 (
Massduino

UNO
 Pro
) (
High
performance
 enhanced development board compatible with
Arduino
 UNO
) (
Page:

1

 of

10
) (
DOC-UNOPro-V01-20180531
)
[image:]
[image:]

 (
Full resource of UNO R3
Onboard Virtual USB HID device
The USB HID can be programming the board as a keyboard / mice / etc… with HID class device
Ground test terminal
TQFP-48 MD-3248P MCU
Analog power and digital power and ground are separated
Onboard 4.096V/2.048V voltage reference source
4.096V for PWM-DAC
AREF for MCU ADC selectable between 4.096V and 2.048V
4 channel onboard PWM-DAC
CH0/1 with 16bit resolution
CH2/3 with 12bit resolution
5 channel High Voltage Analog input
Range 32V with 4.096V AREF
Range 16V with 2.048V AREF
Onboard 3 tack switch buttons and 3 LEDs for fast programming
)

 (
Features
 & Parameters
)

 (
○

Massduino
 MD-3248P with 32KB Flash , 2KB SRAM
○
 Fully
Arduino
 IDE development
○

Full
arduino
 UNO resource support
○
 Rich additional resource
3 user programmable LEDs
3 tack switch buttons
4 CH
pwm
 DAC (2
ch
 fast mode and 2
ch
 high resolution mode)
5 CH HV ADC (Max input 32V)
Onboard 4.096V and 2.048V voltage
reference
 source
○

Virtual USB , make the board as a HID device (Keyboard / Mice etc.)
) (
○

DC input
 voltage :

DC
9
 to
24
V
○

System voltage
:

3.3V or 5V
○

PWM DAC Range
:

0 ~ 4.096V
○

PWM Resolution (CH 1/2)
:
16bit
○

PWM Resolution (CH 3/4)
:
10bit
○

HV ADC input range
:
0~32V
○

HV ADC resolution
:

1mV w/s 15bit ADC (analogRead_
15bits(
))
)

 (
Install
Massduino
 support package
)

	
	Inorder to use Massduino UNO Pro , you need to download massduino support package from below link:
http://www.inhaos.com/downcount.php?download_id=218
	After you download and unzip the file , you will got two folder:
[image:]
Find the directory that suits your Arduino IDE version , copy to target directory . Here is the default sketchbook directory for most popluar system:
	> Windows: C:\Users\<Username>\Documents\Arduino
	> Mac OSX: /Users/user/Documents/Arduino
	> LINUX: /home/<Username>/sketchbook

	And then restart the Arduino IDE , you will see the device appear in the menu :
tools - > board - > Massduino Ev board -> MD-3248P-LQFT48
	Then , you can start to play with Uno Pro.

 (
Block diagram
)

[image:]
Here is the block diagram of UNO Pro , as you can see , UNO Pro support full resource of standard UNO , and additional below resource :
· 3 user programmable LEDs
· 3 tack switch buttons
· 4 CH pwm DAC (2 ch fast mode and 2 ch high resolution mode)
· 5 CH HV ADC (Max input 32V)
· Onboard 4.096V and 2.048V voltage reference source
[image:]
 (
PWM DAC
)

UNO Pro have 4ch onboard PWM DAC , they are connection to D33/D34/D36/D37 , when you config those pin for PWM function, the onboard LPF will convert the PWM signal to a analog voltage , the analog level is depended on the duty cycle of the PWM signal.

The reference source of the DAC is connect to onboard 4.096V reference, which means the max output of DAC is 4.096V.

The D33/D34 are using TIM3 and D36/D37 using TIM1 , so the PWM DAC0 (D33) and PWM DAC1 (D34) must have same resolution and PWM2 and PWM3 are too.
The DAC resolution is depended on the PWM resolution , if the PWM resolution set to 12bit , the DAC resolution is 12bit too , the max level is 2^12 = 4096 levels.

For PWM signal, the resolution is inversely proportional with the frequency , which means if you using higher resolution , you must lower the frequency. So if you set PWM resolution to 16bit , the frequency will be 16times lower than 12bit.

The LPF (Low Pass Filter) will lead the analog signal delay, the 16bit PWM signal will lead 16 times delay time than 12bit. In UNO Pro , the 12bit PWM delay time is 5mS and 16bit PWM delay is 80mS.

So that’s why we setup two type of DACs , CH0/1 is high resolution but with lower sample rate , CH2/3 is higher sample rate but resolution is lower than DAC0/1.

Below is recommended setting for DACs:
	No.
	DAC Chn.
	Pin number
	Timer
	Resolution
	Resolution mV
	Delay Time
	Sample Rate
	Remark

	1
	DAC 0
	D33
	TIM3
	16
	62.5uV
	80mS
	12.5sps
	

	2
	DAC 1
	D34
	
	
	
	
	
	

	3
	DAC 2
	D36
	TIM1
	12
	1mV
	5mS
	200sps
	

	4
	DAC 3
	D37
	
	
	
	
	
	

The function “pwmResolution(PWM_PIN, 16);” is used to setup the resolution of the PWM signal , for D33/D34 , the resolution have to setup to same , and D36/D37 too , if you using “pwmResolution(36, 12);” to setup D36 to 12bit , the D37 will be setup to 12bit resolution too automatic.

