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Session 1: Start Here 

So, you want to program the Atari 2600 and don't know where to 

start?  

Welcome to the first installment of "000001010 00101000 00000000 

1100101" - which at first glance is a rather odd name for a 

programming tutorial - but on closer examination is appropriate, as it 

is closely involved with what it's like to program the Atari 2600. The 

string of 0's and 1's is actually a binary representation of "2600 101".  

I'm Andrew Davie, and I've been developing games for various 

computers and consoles since the late 1970s. Really! What I plan to 

do with this tutorial is introduce you to the arcane world of 

programming the '2600, and slowly build up your skill base so that 

you can start to develop your own games. We'll take this in slow easy 

stages, and I encourage you to ask questions - this will help me pace 

the tutorial and introduce subjects of interest.  

Developing for the Atari 2600 is much simpler today than it was 

when the machine was a force in the marketplace (i.e.: in the 1980s). 

We have a helpful online community of dedicated programmers, 

readily available documentation, tools, and sample code - and online 

forums where we can pose questions and get almost instant feedback 

and answers. So don't be scared - with a bit of effort, anyone can do 

this!  

It is the online community which makes developing for the machine 

'fun' - though I use that in the broadest sense of the word. My 'fun' 

may be another man's 'torture'. For, programming this machine is 

tricky, at best - and not for the faint of heart. But the rewards are great 

- making this simple hardware do anything at all is quite an 

achievement - and making it do something new and interesting gives 

one a warm fuzzy feeling inside.  

So, let's get right into it... here's your first installment of "2600 101". 

We're going to assume that you know how to program *something*, 

but not much more than that. We'll walk through binary arithmetic, 

hexadecimal, machine architecture, assemblers, graphics, and 

whatever else gets in our way. And we'll probably divert on tangential 
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issues here and there. But hopefully we'll come out of it with a greater 

understanding of this little machine, and appreciation for the work of 

those brilliant programmers who have developed the classics for this 

system.  

The Basics 

A game on the '2600 comes in the form of a cartridge (or "tape") 

which is plugged into the console itself. This cartridge consists of a 

circuit board containing a ROM (or EPROM) which is basically just a 

silicon chip containing a program and graphics for displaying the 

game on your TV set. This program (and graphics) are really just a lot 

of numbers stored on the ROM which are interpreted by the CPU (the 

processor) inside your '2600 just like a program on any other 

computer. What makes the '2600 special is... nothing. It's a computer, 

just like any other!  

A computer typically consists of a CPU, memory, and some 

input/output (I/O) systems. The '2600 has a CPU (a 6507), memory 

(RAM for the program's calculations, ROM to hold the program and 

graphics), and I/O systems (joystick and paddles for input, and output 

to your TV).  

The CPU  

The CPU of the '2600 is a variant of a processor used in computers 

such as the Apple II, the Nintendo NES, the Super Nintendo, and 

Atari home computers (and others). It's used in all these machines 

because it is cheap to manufacture, it's simple to program, but also 

effective - the famous "6502". In this course we will learn how to 

program the 6502 microprocessor... but don't panic, we'll take that in 

easy stages (and besides, it's not as hard as it looks).  

The '2600 actually uses a 6507 microprocessor - but this is really just 

a 6502 dressed in sheep's clothing. The 6507 is able to address less 

memory than the 6502 but is in all other respects the same. I refer to 

the '2600 CPU as a 6502 purely as a matter of convenience.  
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Memory  

Memory is severely restricted on the '2600. When the machine was 

developed, memory (both ROM and RAM) were very expensive, so 

we don't have much of either. In fact, there's only 128 BYTES of 

RAM (and we can't even use all of that!) - and typically (depending 

on the capabilities of the cartridge we're going to be using for our 

final game) only about 4K of ROM. So, then, here's our first 

introduction to the 'limitations' of the machine. We may all have great 

ideas for '2600 games, but we must keep in mind the limited amount 

of RAM and ROM!  

Input/Output  

Input to the '2600 is through interaction by the users with joystick and 

paddle controllers, and various switches and buttons on the console 

itself. There are also additional control devices such as keypads - but 

we won't delve much into those. Output is invariably through a 

television picture (with sound) - i.e.: the game that we see on our TV.  

So, there's not really much to it so far - we have a microprocessor 

running a program from ROM, using RAM, as required, for the 

storage of data - and the output of our program being displayed on a 

TV set. What could be simpler?  

The Development Process  

Developing a game for the '2600 is an iterative process involving 

editing source code, assembling the code, and testing the resulting 

binary (usually with an emulator). Our first step is to gather together 

the tools necessary to perform these tasks.  

'Source code' is simply one or more text files (created by the 

programmer and/or tools) containing a list of instructions (and 

'encoded' graphics) which make up a game. These data are converted 

by the assembler into a binary which is the actual data placed on a 

ROM in a cartridge, and is run by the '2600 itself.  

To edit your source code, you need a text-editor -- and here the choice 

is entirely up to you. I use Microsoft Developer Studio myself, as I 
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like its features - but any text editor is fine. Packages integrating the 

development process (edit/assemble/test) into your text editor are 

available, and this integration makes the process much quicker and 

easier (for example, Developer-Studio integration allows a double-

click on an error line reported by the assembler, and the editor will 

position you on the very line in the source code causing the error).  

To convert your source code into a binary form, we use an 

'assembler'. An assembler is a program which converts assembly 

language into binary format (and in particular, since the '2600 uses a 

6502-variant processor, we need an assembler that knows how to 

convert 6502 assembly code into binary). Pretty much all '2600 

development these days is done using the excellent cross-platform 

(i.e.: versions are available for multiple machines such as Mac, Linux, 

Windows, etc.) assembler 'DASM' which was written by Matt Dillon 

in about 1988.  

DASM is now supported by yours-truly, and is available at 

"http://www.atari2600.org/dasm" - it would be a good idea now to go 

there and get a copy of DASM, and the associated support-files for 

'2600 development. In this course, we will be using DASM 

exclusively. We'll learn how to setup and use DASM shortly.  

Development of a game in the '80s consisted of creating a binary 

image (i.e.: write source code, assemble into binary) and then 

physically 'burning' the binary onto an EPROM, putting that EPROM 

onto a cartridge and plugging it into a '2600. This was an inherently 

slow process (trust me, I did this for NES development!) and it 

sometimes took 15 minutes just to see a change!  

Nowadays, we are able to see changes to code almost immediately 

because of the availability of good emulators. An emulator is a 

program which pretends to be another machine/program. For 

example, a '2600 emulator is able to 'run' binary ROM images and 

display the results just as if you'd actually plugged a cartridge 

containing a ROM with that binary into an actual '2600 console. 

Today's '2600 emulators are very good indeed.  
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So, instead of actually burning a ROM, we're just going to pretend 

we've burned one - and look at the results by running this pretend-

ROM on an emulator. And if there's a problem, we go back and edit 

our source code, assemble it to a binary, and run the binary on the 

emulator again. That's our iterative development process in action.  

There are quite a few '2600 emulators available, but two of note are 

• Z26 - available at http://www.whimsey.com/z26/ 

• Stella - available at http://sourceforge.net/projects/stella/ 

 

Stella is your best choice if you're programming on non-Windows 

platform. I use Z26 for Windows development, as it is quite fast and 

appears to be very accurate. Either of these emulators is fine, and it's 

handy to be able to cross-check results on either.  

We'll learn how to use these emulators later - but right now let's 

continue with the gathering of things we need...  

Now that we have an editor, an assembler, and an emulator - the next 

important things are documentation and sources for information. 

There are many places on the 'net where you can find information for 

programming '2600, but perhaps the most important are 

• the Stella list - at http://www.biglist.com/lists/stella/ 

• AtariAge - at http://www.atariage.com/ 

 

…and finally, documentation. A copy of the technical specifications 

of the '2600 hardware (the Stella Programmer's Guide) is essential...  

Stella Programmer's Guide  

• text version at http://stella.sourceforge.net/download/stella.txt  

• PDF version at http://www.atarihq.com/danb/files/stella.pdf  

• printed version at http://tinyurl.com/stella-programmers-guide 

 



10 

OK, that's all we need. Here's a summary of what you should have...  

• Text editor of your choice 

• DASM assembler and '2600 support files 

• Emulator (Z26 or Stella)  

• Stella Programmer's Guide  

• Bookmarks to AtariAge and the #Stella mailing list 

 

That's it for this session. Have a read of the Stella Programmer's 

Guide (don't worry about understanding it yet), and try installing your 

emulator (and play a few games for 'research' purposes). For the next 

session, make sure that your development environment is setup 

correctly, and we’ll start to discuss the principles of programming a 

'2600 game. 
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Session 2: Television Display Basics 

Hopefully you've been through the first part and have your editor, 

assembler, emulator and documentation ready to go. What we're 

going to look at now is a basic overview of how a television works, 

and why this is absolutely necessary pre-requisite knowledge for the 

'2600 programmer. We're not going to cover a lot of '2600 specific 

stuff this time, but this is most definitely stuff you NEED TO 

KNOW! 

Television has been around longer than you probably realize. Early 

mechanical television pictures were successfully broadcast in the '20s 

and '30s (yes, really! - see http://www.tvdawn.com/index.htm). The 

mechanical 'scanning' technology utilized in these early television 

systems are no doubt the predecessors to the 'scanning' employed in 

our modern televisions.  

A television doesn't display a continuous moving image. In fact, 

television displays static (non-moving) images in rapid succession - 

changing between images so quickly that the human eye perceives 

any movement as continuous. And even those static images aren't 

what they seem - they are really composed of lots of separate lines, 

each drawn one after the other by your TV, in rapid succession. So 

quick, in fact, that hundreds of them are drawn every image, and 

many images are drawn every second. In fact, the actual numbers are 

very important, so we'll have a look at those right now.  

The Atari 2600 console was released in many different countries 

around the world. Not all of these countries use the same television 

"system" - in fact there are three variations of TV systems (and there 

are three totally different variations of Atari 2600 hardware to support 

these systems). These systems are called NTSC, PAL, and SECAM. 

NTSC is used for the USA and Japan, PAL for many European 

countries, and Australia, and SECAM is used in France, some ex-

French colonies (e.g.: Vietnam), and Russia. SECAM is very similar 

to PAL (625/50Hz), but I won't spend much time talking about it, as 

Atari SECAM units are incredibly rare, and little if any development 

is done for that format anyway. Interestingly, the differences in 

requirements for displaying a valid TV image for these systems leads 
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to the incompatibility between cartridges made for NTSC, PAL and 

SECAM Atari units. We'll understand why, shortly!  

A television signal contains either 60 images per second (on NTSC 

systems) or 50 images per second (on PAL systems). This is closely 

tied to the frequency of mains AC power in the countries which use 

these systems - and this is probably for historical reasons. In any case, 

it's important to understand that there are differences. Furthermore, 

NTSC images are 525 scanlines deep, and PAL images are 625 

scanlines deep. From this, it follows that PAL images have more 

detail - but are displayed less frequently - or alternatively, NTSC 

images have less detail but are displayed more often. In practice, TV 

looks pretty much the same in both systems.  

But from the '2600 point of view, the difference in frequency (50Hz 

vs. 60Hz) and resolution (625 scanlines vs. 525 scanlines) is 

important - very important - because it is the PROGRAMMER who 

has to control the data going to the TV. It is not done by the '2600 

(!!); the '2600 only generates a signal for a single scanline. This is 

completely at odds with how all other consoles work, and what makes 

programming the '2600 so much 'fun'. Not only does the programmer 

have to worry about game mechanics - but she also has to worry about 

what the TV is doing (i.e.: what scanline it is drawing, and when it 

needs to start a new image, etc., etc.).  

Let's have a look at how a single image is drawn by a TV...  

A television is a pretty amazing piece of 1930's technology. It forms 

the images we see by shining an electron beam (or 3, for color TVs) 

onto a phosphor coating on the front of the picture tube. When the 

beam strikes the phosphor, the phosphor starts to glow - and that glow 

slowly decreases in brightness until the phosphor is next hit by the 

electron beam. The TV 'sweeps' the electron beam across the screen to 

form 'scanlines' - at the same time as it sweeps, adjusting the intensity 

of the beam, so the phosphor it strikes glow brightly or dimly. When 

the beam gets to the end of a scanline, it is turned off, and the 

deflection circuitry (which controls the beam) is adjusted so that the 

beam will next start a little bit down, and at the start (far left-hand-

side) of the next scanline. And it will then turn on, and sweep left-to-

right to draw the next scanline. When the last scanline is drawn, the 
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electron beam is turned off, and the deflection circuitry is reset so that 

the beam's position will next be at the top left of the TV screen - ready 

to draw the first scanline of the next frame.  

This 'turning-off' and repositioning process - at the end of a scanline, 

and at the end of an image - is not instantaneous - it takes a certain 

amount of time for the electronics to do this repositioning, and we'll 

understand this when we come to talk about the horizontal blank 

(when the beam is resetting to the left of the next scanline) and the 

vertical blank (when the beam is resetting to the top left scanline on 

the screen). I'll leave that for a later session, but when we do come to 

it, you'll understand what the TV is doing at these points.  

A fairly complex - but nonetheless simple-to-understand analog signal 

controls the sweeping of the electron beam across the face of the TV. 

First it tells the TV to do the repositioning to the start of the top left 

line of the screen, then it includes color and intensity information for 

the electron beam as it sweeps across that line, then it tells the TV to 

reposition to the start of the next scanline, etc., right down to the last 

scanline on the screen. Then it starts again with another reposition to 

the start... That's pretty much all we need to know about how that 

works.  

The Atari 2600 sends the TV the "color and intensity information for 

the electron beam as it sweeps across that line", and a signal for the 

start of each new line. The '2600 programmer needs to feed the TV 

the signal to start the image frame.  

A little side-track, here. Although I stated that the vertical resolution 

of a TV image is 625 lines (PAL) and 525 lines (NTSC), television 

employs another 'trick' called interlacing. Interlacing involves 

building up an image out of two separate 'frames' - each frame being 

either the odd scanlines, or the even scanlines of that image. Each 

frame is displayed every 1/30th of a second (i.e.: at 30HZ) for NTSC, 

or every 1/25th of a second (25Hz) for PAL. By offsetting the vertical 

position of the start of the first scanline by half a scanline, and due to 

the persistence of the phosphor coating on the TV, the eye/brain 

combines these frames displaying alternate lines into a single image 

of greater vertical resolution than each frame. It's tricky and messy, 
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but a glorious 'hack' solution to the problem of lack of bandwidth in a 

TV signal.  

The upshot of this is that a single FRAME of a TV image is actually 

only half of the vertical resolution of the image. Thus, a NTSC frame 

is 525/2 = 262.5 lines deep, and a PAL frame is 625/2 = 312.5 lines 

deep. The extra .5 of a line is used to indicate to the TV if a frame is 

the first (even lines) or second (odd lines) of an image. An aside: 

about a year ago, the #stella community discussed this very aspect of 

TV images, and if it would be possible for the Atari to exploit this to 

generate a fully interlaced TV frame - and, in fact, it is possible. So 

some 25 years after the machine was first released, some clever 

programmers discovered how to double the resolution of the graphics.  

Back to basics, though. We just worked out that a single frame on a 

TV is 262.5 (NTSC) and 312.5 (PAL) lines deep. And that that extra 

.5 scanline was used to tell the TV if the frame was odd or even. So 

the actual depth of a single frame is 262 (NTSC) and 312 (PAL) lines. 

Now, if TV's aren't told that a frame is odd, they don't offset the first 

scanline by half a scanline's depth - and so, scanlines on successive 

frames are exactly aligned. We have a non-interlaced image, 

displayed at 60Hz (NTSC) or 50Hz (PAL). And this is the 'standard' 

format of an Atari 2600 frame sent to a TV.  

In summary, an Atari 2600 frame consists of 262 scanlines (NTSC) or 

312 scanlines (PAL), sent at 60Hz (NTSC) or 50Hz (PAL) frequency. 

It is the job of the '2600 programmer to make sure that the correct 

number of scanlines are sent to the TV at the right time, with the right 

graphics data, and appropriate control signals to indicate the end of 

the frame are also included.  

One other aspect of the difference between TV standards - and a 

consequence of the incremental development of television technology 

(first we had black and white, then color was added - but our black 

and white TVs could still display a color TV signal - in black and 

white) - is that color information is encoded in different places in the 

signal for NTSC and PAL (and SECAM) systems. So, even though 

the programmer is fully-responsible for controlling the number of 

scanlines per frame, and the frequency at which frames are generated, 
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it is the Atari itself which encodes the color information into the TV 

signal.  

This is the fundamental reason why there are NTSC, PAL, and 

SECAM Atari systems - the encoding of the color information for the 

TV signal! We get some interesting combinations of Atari and games, 

for example...  

If we plug a NTSC cartridge into a PAL '2600, then we know that the 

NTSC game is generating frames which are 262 lines deep, at 60Hz. 

But a PAL TV expects frames 312 lines deep, at 50Hz. So the image 

is only 262/312 of the correct depth, and also images are arriving 

60/50 times faster than expected. If we were viewing on a NTSC TV, 

then the PAL console would be placing the color information for the 

TV signal in a completely different place than the TV is expecting - 

so we would see our game in black and white.  

There are several combinations you can play with - but the essence is 

that if you use a different '2600 variant than TV, you will only get 

black and white (e.g.: NTSC '2600 with PAL TV or PAL '2600 with 

NTSC TV) as the color information is not in at the correct frequency 

band of the signal. And if you plug in a different cartridge than TV 

(e.g.: NTSC cart with PAL TV or vice-versa) then what you see 

depends on the television's capability to synchronize with the signal 

being generated - as it is not only the incorrect frequency, but also the 

incorrect number of scanlines.  

All of this may sound complicated - but really all we need to do is 

create a 'kernel' (which is the name for your section of an Atari 2600 

program which generates the TV frame) which does the drawing 

correctly - and once that's working, we don't really need to worry too 

much about the TV - we can abstract that out and just think about 

what we want to draw.  

Well, I lie, but don't want to scare you off TOO early ;-) 

Next session, let's have a look how the processor interacts with 

hardware, I/O and memory. 
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Session 3: The TIA and 6502 

Let's spend this session having a look at how some of the hardware 

generates a scanline for the TV. Remember in session 2, we had a 

good look at how a TV works, and in particular how a TV frame is 

composed of 262 scanlines (NTSC) or 312 scanlines (PAL). It's the 

programmer's job to control how many scanlines are sent to the TV, 

but it is the '2600 which builds the actual signal comprising the color 

and intensity information for any scanline. This color and intensity 

information is derived from the internal 'state' of the TIA (Television 

Interface Adaptor) chip inside the '2600. The TIA is responsible for 

creating the signal for a single scanline for the TV.  

