32 (@foo(i32 %a) {
%1 = call i32 (@lambda(i32 %a, i32 10)
ret i32 %1

Alternatively, if the lambda function uses more than a few variables, you can wrap them up in a structure which you
pass in a pointer to the lambda function:

extern int integer_parse();

int foo(int a, int b)

{
int ¢ = integer_parse();
auto function = [a, b, c] (int x) { return (a + b - c) » x; };
return function (10);
}
Becomes:
; ModuleID = 'lambda_ func 1_cleaned.11'
source_filename = "lambda_func_1_cleaned.l1"
target datalayout = "e-m:e-164:64-£80:128-n8:16:32:64-5128"
target triple = "x86_64-unknown-linux-gnu"

$lambda_args = type { i32, i32, i32 }
declare i32 (@integer_parse ()

define i32 (@lambda(%$lambda_argsx %args, 132 %x) {

$1 = getelementptr %$lambda_args, %$lambda_args* %$args, i32 0, i32 0
%a = load i32, i32x %1
$2 = getelementptr S$lambda args, %lambda_argss %$args, i32 0, i32 1

load 132, i32x %2

getelementptr %$lambda_args, %$lambda_argsx %args, 132 0, i32 2
= load i32, i32x %3

add i32 %a, %b

sub i32 %4, %c

56 mul i32 %5, %x

ret i32 %6

define i32 (@foo(i32 %a, i32 %b) {

(continues on next page)

3.6. Advanced/Functional Constructs 45

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

sargs = alloca %lambde
1 = getelementptr %lambda_args, %$lambda_args* %args, i32 0, i32 0

store i32 %a, 1i32x% %1
$2 = getelementptr S$lambda args, %lambda_argss %args, i32 0, i32 1

store i32 %b, i32«
$c = call i32 (@intec
$3 = getelementptr %1
store i32 %c, i32x %3
$4 = call i32 (@lambda (%lambda_args* %args, 132 10)
ret i32 %4

mbda_ a

$args, i32 0, 1i32 2

Obviously there are some possible variations over this theme:
* You could pass all implicit as explicit arguments as arguments.
* You could pass all implicit as explicit arguments in the structure.

* You could pass in a pointer to the frame of the caller and let the lambda function extract the arguments and
locals from the input frame.

3.6.2 Generators

A generator is a function that repeatedly yields a value in such a way that the function’s state is preserved across the
repeated calls of the function; this includes the function’s local offset at the point it yielded a value.

The most straigthforward way to implement a generator is by wrapping all of its state variables (arguments, local
variables, and return values) up into an ad-hoc structure and then pass the address of that structure to the generator.

Somehow, you need to keep track of which block of the generator you are doing on each call. This can be done in
various ways; the way we show here is by using LLVM’s blockaddress instruction to save the address of the
next local block of code that should be executed. Other implementations use a simple state variable and then do a
switch-like dispatch according to the value of the state variable. In both cases, the end result is the same: A different
block of code is executed for each local block in the generator.

The important thing is to think of iterators as a sort of micro-thread that is resumed whenever the iterator is called
again. In other words, we need to save the address of how far the iterator got on each pass through so that it can
resume as if a microscopic thread switch had occured. So we save the address of the instruction after the return
instruction so that we can resume running as if we never had returned in the first place.

I resort to pseudo-C++ because C++ does not directly support generators. First we look at a very simple case then we
advance on to a slightly more complex case:

#include <stdio.h>

generator int foo()
{

yield 1;

yield 2;

yield 3;

int main ()
{
foreach (int 1 in foo())
printf ("Value: %d\n", 1i);

(continues on next page)

46 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

return 0O;

This becomes:

; Compiled and run successfully against LLVM v3.4 on 2013.12.06.

