NPR
New Packet Radio on 70cm band

Introduction :
What is it?
&
Quick start guide

Guillaume F4HDK
June 2019
NPR – What is it? (1/4)

- Bi directional IP over radio link
 (no AX.25 despite the name “packet radio”)
- Intermediate data rate between Packet and HSMM-WiFi
- Frequency band 420-450MHz much easier to use
 than 2.4GHz or 5.6GHz (HSMM-WiFi-Hamnet).
- Designed by a HAM for HAMs
- 100% Open-Source : PCB + firmware

<table>
<thead>
<tr>
<th></th>
<th>Datarate</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet radio</td>
<td>Raw : <9600bps</td>
<td>ALL (mainly 144MHz and 430MHz)</td>
</tr>
<tr>
<td></td>
<td>Useful : several kbps</td>
<td></td>
</tr>
<tr>
<td>NPR New Packet Radio</td>
<td>Raw : 110kbps to 1Mbps</td>
<td>420-450MHz</td>
</tr>
<tr>
<td></td>
<td>Useful : 70 to 500kbps</td>
<td></td>
</tr>
<tr>
<td>HSMM - Hamnet– WiFi</td>
<td>Raw : >10Mbps</td>
<td>2.4GHz, 5.6GHz</td>
</tr>
<tr>
<td></td>
<td>Useful : >10Mbps ?</td>
<td></td>
</tr>
</tbody>
</table>
NPR – What is it? (2/4)

Optimised for “Point To Multipoint” configurations

- 1 central repeater, called MASTER
- Several CLIENTS

The Master only transmits when solicited by at least one Client.

Use case example:
Extension of Hamnet (2.4GHz or 5.6GHz) network

Possibility to use “Point to Point” configuration

Use case example:
Low data-rate DATV (200kbps)
Bi directionnal, single frequency.
NPR – What is it? (3/4)

Compatibility with amateur radio rules
• Periodic transmission of callsigns
• No encryption
• The Master (repeater) only transmits when solicited (at least by one “client”)

Limitations:
• Currently 7 simultaneous clients maximum
 (Evolution planned to upgrade to 15 clients maxi)
• 300km maxi (due to protocol)
• Limitations of 430MHz band: Not designed for 24x7 usage
• Not designed for “mobile” (only modulations 11, 20, 21)
Some technical aspects

- Protocol invented & designed by me (Guillaume F4HDK)
- Use of chips initially designed for ISM 433MHz : SI4463
- Modulation 2GMSK or 4GMSK (Good spectral efficiency).
- Very simple FEC (Forward Error Correction) non tuneable
- TDD : time division duplex.
 All stations transmit on the same frequency, alternatively
- Fast TX/RX cycles : 80ms à 200ms. (similar to DMR).
- Managed-TDMA : The Master (central repeater) allocates speaking times to each station (Master and clients), according to the needs, in real time.
 ➔ No collision possible.
- Timing Advance management (transmission anticipation due to distance)

```
  MASTER  CLIENT1  CLIENT2  MASTER  CLIENT1
```

```
0ms  80ms  time
```

Cycle TDMA = TDMA Frame
NPR – antennas

- You need antenna gain! It’s wide band!
- Horizontal polarisation is highly recommended
- Horizontal or vertical polarisation should be decided regarding local constraints (no IARU recommendation anymore about this topic)
- Due to multi-path issue (at such high symbol rates):
 - Client should use directional antennas (Yagi)
 - Master can use omni, but antenna should be unobstructed

Master:
- Horizontal polar omni (big wheel stack, or multiple panel antennas)

 or

- Horizontal polar sectorial (1 or several panel antennas)

 or

- Vertical (collinear)

Clients: Yagi

(Horizontal or Vertical polar)
RF amplifier
- The NPR protocol is compatible with some ‘off the shelf’ DMR amplifiers.
- Fast TX/RX commutation
- Warning: check compatibility before buying

Modem-Transceiver
- Custom design (PCB + software).
- Kit price (to be confirmed): 70$ to 80$ including enclosure.
- 3 power supply sources possible
 - 12V (9V to 20V)
 - 7V (6.5V to 8V)
 - 5V regulated
 (only for tests, RX sensitivity degraded)
- Ethernet connection
- No software needed on PC!
NPR Hardware (2/6)