The TIA 'draws' the pixels on the screen 'on-the-fly'. Each pixel is one 

'clock' of the TIA's processing time, and there are exactly 228 color 

clocks of TIA time on each scanline. But a scanline consists of not 

only the time it takes to scan the electron beam across the picture 

tube, but also the time it takes for the beam to return to the start of the 

next line (the horizontal blank, or retrace). Of the 228 color clocks, 

160 are used to draw the pixels on the screen (giving us our maximum 

horizontal resolution of 160 pixels per line), and 68 are consumed 

during the retrace period.  

The 6502 clock is derived from the TIA clock through a divide-by-

three. That is, for every single clock of 6502 time, three clocks of TIA 

time have passed. Therefore, there are *exactly* 228/3 = 76 cycles of 

6502 time per scanline. The 6502 and TIA perform a complex 'in-step' 

dance - one cycle of 6502, three cycles of TIA. A side-note: 76 cycles 

per line x 262 lines per frame x 60 frames per second = the number of 

6502 cycles per second for NTSC (= 1.19MHz, roughly).  

So, as our 6502 program is executing its instructions, the TIA is also 

sending data for each scanline. Every cycle of 6502 time we know 

that the TIA has sent 3 color clocks of information to the TV. If the 

TIA was in the first 68 color clocks of the scanline, then it was in the 

horizontal retrace period. If it was in color clock 68-227, then it was 

drawing pixels on the visible scanline. And so we go, the 6502 

program is doing its stuff and at the very same time the TIA doing its 

stuff. The magic happens when you start changing the 'state' of the 

TIA, because those changes are reflected immediately in the TIA 
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output to the TV! Since the 6502 is 'locked' to the TIA through their 

shared timing origin, it is possible for the programmer to know 

exactly where on a scanline the TIA is currently drawing (i.e.: what 

pixel). And knowing where the TIA 'is at' allows us to change what it 

is drawing at particular positions on the scanline. We don't have much 

scope for change, but we do have some. And it is this ability that 

master '2600 programmers use to achieve all those amazing effects.  

Naturally, to achieve this sort of precision timing, programmers have 

to know exactly how long the 6502 takes to do each instruction. For 

example, a load/store combination takes a minimum of 5 cycles of 

6502 time. How many onscreen pixels is that? Remember, 3 color 

clocks per 6502 cycle, so that's 3 x 5 = 15 pixels. Essentially, if one 

were using the quickest possible load/store combinations to change 

the color of, say, the background, then the absolute quickest this could 

be done would be every 15 pixels (i.e.: just on 11 times per scanline).  

Don't despair! It is not necessary for you to learn how to count 6502 

cycles at this stage. Those sort of tricks are for more advanced '2600 

programming - and the original design of the TIA hardware made this 

unnecessary. It's only when you need to push the hardware (TIA) 

beyond its original design, that you will come to appreciate the 

benefit inherent in the way that the 6502 and TIA are intricately tied 

together.  

Next session we'll have a closer look at the TIA and how it 

determines what color to use for each pixel of the scanline it is 

drawing. In particular, we'll start to look at background, playfield, 

sprite, missile and ball graphics. 



19 

Session 4: The TIA 

Last session we were introduced to the link between the 6502 and the 

TIA. Specifically, how every cycle of 6502 time corresponds to three 

color clocks of TIA time.  

 

The TIA determines the color of each pixel based on its current 'state', 

which contains information about the color, position, size and shape 

of objects such as background, playfield, sprites (2), missiles (2) and 

ball. As soon as the TIA completes a scanline (228 cycles, consisting 

of 160 color clocks of pixels, and 68 color clocks of horizontal blank), 

it begins drawing the next scanline. Unless there is some change to 

the TIA's internal 'state' during a scanline, then each scanline will be 

absolutely identical.  

 

Consequently, the absolute simplest way to 'draw' 262 lines for a 

NTSC frame is to just WAIT for 262 (lines) x 76 (cycles per line) 

6502 cycles. After that time, the TIA will have sent 262 identical lines 

to the TV. There are other things that we'd need to do to add 

appropriate control signals to the frame, so that the TV would 

correctly synch to the frame - but the essential point here is that we 

can leave the TIA alone and let it do its stuff. Without our 

intervention, once the TIA is started it will keep sending scanlines (all 

the same!) to the TV. And all we have to do to draw n scanlines is 

wait n x 76 cycles.  

 

It's time to have a little introduction to the 6502.  

 

The CPU of the '2600, the 6502, is an 8-bit processor. Basically this 

means that it is designed to work with numbers 8-binary-bits at a 

time. An 8-bit binary number has 8 0's or 1's in it, and can represent a 

decimal number from 0 to 255. Here's a quick low-down on binary...  

 

In our decimal system, each digit 'position' has an intrinsic value. The 

units position (far right) has a value of 1, the tens position has a value 

of 10, the hundreds position has a value of one hundred, the thousands 

position has a value of 1000, etc. This seems silly and obvious - but 

it's also the same as saying the units position has a value of 10^0 

(where ^ means to the power of), the tens position has a value of 



20 

10^1, the hundreds position has a value of 10^2, etc. In fact, it's clear 

to see that position number 'n' (counting right to left, from n=0 as the 

right-most digit) has a value of 10^n.  

 

That's true of ANY number system, where the 10 is replaced by the 

'base'. For example, hexadecimal is just like decimal, except instead 

of counting 10 digits (0 to 9) we count 16 digits (0 to 15, commonly 

written 0 1 2 3 4 5 6 7 8 9 A B C D E F - thus 'F' is actually a hex 

digit with decimal value 15 - which again, is 1 x 10^1 + 5 x 10^0 ). So 

in hexadecimal (or hex, for short), the digit positions are 16^n. There's 

no difference between hex, decimal, binary, etc., in terms of the 

interpretation of a number in that number system. Consider the binary 

number 01100101 - this is (reading right to left)... 1 x 2^0 + 0 x 2^1 + 

1 x 2^2 + 0 x 2^3 + 0 x 2^4 + 1x2^5 + 1x2^6 + 1x2^7. In decimal, the 

value is 101. So, %01100101 = 101 where the % represents a binary 

number. Hexadecimal numbers are prefixed with a $.We'll get used to 

using binary, decimal and hex interchangeably - after all they are just 

different ways of writing the same thing. When I'm talking about 

numbers in various bases, I'll include the appropriate prefix when not 

base-10.  

 

So now it should be easy to understand WHY an 8-bit binary number 

can represent decimal values from 0 to 255 - the largest binary 

number with 8 bits would be %11111111 - which is 1 x 2^7 + 1 x 2^6 

+ .... + 1 x 2^0.  

 

The 6502 is able to shift 8-bit numbers to and from various locations 

in memory (referred to as addresses) - each memory location is 

uniquely identified by a memory address, which is just like your 

house street address, or your post-box number. The processor is able 

to access memory locations and retrieve 8-bit values from, or store 8-

bit values to those locations.  

 

The processor itself has just three 'registers'. These are internal 

memory/storage locations. These three registers (named 'A', 'X', and 

'Y') are used for manipulating the 8-bit values retrieved from memory 

locations and for performing whatever calculations are necessary to 

make your program do its thing.  
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What can you do with just three registers? Not much... but a hell of a 

lot of not much adds up to something! Just like with the TV frame 

generation, a lot of work is left for the programmer. The 6502 cannot 

multiply or divide. It can only increment, decrement, add and 

subtract, and it can only work with 8-bit numbers! It can load data 

from one memory location, do one of those operations on it (if 

required) and store the data back to memory (possibly in another 

location). And out of that capability comes all the games we've ever 

seen on the '2600. Amazing, innit?  

 

At this stage it is probably a good idea for you to start looking for 

some books on 6502 programming - because that's the ONLY option 

when programming '2600. Due to the severe time, RAM and ROM 

constraints, every cycle is precious, every bit is sacred. Only the 

human mind is currently capable of writing programs as efficiently as 

required for '2600 development.  

 

That was a bit of a diversion - let's get back to the TIA and how the 

TIA and 6502 can be used together to draw exactly 262 lines on the 

TV. Our first task is simply to 'wait' for 76 cycles, times 262 lines.  

 

The simplest way to just 'wait' on the 6502 is just to execute a 'nop' 

instruction. 'nop' stands for no-operation, and it takes exactly two 

cycles to execute. So if we had 38 'nop's one after the other, the 6502 

would finish executing the last one exactly 76 cycles after it started 

the first. And assuming the first 'nop' started at the beginning of the 

scanline, then the TIA (which is doing its magic at the same time) 

would have just finished the last color clock of the scanline at the 

same time as the last nop finished. In other words, the very next 

scanline would then start as our 6502 was about to execute the 

instruction after the last nop, and the TIA was just about to start the 

horizontal retrace period (which, as we have learned, is 68 color 

clocks long).  

 

How do we tell the 6502 to execute a 'nop'? Simply typing nop on a 

line by itself (with at least one leading space) in the source code is all 

we have to do. The assembler will convert this mnemonic into the 

actual binary value of the nop instruction.  
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For example... 

; sample code 
 

NOP 

nop 

 

; end of sample code 
 

The above code shows two nop instructions - the assembler is case-

insensitive. Comments are preceded by semicolons, and occupy the 

rest of a line after the “;”. Opcodes (instructions) are mnemonics - 

typically 3 letters - and must not start at the beginning of a line! We 

can have only one opcode on each line. An assembler would convert 

the above code into a binary file containing two bytes - both $EA 

(remember, a $ prefix indicates a hexadecimal number) = 234 

decimal. When the 6502 retrieves an opcode of $EA, it simply pauses 

for 2 cycles, and then executes the next instruction. The code 

sequence above would pause the processor for 4 cycles (which is 12 

pixels of TIA time, right?!)  

 

But there are better ways to wait 76 cycles! After all, 38 'nop's would 

cost us 38 bytes of precious ROM - and if we had to do that 262 times 

(without looping), that would be 9432 bytes - more than double the 

space we have for our ENTIRE game!  

 

The TIA is so closely tied to the 6502 that it has the ability to stop and 

start the 6502 at will. Funnily enough, at the 6502's will! More 

correctly, the 6502 has the ability to tell the TIA to stop it (the 6502), 

and since the TIA automatically re-starts the 6502 at the beginning of 

every scanline, the very next thing the 6502 knows after telling the 

TIA to stop the CPU is that the TIA is at the beginning of the very 

next scanline. In fact, this is the way to synchronize the TIA and 6502 

if you're unsure where you're at - simply halt the CPU through the 

TIA, and next thing you know you're synchronized. It's like a time-

warp, or a frozen sleep - you're simply not aware of time passing - 

you say 'halt' and then continue on as if no halt has happened. It has, 

but the 6502 doesn't know it.  

 

This CPU-halt is achieved by writing any value to a TIA 'register' 

called WSYNC. Before we get into reading and writing values to and 
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from 'registers' and 'memory', and what that all means, we'll need to 

have a look at the memory architecture of the '2600 - and how the 

6502 interacts with memory, including RAM and ROM.  

 

We'll start to explore the memory map (architecture) and the 6502's 

interaction with memory and hardware, in our next installment.  
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Session 5: Memory Architecture 

Let's have a look at the memory architecture of the '2600, and how the 

6502 communicates with the TIA and other parts of the '2600 

hardware.  

The 6502 communicates with the TIA by writing, and sometimes 

reading values to/from TIA 'registers'. These registers are 'mapped' to 

certain fixed addresses in the 6502's addressing range. 

In its simplest form, the 6502 is able to address 65536 (2^16) bytes of 

memory, each with a unique address. Each 16-bit address ultimately 

directly controls the 'wires' on a 16-bit bus (=pathway) to memory, 

selecting the appropriate byte of memory to read/write. However, the 

'2600 CPU, the 6507, is only able to directly access 2^13 bytes (8192 

bytes) of memory. That is, only 13 of the 16 address lines are actually 

connected to physical memory.  

This is our first introduction to 'memory mapping' and mirroring. 

Given that the 6507 can only access addresses using the low 13 bits of 

an address, what happens if bit 14, 15, or 16 of an address is set? 

Where does the 6507 go to look for its data? In fact, bits 14, 15, and 

16 are totally ignored - only the low 13 bits are used to identify the 

address of the byte to read/write. Consider the valid addresses which 

can be formed with just 13 bits of data... 

from %0000000000000 to %1111111111111  

= from $0000 to $1FFF 

Note: $0000 is the same as 0 is the same as %000 is the same as 

%0000000000. 0 is 0. In the same vein, any number with leading 

zeros is the same as that number without zeros. I often see people 

writing $02 when they could just write $2, or better yet... 2. Your 

assembler doesn't care how numbers are written. It's the value of 

numbers that matter. So use the most readable form of numbers, 

where it makes sense. Remember, 0 is 0000 is %0 is $000  

So we've just written down the minimum and maximum addresses 

that can be formed with 13 bits. This gives us our memory 'footprint' - 
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the absolute extremes of memory which can be accessed by the 6507 

through a 13-bit address.  

This next idea is important, so make sure you understand! All 

communication between the CPU and hardware (be it ROM, RAM, 

I/O, the TIA, or other) is through reads and/or writes to memory 

locations. Read that again.  

The consequences of this are that some of that memory range 

(between $0 and $1FFF) must contain our RAM, some must contain 

our ROM (program), and some must presumably allow us to 

communicate with the TIA and whatever other 

communication/control systems the machine has. And that's exactly 

how it works.  

We have just 128 bytes of RAM on the '2600. That RAM 'lives' at 

addresses $80 - $FF. It's always there, so any write to location $80 

(128 decimal) will actually be to the first byte of RAM. Likewise, any 

read from those locations is actually reading from RAM.  

So we've just learned that the 6507 addresses memory using 13 bits to 

uniquely identify the memory location, and that some areas of that 

memory 'range' are devoted to different uses. The area from $80 to 

$FF is our 128 bytes of RAM!  

Don't worry too much about understanding this yet, but TIA registers 

are mapped in the memory addresses 0 to $7F, RIOT (a bit of '2600 

hardware we'll look at later) from $280 - $2FF (roughly), and our 

program is mapped into address range $1000 to $1FFF (a 4K size).  

Note: 1K = 1024 bytes = $400 bytes = %10000000000 bytes.  

In essence, then, to change the state of the TIA we just have to write 

values to TIA 'registers' which look to the 6507 just like any other 

memory location and which 'live' in addresses 0 to $7F. To the 6502 

(and I'll revert to that name now we've emphasized that the 6507 only 

has 13 address lines as opposed to the 6502's 16 and all other things 

are equal) a read or write of a TIA register is just the same as a read or 

write to any other area of memory. The difference is, the TIA is 

'watching' those locations, and when you write to that memory, you're 
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really changing the TIA 'registers' - and potentially changing what it 

draws on a scanline.  

So now we know how to communicate with the TIA, and where it 

'lives' in our memory footprint. And we know how to communicate 

with RAM, and where it 'lives'. Even our program in ROM is really 

just another area in our memory 'map' - the program that runs from a 

cartridge is accessed by the 6502 just by reading memory locations. In 

effect, the cartridge 'plugs-in' to the 6502 memory map. Let's have a 

quick look at what we know so far about memory...  

Address Range Function  

$0000 - $007F TIA registers  

$0080 - $00FF RAM  

$0200 - $02FF RIOT registers  

$1000 - $1FFF ROM  

 

We'll keep it simple for now - though you may be wondering what 

'lives' in the gaps in that map, between the bits we know about. The 

short answer is 'not much' - so let's not worry about those areas for 

now. Just remember that when we're accessing TIA registers, we're 

really accessing memory from 0 to $7F, and when we access RAM, 

we're accessing memory from $80 to $FF, etc.  

Now that we understand HOW the 6502 communicates with the TIA, 

one of our next steps will be to start to examine the registers of the 

TIA and what happens when you modify them. It won't be long now 

before we start to understand how it all works. Stay tuned.  
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Sessions 6 & 7: The TV and our Kernel 

It’s time to complete our understanding of what constitutes a TV 

frame - exactly what has to be sent to the TV to make it display a 

picture correctly.  

Here's an updated image of the TV timing diagram, taken from the 

Stella Programming Guide. Some of the numbers should make sense, 

now. 

 
Your understanding of the numbers across the top should be good, but 

just to briefly revisit what they mean:  

There are 228 TIA color clocks on each scanline. 160 of those are 

spent drawing pixels, and 68 of them are the horizontal retrace period 

for the TV's scanning of the electron beam back to the start of the next 

line. In the diagram we see the horizontal blank (retrace) at the left 

side, so our very first color clock for the TIA's first visible pixel on 
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the screen is cycle #68. We should understand this timing fairly well 

by now.  

What we're going to finalize this session is our understanding of the 

numbers down the right hand side - which represent the scanlines sent 

to the TV. The diagram shows a valid NTSC TV frame - and thus it 

consists of 262 scanlines. A PAL diagram would consist of 312 

scanlines - and the inner 'picture' area would increase from 192 lines 

to 242 lines.  

Let's go from the top. The first thing that the TV needs is a 'reset 

signal' to indicate to it that a new frame is starting. This is the 3-

scanline section at the very top of the frame. There are special ways to 

trigger the TIA to send this signal, but we're not going to have to 

worry too much about understanding that - just about every game 

does it exactly the same way - all we need to remember is that the first 

thing to send is that reset trigger (called VSYNCH).  

TVs are not all made the same. Some cut off more of the picture than 

others, some show wider pictures, some show taller pictures, etc. To 

'standardize' the picture, the diagram shows the recommended spread 

of valid picture lines, surrounded by blank (or 'overscan') lines. In this 

case, there are 192 lines of actual picture. We don't *HAVE* to stick 

to this - we could steal some of the lines from the vertical blank 

section, and some from the overscan section, and increase our picture 

section appropriately.  

As long as our total number of scanlines adds up to 262 for NTSC 

TVs (or 312 for PAL TVs), then the TV will be able to display the 

frame. But remember, the further we get 'out of specs' with this 

method, the less likely it is that ALL TVs will show the picture 

section in its entirety.  
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OK, let's march through the numbers on the right side of the diagram. 

• 3 Scanlines devoted to the vertical synchronization 

• 37 scanlines of vertical blank time 

• 192 (NTSC) or 242 (PAL) lines of actual picture 

• 30 scanlines of overscan   

 

Total: 262 scanlines (NTSC) or 312 scanlines (PAL), constituting a 

valid TV frame. You send the TV this, and it will be a rock-solid 

display.  