$foo_context = type {
i8«, ; 0: block (state)
i32 ; 1: value (result)

define void (@foo_setup(%foo_contextx %context) nounwind ({
; set up 'block'
%1 = getelementptr %foo_ contexts %Scontext, i32 0, i32 0
store i8x blockaddress ((Cfoo_yield, %$.yieldl), i8xx %1

ret void

; The boolean returned indicates 1if a result was available or not.
; Once no more results are available, the caller is expected to not call
; the iterator again.
define il (@foo_vyield(%$foo_contextx Scontext) nounwind ({
dispatch to the active generator block
1 = getelementptr $foo_contextx %Scontext, i32 0, 132 0
2 = load i8xx %1
indirectbr i8x %2, [label %.yieldl, label $.yield2, label %.yield3, label %.done

o0 o° N

]

.yieldl:
; Store the result value (1)
%3 = getelementptr %foo contexts %Scontext, i32 0, i32 1
store i32 1, 1i32x %3
; make 'block' point to next block to execute
%4 = getelementptr $foo_contextx Scontext, i32 0, i32 0
store i8x blockaddress ((lfoo_yield, %.yield2), i8xx %4
ret il 1

.yield2:
; Sstore the result value (2)
%5 = getelementptr %foo_context* %Scontext, i32 0, i32 1
store i32 2, i32% %5
; make 'block' point to next block to execute
%6 = getelementptr %foo_contexts %Scontext, i32 0, i32 0
store i8x blockaddress ((lfoo_yield, %$.yield3), i8xx %6
ret il 1

.yield3:

; Store the result value (3)
%7 = getelementptr %foo_context* %context, i32 0, i32 1
store i32 3, i32% %7

(continues on next page)

3.6. Advanced/Functional Constructs 47

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

; make 'block' point to next block to execute
$8 = getelementptr %foo_context* %context, i32 0, i32 0
store i8x blockaddress (Cfoo_yield, %.done), i8** %8

ret il 1

.done:
ret il O

declare i32 (@printf (i8x, ...) nounwind
@.string = internal constant [11 x i8] c"Value: $%d\0A\OOQO"

define void (@main () nounwind {

; allocate and initialize generator context structure
Scontext = alloca %foo_context

call void (@foo_setup(%$foo_context* %Scontext)

br label %.head

.head:

; foreach (int i in foo())

%1 = call il @foo_yield(%$foo_contextx %context)
br il %1, label %.body, label %.tail

body:
%2 = getelementptr %foo_context* %Scontext, i32 0, i32 1
%3 = load 132« %2
%4 = call i32 (i8x, ...)x (@printf (i8+ getelementptr([11l x i8]« @.string, i32 0,

—i32 0), i32 %3)
br label %.head

.tail:
ret wvoid

And now for a slightly more complex example that involves local variables:

#include <stdio.h>

generator int foo (int start, int after)

{

for (int index = start; index < after; index++)
{
if (index % 2 == 0)
yield index + 1;
else
yield index - 1;

int main (void)
{
foreach (int i in foo (0, 5))
printf ("Value: %d\n", 1i);

return 0O;

(continues on next page)

48 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

This becomes something like this:

; Compiled and run successfully against LLVM v3.4 on 2013.12.06.

$foo_context = type {

i8+«, ; 0: block (state)
i32, ; 1: start (argument)
i32, ; 2: after (argument)
i32, ; 3: index (local)
i32 ; 4: value (result)

define void (@foo_setup($foo_contextx %context, i32 %$start,
; set up 'block'
%1 = getelementptr $foo_contexts Scontext, i32 0, 132
store i8x blockaddress (@foo_yield, %.init), i8xx %1

; set up 'start'
%2 = getelementptr %$foo_context* %context, i32 0, i32
store i32 S$start, i32x %2

; set up 'after'
%3 = getelementptr %foo_contextx %context, i32 0, 1i32
store i32 %after, i32x %3

ret void

define il (@foo_yield(%foo_contextx %context) nounwind ({
dispatch to the active generator block

1 = getelementptr %foo_contextx %context, i32 0, i32

2 = load i8x*x %1

indirectbr i8« %2, [label %.init, label %.loop_close,

o° oo N

.init:
; copy argument 'start' to the local variable 'index'
%3 = getelementptr %$foo_context* %context, i32 0, i32
$start = load i32x %3
%4 = getelementptr %foo_context* %context, i32 0, i32
store i32 %start, i32+ %4
br label %.head

.head:
; for (; index < after;)
%5 = getelementptr %foo_context* %context, i32 0, i32