The modem (TRX)

One single modem type for Master and Clients
NPR Hardware (3/6)
Modem PCB details

Switching Regulator
(ITEAD LM2596)

Ethernet SPI Module
(Eth-Wiz-Click Wiznet W5500)

Microcontroller
Mbed Nucleo STM32 L432KC

Radio Module
RF4463 F30 (based on SI4463)
NPR Hardware (4/6)

With RF DMR amplifier
VR-P25D 20W
(Vero-Telecom)
Example of autonomous NPR Master, remotely manageable (configuration and programming), with one Raspberry-Pi.

Automatic fan on RF amplifier.
NPR – Quick start guide
The LEDs

CONNECTED:
Static ON: connected (to a Master)
Blinking: ‘I am a Master’

POWER supply OK

RX:
Radio reception in progress

TX:
Radio transmission in progress
NPR – Quick Start Guide

- The remaining is only applicable to ‘Clients’, not for Master.
- (For Master operations, refer to ‘advanced user guide’)

- You should prefer direct Ethernet connection between modem and a single PC: no Ethernet switch.
Either via serial over USB

- Use whatever serial terminal
- Port configuration:
 - 921 600 bps
 - 8 bits
 - flow control : NO

- USB driver could be necessary on Windows (up to Win 7):
 https://os.mbed.com/docs/v5.9/tutorials/windows-serial-driver.html

- Press ‘enter’ to obtain a prompt

Or via Telnet: (To the IP of modem)
C:\Users\moi> telnet 192.168.0.253
No password.
Warning: this IP can change during radio link connection.
You need to find modem IP address.
It corresponds to DHCP server IP address.

- Windows :
 C:\Users\moi> ipconfig /all
 […]
 Carte Ethernet Principal_PCIe :
 […]
 Adresse IPv4. : 192.168.0.102
 Masque de sous-réseau. : 255.255.255.0
 Bail obtenu. : 22:25:21
 Bail expirant. : 22:31:22
 Passerelle par défaut. : 192.168.0.1
 Serveur DHCP : 192.168.0.253

- Linux : Refer to last ‘lease’ inside /var/lib/NetworkManager/
moi@ubuntu:~$ telnet 192.168.0.253
Connected to 192.168.0.253.
NPR modem
ready>
ready> display config
CONFIG:
callsign: 'client_1'
is_master: no
MAC: 4E:46:50:52:C7:5C
frequency: 437.000MHz
RF_power: 6
modulation: 24
radio_netw_ID: 0
radio_on_at_start: yes
DHCP_active: yes
client_req_size: 1
client_static_IP: no
telnet active: yes
telnet routed: yes
modem_IP: 192.168.0.253
subnet: 255.255.255.0
IP_begin: 192.168.0.60
master_IP_size: 32 (Last IP: 192.168.0.91)
def_route_active: yes
def_route_val: 192.168.0.1
DNS_active: yes
DNS_value: 9.9.9.9
ready>

ready> _status
 57 status: connected TA:0.0km Temp:23degC
 RX_Eth_IPv4 2863 ;TX_radio_IPv4 2788 ;
 RX_radio_IPv4 5738
 DOWNLINK - bandwidth:46.7 RSSI:137 ERR:0.00%
 UPLINK - bandwidth:38.1 RSSI:106 ERR:33.31%
CTRL+c to exit...
ready>

ready> who
1 Master: ID:127 Callsign:Master ME: Callsign:client_02 ID:2 modem IP:192.168.0.253
Clients:
 ID:0 Callsign:client_1 IP start:192.168.0.100 IP end:192.168.0.100
 ID:2 Callsign:client_02 IP start:192.168.0.102 IP end:192.168.0.102
CTRL+c to exit...
ready>
Initial configuration (1/2)