One interesting aside: if you send a PAL TV an odd number of 

scanlines, it will only display in black and white. I don't know the 

exact reason for this, but it must be to do with where/when the color 

signal is encoded in the TV image, and where the TV looks for it. So 

remember, always send an even number of scanlines to a PAL TV.  
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You can send frames with different numbers of scanlines. That is, 262 

and 312 are not totally immutable values. But if you do vary these 

numbers, it is highly likely that an increasing number of TVs - the 

further you deviate from these standards - will simply not be able to 

display your image. So, although you can... you shouldn't.  

Fortunately, emulators available to us today are able to show us the 

actual number of scanlines which are being generated on each frame. 

This must have been quite a challenging task for early '2600 

programmers - nowadays it’s quite easy to make sure we get it right.  

Well, now we have all the knowledge we need about the composition 

of a TV frame. Once we know how to make the TIA generate its reset 

signal at the top of the frame, and how to wait the correct amount of 

time to allow us to correctly generate the right number of scanlines 

for those other sections, we will be able to design our first 'kernel' - 

the bit that actually 'draws' the frame.  

When we have our kernel working, there's not much more to a '2600 

game other than moving sprites around, changing colors, etc. :-) 
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Session 8: Our First Kernel 

We're going to jump right in, now that we know what a kernel needs 

to do. Seen on the next pages is the source code for a working '2600 

kernel. It displays the image you see here. Not bad for just a few lines 

of code, right? Over the next few sessions we'll learn how to modify 

this code, and assemble it - and, of course, what all those strange 

words mean.  

 

For now, have a look at the structure of the code on the next pages 

and note how closely it relates to the structure of the TV frame 

diagram in the earlier sessions. Don't expect to understand everything 

- we'll walk through every line soon. For now, all you need to know is 

that the "sta WSYNC" is where the 6502 is telling the TIA to halt the 

6502 until the start of the next horizontal blank period (which is at the 

start of the next scanline, at TIA color clock 0). So each of those lines 

is where one complete scanline has been sent to the TV by the TIA. 

Have a close look at those lines, and see how there are 3, followed by 

37 (vertical blank period), followed by 192 (picture) followed by 30 

(overscan) - and how this exactly matches our TV frame diagram 

from session 6.  
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Here's the source-code...  

processor 6502 

include "vcs.h" 

include "macro.h" 

 

SEG 

ORG $F000 

 

Reset 

 

StartOfFrame 

 

; Start of vertical blank processing 
lda #0 

sta VBLANK 

 

lda #2 

sta VSYNC 

 

; 3 scanlines of VSYNCH signal... 
sta WSYNC 

sta WSYNC 

sta WSYNC 

 

lda #0 

sta VSYNC            

 

; 37 scanlines of vertical blank... 
sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 
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sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

 

; 192 scanlines of picture... 
 

ldx #0 

 

REPEAT 192; scanlines 
 

  inx 

  stx COLUBK 

  sta WSYNC 

 

REPEND 

 

lda #%01000010 

sta VBLANK   ; end of screen - enter blanking 
 

; 30 scanlines of overscan... 
sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 
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sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

sta WSYNC 

 

jmp StartOfFrame 

 

ORG $FFFA 

 

.word Reset          ; NMI 

.word Reset          ; RESET 

.word Reset          ; IRQ 
 

END 

 

Yes, this is a complete kernel. It's not that difficult! 

 

Note that I tried to make the code sample as understandable as 

possible. It is certainly not the most efficient code - for it uses too 

many bytes of ROM to achieve its effect. But we're learning, and 

what's important right now is understanding how things work.  

REPEAT/REPEND 

You have probably noticed the line “REPEAT 192” halfway down the 

kernel code. Before discussing this, let me first explain a little bit 

about the assembler - DASM. As you have probably gathered by now, 

we make our changes to the source code - which is meant to be a 

human-readable form of the program. We feed that source code to the 

assembler - and provided the assembler doesn't find any errors in the 

format of the code, it will convert the human-readable format into a 

binary format which is directly runnable on the '2600 (burn it to an 

EPROM, plug the EPROM into a cartridge, and plug the cartridge 

into a '2600) or on an emulator (just load the binary into the 

emulator).  

Consider the following snippet of code...  

sta WSYNC 

sta WSYNC 

sta WSYNC 
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That's 3 scanlines of 6502-halting. DASM has a nice feature where it 

can output a listing file which shows both our original source code, 

but also the binary numbers it replaces that code with. We'll have a 

close look at this feature later (and how to 'drive' DASM) - but those 

wishing to look through the DASM documentation should look for 

the "-l" switch.  

When the above code fragment (from our original kernel) is 

assembled, the listing file contains the following...  

25  f008         85 02        sta WSYNC 

26  f00a         85 02        sta WSYNC 

27  f00c         85 02        sta WSYNC 

 

The leftmost number is the line-number in our original source. The 

next 4-digit hexadecimal number is the address in ROM of the code. 

Don't worry too much about that now - but do notice that each line of 

code is taking 2 bytes of ROM. That is, the first line starts at F008 and 

the next line starts at F00A (2 bytes different). That's because the "sta 

WSYNC" assembles to two bytes - $85 and $02. In fact, there's a 1:1 

correspondence here between the mnemonic ("abbreviation") of our 

instruction - the human readable form - and the binary - the machine-

readable form. The "sta" instruction (which stands for store-

accumulator) has an opcode of $85. Whenever the 6502 fetches an 

instruction from ROM, and that instruction opcode is $85, it will 

execute the "store accumulator" instruction.  

The above code fragment, then, shows three consecutive "$85 $02" 

pairs, corresponding exactly to our three consecutive "sta WSYNC" 

pairs. Can you guess the actual address of the TIA WSYNC register? 

If you need a clue, load up the "vcs.h" file and see what you can find 

in there. It should be clear to you that the assembler has simply 

replaced the WSYNC with an actual numerical value. To be exact, 

after assembling the file, it has decided that the correct value for 

WSYNC is 2 - and replaced all occurrences of WSYNC with the 

number 2 in the binary image.  



38 

OK, so that was pretty straightforward - now let's discuss that 

"REPEAT" thingy...  

REPEAT 3 

    sta WSYNC 

REPEND 

 

This does do exactly the same thing, as you might have guessed - but 

maybe not quite in the way that you think. Let's have a look at the 

listing file for this one...  

31  f008           REPEAT 3 

32  f008         85 02        sta WSYNC 

31  f008           REPEND 

32  f00a         85 02        sta WSYNC 

31  f00a           REPEND 

32  f00c         85 02        sta WSYNC 

33  f00e           REPEND 

 

If you look carefully, you can see in the source code at right, we still 

have exactly 3 lines of code - the "sta WSYNC" code - and in the 

middle, we still have 3 pairs of "$85 $02" bytes in our binary. All that 

has changed, really, is that our source code was smaller and easier to 

write (especially if we're considering dozens of lines of "sta 

WSYNC"s). 

DASM is a pretty good assembler - and it is loaded with features 

which make writing code easier. One of these features is the “repeat” 

construct and it simplifies the writing of code. Wrap any code with 

"REPEAT n" (where n is a number > 0), and "REPEND" and the 

assembler will automatically duplicate the surrounded code in the 

binary n times. Note, we're not saving ROM, we're just having an 

easier time writing the code in the first place.  

So this highlights, I hope, that it is possible to include things in your 

source code which are directions to the assembler - basically a guide 

to the assembler about how to interpret the code. REPEAT is one of 

those. There are several others, and we will no doubt learn about these 

in future sessions.  
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I won't introduce too much more 6502 at this stage - but just be aware 

that using the REPEAT structure will indeed simplify the code 

visually, but it does not reduce ROM usage. One way (of several) to 

do that is to incorporate the "sta WSYNC" into a loop, which iterates 

37 times. Here's a teaser...  

; 37 scanlines of vertical blank... 
               ldx #0 

VerticalBlank  sta WSYNC 

               inx 

               cpx #37 

               bne VerticalBlank 

 

Remember, the 6502 has three "registers" named "X", "Y", and "A". 

In the code above, we initialize one register to the value 0 through 

"ldx #0", then we do the halt "sta WSYNC" which will halt the 6502 

until the TIA finishes the current scanline. Then we increment the x-

register "inx" by one, then we compare the x-register with 37 "cpx 

#37". This is in essence asking "have we done this 37 times yet". The 

final line "bne VerticalBlank" transfers control of the program back to 

the line "VerticalBlank" if the comparison returned (in effect) "no".  

The actual listing file for that code contains the following...  

41  f012         a2 00    ldx #0 

42  f014         85 02    VerticalBlank sta WSYNC 

43  f016         e8       inx 

44  f017         e0 25    cpx #37 

45  f019         d0 f9    bne VerticalBlank 

 

If we count the number of bytes in the binary output we can see that 

this code takes just 9 bytes of ROM. If we had 37 "sta WSYNC" 

instructions, at two bytes each, that's 74 bytes of ROM. Using the 

REPEAT structure, as noted, will still take 74 bytes of ROM. So 

looping is a much more efficient way to do this sort of thing. There 

are even MORE efficient ways, but let's not get ahead of ourselves.  

We are a bit ahead of ourselves here, so don't panic. Just remember, 

though, that DASM is a tool designed to aid us humans. It is full of 

things which make the code more readable (less "ugly") but taking 

lines of code out does not necessarily mean our code is more efficient 

- or uses less ROM   
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Next session we'll have a look at how to actually assemble this code 

using DASM, and how to make modifications so you can play with it 

and test it on the emulator to see what effect your changes have. 
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Session 9: 6502 and DASM – Assembling the basics 

This session we're going to have a look at the assembler "DASM", 

what it does, how it does it, why it does it, and how to get it to do it :-) 

The job of an assembler is to convert our source code into a binary 

image which can be run by the 6502. This conversion process 

ultimately replaces the mnemonics (the words representing the 6502 

instructions we use when writing in assembler) and the symbols (the 

various names we use for things, such as labels to which we can 

branch, and various other things like the names of TIA registers, etc) 

with numerical values.  

So ultimately, all the assembler needs to do is figure out a numerical 

value for all the things which become part of the binary - and place 

that value in the appropriate place in the binary.  

We've already had a brief introduction to a 6502 instruction - the one 

called "nop". This is the no-operation instruction which simply takes 

2 cycles to execute. Whenever we enter "nop" into our source code, 

the assembler recognizes this as a 6502 instruction and inserts into the 

binary the value $EA. This shows that there can be a simple 1:1 

relationship between source-code and the binary.  

"nop" is a single-byte instruction - all it requires is the opcode, and the 

6502 will happily execute it. Some instructions require additional 

"parameters" - the "operands". The 6502 microprocessor can use an 

additional 1 or 2 bytes of operand data for some instructions, so the 

total number of bytes for a 6502 "instruction" can be 1, 2 or 3.  

DASM is the assembler used by most (if not all) modern-day '2600 

programmers. It is a multi-platform assembler written in 1988 by Matt 

Dillon (you should all find his email address and send him a "thank-

you" sometime). It's a great tool.  

DASM isn't just capable of assembling 6502 (and variant) code - it 

also has inbuilt capability to assemble code for several other 

microprocessors. Consequently, one of the very first things that it is 

necessary to do in our source code is tell DASM what processor the 

source code is written for.  
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processor 6502 

 

This should be just about the first line in any '2600 program you 

write. If you don't include it, DASM will probably get confused and 

spit out errors. That's simply because it is trying to assemble your 

code as if it were written for another processor.  

We've just seen how mnemonics (the standard names for instructions) 

are converted into numerical values by the assembler. Another job the 

assembler does is convert labels and symbols into values. We've 

already encountered both of these in our previous sessions, but you 

may not be familiar with their names.  

Whenever DASM is doing its job assembling, it keeps a list of all the 

"words" it encounters in a file in an internal structure called a symbol 

table. Think of a symbol as a name for something. Remember the "sta 

WSYNC" instruction we used to halt the 6502 and wait for the 

scanline to be rendered? The "sta" is the instruction, and "WSYNC" is 

a symbol. When it first encounters this symbol, DASM doesn't know 

much about it, other than what it's called (ie: "WSYNC"). What 

DASM needs to do is work out what the *value* of that symbol is, so 

that it can insert that value into the binary file.  

When it's assembling, DASM puts all the symbols it finds into its 

symbol table - and associated with each of these is a value. If it 

doesn't "know" the value, that's OK - DASM will keep assembling the 

rest of the file quite happily. At some point, something in the code 

might tell DASM what the value for a symbol actually IS - in which 

case DASM will put that value in its symbol table alongside the 

symbol. So whenever that symbol is used anywhere, DASM now 

knows its correct value to put into the binary file.  

In fact, it is absolutely necessary for all symbols which go into the 

binary file to be given values at some point. DASM can't guess values 

- it's up to you, the programmer, to make sure this happens. A symbol 

doesn't have to be given a value at any PARTICULAR point in the 

code, but it does have to be given a value somewhere in the code. 

DASM will make multiple "passes" - basically going through the 

code from beginning to end again and again until it manages to 

resolve all the symbols to correct values.  
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We've already seen in some sample code how "sta WSYNC" appears 

in our binary file as the bytes $85 $02. The first byte $85 is the "sta" 

instruction (one variant of many - but let's keep it simple for now) and 

it is followed by a single byte giving the address of the location into 

which the byte in the "A" register is to be stored. We can see this 

address is location 2 in memory. Somehow, DASM has figured out 

from the code that the symbol WSYNC has a value of 2, and when it 

creates the binary file it replaces all occurrences of the symbol with 

the numeric value 2.  

How did it get the value 2? Remember, WSYNC is one of the TIA 

registers. It appears to the 6502 as a memory location, as the TIA 

registers are "mapped" into locations 0 - $7F. The file "vcs.h" defines 

(in a roundabout way) the values and names (symbols) for all of the 

TIA registers. By including the file "vcs.h" as a part of the assembly 

for any source file, we automatically tell DASM the correct numeric 

value for all of the TIA register "names".  

That's why, at the top of most files, just after the processor statement, 

we see...  

include "vcs.h" 

 

You don't really need to know much about vcs.h at this stage - but be 

aware that a "standardized" version of this file is distributed with the 

DASM assembler as the '2600 support files package. I would advise 

you to always use the latest and greatest version of this file. Standards 

help us all.  

So now we know basically what DASM does with symbols - it keeps 

an internal list of symbols - and their values, if known. DASM will 

keep going through the code and "resolving" the symbols into 

numeric values, until it is complete (or it couldn't find ANYTHING to 

resolve, in which case it gives an error). Once all symbols have been 

resolved, your code has been completely processed by the assembler, 

and it creates the binary image/file for you - and assembly is 

complete.  

To summarize: DASM converts source-code consisting of instructions 

(mnemonics) and symbols into a binary form which can be run by the 
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6502. The assembler converts mnemonics into opcodes (numbers), 

and symbols into numbers which it calculates the value of during the 

assembly process.  

DASM is a command-line program - that is, it runs under DOS (or 

whatever platform you happen to choose, provided you have a 

runnable version for that platform). DASM is provided with full 

source-code (it's written in C) so as long as you have a C-compiler 

handy, you can port it to just about any platform under the sun.  

It does come with a manual - and it's always a good idea to familiarize 

yourself with its capabilities. In the interests of getting you up and 

running quickly, so you can actually assemble the sample kernel 

posted a session or two ago, here's what you need to type on the 

command-line...  

dasm kernel.asm -lkernel.txt -f3 -v5 -okernel.bin 

 

This is assuming that the file to assemble is named "kernel.asm" (.asm 

is a standard prefix for assembler files, but some prefer to use .s - you 

can use whatever you want, really, but I always use .asm). Anything 

prefixed with a minus-sign ("-") is a "switch" - which tells DASM 

something about what it is required to do. The -l switch we discussed 

very briefly, and that tells DASM to create a listing file - in this case, 

it will write a listing to the file "kernel.txt". The -o switch tells DASM 

what file to use for the output binary - in this case, the binary will be 

written to "kernel.bin". That file can be loaded into an emulator, or 

burned on an EPROM - it is the ROM file, in other words.  

The other switches "-f3" and "-v5" control some internals of DASM - 

and for now just assume you need these whenever you assemble with 

DASM. Remember, if you're curious you can always read the manual!  
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If all goes well, DASM will output something like this... 

DASM V2.20.05, Macro Assembler (C)1988-2003 

START OF PASS: 1 

---------------------------------------------------------------------- 

SEGMENT NAME               INIT PC  INIT RPC FINAL PC FINAL RPC 

                           f000                            f000 

RIOT                    [u]0280                            0280 

TIA_REGISTERS_READ      [u]0000                            0000     

TIA_REGISTERS_WRITE     [u]0000                            0000 

INITIAL CODE SEGMENT       0000 ????                       0000 ????  

---------------------------------------------------------------------- 

1 references to unknown symbols. 

0 events requiring another assembler pass. 

--- Symbol List (sorted by symbol) 

AUDC0                    0015                   

AUDC1                    0016                   

AUDF0                    0017                   

AUDF1                    0018                   

AUDV0                    0019                   

AUDV1                    001a                   

COLUBK                   0009              (R ) 

COLUP0                   0006                   

COLUP1                   0007                   

COLUPF                   0008                   

CTRLPF                   000a                   

CXBLPF                   0006                   

CXCLR                    002c                   

CXM0FB                   0004                   

CXM0P                    0000                   

CXM1FB                   0005                   

CXM1P                    0001                   

CXP0FB                   0002                   

CXP1FB                   0003                   

CXPPMM                   0007                   

ENABL                    001f                   

ENAM0                    001d                   

ENAM1                    001e                   

GRP0                     001b                   

GRP1                     001c                   

HMBL                     0024                   

HMCLR                    002b                   

HMM0                     0022                   

HMM1                     0023                   

HMOVE                    002a                   

HMP0                     0020                   

HMP1                     0021                   

INPT0                    0008                   

INPT1                    0009                   

INPT2                    000a                   

INPT3                    000b                   

INPT4                    000c                   

INPT5                    000d                   

INTIM                    0284                   

NUSIZ0                   0004                   

NUSIZ1                   0005                   

Overscan                 f02c              (R ) 

PF0                      000d                   

PF1                      000e                   



46 

PF2                      000f                   

Picture                  f01d              (R ) 

REFP0                    000b                   

REFP1                    000c                   

RESBL                    0014                   

Reset                    f000              (R ) 

RESM0                    0012                   

RESM1                    0013                   

RESMP0                   0028                   

RESMP1                   0029                   

RESP0                    0010                   

RESP1                    0011                   

RSYNC                    0003                   

StartOfFrame             f000              (R ) 

SWACNT                   0281                   

SWBCNT                   0283                   

SWCHA                    0280                   

SWCHB                    0282                   

T1024T                   0297                   

TIA_BASE_ADDRESS         0000              (R ) 

TIM1T                    0294                   

TIM64T                   0296                   

TIM8T                    0295                   

TIMINT                   0285                   

VBLANK                   0001              (R ) 

VDELBL                   0027                   

VDELP0                   0025                   

VDELP1                   0026                   

VerticalBlank            f014              (R ) 

VSYNC                    0000              (R ) 

WSYNC                    0002              (R ) 

--- End of Symbol List. 

