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Abstract—  This  paper addresses the hardware
implementation of the self-balancing monopod with the use of the
PID controller (DCM algorithm) and simulation in MATLAB.
Frequency and Time Domain analysis is done in MATLAB with
proper PID Tuning.
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1. INTRODUCTION

Basically, the self-balancing platform consists of a platform
which is balanced by the movement of three motors in
opposite direction to the movement of the platform. Arduino
Mega treat the tilt angles taken from IMU and give instruction
to the respective servo motors to rotate by some angle
depending on its previous position to balance or control the
platform. IMU consists of ADXL345 Accelerometer and
ITG3200 Gyroscope whose outputs are calibrated accurately
by using FILTER to give the accurate angle. This angle is sent
to PID or DCM algorithm which covers the error i.e. how far
the current position of the platform is from the wanted set
point (balancing point). The algorithm tries to reduce the error
by altering the process control inputs. That’s unusual speak for
the technology that allows balancing. With advent of
self-balancing devices, be it Segway, DIY, or TIPI, we five
were fascinated with the futuristic scope that self-balancing
devices hold, be it flying cars or compact car modules on two
rollers, be it self-stabilized and Bluetooth controlled cameras
clicking in courteous moves of Hollywood stars or be it a
simple self-stabilizing skateboard, controlled by your gestures,
the idea of self-stabilizing skateboard controlled by our leg
movements did take rounds in our interested team. As of
delving deep into huge knowledge pool of self-controlled and
stabilized devices, the team felt to get firsthand information of
different control mechanisms, IMUs, filters, robust mechanical
system, and henceforth, concluded to engineer a manually

controlled-cum-self stabilizing platform with three axes of
freedom
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1L CONTROL OBJECTIVE
To illustrate the techniques involved in balancing a
platform.
To work on exact movements and accurate control of
the platform, with the use of various algorithms and
filtering process

To illustrate the techniques involved in balancing a
platform.

To work on precise movements and accurate control
of the platform, with the use of various algorithms
and filtering process

To understand the working of IMU. IMU work
involves understanding the pin configurations of the
IMUIMU and configuring the correct libraries for the
IMU.

To know the correct connections required for all the
peripheral hardware to communicate with the
microcontroller.

IIIL. MATHEMATICAL MODELLING

mement 'BJM of tat ,?‘mmhmpm
a4 od Wf

J=~.T|:-"fo4fr

Je= P’?\clcl
Jr = M dy™
Jp = __:lmeL

Aoa mspult ;w,[,mdbmlc Aaw b exprantd ar foltoust
Frkp - (mp tp s 4my Ly + ﬁ':_ir_)jamﬁﬂn {m‘kl-l—{,mpﬁ"{m,lr

B
o - (mplp L4, 5
Qr- v F muhém:&,}f}? ﬂr,g:m —— ]
Ml 4] pptt
3 }"‘r Mely

melc' + Lmprisdmyte™




tpll pf oo por

.o, o Frieford

IV . OBSERVATION

A. TIME DOMAIN ANALYSIS

we derived the open-loop transfer functions of the system as
the following.
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where

g = (M +m)(I +ml®) — (ml)?

Recall that the above two transfer functions are valid only for

small values of the angle ¥, which is the gyroscopic and
accelerometer values of the servo motor from the vertically
upward position.

Considering the response of the pendulum to a 1-Nsec impulse
applied to the cart, the design requirements for the system are:

Settling time for # of less than 5 seconds

Additionally, the specifications for the response of the system
to a 0.2-meter step command in cart position are:

Settling time for = and # of smaller than 5 seconds
Rise time for & of smaller than 0.5 seconds

Servo motor angle # never more than 20 degrees (0.35
radians) from the vertical
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B. ROOT LOCUS ANALYSIS
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C. FREQUENCY DOMAIN ANALYSIS

The controller we are pla

nning will specifically attempt to

maintain the platform vertically upward when the system is
subjected to a 1-Nsec impulse. Under these conditions, the

design guidelines are:

= Settling time of fewer than 5 seconds

Closed-loop response without compensation -
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Closed-loop response with compensation

Since the closed-loop system is fissionable without
compensation, we need to use our controller to stabilize the
system and meet the given requirements. Our first step will be
to attach an integrator to eliminate the zero at the origin.
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if you study the transfer function closely, you will notice that
there is a pole-zero removal at the origin. Even with the
extension of this integrator, the closed-loop system is still
unstable.
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Remark that the open-loop Nyquist plot now encircles the -1
point in the clockwise direction. This implies that the
closed-loop system now has two poles in the right-half plane (
Z=F+ N=1+1= 2) Hence, the closed-loop system
is still unstable. We require to add phase in order to get a

counterclockwise encirclement. We will do this by attaching a
zero to our controller. For beginners, we will place this zero at
-1 and view the resulting plots.

This extra zero will automatically change the Bode and
Nyquist plots that are already open. The resulting Nyquist plot
should resemble as shown below.
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As you can see, this change did not provide enough phase. The
encirclement around -1 is still clockwise. We will try adding a
second zero at -1 in the same manner as was described above.
The resulting Nyquist diagram is given below.
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IV DESIGN AND TUNNING OF CONTROLLER



The proportional, integral, and derivative terms are summed to
calculate the output of the PID controller. Defining u(?) as the
controller output, the final form of the PID algorithm is:

Where:

|
i
u(t) = MV(t) = Kelt) + K, [ e(r)dr + m%r(r}
J1 {

DCM can be thought of a strong and robust algorithm for
precise control of servo motors. It uses Euler angles, Direction
Cosine Matrix(DCM) and Quaternion approach. It has inbuilt
Filters and Proportional — Integral Control Units which in turn
is very effective in giving calibrated outputs

The DCM algorithm uses Proportional-Integral Control units
which are almost similar to PID except for the absence of
Integral term. The tuning values, proportional constant (Kp)
and derivative constant (Kd) changes in the code depending on
how far the position of the platform is from setpoint (balanced
point. Recognizing that numerical errors, gyro drift, and gyro
offset will gradually accumulate errors in the DCM elements,
we use reference vectors to detect the errors, and a
proportional plus integral (PI) negative feedback controller
between the detected errors and the gyro inputs, to dissipate
the errors faster than they can build up. GPS is used to detect
yaw error, accelerometers are used to detect pitch and roll.

V CONCLUSION

Through this project we conclude that self-balancing monopod
works on the principle of inverted pendulum whose time-
domain and frequency domain analysis is done and gets
simulated in MATLAB software Apart from that hardware
implementation is done with the use of DCM algorithm (PID
Algorithm).
Future Work: -

e To Reduce the error in the system

e To calibrate the output more accurately

e To reduce the instability caused due to disbalance of

the centre of mass of hardware model.
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