- Command: `set [parameter] [value]`
- Get current configuration: `display config`
- Refer to parameter list at the annex
- The following parameters must match with the Master (central repeater)
 - `frequency`
 - `modulation` (refer to next page)
 - `radio_netw_ID` = Radio Network ID (equivalent to CTCSS)
- Other useful parameters
 - `callsign` (compulsory)
 - `is_master`: set to “no” for a client
 - `DHCP_active`: set to “yes” for a client (except for advanced config)
 - `RF_power`: warning, non linear
 - `radio_on_at_start`: according to your needs
 - `client_req_size`: depending on number of IP needed, default is ‘1’
• Then **save** and **reboot** once everything is set properly

• Don’t forget to switch on the radio part
 – Either with command **radio on**
 – Or by setting **radio_on_at_start** to the value **yes** in the previous step
 (then **save** and **reboot** obviously)
NPR – Quick Start Guide
5 modulations

• Meaning of 2 digits
 - 1ier digit: 2GFSK or 4GFSK
 - 2ième digit: Symbol Rate

<table>
<thead>
<tr>
<th>Modulation reference</th>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol Rate</td>
<td>56</td>
<td>120</td>
<td>180</td>
<td>300</td>
<td>500 kS/s</td>
</tr>
<tr>
<td>Radio bandwidth</td>
<td>84</td>
<td>180</td>
<td>270</td>
<td>450</td>
<td>750 kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulation name</th>
<th>11 (*)</th>
<th>12 (*)</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2GFSK</td>
<td>Raw data rate</td>
<td>120</td>
<td>180</td>
<td>300</td>
<td>500 kbps</td>
</tr>
<tr>
<td></td>
<td>Usable data rate</td>
<td>80</td>
<td>110</td>
<td>190</td>
<td>300 kbps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulation name</th>
<th>20 (*)</th>
<th>21 (*)</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>4GFSK</td>
<td>Raw data rate</td>
<td>112</td>
<td>240</td>
<td>360</td>
<td>600</td>
<td>1000 kbps</td>
</tr>
<tr>
<td></td>
<td>Usable data rate</td>
<td>70</td>
<td>140</td>
<td>220</td>
<td>330</td>
<td>500 kbps</td>
</tr>
</tbody>
</table>

(*): Available for firmware ≥ 2019_06_08
NPR – Quick Start Guide
During usage... (1/3)

• Initial radio connection of a Client to a Sleeping Master
 – It’s slow, please be patient
 – ~15 seconds for the Master to wake up
 – Plus 1 connection attempt by Client every 5 sec
 – Often triggers an IP configuration change at Client side (client IP, modem IP, etc...)

• Slow mode (once connected)
 – If a Client modem requires only few data at uplink, then it is placed to « slow mode », and only transmits once every 8 TDMA cycles (600ms instead of 80ms for modulation 24)
 – This mechanisms frees radio resource for other modems (Client or Master)
status

Displays radio link quality, for tuning:

- Antenna orientation
- Radio power of the modem

The status is automatically updated every 2 seconds.
You should try to obtain BER <2%.

Direction: from Master to me (Client)

ready> status
57 status: connected TA:0.0km Temp:23degC
DOWNLINK- bandwidth:46.7 RSSI:137 ERR:0.00%
UPLINK- bandwidth:38.1 RSSI:106 ERR:33.31%
CTRL+c to exit...

Direction: from me (Client) to Master

Datarate used by me (it does not represent the quality of radio link)

RSSI: Received Signal Strength Indicator

ERR: Error Rate (%)
During usage... (3/3)

who

- Who is connected? Client and Master.
- Displays callsigns and IP range of each modem (The Master does not have IP range).
- Automatically updated every 2 seconds

```
ready> who
1 Master: ID:127 Callsign:Master
ME: Callsign:client_02 ID:2 modem IP:192.168.0.253
Clients:
   ID:0 Callsign:client_1 IP start:192.168.0.100 IP end:192.168.0.100
   ID:2 Callsign:client_02 IP start:192.168.0.102 IP end:192.168.0.102
CTRL+c to exit...
```
NPR – Quick Start Guide

List of commands (1/3)