Complete. 

 

Here we can actually see the symbol table, and the numeric values 

that DASM has assigned to the symbols. If you look at the listing file, 

wherever any of these symbols is used, you will see the corresponding 

number in the symbol table has been inserted into the binary.  

 

There are lots of symbols there, as the vcs.h file defines just about 

everything you'll ever need to do with the TIA. The symbols which 

are actually used in your code are marked with a (R ) - indicating 

"referenced".  

By default I include "vcs.h" and "macro.h" files in all source code. 

These are standardized files for '2600 development, and distributed as 

official DASM '2600 support files.  

MACROs are a sort of text-processing language supported by DASM. 

In the same way that the REPEAT keyword allowed us to repeat 

blocks of code automatically, MACROs allow us to package common 
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functionality into a single keyword and have the assembler insert (and 

tailor) code automatically.  

There's nothing in the macro.h file we use, yet... but it is good practice 

to include it - as it has some useful content already, and will have 

more added from time to time.  

As a teaser, consider the SLEEP macro... remember how we wanted 

to delay 76 cycles for each scanline, and we used the "sta WSYNC" 

capability of the TIA to halt the 6502 till the start of the next 

scanline? Or how we used NOP to waste exactly 2 cycles. Use the 

sleep macro to delay for any number of cycles you want... e.g.:  

SLEEP 25 ; waste 25 cycles.  
 

The SLEEP macro is defined in macro.h, if you want to see how it 

does it. 

Now you should be able to go and assemble the sample kernel I 

provided earlier. Don't be afraid to have a play with things, and see 

what happens! Experimenting is a big part of learning.  

 

Soon we'll start playing with some TIA registers and seeing what 

happens to our screen when we do that! For now, though, make sure 

you are able to assemble and run the first kernel. If you have any 

problems, ask for assistance and I'm sure somebody will leap to your 

aid.  
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Session 10: Orgasm 

We've had a brief introduction to DASM, and in particular 

mnemonics (6502 instructions, written in human-readable format) and 

symbols (other words in our program which are converted by DASM 

into a numeric form in the binary).  

 

Now we're going to have a brief look at how DASM uses the symbols 

(and in particular the value for symbols it calculates and stores in its 

internal symbol table) to build up the binary ROM image.  

 

Each symbol the assembler finds in our source code must be defined 

(ie: given an actual value) in at least one place in the code. A value is 

given to a symbol when it appears in our code starting in the very first 

column of a line. Symbols typically cannot be redefined (given 

another value).  

 

In an earlier session we examined how the code "sta WSYNC" 

appeared in our binary file as $85 $02 (remember, we examined the 

listing file to see what bytes appeared in our binary. At that point, I 

indicated that the assembler had determined the value of the symbol 

"WSYNC" was 2 (corresponding to the TIA register's memory 

address) - through its definition in the standard vcs.h file.  

 

But how does the assembler actually determine the value of a symbol?  

 

The answer is that the symbol must be defined somewhere in the 

source code (as opposed to just being referenced). Definition of a 

symbol can come in several forms. The most straightforward is to just 

assign a value...  

WSYNC = 2 

 

or...  
 
WSYNC EQU 2 

 

The above examples are equivalent - DASM supports syntax (style) 

which has become fairly standard over the years. Some people (me!) 

like to use the = symbol, and some like to use EQU.  
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Note that the symbol in question must start in the very first column, 

when it is being defined. In both cases, the value 2 is being assigned 

to the symbol WSYNC. Wherever DASM encounters the symbol 

WSYNC in the code, it knows to use the value 2.  

 

That's fairly straightforward stuff. But symbols can be defined in 

terms of other symbols! Also, DASM has a quite capable ability to 

understand expressions, so the following is quite valid...  

AFTER_WSYNC = WSYNC + 1 

 

In this case, the symbol "AFTER_WSYNC" would have the value 3. 

Even if the WSYNC label was defined after the above code, the 

assembler would successfully be able to resolve the AFTER_WSYNC 

value, as it does multiple passes through the code until symbols are all 

resolved.  

 

Symbols can also be given values automatically by the assembler. 

Consider our sample kernel where we see the following code near the 

start (here we're looking at the listing file, so we can see the address 

information DASM outputs)... 

     5  0000 ????          SEG 

     6  f000           ORG $F000 

     7  f000 

     8  f000       Reset 

     9  f000 

    10  f000       StartOfFrame 

    11  f000 

    12  f000              ; Start of vertical blank processing 
    13  f000     a9 00    lda #0 

    14  f002     85 01    sta VBLANK  

 

"Reset" and "StartOfFrame" are two symbols which are definitions at 

this point because they both start at the first column of the lines they 

are on. The assembler assigns the current ROM address to these 

symbols, as they occur. That is, if we look at these "labels" 

(=symbols) in the symbol table, we see...  

StartOfFrame             f000              (R ) 

Reset                    f000              (R ) 

 

They both have a value of $F000. This form of symbol (which starts 

at the beginning of a line, but is not explicitly assigned a value) is 
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called a label, and refers to a location in the code (or more particularly 

an address). How and why did DASM assign the value $F000 to these 

two labels, in this case?  

As the assembler converts your source code to a binary format, it 

keeps an internal counter telling it where in the address space the next 

byte is to be placed. This address increments by the appropriate 

amount for each bit of data it encounters. For example, if we had a 

"nop" (a 1-byte instruction), then the address counter that DASM 

maintains would increment by 1 (the length of the nop instruction). 

Whenever a label is encountered, the label is given the value of the 

current internal address counter at the point in the binary image at 

which the label occurs. The label itself does not go into the binary - 

but the value of the label refers to the address in the binary 

corresponding to the position of the label in the source code.  

In the DASM output on the previous page, we can see the address in 

column 2 of the output, and it starts at 0 (with ???? after it, indicating 

it doesn't actually KNOW the internal counter/address at this point), 

and (here's the bit I really want you to understand) it is set to $F000 

when we get the "org $F000" line. "Org" stands for origin, and this is 

the way we (the programmer) indicate to the assembler the starting 

address of next section of code in the binary ROM. Just to complicate 

things slightly, it is not the actual offset from the start of the ROM 

(for a ROM might, for example, be only 4K but contain code 

assembled to live at $F000-$FFFF - as in a 4K cartridge). So it's not 

an offset, it's a conceptual address.  

These labels are very useful to programmers to give a name to a point 

in code, so that that point may be referred to by the label, instead of us 

having to know the address. If we look at the end of our sample 

kernel, we see...  

   113  f3ea     4c 00 f0    jmp StartOfFrame 

 

The "jmp" is the mnemonic for the jump instruction, which transfers 

flow of control to the address given in the two byte operand. In other 

words, it's a GOTO statement. Look carefully at the binary numbers 

inserted into the ROM (again, the columns are left to right, line 

number, address, byte(s), source code). We see $4C, $00, $f0. The 
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opcode for JMP is $4C - whenever the 6502 fetches this instruction, it 

forms a 16-bit address from the next two bytes ($00,$F0) and code 

continues from that address. Note that the "StartOfFrame" 

symbol/label has a value $F000 in our symbol table.  

It's time to understand how 16-bit numbers are formed from two 8-bit 

numbers, and how 0, $F0 translates to $F000. The 6502, as noted, can 

address 2^16 bytes of memory. This requires 16 bits. The 6502 itself 

is only capable of manipulating 8-bit numbers. So 16-bit numbers are 

stored as pairs of bytes. Consider any 16-bit address in hexadecimal - 

$F000 is convenient enough. The binary value for that is 

%1111000000000000. Divide it into two 8-bit sections (i.e.: 

equivalent to 2 bytes) and you get %11110000 and %00000000 - 

equivalent to $F0 and 0. Note, any two hex digits make up a byte, as 

hex digits require 4 bits each (0-15, i.e.: %0000-%1111). So we could 

just split any hex address in half to give us two 8-bit bytes. As noted, 

6502 manipulates 16-bit addresses through the use of two bytes. 

These bytes are generally always stored in ROM in little-endian 

format (that is, the lowest significant byte first, followed by the high 

byte). So $F000 hex is stored as 0, $F0 (the low byte of $F000 

followed by the high byte).  

Now the binary of our jmp instruction should make sense. Opcode 

($4C), 16-bit address in low/high format ($F000). When this 

instruction executes, the program jumps to and continues executing 

from address $F000 in ROM. And we can see how DASM has used 

its symbol table - and in particular the value it calculated from the 

internal address counter when the “StartOfFrame” label was defined - 

to "fill in" the correct low/hi value into the binary file itself where the 

label was actually referred to.  

This is typical of symbol usage. DASM uses its internal symbol table 

to give it a value for any symbol it needs. Those values are used to 

create the correct numbers for the ROM/binary image.  

Let's go back to our magical discovery that the "org" instruction is 

just a command to the assembler (it does not appear in the binary) to 

let the assembler know the value of the internal address counter at that 

point in the code. It is quite legal to have more than one ORG 
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command in our source. In fact, our sample kernel uses this when it 

defines the interrupt vectors...  

   113  f3ea     4c 00 f0   jmp StartOfFrame 

   114  f3ed 

   115  fffa                ORG $FFFA 

   116  fffa 

   117  fffa     00 f0          .word.w   Reset; NMI 
   118  fffc     00 f0          .word.w   Reset; RESET 
   119  fffe     00 f0          .word.w   Reset; IRQ 
 

Here we can see that after the jmp instruction, the internal address 

counter is at $F3ED, and we have another ORG which sets the 

address to $FFFA (the start of the standard 6502 interrupt vector 

data). Astute readers will notice the use of the label "Reset" in three 

lines, with the binary value $F000 (if the numbers are to be 

interpreted as a low/high byte pair) appearing in the ROM image at 

address $FFFA, $FFFC, $FFFE. We briefly discussed how the 6502 

looks at the address $FFFC to give it the address at which it should 

start running code. Here we see that this address points to the label 

"Reset". Magic.  

It's quite legal to use one symbol as the value for an ORG command. 

Here's a short snippet of code which should clarify this...  

START = $F800 ; start of code - change this if you want 
ORG START 

HelloWorld 

 

In the above example, the label “HelloWorld” would have a value of 

$F800. If the value of START were to change, so would the value of 

HelloWorld.  

We've seen how the ORG command is used to tell DASM where to 

place bits of code (in terms of the address of code in our ROM). This 

command can also be used to define our variables in RAM. We 

haven't had a play with RAM/variables yet, and it will be a few 

sessions before we tackle that - but if you want a sneak peek, have a 

look at vcs.h and see how it defines its variables from an origin 

defined as "ORG TIA_BASE_ADDRESS". That code is way more 

complex than our current level of understanding, but it gives some 

idea of the versatility of the assembler.  
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We're almost done with the basic commands inserted into our source 

code to assist DASM's building of the binary image. Now you should 

understand how symbols are assigned values (either by their explicit 

assignation of a value, or by implicit address/location value) - and 

how those values - through the assembler's internal symbol table - are 

used to put the correct number into the ROM binary image. We also 

understand that DASM converts mnemonics (6502 commands in 

human-readable form) directly into opcodes. There's not much more 

to actual assembly - so we shall soon move on to actual 6502 code, 

and playing with the TIA itself. 
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Session 11: Colorful colors 

Even our language treats "color" differently - here in Oz we write 

"colour" and in the USA they write "color". Likewise, '2600 units in 

different countries don't quite speak the same language when it comes 

to color.  

We have already seen why there are 3 variants of '2600 units - these 

variations (PAL, NTSC, SECAM) exist because of the differences in 

TV standards in various countries. Specifically, the color information 

is encoded in different ways into the analogue TV signal for each 

system, and the '2600 hardware is responsible for inserting that color 

information in the data sent to the TV.  

Not only do these different '2600 systems write the color information 

in different ways, they also write totally different colors! What is one 

color on a NTSC system is probably NOT the same color on PAL, 

and almost certainly not the same color on SECAM! Here's some 

wonderful color charts to show the colors used by each of the 

systems... 

 

Yes, I realize his book is printed in grayscales, so please go see the 

real colors at http://www.qotile.net/minidig/docs/tia_color.html :-) 
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Colors are represented on the '2600 by numbers. How else could it 

be? The color to number correspondence is essentially an arbitrary 

association - so, for example on a NTSC machine the value $1A is 

yellowish, on PAL the same color is grey, and on SECAM it is 

aqua(!). If the same color values were used on a game converted 

between a NTSC and PAL system, then everything would look very 

weird indeed! To read the color charts on the previous page, form a 2-

digit hex number from the Hue (vertical values) and the Lum 

(horizontal values) I.e.: hue 2, lum 5 -> $25 value -> brown(ish) on 

NTSC and as it happens a very similar brown(ish) on PAL.  

We've already played with colors in our first kernel! In the picture 

section (the 192 scanlines) we had the following code... 

; 192 scanlines of picture... 
 

ldx #0 

REPEAT 192; scanlines 
 

   inx 

   stx COLUBK 

   sta WSYNC 

 

REPEND 

 

We should know by now what that "sta WSYNC" does - and now it's 

time to understand the rest of it. Remember the picture that the kernel 

shows? A very pretty rainbow effect, with color stripes across the 

screen. It's the TIA producing those colors, but it's our kernel telling 

the TIA what color to show on each line. And it's done with the "stx 

COLUBK" line.  

 

Remember how the TIA maps to memory in locations 0 - $7F, and 

that WSYNC is a label representing the memory location of the TIA 

register (which happens, of course, to be called WSYNC). In similar 

fashion, COLUBK is a label which corresponds to the TIA register of 

the same name. This particular register allows us to set the color of 

the background that the TIA sends to the TV!  

 

A quick peek at the symbol table shows...  

COLUBK          0009       (R ) 
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In fact, the very best place to look is in the Stella Programmer's guide 

- for here you will be able to see the exact location and usage of this 

TIA register. This is a pretty simple one, though - all we do is write a 

number representing the color we want (selected from the color charts 

linked to, above) and the TIA will display this color as the 

background.  

Don't forget that it also depends on what system we're running on! If 

we're doing a PAL kernel, then we will see a different color than if 

we're doing a NTSC or SECAM kernel. The bizarre consequence of 

this is that if we change the number of scanlines our kernel generates, 

the COLORS of everything also change. That's because (if we are 

running on an emulator or plug a ROM into a console) we are 

essentially switching between PAL/NTSC/SECAM systems, and as 

noted these systems send different color information to the TV! It's 

weird, but the bottom line is that when you choose colors, you choose 

them for the particular TV standard you are writing your ROM to run 

on. If you change to a different TV system, then you will also need to 

rework all the colors of all the objects in your game.  

Let's go back to our kernel and have a bit of a look at what it's doing 

to achieve that rainbow effect. There's remarkably little code in there 

for such a pretty effect.  

As we've learned, the 6502 has just three "registers". These are named 

A, X and Y - and allow us to shift bytes to and from memory - and 

perform some simple modifications to these bytes. In particular, the X 

and Y registers are known as "index registers", and these have very 

little capability (they can be loaded, saved, incremented and 

decremented). The accumulator (A) is our workhorse register, and it 

is this register used to do just about all the grunt-work like addition, 

subtraction, and bit manipulation.  

Our simple kernel, though, uses the X register to step a color value 

from 0 (at the start), writing the color value to the TIA background 

color register (COLUBK), incrementing X by one each scanline. First 

(outside the repeat) we have "ldx #0". This instruction moves the 

numeric value 0 into the X register. ld is an abbreviation for "load", 

and we have lda, ldx, ldy. st is the similar abbreviation for store, and 

we have stx sty sta.  
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Inside our repeat structure, we have "stx COLUBK". As noted, this 

will copy the current contents of the x register into the memory 

location 9 (which is, of course, the TIA register COLUBK). The TIA 

will then *immediately* use the value we wrote as the background 

color sent to the TV. Next we have an instruction "inx". This 

increments the current value of the X register by one. Likewise, we 

have an "iny" instruction, which increments the y register. But, alas, 

we don't have an "ina" instruction to increment the accumulator (!). 

We are also able to decrement (by 1) the x and y registers with "dex" 

and "dey".  

The operation of our kernel should be pretty obvious, now. The X 

register is initialized with 0, and every scanline it is written to the 

background color register, and incremented. So the background color 

shows, scanline by scanline, the color range that the '2600 is capable 

of. In actual fact, you could throw another "inx" in there and see what 

happens. Or even change the "inx" to "dex" - what do you think will 

happen? As an aside, it was actually possible to blow up one early 

home computer by playing around with registers like this (I kid you 

not!) - but you can't possibly damage your '2600 (or emulator!) doing 

this. Have fun, experiment.  

Since we're only doing 192 lines, the X register will increment from 0 

to 192 by the time we get to the end of our block of code. But what if 

we'd put two "inx" lines in? We'd have incremented the X register by 

192 x 2 = 384 times. What would its value be? 384? No - because the 

X register is only an 8-bit register, and you would need 9 bits to hold 

384 (binary %110000000). When any register overflows - or is 

incremented or decremented past its maximum capability, it simply 

"wraps around". For example, if our register had %11111111 in it 

(255, the maximum 8-bit number) and it was incremented, then it 

would simply become %00000000 (which is the low 8-bits of 

%100000000). Likewise, decrementing from 0 would leave 

%11111111 in the register. This may seem a bit confusing right now, 

but when we get used to binary arithmetic, it will seem quite natural. 

Hang in there; I'll avoid throwing the need to know this sort of stuff at 

you for a while.  

Now you've had a little introduction to the COLUBK register, I'd just 

like to touch briefly on the difference apparent between the WSYNC 
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register and the COLUBK register. The former (WSYNC) was a 

strobe - you could simply "touch" it (by writing any value) and it 

would instantly halt the 6502. Didn't matter what value you wrote, the 

effect was the same. The latter register (COLUBK) was used to send 

an actual VALUE to the TIA (in this case, the value for the color for 

the background) - and the value written was very much important. In 

fact, this value is stored internally by the TIA and it keeps using the 

value it has internally as the background color until it changes.  

