

Impedance in a Flex Application: What Happens to the Signal?

Happy Holden Chief Technical Officer Foxconn Photo not available

Happy Holden Chief Technical Officer Foxconn

About the Author

Happy Holden is the Chief Technical Officer and VP for Foxconn-Hon Hai's Mobile Interconnect Products Business Group headquartered in DaYuan, Taiwan. This is the world's largest printed circuit manufacturer, with over 10 new facilities operating in Asia. Prior to joining Foxconn, he was the Senior PCB Technologist for Mentor Graphics System Design Division, the Advanced Technology Manager at Westwood Associates, and Merix Corporations. He retired from Hewlett-Packard after 28 years. Mr. Holden formally managed Hewlett-Packard's application organizations in Taiwan and Hong Kong. His prior assignments with HP had been as director of PCB R&D and PCB Engineering Mgr. He holds degrees in **Chemical Engineering and Computer** Science. He is a member of the IPC, TPCA, SMTA, IMAPS and the IEEE.

Flexible Printed Circuit Board Impedance For Flex: Challenges For Dynamic Flex

1

CAD/CAE/CAM

FOXCONN®

PCI-Express Tx + Rx & Reference CLK

OUTLINE

CONAD/CAE/CAM

FOXCONN®

Impedance Requirements

Conventional Stripline, Mesh and Coplanar Structures

- Microstrips (SE & Diff)
- Coated & Embedded (SE & Diff)
- Mesh Ground
- Coplanar
- Dynamic Flex Hinges
- Novel Structures
 - Mesh Ground
 - Coplanar w/o Ground
 - Broadside Coupled w/o Ground

High-Speed Flex Transmission Lines

CONAD/CAE/CAM

FOXCONN®

Signal Interfaces

- ▶ 1394 (110 Ohm)
- PCI-Express Gen1 (100 Ohm)
- ▶ USB2.0 (90 Ohm)
- Video (90 Ohm)
- PCI-Express Gen2 (85 Ohm)
- Memory (75 Ohm)

Conventional Stripline

Stripline Transmission Lines

Design Consideration

General

CAE/CAM

 Propagation velocity dependant on dielectric constant of laminate

FOXCONN®

 Signal has two effective return paths

Dual Stripline

- •Parallel circuits traces between layers can result in excessive croasstalk
- Orthagonal crossings can result in:
 - •Coupling in sensitive circuits (analog)
 - Reduced impedance
 - Increased propagation delay

Zo=80*ln[1.9*(2h1+t)/(0.8w+t)]*(1-B/(4(h1+h2+t)))/Er^0.5

Field Distribution: Microstrip

conAD/CAE/CAM

Microstrip: Surface trace 0.005" wide, 0.002" thick

46.2 Ohms

Embedded Microstrip (Soldermask): Surfacce trace 0.005" wide, 0.002" thick

FOXCONN®

Circuit construction: FR-4. er=4.3

Field Distribution: Stripline

conAD/CAE/CAM

Stripline: 0.005" trace 1/2 oz copper

Asymmetric Stripline: 0.005" trace 1/2 oz copper

FOXCONN®

Circuit construction: FR-4, er=4.3 Foxconn Proprietary

FOXCONN®

Surface MicroStrip With Ground

merce

CAD/CAE/CAM

FOXCONN®

Coated MicroStrip With Ground

merce

44-44-43-42-41-40-

107

108

Frequency - Hz

10º

1010

CONAD/CAE/CAM

Differential Lines

FOXCONN®

Edge Coupled Stripline

Broadside Coupled Stripline

General

- •Excellent common mode rejection.
- •Matched length required to maintain low common mode currents.
- Lower crosstalk and EMI

CAE/CAM

Edge Coupled

- •Geometry and spacing defined by artwork
- •Can achieve high differential impedance
- Impedance drop as "S" is reduced
- Impedance approaches 2x the single ended impedance as "S" is increased
- •Different routing through fine pitch holes

Broadside Coupled

- Geometry affected by layer registration
- •Construct differential pairs on "core" layers
- •Can achieve very low differential impedance
- Easy to route while maintaining propagation skew