<table>
<thead>
<tr>
<th>command</th>
<th>Parameter (if applicable)</th>
<th>Value format</th>
<th>Valid for..</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>radio</td>
<td>on</td>
<td>-</td>
<td>X X</td>
<td>Turns radio on. (currently bugged if executed after ‘radio off’, use ‘reboot’ instead)</td>
</tr>
<tr>
<td>status</td>
<td>-</td>
<td>-</td>
<td>X X</td>
<td>Display radio status</td>
</tr>
<tr>
<td>who</td>
<td>-</td>
<td>-</td>
<td>X X</td>
<td>Displays who is currently connected to the master.</td>
</tr>
<tr>
<td>display</td>
<td>config</td>
<td>-</td>
<td>X X</td>
<td>Display configuration</td>
</tr>
<tr>
<td></td>
<td>DHCP_ARP</td>
<td>-</td>
<td>X X</td>
<td>Display DHCP or ARP entries</td>
</tr>
<tr>
<td>save</td>
<td>-</td>
<td>-</td>
<td>X X</td>
<td>Save the current configuration to EEPROM.</td>
</tr>
<tr>
<td>reboot</td>
<td>-</td>
<td>-</td>
<td>X X</td>
<td>Reboot the whole board.</td>
</tr>
<tr>
<td>reset_to_default</td>
<td>-</td>
<td>-</td>
<td>X X</td>
<td>Erases the entire previous EEPROM stored configuration.</td>
</tr>
<tr>
<td>exit</td>
<td>-</td>
<td>-</td>
<td>X X</td>
<td>Exit from telnet session.</td>
</tr>
</tbody>
</table>
NPR – Quick Start Guide

List of commands (2/3)

<table>
<thead>
<tr>
<th>command</th>
<th>Parameter title</th>
<th>format</th>
<th>master</th>
<th>client</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>callsign</td>
<td>text</td>
<td>X</td>
<td>X</td>
<td>Warning: each modem must have its own callsign. No ‘space’ char, use ‘_’ instead</td>
</tr>
<tr>
<td>is_master</td>
<td>yes / no</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Yes : set to master mode No : set to client mode</td>
</tr>
<tr>
<td>modem_IP</td>
<td>IP value</td>
<td></td>
<td>X</td>
<td>(*)</td>
<td>(*) For client : temporary value before connection to master</td>
</tr>
<tr>
<td>netmask</td>
<td>IP value</td>
<td></td>
<td>X</td>
<td>(*)</td>
<td>(*) For client : temporary value before connection to master</td>
</tr>
<tr>
<td>telnet_active</td>
<td>yes / no</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>telnet_routed</td>
<td>yes / no</td>
<td></td>
<td>X</td>
<td></td>
<td>Not implemented yet</td>
</tr>
<tr>
<td>DNS_active</td>
<td>yes / no</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS_value</td>
<td>IP value</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def_route_active</td>
<td>yes / no</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def_route_val</td>
<td>IP value</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP_begin</td>
<td>IP value</td>
<td></td>
<td>X</td>
<td>(*)</td>
<td>(*) For client : temporary value before connection to master</td>
</tr>
<tr>
<td>master_IP_size</td>
<td>Integer</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>client_static_IP</td>
<td>yes / no</td>
<td></td>
<td>X</td>
<td></td>
<td>Not implemented yet</td>
</tr>
<tr>
<td>client_req_size</td>
<td>Integer</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NPR – Quick Start Guide

List of commands (3/3)

<table>
<thead>
<tr>
<th>command</th>
<th>Parameter title</th>
<th>format</th>
<th>master</th>
<th>client</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>radio_on_at_start</td>
<td>yes/no</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequency</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Decimal value in MHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dot for decimal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rounded in 0.040MHz steps.</td>
</tr>
<tr>
<td></td>
<td>RF_power</td>
<td>integer</td>
<td>X</td>
<td>X</td>
<td>From 0 to 127</td>
</tr>
<tr>
<td></td>
<td>modulation</td>
<td>cf</td>
<td>X</td>
<td>X</td>
<td>9 possible values : [11 to 14] or [20 to 24].</td>
</tr>
<tr>
<td></td>
<td>radio_netw_ID</td>
<td></td>
<td>X</td>
<td>X</td>
<td>From 0 to 15 (equivalent of CTSS)</td>
</tr>
</tbody>
</table>
It’s your turn!
Turn on your soldering irons,
and your PCs,
and set your antennas!