If you think about the consequences of this, then, the TIA has at least 

one internal memory location which is in an unknown (at least by us) 

state when the machine first powers on. We'd probably see black - 

which happens to be value 0 on all machines), but you never know. I 

believe it is wise to initialize the TIA registers to known-states when 

your kernel first starts - so there are no surprises on weird machines or 

emulators. We have done nothing, so far, to initialize the TIA - or the 

6502, for that matter - and I think we'll probably have a brief look at 

system startup code in a session real-soon-now.  

Until then, have a play with the picture-drawing section, and see what 

happens when you write different values to the COLUBK register. 

You might even like to change it several times in succession and see 

what happens. Here's something to try (with a bit of head scratching, 

you should be able to figure all this out by now)... 

       ; 192 scanlines of picture...  
 

       ldx #0  

       ldy #0 

 

       REPEAT 192; scanlines  
 

             inx  

             stx COLUBK  

 

             nop 

             nop 

             nop 

 

             dey 

             sty COLUBK 

 

             sta WSYNC  

 

       REPEND 
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Try inserting more "nop" lines (what does nop do, again?) - can you 

see how the timing of the 6502 and where you do changes to the TIA 

is reflected directly onscreen because of the synchronization between 

the 6052 and the TIA which is drawing the lines on-the-fly?  

Have a good play with this, because once you've cottoned-on to 

what's happening here, you will have no problems programming 

anything on the '2600. 
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Session 12: Initialization 

One of the joys of writing '2600 programs involves the quest for 

efficiency - both in processing time used, and in ROM space required 

for the code. Every now and then, modern-day '2600 programmers 

will become obsessed with some fairly trivial task and try to see how 

efficient they can make it.  

If you were about to go up on the Space Shuttle, you wouldn't expect 

them to just put in the key, turn it on, and take off. You'd like the very 

first thing they do is to make sure that all those switches are set to 

their correct positions. When our Atari 2600 (which, I might point out 

in a tenuous link to the previous sentence, is of the same vintage as 

the Space Shuttle) powers-up, we should assume that the 6502, RAM 

and TIA (and other systems) are in a fairly unknown state. It is 

considered good practice to initialize these systems. Unless you 

really, *really* know what you're doing, it can save you problems 

later on.  

At the end of this session I'll present a highly optimized (and best of 

all, totally obscure :-) piece of code which manages to initialize the 

6502, all of RAM *and* the TIA using just 8 bytes of code-size. 

That's quite amazing, really. But first, we're going to do it the 'long' 

way, and learn a little bit more about the 6502 while we're doing it.  

We've already been introduced to the three registers of the 6502 - A, 

X, and Y. X and Y are known as index registers (we'll see why, very 

soon) and A is our accumulator - the register used to do most of the 

calculations (addition, subtraction, etc.).  

Let's have a look at the process of clearing (writing 0 to) all of our 

RAM. Our earlier discussions of the memory architecture of the 6502 

showed that the '2600 has just 128 bytes ($80 bytes) of RAM, starting 

at address $80. So, our RAM occupies memory from $80 - $FF 

inclusive. Since we know how to write to memory (remember the "stx 

COLUBK" we used to write a color to the TIA background color 

register), it should be apparent that we could do this... 
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   lda #0        ; load the value 0 into the accumulator 
   sta $80       ; store accumulator to location $80 
   sta $81       ; store accumulator to location $81 
   sta $82       ; store accumulator to location $82 
   sta $83       ; store accumulator to location $83 
   sta $84       ; store accumulator to location $84 
   sta $85       ; store accumulator to location $85 
 

   ; 119 more lines to store 0 into location $86 - $FC... 
 

   sta $FD       ; store accumulator to location $FD 
   sta $FE       ; store accumulator to location $FE 
   sta $FF       ; store accumulator to location $FF 

 

You're right, that's ugly! The code above uses 258 bytes of ROM (2 

bytes for each store, and 2 for the initial accumulator load). We can't 

possibly afford that - and especially since I've already told you that it's 

possible to initialize the 6502 registers, clear RAM, and initialize the 

TIA in just 8 bytes total!  

The index registers have their name for a reason. They are useful in 

exactly the situation above, where we have a series of values we want 

to read or write to or from memory. Have a look at this next bit of 

code, and we'll walk through what it does... 

   ldx #0 

   lda #0 

ClearRAM   

   sta $80,x 

   inx 

   cpx #$80 

   bne ClearRAM 

 

Firstly, this code is nowhere-near efficient, but it does do the same job 

as our first attempt and uses only 11 bytes. It achieves this saving by 

performing the clear in a loop, writing 0 (the accumulator) to one 

RAM location every iteration. The key is the "sta $80,x" line. In this 

"addressing mode", the 6502 adds the destination address ($80 in this 

example - remember, this is the start of RAM) to the current value of 

the X register - giving it a final address - and uses that final address as 

the source/destination for the operation.  

We have initialized X to 0, and increment it every time through the 

loop. The line "cpx #$80" is a comparison, which causes the 6502 to 

check the value of X against the number $80 (remember, we have $80 
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bytes of RAM, so this is basically saying "has the loop done 128 

($80) iterations yet?". The next line "bne ClearRAM" will transfer 

program flow back to the label "ClearRAM" every time that 

comparison returns "no". The end result being that the loop will 

iterate exactly 128 times, and that the indexing will end up writing to 

128 consecutive memory locations starting at $80. 

   ldx #$80 

   lda #0 

ClearRAM 

   sta 0,x 

   inx 

   bne ClearRAM 

 

Well, that's not a LOT different, but we're now using only 9 bytes to 

clear RAM - somehow we've managed to get rid of that comparison! 

And how come we're writing to 0,x not $80,x? All will be revealed...  

When the 6502 performs operations on registers, it keeps track of 

certain properties of the numbers in those registers. In particular, it 

has internal flags which indicate if the number it last used was zero or 

non-zero, positive or negative, and also various other properties 

related to the last calculation it did. We'll get to all of that later. All of 

these flags are stored in an 8-bit register called the "flags register". 

We don't have easy direct access to this register, but we do have 

instructions which base their operation on the flags themselves.  

We've already used one of these operations - the "bne ClearRAM" we 

used in our earlier version of the code. This instruction, as noted "will 

transfer program flow back to the label "ClearRAM" every time that 

comparison returns "no". The comparison returns "no" by setting the 

zero/non-zero flag in the processor's flags register!  

In actuality, this zero/non-zero flag is also set or cleared upon a load 

to a register, an increment or decrement of register or memory, and 

whenever a calculation is done on the accumulator. Whenever a value 

in these circumstances is zero, then the zero flag is set. Whenever the 

result is non-zero, the zero flag is cleared. So, we don't even need to 

compare for anything being 0 - as long as we have just done one of 

the operations mentioned (load, increment, etc) - then we know that 

the zero flag (and possibly others) will tell us something about the 

number. The 6502 documentation gives extensive information for all 
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instructions about what flags are set/cleared, under what 

circumstance.  

We briefly discussed how index registers, only holding 8-bit values 

"wrap-around" from $FF (%11111111) to 0 when incremented, and 

from 0 to $FF when decremented. Our code above is using this "trick" 

by incrementing the X-register and using the knowledge that the zero-

flag will always be non-zero after this operation, unless X is 0. And X 

will only be 0 if it was previously $FF. Instead of having X be a 

"counter" to give 128 iterations, this time we're using it as the actual 

address and looping it from $80 (the start of RAM) to $FF (the end of 

RAM) + 1. So our store (which, remember, takes the address in the 

instruction, adds the value of the X register and uses that as the final 

address) is now "sta 0,x". Since X holds the correct address to write 

to, we are adding 0 to that :-) 

I would highly recommend that you don't worry too much about this 

sort of optimization while you're learning. The version with the 

comparison is perfectly adequate, safe, and easy to understand. But 

sometimes you find that you do need the extra cycles or bytes (the 

optimized version, above, is 160 cycles faster - and that's 160x3 color 

clocks = 480 color clocks = more than two whole scanlines!! quicker). 

So you can see how crucial timing can be - by taking out a single 

instruction (the "cpx #$80") in a loop, and rearranging how our loop 

counted, we saved more than two scanlines - (very) roughly 1% of the 

total processing time available in one frame of a TV picture!  

Initializing the TIA is a similar process to initializing the RAM - we 

just want to write 0 to all memory locations from 0 to $7F (where the 

TIA lives!). This is safe - trust me - and we don't really need to know 

what we're writing to at this stage, just that after doing this the TIA 

will be nice and happy. We could do this in a second loop, similar to 

the first, but how about this... 

   ldx #0 

   lda #0 

Clear 

   sta $80,x     ; clear a byte of RAM 
   sta 0,x       ; clear a byte of TIA register 
   inx 

   cpx #$80 

   bne Clear 
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That's a perfectly adequate solution. Easy to read and maintain, and 

reasonably quick. We could, however, take advantage of the fact that 

RAM and the TIA are consecutive in memory (TIA from 0 - $7F, 

immediately followed by RAM $80 - $FF) and do the clear in one 

go... 

   ldx #0 

   lda #0 

Clear 

   sta 0,x 

   inx 

   bne Clear 

 

The above example uses 9 bytes, again, but now clears RAM and TIA 

in one 'go' by iterating the index register (which is the effective 

address when used in "sta 0,x") from 0 to 0 (i.e.: increments 256 times 

and then wraps back to 0 and the loop halts). This is starting to get 

into "elegant" territory, something the experienced guys strive for!  

Furthermore, after this code has completed, X = 0 and A = 0 - a nice 

known state for two of the 3 6502 registers.  

That's all I'm going to explain for the initialization at this stage - we 

should insert this code just after the "Reset" label and before the 

"StartOfFrame" label. This would cause the code to be executed only 

on a system reset, not every frame (as, every frame, the code branches 

back to the "StartOfFrame" for the beginning of the next frame).  

Before we end today's session, though, I thought I'd share the 

"magical" 8-byte system clear with you. There's simply no way that I 

would expect you to understand this bit of code at the moment - it 

pulls every trick in the book - but this should give you some taste of 

just how obscure a bit of code CAN be, and how beautifully elegant 

clever coding can do amazing things. 

The code is on the next page… 
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  ; CLEARS ALL VARIABLES, STACK 
  ; INIT STACK POINTER 
  ; ALSO CLEARS TIA REGISTERS 
  ; DOES THIS BY "WRAPPING" THE STACK - UNUSUAL 
 

   ldx #0 

   txa 

Clear  

   dex 

   txs 

   pha 

   bne Clear 

 

  ; 8 BYTES TOTAL FOR CLEARING STACK, MEMORY 
  ; STACK POINTER NOW $FF, A=X==0 
 

After the above, X=A=0, and all of RAM and the TIA has been 

initialized to 0, and the stack pointer is initialized to $FF. Amazing! 
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Session 13: Playfield Basics 

In the last few sessions, we started to explore the capabilities of the 

TIA. We learned that the TIA has "registers" which are mapped to 

fixed memory addresses, and that the 6502 can control the TIA by 

writing and/or reading these addresses. In particular, we learned that 

writing to the WSYNC register halts the 6502 until the TIA starts the 

next scanline, and that the COLUBK register is used to set the color 

of the background. We also learned that the TIA keeps an internal 

copy of the value written to COLUBK.  

Today we're going to have a look at playfield graphics, and for the 

first time learn how to use RAM. The playfield is quite a complex 

beast, so we may be spending the next few sessions exploring its 

capabilities.  

The '2600 was originally designed to be more or less a sophisticated 

programmable PONG-style machine, able to display 2-player games - 

but still pretty much PONG in style. These typically took place on a 

screen containing not much more than walls, two "players" - usually 

just straight lines - and a ball. Despite this, the design of the system 

was versatile enough that clever programmers have produced a wide 

variety of games.  

The playfield is that part of the display which usually shows "walls" 

or "backgrounds" (not to be confused with THE background color). 

These walls are usually only a single color (for any given scanline), 

though games typically change the color over multiple scanlines to 

give some very nice effects.  

The playfield is also sometimes used to display very large (square, 

blocky looking) scores and words.  

Just like with COLUBK, the TIA has internal memory where it stores 

exactly 20 bits of playfield data, corresponding to just 20 pixels of 

playfield. Each one of these pixels can be on (displayed) or off (not 

displayed).  

The horizontal resolution of the playfield is a very-low 40 pixels, 

divided into two halves - both of which display the same 20 bits held 
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in the TIA internal memory. Each half of the playfield may have its 

own color (we'll cover this later), but all pixels either half are the 

same color. Each playfield pixel is exactly 4 color-clocks wide (160 

color clocks / 40 pixels = 4 color clocks per pixel).  

The TIA manages to draw a 40 pixel playfield from only 20 bits of 

playfield data by duplicating the playfield (the right side of the 

playfield displays the same data as the left side). It is possible to 

mirror the right side, and it is also possible to create an "asymmetrical 

playfield" - where the right and left sides of the playfield are NOT 

symmetrical. I'll leave you to figure out how to do that for now - we'll 

cover it in a future session. For now, we're just going to learn how to 

play with those 20 bits of TIA memory, and see what we can do with 

them.  

Let's get right into it. Here's some sample code which introduces a 

few new TIA registers, and also (for the first time for us) uses a RAM 

location to store some temporary information (a variable!). There are 

three TIA playfield registers (two holding 8 bits of playfield data, and 

one holding the remaining 4 bits) - PF0, PF1, PF2. Today we're going 

to focus on just one of these TIA playfield registers, PF1, because it is 

the simplest to understand. 

; '2600 for Newbies 
; Session 13 - Playfield 
               processor 6502 

               include "vcs.h" 

               include "macro.h" 

;------------------------------------------------------------- 
PATTERN         = $80 ; storage location (1st byte in RAM) 
TIMETOCHANGE    = 20  ; speed of "animation" change as desired 
;------------------------------------------------------------- 
               SEG 

               ORG $F000 

 

Reset 

      ; Clear RAM and all TIA registers 
               ldx #0  

               lda #0 

 

Clear          sta 0,x  

               inx  

               bne Clear 
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      ;------------------------------------------------ 
      ; Once-only initialization... 
 

               lda #0 

               sta PATTERN  ; The binary PF 'pattern' 
 

               lda #$45 

               sta COLUPF   ; set the playfield color 
 

               ldy #0       ; "speed" counter 
      ;------------------------------------------------ 
 

StartOfFrame 

      ; Start of new frame 
      ; Start of vertical blank processing 
               lda #0 

               sta VBLANK 

 

               lda #2 

               sta VSYNC 

 

               sta WSYNC 

               sta WSYNC 

               sta WSYNC     ; 3 scanlines of VSYNC signal 
 

               lda #0 

               sta VSYNC            

 

      ;------------------------------------------------ 
      ; 37 scanlines of vertical blank... 
               ldx #0 

VerticalBlank  sta WSYNC 

               inx 

               cpx #37 

               bne VerticalBlank 

 

      ;------------------------------------------------ 
      ; Handle a change in the pattern once every 20 frames 
      ; and write the pattern to the PF1 register 
               iny               ; increment speed count by one 
               cpy #TIMETOCHANGE ; reached our "change point"? 
               bne notyet        ; no, so branch past 
 

               ldy #0            ; reset speed count 
 

               inc PATTERN       ; switch to next pattern 
notyet 

               lda PATTERN       ; use our saved pattern 
               sta PF1           ; as the playfield shape 
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      ;------------------------------------------------ 
      ; Do 192 scanlines of color-changing (our picture) 
               ldx #0       ; this counts our scanline number 
Picture        stx COLUBK   ; change background color  
                            ; (rainbow effect) 
               sta WSYNC    ; wait till end of scanline 
               inx 

               cpx #192 

               bne Picture 

 

      ;------------------------------------------------ 
               lda #%01000010 

               sta VBLANK   ; end of screen - enter blanking 
      ; 30 scanlines of overscan... 
               ldx #0 

Overscan       sta WSYNC 

               inx 

               cpx #30 

               bne Overscan 

 

               jmp StartOfFrame 

 

;------------------------------------------------------------ 
           ORG $FFFA 

InterruptVectors 

           .word Reset      ; NMI 
           .word Reset      ; RESET 
           .word Reset      ; IRQ 
     END 

 

What you will see is our rainbow-colored background, as before - but 

over the top of it we see a strange-pattern of vertical stripe(s). And the 

pattern changes. These vertical stripes are our first introduction to 

playfield graphics. 
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Have a good look at what this demo does; although it is only writing 

to a single playfield register (PF1) which can only hold 8 bits (pixels) 

of playfield data, you always see the same stripe(s) on the left side of 

the screen, as on the right. This is a result, as noted earlier, of the TIA 

displaying its playfield data twice on any scanline - the first 20 bits on 

the left side, then repeated for the right side.  

Let's walk through the code and have a look at some of the new bits... 

PATTERN       = $80 ; storage location (1st byte in RAM) 
TIMETOCHANGE  = 20  ; speed of "animation" change as desired 
 

At the beginning of our code we have a couple of equates. Equates are 

labels with values assigned to them. We have covered this sort of 

label value assignation when we looked at how DASM resolved 

symbols when assembling our source code. In this case, we have one 

symbol (PATTERN) which in the code is used as a storage location 

sta PATTERN 

 

... and the other (TIMETOCHANGE) which is used in the code as a 

number for comparison 

cpy #TIMETOCHANGE 

 

Remember how we noted that the assembler simply replaced any 

symbol it found with the actual value of that symbol. Thus the above 

two sections of code are exactly identical to writing "sta $80" and 

"cpy #20". But from our point of view, it's much better to read (and 

understand) when we use symbols instead of values.  

So, at the beginning of our source code (by convention, though you 

can pretty much define symbols anywhere), we include a section 

giving values to symbols which are used throughout the code. We 

have a convenient section we can go back to and "adjust" things later 

on. 

Here's our very first usage of RAM... 

lda #0 

sta PATTERN            ; The binary PF 'pattern' 
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Remember, DASM replaces that symbol with its value. And we've 

defined the value already as $80. So that "sta" is actually a "sta $80", 

and if we have a look at our memory map, we see that our RAM is 

located at addresses $80 - $FF. So this code will load the accumulator 

with the value 0 (that's what that crosshatch means - load a value, not 

a load from memory) and then store the accumulator to memory 

location $80. We use PATTERN to hold the "shape" of the graphics 

we want to see. It's just a byte, consisting of 8 bits. But as we have 

seen, the playfield is 20 bits each being on or off, representing a pixel. 