As resolution suggestion above , the DAC0/1 can be setup to any resolution of 1 to 16bit and DAC2/3 can be setup to any resolution of 1 to 12bit , if the resolution is over the suggestion level , the output signal will be have big ripple.

When you setup PWM = 0 , the PWM value sill still keep to 1 , so if you want get real 0V of output , you can disable PWM function and write the IO to LOW, reference code below :
 				pwmTurnOff (PWM_PIN); // trun off the PWM function
 				digitalWrite (PWM_PIN , LOW) ;
delay(5);

 (
HV ADC (High Voltage ADC)
)

The input circuit as below , the input ration is 1:8.

[image:]

If you are using 4.096V as the AREF , the max input range is 4.096V * 8 = 32.768V , since the full scale is non linear , so we only use 0~32V range. In this case, we suggestion you use “analogRead_15bits()” function , the ADC resolution is 1mV.

If you are using 3.3V system voltage , the AREF must lower than 3.3V , in this case , you can use 2.048V as the AREF , (write D36 to LOW) , the max input is 16V. we suggestion you use “analogRead_14bits()” function , the ADC resolution is 1mV too.

Since the input divider / OP amp / ADC , every stage have it’s own fixed error , so if you want to get more precise measurement result , you need calibration algorithm , the simple calibration algorithm below:
Step1: Select a calibration point , this point better is close to full scale .
Step2: Connected the voltage source to one of input channel.
Step3: use high precision voltmeter to measurement the input voltage, record it to Vol_A.
Step4: read form ADC , record it to VolB
Step5: then the calibration factor is VolA/VolB.
Step6: All input readings, multiplied by the calibration factor, are the calibrated data.

	After the simple calibration, the input channel will easy to reach 0.5% accuracy.

	We strong recommend use external reference source to replace default reference.

analogReference (EXTERNAL) ;

 (
Virtual USB
)

	UNO Pro have one virtual USB connector, it can be working as an USB HID device , such as keyboard / mice .
	
For virtual USB , the D2 will working as USB D+ and D4 will working as USB D- , during USB low speed device specification , after power up , the D- will be pull up by a 1.5K resistor.
[image:]
When virtual USB attached to the host , the pull up resistor “R148 1.5K” will auto apply to D4/VUSB_DM pin . if you do not use virtual USB function , the R148 will not connected to 3.3V , D2 and D4 can be used as the original function.

	In order to usd virtual USB function , the SYS_PWR must switch to 3V3 , since USB data level is 3.3V.

 (
Code T
emplate
)

Since the UNO Pro have a lot of additional resource than the standard UNO , so this template will help user to fast start coding.
[image:]
/* ====================MassduinoUnoPro_Code_Template=========================
 Version: 1.0
 Release: 22 May.2018
 www.inhaos.com
 ===*/
#include <WDT.h>

#define pin_SCK_LED 13

#define pin_BTN1 29
#define pin_BTN2 30
#define pin_BTN3 32
#define pin_LED1 31
#define pin_LED2 38
#define pin_LED3 39

#define pin_PWM_DAC_CH0 33
#define pin_PWM_DAC_CH1 34
#define pin_PWM_DAC_CH2 36
#define pin_PWM_DAC_CH3 37

#define pin_HV_AIN_CH0 A6
#define pin_HV_AIN_CH1 A7
#define pin_HV_AIN_CH2 A8
#define pin_HV_AIN_CH3 A9
#define pin_HV_AIN_CH4 A11

#define pin_AREF_SOURCE 35
#define fun_SetARF_4096 { digitalWrite (35 , HIGH) ; }
#define fun_SetARF_2048 { digitalWrite (35 , LOW) ; }

void setup() {
 sysClock (EXT_OSC); // switch system clock source to 16MHz ext osc
 pinMode (pin_SCK_LED, OUTPUT);
 pinMode (pin_BTN1 , INPUT_PULLUP) ;
 pinMode (pin_BTN2 , INPUT_PULLUP) ;
 pinMode (pin_BTN3 , INPUT_PULLUP) ;
 pinMode (pin_LED1 , OUTPUT) ;
 pinMode (pin_LED2 , OUTPUT) ;
 pinMode (pin_LED3 , OUTPUT) ;
 pinMode (pin_AREF_SOURCE , OUTPUT) ;

 // initial analog refernce source
 analogReference (EXTERNAL) ; //switch analog reference source to AVREF
 fun_SetARF_4096 ;

 // enabel watchdog
 wdt_enable(WTO_256MS); // enable the watchdog , period 256mS
}

void loop() {
 wdt_reset(); // remember to reset the watchdog in main loop if you enabel the watchdog.
 // wdt_disable(); // disable the watchdog if you do not want it work anymore

 digitalToggle (pin_SCK_LED) ;

 digitalWrite (pin_LED1 , !digitalRead (pin_BTN1)) ;
 digitalWrite (pin_LED2 , !digitalRead (pin_BTN2)) ;
 digitalWrite (pin_LED3 , !digitalRead (pin_BTN3)) ;
}

 (
INHAOS China office
：
:
No.1
XinWei
 First Alley,
GaoTianFang
,
DongCheng
 District,
DongGuan
 City,
GuangDong
 523112 China
E-mail
：
Support@inhaos.com
)
www.inhaos.com
image2.png

image3.emf

image4.png

image5.emf

image6.emf

image7.png

image1.png

image8.png