%index = load i32x %5

%6 = getelementptr %foo_contextx %context, i32 0, 1i32
$Safter = load i32x %6

$again = icmp slt i32 %index, %after

br il %again, label %.loop_begin, label %.exit

.loop_begin:
%7 = srem i32 %index, 2
%8 = icmp eq i32 %7, O
br il %8, label %.even, label %.odd

i32

0

1

2

label

$after)

%.end

]

nounwind {

(continues on next page)

g
o

Advanced/Functional Constructs

49

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

.even:
; Store 'index + 1' in 'value'
%9 = add i32 %index, 1
%10 = getelementptr %foo_contextx %context, i32 0, i32 4
store i32 %9, i32x %10

; make 'block' point to the end of the loop (after the yield)
%11 = getelementptr $foo_contexts Scontext, i32 0, i32 0
store i8+ blockaddress (@foo_yield, %.loop_close), i8xx %11

ret il 1

.odd:
; Sstore 'index — 1' in value
%12 = sub 132 %index, 1
%13 getelementptr $foo_context* %Scontext, i32 0, i32 4
store i32 %12, i32x %13

; make 'block' point to the end of the loop (after the yield)
%14 = getelementptr $foo contextx %Scontext, i32 0, i32 0
store i8+ blockaddress (@foo_yield, %.loop_close), i8xx %14

ret il 1

.loop_close:
; Increment 'index'
%15 = getelementptr $foo contextx %Scontext, i32 0, i32 3
%16 load i32x %15
%17 = add i32 %16, 1
store 132 %17, i32« %15
br label %.head

.exit:
; make 'block' point to the %.end label
%x = getelementptr %foo_contexts %Scontext, i32 0, i32 0
store i8+ blockaddress (@foo_vyield, %.end), 1i8%x %x
br label %.end

.end:
ret il 0

declare i32 (@printf (i8x, ...) nounwind
@.string = internal constant [11 x i8] c¢"Value: %d\0A\0O"

define i32 (@main () nounwind ({
; allocate and initialize generator context structure

$context = alloca %foo_context

call void (@foo_setup(%$foo_context* %context, i32 0, i32 5)

br label %.head

.head:
; foreach (int i in foo (0, 5))
$1 = call il (@foo_yield(%foo_context* %context)
br il %1, label %.body, label %.tail

(continues on next page)

50 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

.body:
$2 = getelementptr $foo_contextx %$context, 132 0, i32 4
$3 = load i32x %2
I = call i32 (i8~x, ...)* (@printf (i8+ getelementptr([11 x i8]« @.string, i32 0,

—i32 0), i32 %3)
br label %.head

.tail:
ret i32 0

Another possible way of doing the above would be to generate an LLVM IR function for each state and then store a
function pointer

in the context structure, which is updated whenever a new state/function needs to be invoked.

3.7 Interoperating with a Runtime Library

It is common to provide a set of run-time support functions that are written in another language than LLVM IR and it
is trivially easy to interface to such a run-time library. The use of malloc and free in the examples in this document
are examples of such use of externally defined run-time functions.

The advantages of a custom, non-IR run-time library function is that it can be optimized by hand to provide the best
possible performance under certain criteria. Also a custom non-IR run-time library function can make explicit use of
native instructions that are foreign to the LLVM infrastructure.

The advantages of IR run-time library functions is that they can be run through the optimizer and thereby also be
inlined automatically.

3.8 Interfacing to Operating Systems

I’ll divide this chapter into two sections:
* How to Interface to POSIX Operating Systems.

* How to Interface to the Windows Operating System.

3.8.1 Interface to POSIX Operating Systems

On POSIX, the presence of the C run-time library is an unavoidable fact for which reason it makes a lot of sense to
directly call such C run-time functions.

Sample POSIX “Hello World” Application

On POSIX, it is really very easy to create the Hello world program:

declare i32 (@puts (i8+ nocapture) nounwind

@.hello = private unnamed_addr constant [13 x i8] c"hello world\O0A\OO"

(continues on next page)

3.7. Interoperating with a Runtime Library 51

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

define i32 (@main(i32 %argc, i8xx %argv) {
%1 = getelementptr [13 x i8]+ (@.hello, 132 0, 132 0
call i32 (@puts(i8x %1)
ret i32 0

3.8.2 How to Interface to the Windows Operating System

On Windows, the C run-time library is mostly considered of relevance to the C and C++ languages only, so you have
a plethora (thousands) of standard system interfaces that any client application may use.