By writing to PF1 we are actually modifying just 8 of the TIA 

playfield bits. We could also write to PF0 and PF2 - but let's get our 

understanding of the basic playfield operation correct, first. 

      lda #$45 

      sta COLUPF             ; set the playfield color 

 

When we modified the color of the background, we wrote to 

COLUBK. As we know, the TIA has its own internal 'state', and we 

can modify its state by writing to its registers. Just like COLUBK, 

COLUPF is a color register. It is used by the TIA for the color of 

playfield pixels (which are visible - i.e. their corresponding bit in the 

PF0, PF1, PF2 registers is set).  

 

If you want to know what color $45 is, look it up in the color charts 

presented earlier. I just chose a random value, which looks reddish to 

me :-) 

      ldy #0                 ; "speed" counter 

 

We should be familiar with the X,Y and A registers by now. This is 

loading the value 0 into the y register. Since Y was previously unused 

in our kernel, for this example I am using it as a sort of speed throttle. 

It is incremented by one every frame, and every time it gets to 20 (or 

more precisely, the value of TIMETOCHANGE) then we change the 

pattern that is being placed into the PF1 register. We change the speed 

at which the pattern changes by changing the value of the 

TIMETOCHANGE equate at the top of the file.  
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That speed throttle and pattern change is handled in this section... 

      ; Handle a change in the pattern once every 20 frames 
      ; and write the pattern to the PF1 register 
        iny                    ; increment speed count by one 
        cpy #TIMETOCHANGE      ; reached our "change point"? 
        bne notyet             ; no, so branch past 
        ldy #0                 ; reset speed count 
        inc PATTERN            ; switch to next pattern 
  notyet 

        lda PATTERN            ; use our saved pattern 
        sta PF1                ; as the playfield shape 
 

This is the first time we've seen an instruction like "inc PATTERN" - 

the others we have already covered. "inc" is an increment - and it 

simply adds 1 to the contents of any memory (mostly RAM) location. 

We initialized PATTERN (which lives at $80, remember!) to 0. So 

after 20 frames, we will find that the value gets incremented to 1. 20 

frames after that, it is incremented to 2.  

 

Now let's go back to our binary number system for a few minutes. 

Here's the binary representation of the numbers 0 to 10: 

00000000  

00000001  

00000010  

00000011  

00000100  

00000101  

00000110  

00000111  

00001000  

00001001  

00001010  
 

Have a real close look at the pattern there, and then run the binary 

again and look at the pattern of the stripe. I'm telling you, they're 

identical! That is because, of course, we are writing these values to 

the PF1 register and where there is a set bit (value of 1) that 

corresponds directly to a pixel being displayed on the screen.  

 

See how the PF1 write is outside the 192-line picture loop. We only 

ever write the PF1 once per frame (though we could write it every 

scanline if we wished). This demonstrates that the TIA has kept the 
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value we write to its register(s) and uses that same value again and 

again until it is changed by us.  

The rest of the code is identical to our earlier tutorials - so to get our 

playfield graphics working, all we've had to do is write a color to the 

playfield color register (COLUPF), and then write actual pixel data to 

the playfield register(s) PF0, PF1 and PF2. We've only touched PF1 

this time - feel free to have a play and see what happens when you 

write the others.  

 

You might also like to play with writing values INSIDE the picture 

(192-line) loop, and see what happens when you play around with the 

registers 'on-the-fly'. In fact, since the TIA retains and redraws the 

same thing again and again, to achieve different 'shapes' on the 

screen, this is exactly what we have to do - write different values to 

PF0, PF1, PF2 not only every scanline, but also change the shapes in 

the middle of a scanline!  

The diagram below shows the operation of the PF1 register, and 

which of the 20 TIA playfield bits it modifies. You can also see the 

color-register to color correspondence.          
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Today's session is meant to be an introduction to playfield graphics - 

don't worry too much about the missing information, or understanding 

exactly what's happening. Try and have a play with the code, do the 

exercises - and next session we should have a more comprehensive 

treatment of the whole shebang.  

 

Exercises  

1. Modify the kernel so that instead of showing a rainbow-color 

for the background, it is the playfield which has the rainbow 

effect. 

2. What happens when you use PF0 or PF2 instead of PF1? It 

can get pretty bizarre - we'll explain what's going on in the 

next session. 

3. Can you change the kernel so it only shows *ONE* copy of 

the playfield you write (that is, on the left side you see the 

pattern, and on the right side it's blank). Hint: You'll need to 

modify PF1 mid-scanline. We'll have a look at these exercises 

next session. Don't worry if you can't understand or implement 

them - they're pretty tricky.  

Subjects we will tackle next time include... 

• The other playfield registers (PF0, PF2) 

• The super-weird TIA pixel -> screen pixel mapping 

• Mirrored playfields 

• Two colors playfields 

• Asymmetrical playfield 
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Session 14: Playfield Weirdness 

The diagram below shows the bizarre way that bits in the TIA 

playfield registers (PF0, PF2) map to the onscreen pixels in reverse 

order. We have already seen how PF1 works - it is shown in this 

diagram, too.  

 

This strange backwardness (not to mention inconsistency!) is 

probably a result of the fact that it was simpler (cheaper) to design the 

hardware to operate in this fashion. Among other things, this layout of 

pixels in our TIA registers makes scrolling horizontally a major pain 

in the neck!  

The bits marked with a cross are not used by the '2600 (including the 

low bit in the color registers), and you may write any value to these - 

it is ignored.  

The diagram shows a shadowy "right-side" - where the 20 pixels of 

the left side are duplicated. Be aware that this right-side may also be 

mirrored, further complicating things. 
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I'll be delivering this session in stages. If you want to play with some 

things then....  

1. Confirm that PF0 and PF2 have reverse pixel to bit position 

ordering (Hint: using binary for your values will assist you to 

see exactly what pixel corresponds to what bit (ie: lda 

#%01000000, sta PF0) 

2. What happens if you write PF0, PF1 or PF2 in the middle of a 

scanline? What would you expect to happen? Can you see any 

use for this? (Hint: how do you think an asymmetric playfield 

- a different pattern on the left and right of the screen - is 

created?) 

3. Write some solid shape(s) to PF0, PF1, PF2 (ie: lda 

#%01011110, sta PF0, sta PF1, sta PF2) and then play with 

changing the playfield color several times during a scanline. 

How many color changes (maximum) do you think you can 

get on any line? Why is there a limit? 

4. How would a game do horizontal scrolling? This is a difficult 

question - but I'm trying to get you to think about the 

implications of the odd playfield->pixel correspondence, and 

the implications for game writing. 

5. How would you make a "wall" which was 8 scanlines high, 

full screen width, followed by left and right walls just 1 

playfield pixel wide each, at extreme left/right edges of the 

screen, 176 scanlines high, followed by another horizontal 

"wall", full screen width and 8 scanlines high? 

Note: this would form a "box" border around the entire 

playfield. 

There we go, that should keep you busy! 
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Session 15: Playfield Continued 

We've had a bit of time to think about the playfield, and hopefully 

have a go at some of the exercises. Admittedly I threw you in the deep 

end with the last session - so we'll go back a step and walk through 

exactly what all this playfield oddity is about. We'll also tackle some 

of the exercises to show that there's more than one way to skin a fish.  

Last session we learned that the playfield registers PF0 and PF2 are 

reversed. Specifically, the order of pixels in the playfield registers 

(one bit per pixel, remember!) is backward, compared to the order for 

the first playfield register we encountered - PF1. This backward 

ordering is rather confusing, but that's just the way it is. Have a close 

look at the diagram presented and try and understand exactly the 

"playfield register/bit" to "pixel position on the scanline" 

correspondence.  

 

There's one new playfield-related capability of the '2600 which I'd 

like to introduce now - playfield mirroring. I've already introduced 

this to you when I stated that the right hand side of the playfield was a 
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copy of the left hand side (that is, the left 20 pixels come from the 20 

playfield bits held in the TIA registers PF0, PF1 and PF2 - and the 

right 20 bits are a copy of the same bits). That copy can be displayed 

"normally" - or "mirrored". When mirrored, the bits are literally a 

mirrored copy of the left side of the playfield.  

We're already familiar with two 'types' of TIA register. There's the 

strobe-type, where a write of any value to the register causes 

something to happen, independent of the value written (an example is 

WSYNC, which halts the 6502 until the TIA starts the next scanline). 

A second type is the normal register to which we write a byte, and the 

TIA uses that byte for some internal purpose (examples of these are 

the playfield registers PF0, PF1 and PF2). PF0 was a special-case of 

this type, where - though we wrote a byte - only four of the bits were 

actually used by the TIA. The remaining bits were discarded/ignored 

(have a look at the PF0 register in the diagram on the previous page - 

the X for each bit position in bits D0-D3 indicates those bits are not 

used).  

The third type of register (they're not really 'types' - but I want you to 

understand the difference between the way we're writing data to the 

TIA) is where we are interested in just the state of a single BIT in a 

register. Time to introduce a new TIA register, called CTRLPF. It's 

located at address 10 ($A) 

CTRLPF 
    This address is used to write into the playfield control 
    register (a logic 1 causes action as described below) 
 
    D0 = REF (reflect playfield) 
 
    D1 = SCORE (left half of playfield gets color of player 0, 
    right half gets color of player 1) 
 
    D2 = PFP (playfield gets priority over players so they can 
    move behind the playfield) 
 
    D4 & D5 = BALL SIZE 
              D5   D4   Width 
              0    0    1 clock 
              0    1    2 clocks 
              1    0    4 clocks 
              1    1    8 clocks 
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Wow! This register has a lot of different stuff associated with it! Most 

of it is related to playfield display (bits D0, D1, D2) but bits D4 and 

D5 control the "BALL SIZE" - we'll worry about those bits later :-) 

 

Bit D0 controls the reflection (mirroring) of our playfield. If this bit is 

0, then we have a "normal" non-mirrored playfield, and that's what 

we've been seeing so far in our demos. If we set this bit to 1, then the 

'2600 will display a reflected playfield (that is, the right-side of the 

playfield is a mirror-image of the left-side, instead of a copy). Note 

that only a single bit is used to control this feature - if we wrote a byte 

with this bit set (i.e. %00000001) to CTRLPF we would also be 

setting those other bits to 0 - and we should be very sure this is what 

we want. In fact, it's often NOT what we want, so when we are 

writing to registers such as this (which contain many bits controlling 

different parts of the TIA hardware/display), we should be very 

careful to keep all the bits exactly as we need them. Sometimes this is 

done with a "shadow" register - a RAM copy of our current register 

state, and by first setting or clearing the appropriate bit in the shadow 

register, and THEN writing the shadow register to the TIA register. 

This is necessary because many/most of the TIA registers are only 

writeable - that is, you cannot successfully read their contents and 

expect to get the value last written.  

 

Let's have a quick look at those other bits in this register, related to 

playfield...  

 

D1 = SCORE. This is interesting. Setting this bit causes the playfield 

to have two colors instead of one. The left side of the playfield will be 

displayed using the color of sprite 0 (register COLUP0), and the right 

side of the playfield will be displayed using the color of sprite 1 

(register COLUP1). We won't play with this for now - but keep in 

mind that it is possible. Remember, this machine was designed for 

PONG-style games, so this sort of effect makes sense in that context.  

 

D2 = PFP. Playfield priority. You may have the playfield appear in 

front of, or behind, sprites. If you set this bit, then the playfield will 

be displayed in front, and all sprites will appear to go behind the 

playfield pixels. If this bit is not set, then all sprites appear to go in 

front of the playfield pixels.  
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That's a very quick rundown of this register. We know now that it 

controls the playfield mirroring (=reflection), the playfield color 

control for left/right halves, the playfield priority (if sprites go in front 

of or behind the playfield), and finally it does something with the 

"BALL SIZE" which we're not worrying about yet.  

 

I've indicated that it's useful to have a "shadow" copy of the register in 

RAM, so that we can easily keep track of the state of this sort of 

register. In practice, this is rarely done - as we generally just set the 

reflection on or off, the score coloring on or off, the priority on or off, 

and the ball size as appropriate... and then forget it. But if, for 

example, you were doing a game where you were changing the 

priority on the fly (so your sprites went behind SOME bits 

background, but not other bits) then you'd need to know what those 

other values should be.  

 

In any case, the point of this is to introduce you slowly to more TIA 

capabilities, and at the same time build your proficiency with 6502 

programming. Here's how we set and clear bits with 6502. 

CTRLPF_shadow = $82  ; a RAM location for our shadow register 
   lda #%00000000 

   sta CTRLPF_shadow ; init our shadow register as required 
 

  ; lots of code here 
 

   lda CTRLPF_shadow 

   sta CTRLPF        ; copy shadow register to TIA register 
 

The above code snippet shows the general form of shadow register 

usage. The shadow register is initialized - and at some point later in 

the code, we copy it to the TIA register. Now for the fun bit - setting 

and clearing individual bits in the shadow register... 

  ; how to set a single bit in a byte 
   lda CTRLPF_shadow  ; load the shadow register from RAM 
   ora #%00000001     ; SET bit 0 (D0 = 1) 
   sta CTRLPF_shadow  ; save new register value back to RAM 
 

  ; how to clear a single bit in a byte 
   lda CTRLPF_shadow 

   and #%11111110     ; keep all bits BUT the one we want to clear 
   sta CTRLPF_shadow 
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OK, that's not too difficult to understand. The two new 6502 

instructions we have just used are "ORA", which does a logical-OR 

(that is, combines the accumulator with the immediate value bit-by-bit 

using a OR operation) - and the "AND", which does a logical-AND 

(again, combines the accumulator with the immediate value bit-by-bit 

using an AND operation). Now this is getting into pretty basic binary 

math - and you should read up on this stuff if you don't already know 

- but here are some truth tables for you... 

OR operation 
 
BIT |   0     1 
----+------------ 
 0  |   0     1 
    | 
 1  |   1     1 
 
 

AND operation 
 
BIT |   0     1 
----+------------ 
 0  |   0     0 
    | 
 1  |   0     1 
 

Basically the above two tables give you the result FOR A SINGLE 

BIT POSITION, where you either OR or AND together two bits. For 

example, if I "OR" together 1 and 0, the resultant value (bit) is 1. 

Likewise, if I "AND" together a 1 and 0, I get a 0. This logical 

operation is performed on each bit of the accumulator, with the 

corresponding bit of the immediate value as part of the instruction. So 

"ora #%00000001" will actually leave the accumulator with the 

lowest bit SET. No matter what. Likewise, "and #%11111110" will 

leave the accumulator with the lowest bit CLEAR. No matter what. 

And in the other bits, their value will remain unchanged. You should 

try some values and check this out, because understanding this binary 

logical operation on bits is pretty fundamental to '2600 programming.  

In the initialization section of your current kernel, add the following 

lines... 

lda #%00000001 

sta CTRLPF 
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That's our playfield reflection in operation - if you're running any sort 

of playfield code, you will see that the right-side is now a mirror-

image of the left-side. Now have a think about the exercise I offered 

in session 14... 

5. How would you make a "wall" which was 8 scanlines 

high, full screen width, followed by left and right walls 

just 1  pixel wide each, at extreme left/right edges of the 

screen, 176 scanlines high, followed by another horizontal 

"wall",  full screen width and 8 scanlines high? Note: this 

would form a "box" border around the entire playfield. 

It should be apparent, now, that in this sort of situation we really only 

need to worry about the left side of the playfield! If we let the '2600 

reflect the right side, we will get a symmetrical copy of the left, and 

we'll have our box if only we do the left-side borders. This is a huge 

advantage to the programmer, because we suddenly don't have to 

write new PF0, PF1, PF2 values each scanline. Remember (and I'll 

drum this into you until the very last session!) we only have 76 cycles 

per scanline - the less we have to do on any line, the better. At the 

very least, rewriting PF0, PF1 and PF2 twice per scanline would cost 

30 cycles IF you were being clever. That's almost half the available 

time JUST to draw background - and there's still colors, sprites, balls 

and missiles to worry about! However, if you just use a reflected 

playfield, then we are only looking at single writes to PF0, PF1, PF2, 

cutting our playfield update to only 15 cycles per line (eg: lda #value / 

sta PF0 / lda #value2 / sta PF1 / lda #value3 / sta PF2).  

So, let's get down to it - here's a solution for exercise 5, of session 

14... 

 
; '2600 for Newbies 
; Session 15 - Playfield Continued 
; This kernel draws a simple box around the screen border 
; Introduces playfield reflection  
 

               processor 6502 

               include "vcs.h" 

               include "macro.h" 

;------------------------------------------------------ 
               SEG 

               ORG $F000 
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Reset 

  ; Clear RAM and all TIA registers 
               ldx #0  

               lda #0  

Clear          sta 0,x  

               inx  

               bne Clear 

 

      ; Once-only initialization... 
               lda #$45 

               sta COLUPF          ; set the playfield color 
               lda #%00000001 

               sta CTRLPF          ; reflect playfield 
 

StartOfFrame 

  ; Start of new frame 
  ; Start of vertical blank processing 
               lda #0 

               sta VBLANK 

               lda #2 

               sta VSYNC 

 

               sta WSYNC 

               sta WSYNC 

               sta WSYNC      ; 3 scanlines of VSYNC signal 
 

               lda #0 

               sta VSYNC 

 

      ;------------------------------------------------ 
      ; 37 scanlines of vertical blank... 
               ldx #0 

VerticalBlank  sta WSYNC 

               inx 

               cpx #37 

               bne VerticalBlank 

 

      ;------------------------------------------------ 
      ; Do 192 scanlines of color-changing (our picture) 
               ldx #0       ; this counts our scanline number 
               lda #%11111111 

               sta PF0 

               sta PF1 

               sta PF2 

         ; We won't bother rewriting PF0-PF2 every scanline 
         ; of the top 8 lines - they never change! 
 