FOXCONN®

Edge-coupled Differential Lines (Coated Microstrip)

Impedance (onms)

	t	Zo	Zodd	Zeven
Microstrip	0.0017"	72.9	61.0	83.8
Coated Microstrip	0.0017"	67.0	54.6	78.5
CM-Over Plated	0.0027"	63.1	49.5	75.5

Foxconn Proprietary

Example

CAE/CAM

Where: Dielectric (εr) Line width (w) Plane distance (h) SM thickness (h1) Cu thickness (t) Cu plating Spacing (s)

= 4.3, 3.6 mask

- = 0.005"
- = 0.0065"
- = 0.0005"
- = 0.0007" +
- 0.001" to 0.002"
- = 0.008"

Modal Impedances

CAE/CAM

Single ended (Zo)

Virtual ground

Odd mode

Foxconn Proprietary

FOXCONN®

Even Mode

Odd Mode

- •Differential impedance is twice the odd mode impedance
- •Odd Mode os not the same as Differential Mode
- •Only differential signals work on the difference between values
- •Differential lines set up a virtual ground at the axes of symmetry between the two signal lines

FOXCONN®

Differential Coated MicroStrip

merce

CONAR/CAE/CAM

Differential Coated Stripline With Ground

merce

108

Frequency - Hz

109

1010

Foxconn Proprietary

40-39-38-

107

Mesh Ground

Differential Embedded MicroStrip w/Mesh (40%) GND

merce

Differential Embedded MicroStrip w/Mesh (70%) GND

merce

Actual Flex Material Stackup

CORAD/CAE/CAM

FOXCONN®

Need 5 materials and different angles on the MESH

Coplanar Structures

Coplanar Transmission Lines

CAE/CAM

Design Consideration

FOXCONN®

- Conductor thickness is a function of copper plating (Cu foil + Cu plating)
- •S1 & S2 critical for impedance control
- •Mixed dielectric: Laminate + Air
- Higher propagation velocity than stripline using equivalent laminates
- •Solder Mask lowers the effective dielectric constant

Field Distribution: Coplanar

CONAR/CAE/CAM

Coplanar Stripline: Surface Trace 0.009" trace 0.002" thick

FOXCONN®

Embedded Coplanar Stripline With-Out Ground

e commerce

Differential Embedded Coplanar Stripline With Ground

merce

CONTRAC/CAE/CAM

FOXCONN®

2

Diff. Embedded Coplanar Waveguide With-Out Ground

e-commerce

Diff. Broadside Coupled

Zo= 63.0 Zodd= 50.1 Zeven= 75.6

CONAD/CAE/CAM

FOXCONN®

Broadside Coupled Lines

CAE/CAM

Design Consideration

FOXCONN®

- •Signals opposite the same core provide better impedance control.
- •Signal to plane distance control is less critical than signal signal.

Broadside Example

=
=
0.031"
0.00115"
0.00137"
0 to 0.008"

Broadside Differential Stripline With Ground

e-commerce

Foxconn Proprietary

30

Broadside Differential Stripline With-Out Ground

e-commerce

Dynamic Bend for Different Stackup

CONAD/CAE/CAM

FOXCONN®

Hinge Type

AE/CAM

FOXCONN®

Hinge Type Structure

Hinge Type	Shell	Revolve	Universal	Slide
Diagram				
Copper Thickness	RA copper ¹ / ₂ oz	RA copper ½ oz	RA copper ½ oz	HTE copper 1/3 oz
PI	1mil or ½ mil	1mil or ½ mil	1mil or ½ mil	0.7mil,0.8mil or ½ mil
Structure suggestion	 1.Single side flex 2.Double sided flex with one side trace 3.Multi-layer with air gap 	 1.Single side flex 2.Double sided flex with one side trace 	 1.Single side flex 2.Double sided flex with one side trace 	 1.Single side flex is preferred 2.Double sided flex with one side trace 3.Due to very tight space, air gap is not preferred.
Test Sample Description

FOXCONN®

FOXCONN®

Static Bending Radius

Stack	Thickness	Bending angle	Bending radius (Mandrel)	Remark
1-Layer	0.11	180	0.6	
2-Layer	0.165	180	0.6	Mesh ground copper is much better than solid ground copper
3-Layer	0.2	180	0.6	Layer transition is much better for folding
4-Layer	0.29	180	1.25	Layer transition is much better for folding
5-Layer	-	Not recommended	-	Layer transition is much better for folding

Key message

. The bending radius is minimum on the table.