Sample Windows “Hello World” Application

Hello world on Windows is nowhere as straightforward as on POSIX:

target datalayout = "e-p:32:32:32-11:8:8-18:8:8-116:16:16-132:32:32-164:64:64-
—~f£32:32:32-£64:64:64-£80:128:128-v64:64:64-v128:128:128-a0:0:64-£80:32:32-n8:16:32~
—~S32"

target triple = "i686-pc-win32"

$struct. OVERLAPPED = type { i32, i32, %union.anon, i8x }
sunion.anon = type { %struct.anon }
$struct.anon = type { i32, i32 }

declare dllimport x86_stdcallcc i8x (@"\0l GetStdHandle@4" (i32) #1

declare dllimport x86_stdcallcc i32 (@"\Ol WriteFile@20" (i8«%, 1i8x, 132, i32x, S$struct._
—OVERLAPPED=*) #1

@hello = internal constant [13 x i8] c¢"Hello world\0A\OOQO"

define i32 (@main(i32 %argc, i8xx %argv) nounwind {

%51 = call i8+ (@"\01l_GetStdHandle@4" (132 -11) ; —11 = STD OUTPUI _HANDLE

%2 = getelementptr [13 x i8]x (@hello, i32 0, i32 0

%3 = ecall 132 @"\0l_WriteFile@20" (i8* %1, i8x %2, i32 12, i32% null, S%struct._
—OVERLAPPED* null)

; todo: Check that %4 is not equal to -1 (INVALID HANDLE_ VALUE)

ret i32 0

attributes #1 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-
—frame-pointer-elim-non-leaf"

"no-infs—-fp-math"="fa lse" "no-nans—-fp-math"="false" "stack-protector-buffer-size"="8
—" "unsafe-fp-math"="false"

"use-soft-float"="false"

}

3.9 Epilogue

Remember that you can learn a lot by using the —emit—11vm option to the clang/clang++ compiler. This gives
you a chance to see a live production compiler in action and how it precisely does things.

52 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

If you discover something new this way, or any errors in this document or you need more information than given here,
please create an issue at Github

3.9.1 Further Reading

This chapter lists some resources that may be of interest to the reader:
e LLVM documentation http://Ilvm.org/docs/
* Modern Compiler Implementation in Java, 2nd Edition.

* Eli Bendersky’s collection of code examples for using LLVM/clang, https://github.com/eliben/
llvm-clang-samples

* “How Clang Compiles a Function” by John Regehr, June 2018, https://blog.regehr.org/archives/1605

3.9.2 Contribution

If you want to contribute to this document you can:
* Create an issue on Github

* Fork and fix it yourself. We’re happy to merge any pull requests or accept patches.

Thank You

A brief list of all people who’ve contributed to the document (thank you all very much!):
* Michael Rodler (current maintainer and back-porter from MeWeb markup to GitHub markdown).
* Mikael Egevig (original author of the document itself - under the name of Mikael Lyngvig).
 Dirkjan Ochtman (basically all the generator-related stuff by giving me some crucial samples).
* Eli Bendersky (for small grammar fixes and mention of opt’s . bc output).
* Sean Silva (for using proper C++11 lambda syntax in lambda samples).
¢ Isaac Dupree (for correction the name of ‘@’: It is “at-sign”, not “ampersand”).
» Wilfred Hughes (i became index and addition of separator between generator C++ and LLVM IR code).
» Kenneth Ho (correction to C++11 lambda example and C++ exception handling sample).

Should your name be here? If so, contribute :-)

3.10 How to Implement a String Type in LLVM

There are two ways to implement a string type in LLVM:
* To write the implementation in LLVM IR.
 To write the implementation in a higher-level language that generates IR.

I’d personally much prefer to use the second method, but for the sake of the example, I'll go ahead and illustrate a
simple but useful string type in LLVM IR. It assumes a 32-bit architecture, so please replace all occurences of i32
with 164 if you are targetting a 64-bit architecture.