Top8Lines      sta WSYNC 

               inx 

               cpx #8               ; are we at line 8? 
               bne Top8Lines        ; No, so do another 
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; Now we want 176 lines of "wall" 
; Note: 176 (middle) + 8 (top) + 8 (bottom) = 192 lines 
               lda #%00010000       

; PF0 is mirrored <--- direction, low 4 bits ignored 
               sta PF0 

               lda #0 

               sta PF1 

               sta PF2 

 

; again, we don't bother writing PF0-PF2 every scanline  
; - they never change! 
MiddleLines    sta WSYNC 

               inx 

               cpx #184 

               bne MiddleLines 

; Finally, our bottom 8 scanlines - the same as the top 8 
; AGAIN, we aren't going to bother writing  
; PF0-PF2 mid scanline! 
               lda #%11111111 

               sta PF0 

               sta PF1 

               sta PF2 

 

Bottom8Lines   sta WSYNC 

               inx 

               cpx #192 

               bne Bottom8Lines 

;------------------------------------------------ 
               lda #%01000010 

               sta VBLANK   ; end of screen - enter blanking 
 

  ; 30 scanlines of overscan... 
               ldx #0 

Overscan       sta WSYNC 

               inx 

               cpx #30 

               bne Overscan 

 

               jmp StartOfFrame 

;------------------------------------------------- 
           ORG $FFFA 

InterruptVectors 

           .word Reset          ; NMI 
           .word Reset          ; RESET 
           .word Reset          ; IRQ 
     END 

 

This kernel is interesting in that it achieves the box effect by writing 

the playfield registers BEFORE the scanline loops to do the 

appropriate section. It uses the knowledge that the TIA has an internal 

state and will keep displaying whatever it already has in the playfield 
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registers. So, in fact, the actual cost (in cycles) of drawing the "box" 

playfield on each scanline is 0 cycles - ie; it's free. We just had that 

short initial load before each section (taking a few cycles out of the 

very first scanline of each section). This is how you need to think 

about '2600 programming - how to remove cycles from your scanlines 

- and do the absolute minimal necessary.  

 

That will do for today's session. We've had an introduction to 

controlling individual TIA register bits, and seen how to achieve a 

reflected playfield at next to no cost. We've had a brief introduction to 

the CTRLPF register, and seen how it has a myriad (well, more than 

3) uses. Although some of the previous sessions have asked you to 

think about tricky subjects like horizontal scrolling, and asymmetrical 

playfields - now is not the time to actually discuss these tricky areas. 

Those who have been posting their sample solutions are on the right 

track. We'll get to those areas in future sessions - so until next time 

(when we'll develop our playfield skills a bit more)... ciao! 

Exercises: 

1. Introduce a RAM shadow of the CTRLPF register, and modify 

it differently in each section of the kernel. For example turn 

reflection on and off partway through the midsection of the 

box, and see what happens. 
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2. Have a play with the SCORE bit in the CTRLPF register, and 

in conjunction with that the COLUP0 and COLUP1 color 

registers. Note how this SCORE bit changes where the color 

for the playfield comes from. 
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Session 16: Letting the Assembler Do the Work 

This session we're going to have a brief look at how DASM (our 

assembler) builds up the binary ROM file, and how we can use 

DASM to help us organize our RAM.  

As we've discovered, DASM keeps a list of all symbols and as it is 

assembling our code, it assigns values (= numbers, or addresses) to 

those symbols. When it is creating the binary ROM image, it replaces 

opcodes (=instructions) with appropriate values representing the 

opcode, and it replaces symbols with the value of the symbol from its 

internal symbol table.  

OK, that basic process should be clear by now. When we view our 

symbol table (which is output when we use the -v5 switch on our 

command-line when assembling a file), we will see that there are 

some symbols which are unused (the used ones have (R ) after them, 

in the symbol table output). We can see, then, that it is not necessary 

for a symbol to actually be in the ROM binary file for it to have a 

value. There are several reasons why we'd want to have a symbol with 

a value, but not have that symbol "do anything" or relate to anything 

in the binary.  

For example, we could use a symbol as a switch to tell the compiler 

which section of code to compile. A symbol could be used as a value 

to tell us how many scanlines to draw... e.g.: 

SCANLINES = 312; PAL 
 

;...later 
 

   iny 

   cpy #SCANLINES   ; at the end? 
   bne AnotherLine  ; do another line 

 

We can even implement a compile-time PAL/NTSC switch 

something like this... 

PAL = 0 

NTSC = 1 

SYSTEM = PAL   ; change this to PAL or NTSC 
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#if SYSTEM = PAL 

  ; insert PAL-only code here 
#endif 

 

#if SYSTEM = NTSC 

  ; insert NTSC-only code here 
#endif 

 

This sort of use of symbols to drive the DASM assembly process can 

be quite useful when you want various sections of code to behave 

differently - for whatever reason. You might have a test bit of code 

which you can conditionally compile by defining a symbol as in the 

above example.  

 

Now that we're comfortable with DASM's use of symbols as part of 

the compilation process, let's have a look at how we've been 

managing our RAM so far...  

VARIABLE = $80  ; variable using the 1st byte of RAM 
VAR2 = $81      ; another variable using the 2nd byte of RAM  
VAR3 = $82      ;etc 

 

That's perfectly fine - and as we already know, lines like this will add 

the symbols to DASM's internal symbol table, and whenever DASM 

sees those symbols it will instead use the associated value. Consider 

the following example...  

VARIABLE = $80  ; variable using 1st TWO bytes of RAM 
VAR2 = $82      ; another variable must start after  
                ;  the 1st var's space 

 

In this case we've created a 2-byte variable starting at the beginning of 

RAM. So the second variable has to start at $82 instead of $81 - 

because the first variable requires locations $80 and $81. The above 

will work fine - but there's no clear correspondence between the 

variable declaration (which is really just assigning a number/address 

to a symbol) and the amount of space required for the variable. 

Furthermore, if we later decided that we really needed 4 bytes 

(instead of 2) for VARIABLE, then we'd have to "shift down" all 

following variables - that is, VAR2 would have to be changed to $84, 

etc.. This is not only extremely annoying and time-consuming, it is a 

disaster waiting to happen - because you humans are fallible.  

What we really want to do is let DASM manage the calculation of the 
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variable/symbol addresses, and simply say "here's a variable, and it's 

this big". And fortunately, we can do that.  

 

First, let's consider "normal code"  

       ORG $8000 

LABEL1    .byte 1,34,12,3 

LABEL2    .byte 0 

 

When assembled, DASM will assign $8000 as the value of the 

symbol LABEL1, and $8004 as the value of the symbol LABEL2 

(that is, it assembles the code, and starting at location $8000 (which is 

also the value of LABEL1) we will see 4 bytes (1, 34, 12, 3) and then 

another byte (0) which is at $8004 - the value of the symbol LABEL2.  

 

Note, the ".byte" instruction (actually it's called a pseudo-op, as it's an 

instruction to the assembler, not an actual 6502 instruction) is just a 

way of telling DASM to put particular byte values in the ROM at that 

location.  

 

Remember when we wrote "NOP" to insert a no-operation instruction 

- which causes the 6502 to execute a 2 cycle delay? When we looked 

at the listing file, we saw that the NOP was replaced in the ROM 

image by the value $EA. Well, instead of letting DASM work out 

what the op-code's value is, we can actually just put that value in 

ourselves, using a .byte instruction to DASM. Example...  

.byte $EA   ; a NOP instruction! 

 

Now, this isn't often done - but there are extremely rare cases where 

you might want to do this (typically with extremely obscure and 

highly godlike optimizations). We won't worry about that for now. 

But it's important to understand that just like DASM - which simply 

replaces a list of instructions with their values, we can just as easily 

do the same thing and put the values there ourselves.  

 

Now it's easy to see how DASM gets its values for the labels from the 

address of the data it is currently assembling - in the earlier example, 

we started assembly (the ORG pseudo-op) at $8000, and then DASM 

encountered the label LAB1 - which was given the value $8000, etc. 
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We then inserted 4 bytes with the ".byte" pseudo-op. Instead of 

".byte" which places specific values into the output binary file, we 

could have used the "ds" pseudo-op - which stands for "define space". 

For example, the following would give the same two addresses to 

LAB1 and LAB2 as the above example, but the data put into the 

binary would differ...  

     ORG $8000 

LAB1 ds 4 

LAB2 ds 1 

 

Typically, the "ds" pseudo-op will place 0's in the ROM - as many 

bytes as specified in the value after the "ds". In the above example, 

we'll see 4 0's starting at $8000 followed by another at $8004.  

 

Now let's consider our RAM... which starts at $80. What would we 

have if we did something like this...?  

   ORG $80    ; start of RAM 
VARIABLE ds 3 ; define 3 bytes of space for  
              ; this variable 
VAR2  ds 1    ; define 1 byte of space for this one 
VAR3  ds 2    ; define 2 etc.. 

 

Now that's much nicer, isn't it! It won't work, though :-) The problem 

is, DASM will quite happily assemble this - and it will correctly 

assign values $80 to VARIABLE, $83 to VAR2 and $84 to VAR3 - 

but it will ALSO generate a binary ROM image containing data at 

locations $80-$85. That's RAM, not ROM - and it most definitely 

doesn't belong in a ROM binary. In fact, our ROM would now also be 

HUGE - because DASM would figure that it needs to create an image 

from location $80 - $FFFF (ie: it will be about 64K, not 4K).  

 

What we need to do is tell DASM that we're really just using this 

code-writing-style to calculate the values of the symbols, and not 

actually creating binary data for our ROM. And we can do that. Let's 

plunge right in...  

   SEG.U variables 

   ORG $80 

VARIABLE  ds 3 ; define 3 bytes of space for variable 
VAR2      ds 1 ; define 1 byte of space for this one 
VAR3      ds 2 ; define 2 etc.. 
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The addition is the "SEG.U" pseudo-op, followed by a segment name. 

This is telling DASM that all the following code (until a next "SEG" 

pseudo-op is encountered) is an uninitialized segment. When it 

encounters a "segment" defined like this, DASM will not generate 

actual binary data in the ROM - but it will still correctly calculate the 

address data for the symbols.  

 

Note: It is important to give the segment a name (though this 

parameter is optional, you should choose a unique name for each 

segment). Naming segments assists the assembler in keeping track of 

exactly which parts of your code are initialized and uninitialized.  

 

If you now go back and have a close look at the vcs.h file, you may 

begin to understand exactly how the values for all of the TIA registers 

are actually defined/calculated. Yes, they're defined as an 

uninitialized segment starting at a specific location. Typically this 

start-location is 0, and each register is assigned one byte. We keep the 

register symbols in the correct order and let DASM work out the 

addresses for us. There's a reason for this - to do with bankswitching 

cartridge formats - but the general lesson here is that it's nice to let 

DASM do the work for us - particularly when defining variables - and 

let it worry about the actual addresses of stuff - we just tell it the size.  

 

One final word on the SEG pseudo-op. Though it is not strictly 

necessary, all of our code uses it. Without the .U extension, SEG will 

create binary data for our ROM. With the .U, SEG just allows DASM 

to populate its symbol table with names/values.  

 

So from now on, let's define variables "the proper way". We'll use an 

uninitialized segment starting at $80, and give each variable a size 

using the "ds" pseudo-op. And don't forget after our variable 

definitions to place another "SEG" which will effectively tell DASM 

to start generating binary ROM data.  
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Here's an example...  

   SEG.U vars ; the label "vars" will appear in our 
              ; symbol table's segment list 
   ORG $80    ; start of RAM 
 

Variable ds 1  ; a 1-byte variable 
 

   SEG  ; end of uninitialized segment - start of ROM binary 
   ORG $F000 

 

; code.... 

 

Variable Overlays 

This is a good time to mention variable overlays. This is a handy 

'trick' you can use to re-use RAM by assigning different usage 

(=meaning) to RAM locations based on the premise that some RAM 

locations are only needed for some parts of a game, and some for 

others. If you have two variables which do not clash in terms of the 

area in the code they are used, then there's no real reason why those 

variables can't use the same RAM location.  

Here's my original post to the stella list on this issue (7/Feb/2001): 

##################### start of posting  #################### 

As I'm trying to optimize RAM usage, I'd been using a general 

scratchpad variable ("temp") and using that in the code wherever I 

need to. I managed the allocation and meaning of the variables 

manually. That is, I might know that "temp+1" is the variable for the 

line #, etc., etc. It works, but it is prone to error.  

 

So, I was thinking of a better way, and came up with this...  

       org $80   ; start of our overlay section 
temp   ds 8      ; general area for variable overlays 
 

  ; other RAM variable declarations here.... 
 

; and now come the 'overlays'... these effectively use 
; the 'temp' RAM location, referenced by other names... 
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  ; overlay section 1 
  org temp  ; <--- this is the bit that is the trick 
 

overlayvar1    ds 1         ; effectively 'temp' 
overlayvar2    ds 2         ; effectively 'temp+1' 
overlayvar3    ds 2         ; effectively 'temp+3' 
 

  ; overlay section 2 
  org temp   ; ANOTHER overlay on the 'temp' variable 
 

linecounter    ds 1         ; effectively 'temp' 
indirect       ds 2         ; effectively 'temp+1' 
  ; etc... 
 

  ; overlay section 3 
  org temp 

 

sect3var        ds 8 

  ; can't add more in this overlay (#3) as it's already  
  ; used all of 'temp's size 

 

This all works fine... as long as you remember that when you are 

using variables in overlays, you can't use two different overlays at the 

same time. That is, the same routine (or section of code) CANNOT 

use variables in overlay section 1 AND overlay section 2. It's not that 

much of a restriction, and allows you to use nice variable names 

throughout your code.  

 

Just be careful your overlays don't get bigger than the general area 

allocated for each section.  

 

The advantages of this system are that you can CLEARLY see what 

your variables are, and you only have to change 

sizes/declarations/usage in a single place (the RAM overlay 

declaration)... not hunt through your code when you decide to change 

usage.  

#################### end of posting ################### 

To summarize, we declare one 'variable' which is a block of RAM 

which is used for sharing RAM. This is our overlay section. We then 

declare each of our Overlays by setting the origin to the start of the 

overlay section and define new variables. This works because the 
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assembler is generating an UNINITIALISED segment for our RAM 

variables. What that means is that we're just using the assembler to 

assign values to labels (to its symbols), but not actually generating 

ROM data. So each overlay section starts in the same spot, and 

defines variables (i.e. assigns addresses to labels) starting at that spot. 

We essentially share RAM locations for those variables, with other 

variables which are also defined the same way.  

 

I've used this technique now for many demos. It can give the effect of 

dramatically increasing available RAM. Just have to be careful that 

you don't try and use two variables sharing the same location at any 

time. With a bit of careful management it comes naturally.  

 

Here's a generic 'shell' with comments I use for overlay RAM 

variables...  

; This overlay variable is used for the overlay variables.  That's OK. 
; However, it is positioned at the END of the variables so, if on the  
; off chance we're overlapping; stack space and variable, it is LIKELY 
; that that won't be a problem, as the temp variables; (especially the 
; latter ones) are only used in rare occasions. 
 
; FOR SAFETY, DO NOT USE THIS AREA DIRECTLY (ie: NEVER reference 
; 'Overlay' in the code); ADD AN OVERLAY FOR EACH ROUTINE'S USE, SO  
; CLASHES CAN BE EASILY CHECKED 
 

Overlay         ds 0  ;--> overlay (share) variables (make sure this  

                         ; is as big as the biggest overlay subsection) 
 

;--------------------------------------------------------------------- 
; OVERLAYS! 
; These variables are overlays, and should be managed with care 
; That is, variables are ALREADY DEFINED, and we're reusing RAM  
; for other purposes 
; EACH OF THESE ARE VARIABLES (TEMPORARY) USED BY ONE ROUTINE (AND 
; IT'S SUBROUTINES) 
; THAT IS, LOCAL VARIABLES.  USE 'EM FREELY, THEY COST NOTHING 
; TOTAL SPACE USED BY ANY OVERLAY GROUP SHOULD BE <= SIZE OF 'Overlay' 
;-------------------------------------------------------------------- 
               org Overlay 

               ; ANIMATION/LOGIC SYSTEM 
               ; place variables here 
 

;-------------------------------------------------------------------- 
               org Overlay 

               ; DRAWING SYSTEM 
               ; place variables here 
               ; etc 

 

Hope that's clear enough. 
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Session 17: Asymmetrical Playfields – Part 1 

By now you should be familiar with how the '2600 playfield works. In 

summary, there are three playfield registers (PF0, PF1, PF2) and these 

hold 20 bits of playfield data. The '2600 displays this data twice on 

every scanline, and you can have the second half mirrored, if you 

wish. Playfield is a single-color, but each half of the screen may be set 

to use the colors of the players (more about those, later!). In short, 

though, we have a fairly versatile system just great for PONG-style 

games.  

Pretty soon, though, programmers started doing much more 

sophisticated things with the TIA - and especially with the playfield 

registers - than just displaying symmetrical (or mirrored) playfields.  

Since writes to TIA immediately change the internal 'state' of the TIA, 

and since the TIA and 6502 work in tandem during the display of a 

TIA frame, there's no reason why the 6502 can't modify things on-the-

fly in the middle of scanlines. For example, any write to playfield 

registers will IMMEDIATELY reflect in changes to the data that the 

TIA is sending for a particular scanline. I qualify this slightly by my 

non-knowledge if these immediate changes are on a per-pixel basis, or 

on a per-byte basis. Something for us all to play with!  

In any case, as will probably have become obvious to you by now, it 

is possible to display different 'shape' on the left and right of any 

scanline. As stated, if we left the TIA alone then it would display the 

same (or a mirrored version) data on the left and right halves of the 

screen - coming from its 20 pixel playfield data. But if we modify any 

of the playfield registers on-the-fly (that is, mid-scanline) then we will 

see the results of that modification straight away when the TIA draws 

the rest of the scanline.  

Let's revisit briefly our understanding of the TIA and frame timing. 

Please refer to the earlier sessions where the timing of the TIA and 

6502 were covered. In summary, there are exactly 228 color-clocks of 

TIA 'time' on any scanline - 160 of those clocks are actual visible 

pixels on the screen and 68 of them are the time it takes for the 

horizontal retrace to occur.  
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Our 'zero point' of any scanline is the beginning of horizontal retrace. 

This is the point at which the TIA re-enables the 6502 if it has been 

halted by a WSYNC write. At the beginning of any scanline, then, we 

know that we have exactly 68 color clocks (=68/3 = 22.667 cycles) 

before the TIA starts 'drawing' the line itself.  

You should already be familiar with the horizontal resolution of '2600 

playfield - exactly 40 pixels per scanline. I use the term 'pixels' 

interchangeably here - to mean a minimum unit of graphic resolution. 

For the playfield, there are 40 pixels a line. But the TIA has 160 

color-clocks per line, and in fact sprite resolution is also 160 pixels 

per line. Another way of looking at this is that each playfield pixel is 

4 color-clocks wide, and each sprite pixel is 1 color clock wide (as a 

minimum, anyway - this can be adjusted to give double-wide and 

quadruple-wide sprites. We'll get to sprites soon, I promise!)  