Remove Partial Layer (Layer Transition)

CAD/CAE/CAM

FOXCONN®

For multi-layer flex, partial layers could be removed to increase the flexibility.

Air gap is another way to increase the flexibility. Impedance at this

region will vary dramatically. However, the interval is very short.

Novel Flex IMP Structures

Dynamic Flex Transmission Lines

Mesh GND Differential Microstrip

CONAD/CAE/CAM

FOXCONN®

Coplanar Differential Microstrip

Broadside-Coupled Twisted Diff Pair

Mesh Ground Diff Microstrip

CONTRAC/CAE/CAM

Co-planar Transmission Line

CONAD/CAE/CAM

FOXCONN®

Foxconn Proprietary

1 inch

FOXCONN®

Fe-commerce sure

connerticae/cam

Embedded Coplanar Differential Stripline With-Ground (moved)

CONAD/CAE/CAM

No Polar Model yet

FOXCONN®

Copper Thickness 介電常数 Name Material Weight (oz) (mil) AD 1.0CVL 3.2 PI 1.0 0.3 **Cu Plating** E-Cu 0.5 0.7 Cu 0.5 \mathbf{AD} CCL PI 1.03.2 AD 0.5 **0.**7 Cu 0.5 **Cu Plating** E-Cu 0.3 PI 1.0 CVL 3.2 AD 1.0 **Total Thickness** 8.0

CONAD/CAE/CAM

FOXCONN®

Application to TOP END PCs

D/CAE/CAM

FOXCONN®

Foxconn

Application to TOP END PCs

CONAR/CAE/CAN

Performance Validation for TOP END PCs

CONAD/CAE/CAM

十三、基於共平面傳輸線差動訊號軟性基板之 PCI-Express 訊號

Patented New Design Scheme — Broadside Coupling Differential Pair

CONAD/CAE/CAM

- In order to avoid too close of the distance between the upper signal layer and the lower ground plane which leads to lower trace impedance, the design which claims removing the ground plane is proposed. Besides, P/N signal lines are routed on the upper and lower plane respectively.
- Change the offset distance d of the P/N signal lines to match the requirement of the target differential impedance.

Figure. New Design Scheme : Change the offset distance (d) of the P/N signal lines on different layers to match the requirement of the target differential impedance.

Table. The relationship of offset distance d and Zdiff.

New Design Scheme

-Twisted Broadside Coupling Differential Pair

/CAE/CAM

- Based on the proposed broadside-coupled differential signal design, an extended design scheme called twisted differential pair signals is proposed.
- Characteristic: P/N signals continually exchange the routing layers at a specific distance, which mimics the twisted-cable-like routing.

New Design Scheme —Twisted Broadside Coupling Differential Pair

CAD/CAE/CAM

FOXCONN®

Simulation Results — Common Mode 3-Meter Far-Field Radiation

/CAE/CAM

Comparison of Different Design Schemes to Fix Low Impedances in FPC

CAD/CAE/CAM

FOXCONN®

	Conventional Mesh Ground	Twisted Broadside Coupling Diff. Pair
EMI Suppression	Acceptable	Good
Measured TDR Impedance	Bad	Good
Common-mode Noise Suppression	Bad	Good
Routing Feasibility	Acceptable	Good

* The proposed twisted broadside coupling differential pair, which combines the concept of the previously-published broadside coupling differential scheme, not only can precisely control Transmission line impedance but also can further suppress EMI effect.

* This new proposal only adjusts the routing manner without extra cost, and is therefore considered an cost-effective and novel solution.

Broadside Differential Stripline With-Out Ground (moved)

merce

connectore FOXCONN®

Conclusions

- There is a number of novel ways to implement high-speed transmission lines, either singleended or differential for dynamic flex applications.
- The highest performance is achieved when the Reference GND plane is moved, removed or depopulated (Mesh).
- All of these structures are being employed for the newer high-speed bus structures in computers.