3.10. How to Implement a String Type in LLVM 53

https://github.com/f0rki/mapping-high-level-constructs-to-llvm-ir/issues
http://llvm.org/docs/
https://github.com/eliben/llvm-clang-samples
https://github.com/eliben/llvm-clang-samples
https://blog.regehr.org/archives/1605
https://github.com/f0rki/mapping-high-level-constructs-to-llvm-ir/issues

Mapping High Level Constructs to LLVM IR Documentation

We’ll be making a dynamic, mutable string type that can be appended to and could also be inserted into, converted to
lower case, and so on, depending on which support functions are defined to operate on the string type.

It all boils down to making a suitable type definition for the class and then define a rich set of functions to operate on
the type definition:

; The actual type definition for our 'String' type.
$String = type {

i8«, ; 0: buffer; pointer to the character buffer

i32, ; 1: length; the number of chars in the buffer

i32, ; 2: maxlen; the maximum number of chars in the buffer

i32 ; 3: factor; the number of chars to preallocate when growing

define fastcc void (@String Create_Default ($String* %$this) nounwind ({
; Initialize 'buffer'.
%1 = getelementptr %Stringx %this, i32 0, i32 0
store i8x null, i8xx %1

; Initialize 'length'.
%2 = getelementptr %Stringx %this, i32 0, i32 1
store i32 0, 1i32x %2

; Initialize 'maxlen'.
%3 = getelementptr %Stringx %$this, i32 0, i32 2
store i32 0, i32x% %3

; Initialize 'factor'.
%4 = getelementptr $Stringx %this, i32 0, i32 3
store i32 16, i32* %4

ret void

declare i8x (@malloc(i32)
declare void (@free (1i8x%)
declare i8« (@memcpy (i8x, i8x, i32)

define fastcc void (@String Delete ($String* %this) nounwind {
; Check 1f we need to call 'free'.
%1 getelementptr $Stringx %$this, i32 0, i32 0
%2 load i8xx %1
%3 = icmp ne i8x %2, null
br il %3, label %free_begin, label %free_close

free begin:
call void (@free (i8* %2)
br label %free close

free close:
ret wvoid

define fastcc void (@String Resize ($String+ %$this, 132 %value) {

; Soutput = malloc (svalue)
Soutput = call i8x (@malloc (i32 S%value)

;, todo: check return value

(continues on next page)

54 Chapter 3. License

Mapping High Level Constructs to LLVM IR Documentation

(continued from previous page)

¢buffer = this->buffer
1 = getelementptr $Stringx %this, i32 0, i32 0
buffer = load i8xx %1

o0 o° N

$length = this—->length
2 = getelementptr $Stringx %$this, i32 0, i32 1
length = load i32x %2

° o .

; memcpy ($output, %Sbuffer, %$length)
%3 = call i8x (@memcpy (i8x %output, i8« S%huffer, i32 %$length)

; free(%buffer)
call void (@free (i8+ Sbuffer)

; this->buffer = %output
store i8x Soutput, i8xx %1

ret void

define fastcc void (@String Add_Char ($Stringx $this, i8 %value) {
Check if we need to grow the string.

= getelementptr %String* %this, i32 0, i32 1

ength = load i32x %1

= getelementptr %String* S$this, i32 0, i32 2

maxlen = load i32x %2

; 1f length == maxlen:

%3 = icmp eq i32 %length, %maxlen

br il %3, label %grow_begin, label %grow_close

N e

o° o o o° N

grow_begin:
%4 = getelementptr $Stringx %this, i32 0, i32 3
$factor = load i32x %4
%5 = add i32 %maxlen, $factor
call void (@String Resize ($String* %this, 132 %5)
br label %grow_close

grow_close:
%6 = getelementptr %String* %$this, i32 0, i32 0
$buffer = load i8x*x* %6
%7 = getelementptr i8+ Sbuffer, i32 %$length
store i8 Svalue, i8x %7
%8 = add i32 %length, 1
store i32 %8, i32* %1

ret void

3.10. How to Implement a String Type in LLVM 55

	About
	Contributing
	License