THANK-YOU FOR YOUR TIME TODAY

Impedance Design Suggestion

connecticaE/CAM

FOXCONN®

How to Improve Impedance Tolerance

Dielectric Constant	How accurate?
Dielectric Thickness	How accurate of the thickness? a. Adhesiveless vs. adhesive base
Trace width	 How accurate of trace? a. Dry film selection b. Exposure machine parameter optimization c. Etching parameter optimization d. Width uniformity
Copper thickness	 a. Incoming material inspection? b. Process control?(+/-100u") c. Button plating?
Etching factor	 a. How to increase etching factor? b. Semi-additive process implement?
Cross mesh design	a. How to route or design trace? The angle between the signal trace and mesh.

CORAD/CAE/CAM

FOXCONN®

Impedance Design Suggestion(I)-Equivalent Space

Key message:

. For differential pair, the two signal traces width would be the same.

. All spaces have to be equal. Otherwise, it will cause the impedance of signal trace without complete ground guide unstable.

Impedance Design Suggestion(II)-Missed Ground Via

<u>Key message:</u>

. For ground guides, it needs vias to connect the ground plane to form a better performance.

Impedance Design Suggestion(III)-Across Two Ground Reference

Key message:

. For ground plane, the signal passes through mono ground plane but mixed grounds

Impedance Design Suggestion(IV)-Missing Ground Plane

Key message:

. The signal has to be located over the ground plane. Otherwise, it will cause impedance unstable.

Impedance Design Suggestion (VI)-Improper Mesh Distribution

Key message:

. There are 6 transmission lines with same width (single end) travelling across the mesh ground. But impedance of group 1 (1,3,5) will differ from that of group 2(2,4,6). Because group 2 will behave like solid ground.

Impedance Design Suggestion(V)-Adding Extra Ground Plane

Key messages:

. Impedance varies with different types of ground due to capacitance variations.

. To achieve impedance stability, it is imperative to keep the ground pattern/angle uniform across various regions of the flex.

Impedance Design Suggestion(VI)-Uniform Ground Distribution

Key message:

.Under normal condition, the ground copper distribution varies in the trace axial direction.

.Under the improper design, the ground copper distribution stays constant along axial direction. It will behave like solid copper.

Cable Pe-commercesure connectore FOXCONO®

Impedance Variation(Ground Mesh)

Key message:

- . Impedance varies with different types of ground hatch density.
- . For impedance stabilization, the ground pattern has to be uniform. Otherwise, it is very difficult to control well.

Ground Hatch Cover Rate Definition

Ground Hatch Cover Rate: (75%)

Key message:

.If the cover rate is fixed by 75%, the impedance still varies with the hatch trace width.For thicker trace, the pitch has to be adjusted to keep the same cover rate.

.Through the diagram, the impedance difference is minor.

FOXCONN®

Different Ground Hatch Cover Rate: (21%~75%)

CONAD/CAE/CAM

Rate	3.05	3.25	3.45	3.65
21.00%	72.23	69.43	67.55	67.49
31.00%	68.35	66.57	65.96	62.64
40.00%	67.055	65.99	64.52	61.25
50.00%	63.89	58.7	55.01	53.85
62.00%	53.79	53.57	53.56	51.495
75.00%	48.8	47.33	45.91	45.89

Key message:

.Through the diagram, the higher ground cover rate, the lower impedance.

Ground Copper Reduction v.s. Impedance Increment

CAE/CAM

FOXCONN®

Ground Copper reduction rate %

Key message:

.The more ground copper reduction, the more impedance increment.

Conclusions:

There is no significant difference of impedance dropping between SF PC-1000 and SF PC-5000 even though different thickness

conAD/CAE/CAM

- .Silver ink affects impedance variation more than shield film.(average 5 ohm dropping)
- The shield material on the signal side affects impedance variation than the one on the ground side.
- . There is no significant difference between single side shielding and double sided shielding.
- . Non-conductive material like silk screen does not cause much variation.

Thank You