It's quite important to understand the timing of things. Let's delve a bit 

more deeply into the synchronization between the 6502 and the TIA, 

and have a close look at when/where each pixel of the playfield is 

actually being drawn.  

As stated above, the first 68 cycles of each scanline are the horizontal 

retrace period. So the very first pixel of playfield (which is 4 color-

clocks wide, remember!) starts drawing on TIA cycle 68 (of 228 in 

the line). So if we want that pixel to be the right 'shape' (ie: on or off, 

as the case may be) then we really have to make sure we have the 

right data in the right bit of PF0 before cycle 68.  

Likewise, we should really make sure that the second pixel has its 

correct data set before cycle 72 (68 + 4 color clocks). In fact, you 

should now understand that the 4 playfield pixels at the left of the 

scanline occupy TIA color clocks (68-71) (72-75) (76-79) and (80-

83). The very first pixel of PF1, then, starts displaying at clock 84. So 

we need to make sure that data for PF1 is written before TIA clock 

84. And so it goes, we should make sure that PF2 data is written to 

PF2 before the TIA starts displaying PF2 pixels. And that happens on 

clock (84 + 8 * 4 = 116)  

Finally, we can now see that PF2 will take 32 color clocks (because 

it's 8 pixels, at 4 clocks each). As it starts on TIA clock 116, it will 
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end on clock 147. The obvious calculation is 147 (end) - 68 (start) = 

80 color clocks. Which nicely corresponds to 20 pixels at 4 color 

clocks each. OK, that's straightforward, but you should now follow 

exactly the correspondence between TIA color clocks and the start of 

display of particular pixels on any scanline.  

Now, what happens at color clock 148? The TIA starts displaying the 

second half of the playfield for the scanline in question, of course! 

Depending on if the playfield is mirrored or not, we will start seeing 

data from PF2 (mirrored) or from PF0 (non-mirrored).  

Now, and here's the really neat bit - and the whole trick behind 

'asymmetric' playfields - we know that if we rewrite the TIA playfield 

data AFTER it has been displayed on the left half of the scanline, but 

BEFORE it is displayed on the right half of the scanline, then the TIA 

will display different data on the left and right side of the screen.  

In particular, this method tends to use a non-mirrored playfield. We 

noted that PF0 finished displaying its 4 pixels on color clock 83 

(inclusive). So from color clock 84 onwards (up to 148, in fact), we 

may freely write new data to PF0 and we won't bugger anything 

currently being displayed. That's 60 color clocks of time available to 

us.  

Time to revisit the timing relationship between the 6502 and the TIA. 

The TIA has 228 color clocks per scanline, but the 6502 speed is 

derived from the TIA clock through a divide-by-three. So the 6502 

has only 76 cycles (228/3) per scanline. So if there are 60 color clocks 

of time available to change PF0, that corresponds to 60/3 = 20 cycles 

of 6502 time. Further conversions between TIA time and 6502 cycles 

show us that it must start after TIA cycle 84 (= 84/3) = 6502 cycle 28, 

and it must end before TIA cycle 148 (6502 cycle 148/3 = 49.3333). 

Aha! How can we have a non-integer cycle? We can't, of course. All 

this tells us is that it is IMPOSSIBLE to exactly change data on TIA 

color clock 148. We can change TIA data on any divisible-by-three 

cycle number, since the 6502 is working in tandem with the TIA but 

only gets a look-in every 3 cycles.  
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This inability to exactly time things isn't a problem for us now, as we 

have already noted that there are 60 TIA color clocks in which we can 

effect our change for PF0.  

PF1 and PF2 operate in exactly the same fashion. PF1 is displayed 

from clocks 84-115 and on the right-side from clock 164 onwards 

(remember the right-side starts at clock 148, PF0 takes 16 color-

clocks (4 pixels at 4 color-clocks each). So to modify PF1 so it 

displays different right-side and left-side visuals, we need to modify it 

between color clock 116 and 164. That gives us a narrower window of 

time in which we can make our modification - just 48 color clocks. 

But still, we can do that, right?  

Finally, PF2 is displayed from clock 116-147 (let's check, that's 32 

color clocks inclusive - 32 = 8 pixels x 4 clocks per pixel. Yep!). And 

on the right-side of the scanline, PF2 will display from clock 164 + 32 

= 196 to clock 227. 227 - 196 = exactly 32 color clocks. Voila! So the 

window of opportunity for PF2, so to speak, is from color clock 148 

to 195 inclusive. That's another 48 clocks.  

So to summarize the timing for writing the right-hand-side PF register 

updates, we can safely modify PF0 from clocks 84 - 147, PF1 from 

clocks 116 - 163 inclusive, and PF2 from 148 - 195 inclusive. Note 

the overlap on these times. We could safely modify PF1 on (say) 

cycle 116, and then modify PF0 on cycle 130, and finally modify PF2 

on cycle 190. The point being, it's not the ORDER of the 

modifications to the playfield registers than count - it's the TIMING 

that counts. As long as we modify the registers in the period when the 

TIA isn't drawing them, we won't see glitches on the screen.  

Well, now you have all the information you need to generate an 

asymmetrical playfield. But there's one thing you need to remember - 

once you write data to the TIA, the TIA retains that 'state', or the data 

that you last wrote. So if you want an asymmetrical playfield, you not 

only have to write the new data for the right-half of the scanline, you 

have to write the right data for the left side of the NEXT scanline!  

In fact, we already covered that. As long as PF0 is written before 

cycle 68 then it will display OK on the left.... etc. So a typical 

asymmetrical playfield kernel will be writing 6 playfield writes (two 
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to PF0, two to PF1, two to PF2) on each and every scanline. As you 

can imagine, you don't get a lot of change out of just 76 cycles of 

6502 time per scanline, when as a minimum a load/store is going to 

cost you 5 cycles of time - and in most cases more like 6 or 7. That 

can equate to 40 or more cycles of your 76, JUST drawing the 

playfield data. Ouch!  

Include WSYNC in your CPU cycle calculations 

There are 228 ( = 160 visible + 68 not visible ) color clocks on each 

scanline. The CPU is active ALL the time, *unless* you write to 

WSYNC at which point the CPU is *immediately* halted and doesn't 

become active again until the start of the next scanline. Since it takes 

3 cycles to actually write WSYNC, a kernel which is using this to 

time scanlines only has 73 CPU cycles per line. Why 73? Because if 

we look at the color clocks per line, we see 228; but if we look at 3 

color clocks for every CPU cycle, we actually have 228/3 = 76 CPU 

cycles per line. And if we use 3 of those to do a WSYNC, then we 

only have 73 available for other stuff. Voila!  

And note, these 76 cycles for the whole line actually encompass the 

WHOLE line... 228 color clocks worth. Some of those will be during 

the 160 visible onscreen pixels (color clocks). Some will be during 

the 68 "horizontal blank" period -- the invisible color clocks. And the 

CPU can be halted by a WSYNC at *any* time during the line -- and 

it will be turned on at the start of the next line -- no matter how long 

away that is.  

Rather than give you a code sample this session, I'd like you to grab 

the last playfield code and convert it to display an asymmetrical 

playfield. Doesn't have to be fancy - just demonstrate a consistent 

change between left and right halves of the screen, writing PF0, PF1 

and PF2 twice each on each scanline. Once you've mastered this 

concept you can truly say you're on the way to programming a '2600 

game! 
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Session 18: Asymmetrical Playfields – Part 2 

The following diagram shows the timing relationship between the 

TIA, the 6502, and playfield pixels. Further, it shows the times at 

which it is safe to write the playfield registers for both left and right-

sides of the screen. 
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Thomas Jentzsch has pointed out that there is a minimum delay before 

a change to a TIA playfield register becomes visible. He suggests ~2 

TIA clocks.  

 

When one considers that a 6502 instruction may take anywhere from 

2 cycles (=6 TIA color clocks) to 7 cycles, it is apparent that any 

particular 6502 instruction "occupies" a fairly wide slice of TIA time 

during its execution. All instructions require a fetch of the opcode 

(=6502 instruction) from memory, the decoding and execution of that 

instruction, and sometimes a write of data back to memory.  

These stages of 'execution' of an instruction happen at various times 

during the time taken to execute the entire instruction. For example, 

the first cycle of the total instruction time might be allocated to 

retrieving the opcode from ROM. The second might be allocated to 

decoding and executing some of the instruction. Truth be told, I'm not 

really sure what happens when - it will differ for each of the 

instructions and addressing (=access to memory) modes.  

 

The point is, though, that when we write to the TIA playfield registers 

(or any other register for that matter), one may have to make 

allowances for the fact that although you may start an instruction on a 

particular TIA / 6502 clock cycle, the actual write to the TIA 

memory/register will most definitely not happen until 2 or more 

cycles later - and that depends on the addressing mode. We will cover 

addressing modes later - but basically they deal with ways of 

accessing memory (e.g.: directly, indirectly via pointers, via a list 

(indexed), etc.).  

The timing diagram should be considered to indicate the time at 

which TIA playfield registers must be updated by, for correct 

playfield data to be displayed.  

 

Another issue altogether - and one I simply don't know the answer to 

right now - is *EXACTLY* what happens when you write to a 

playfield register when that playfield register is currently being 

displayed. I am not sure exactly what timing constraints determine 

which pixel is displayed in which situation - the old or the new. 

Thomas has also indicated that there are some reports of consoles 

behaving differently when you get into this sort of extreme 'pushing 

the envelope' timing, too. 
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Session 19: Addressing Modes 

Are we having fun, yet?  

We're already familiar with a few ways of loading numbers into the 

6502's registers, and storing numbers from those registers into RAM 

or TIA registers. We'll re-visit those methods we know about, learn 

some new ones (not all of the 6502's addressing modes, but enough to 

get by with).  

This session we're going to have a bit of a look at the various ways 

that the 6502 can address memory, and how to write these in source 

code.  

As you should be aware by now, the 6502 has three registers - A, X 

and Y. "A" is our workhorse register, and we use this to do most of 

our loading, storing, and calculations. X and Y are index registers, 

and we generally use these for looping, and counting operations. They 

also allow us to access 'lists' or tables of data in memory.  

Let's start with the basics. To load and store actual values to and from 

registers, we can use the following...  

lda #$80 ; load accumulator with the number $80 (=128 decimal) 
lda  $80 ; load acc. with contents of memory location $80 
 

sta #$80 ; meaningless! DASM will kick a fit. You can't store 
          ; to a number! 
sta  $80 ; store accumulator's contents to memory location $80 
 

ldx #$80 ; load x-register with the number $80 
 

; etc.. 
 

All registers can load numbers directly (called 'immediate values'). 

The above examples show the accumulator being loaded with #$80 

(the number 128) and also the X register being loaded with the same 

value. You can do this with the Y register, too.  

You can't STORE the accumulator to an immediate value. This is a 

meaningless concept. It's like me asking you to put a letter in your 

three. You may have a post-box numbered "three", but you don't have 

a "three".  
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All registers can load and store values to memory addresses by 

specifying the location of that address (or, of course, a label which 

equates to the location of that address). For example, the following 

two sections of code are equivalent... 

   lda $F000   ; load accumulator with contents of $F000 
 

; or... 
 
where = $F000 

   lda where   ; ditto 
 

As noted, the above will work for X and Y registers, too. This form of 

addressing (addressing means "how we access memory") is called 

'absolute addressing'. Earlier we covered how the 6502 addresses code 

over a 16-bit memory range (that is, there are 2^16 distinct addresses 

that the 6502 can access, ranging from 0 to $FFFF). To form a 16-bit 

address, the 6502 uses pairs of bytes - and these are always stored in 

little-endian format (which means that we put the low-byte first, and 

the high-byte last). Thus, the address $F023 would be stored in 

memory as two bytes in this order... $23, $F0.  

Now, when DASM is assembling our code, it converts the mnemonic 

we write for an instruction (e.g.: "lda") into an opcode (a number) 

which is the 6502's way of understanding what each instruction is 

meant to do. We already encountered the mnemonic "nop" which 

converted into $EA. Whenever the 6502 encountered an $EA as an 

instruction, it performed a 2-cycle delay - i.e.: it 'executed' the NOP.  

We've briefly covered how each 6502 instruction may have one or 

two additional parameters - that is, there's always an opcode - but 

there may be one or two additional bytes following the opcode. These 

bytes hold things such as address data, or numeric data. For example, 

when we write "lda #$56", DASM will place the bytes $A9, $56 into 

the binary. The 6502 retrieves the $A9, recognizes this as a "lda" 

instruction, then fetches the next byte $56 and transfers this value into 

the accumulator.  

To signify absolute addresses, the two bytes of the address are placed 

in little-endian format following the opcode. If we write "ldy $F023" - 

indicating we wish to load the contents of memory location $F023 
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into the Y register, then DASM will put the bytes $AC, $23, $F0 into 

our binary. And the 6502 when executing will retrieve the $AC, 

recognize it as a "ldy" instruction which requires a two-byte address - 

and then fetches the address from the next two bytes, giving $F023 - 

and THEN retrieving the contents of that memory location and 

transferring it into the y register.  

As you can see, this division of 16-bit addresses into low and high 

byte pairs essentially divides the memory map into 256 'pages' of 256 

bytes each. The very first page (with the high-byte equal to 0) is 

known as 'zero-page', and this is treated a bit differently to the rest of 

memory. To optimize the space required for our binary, the 6502 

designers decided that they would include a special version of 

memory addressing where, if the access was to zero page (and thus 

the high byte of the memory address is 0), then you could use a 

different opcode for the instruction and only include the low-byte of 

the address in the binary. This form of addressing is known as zero-

page addressing.  

As with our above example, if we were accessing memory location 

$80 (which is the same as $0080 - remember, leading zeroes are 

superfluous when writing numbers), then we *COULD* have an 

absolute access to this location (with the bytes $AC, $80, $00 - 

interpreted in a similar fashion as described above). But DASM is 

smart - and it knows that when we are accessing zero-page addresses, 

it uses the more efficient (both smaller code-size and faster execution) 

form of the instruction, and instead places the following in our 

binary... $A4, $80. The 6502 recognizes the opcode $A4 as a "ldy" 

instruction (as was the $AC) but in this case only one byte is retrieved 

to form the low byte of the address, and the high byte is assumed to 

be 0.  

Mostly we can rely on DASM to choose the best form of addressing 

for us.  

So far, we have seen that what we can do with all the registers is 

essentially the same. Unfortunately, this is not the case with all the 

addressing modes! The 6502 is not 'orthogonal' - and this has some 

bearing on our choice of which register to use for which purpose, 

when designing our kernel.  
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OK, so now we should know what is meant by "absolute addresses" 

and "zero page addresses". Pretty simple, really. Both refer to the 

address of memory that the 6502 can theoretically access - and zero 

page addresses are those in the range $0000 to $00FF inclusive.  

The session discussing Initialization introduced an efficient way of 

clearing memory in a loop, using a register to iterate through 256 

bytes, and storing 0 to the memory location formed by adding the 

contents of the x register to a fixed memory address. These addressing 

modes (using the X or Y register to add to a fixed memory address, 

giving a final address for access) are known as "Absolute,X" and 

"Absolute,Y" and "Zero Page,X" and "Zero Page,Y". It is probably a 

good idea now to track down a good 6502 book. 

   ldx #1 

   lda $23,x ; load accumulator with contents of  
              ; location 36 (=$24) 
   ldy $23,x ; load Y register with contents of  
              ; location %100100 
 

   ldy #2 

   ldx $23,y ; load X register with contents of location $25 
   lda $23,y ; load accumulator with contents of location $25 

 

That last line is interesting - an example of the non-orthogonality of 

our instruction set. All of the above examples deal with zero-page 

addresses (that is, the high byte of the address is 0). Theoretically, 

these instructions don't need to include the high-byte in the address 

parameters in the binary. However, there is no "zero page,y" load 

for the accumulator! There is a zero page,x one, though. It’s a bit 

bizarre :-) 

 

So DASM will assemble "ldx $23,y" to a zero page,y instruction - 2 

bytes long - but it will assemble "lda $23,y" to an absolute,y 

instruction - 3 bytes long. Such is life.  

 

These zero page indexed instructions have a catch - the final address 

is always always always a zero page address. So in the following 

example...  

   ldy #1 

   lda $FF,y 
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Since (as we just discussed) this is an absolute indexed instruction, 

the accumulator is loaded with the contents of memory location $100. 

However, the following...  

   ldy #1 

   ldx $FF,y 

 

Since this will assemble to a zero page indexed instruction, the final 

address is always zero-page (the high byte is set to 0 after the index 

register is added) - so we will actually be accessing the contents of 

memory location 0 (!!). That is, the address is formed by adding the y 

register and the address ($FF+1 = $100) and dropping the high-byte. 

Something to be very aware of!  

Absolute indexed addressing modes are handy for loading values 

from data tables in ROM. They allow us to use an index register to 

step (for example) the line number in a kernel, and use the same 

register to access playfield values from tables. Consider this (mockup) 

code...  

     ldx #0   ; line # 
Display 

     lda MyPF0,x  ; load a value from the data table "MyPF0" 
     sta PF0 

     lda MyPF1,x  ; use table "MyPF1" 
     sta PF1 

     lda MyPF2,x  ; use table "MyPF2" 
     sta PF2 

 

     sta WSYNC 

     inx 

     cpx #192 

     bne Display 

 

    ; other stuff here 
     jmp StartOfFrame 

 

MyPF0 

     .byte 1,2,3,4,5,6  ;...etc 192 bytes of data here,  
                          ; giving data for PF0 
MyPF1 

     ; PF 1 data (should be 192 bytes long) 
     .byte 234,24,1,23,41,2  

MyPF2 

     ; PF 2 data (should be 192 bytes long) 
     .byte 64,244,31,73,43,2,0,0 
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The above code fragment uses tables of data in our ROM. These 

tables contain the values which should be written to the playfield 

registers for each scanline. The x register increments once for each 

scanline, and our absolute,x load for each playfield register will load 

consecutive values from the appropriate tables.  

 

Then, creating pretty graphics becomes simply a matter of putting the 

right values into those tables MyPF0, MyPF1, and MyPF2. This is 

where building tools to convert from images to data tables becomes 

extremely useful! We'll cover more of this way of doing things when 

we complete our sessions on asymmetrical playfields. The plan is to 

use a tool to create these data tables, and simplify our kernel by using 

data tables to display just about any asymmetrical image we want!  

 

Soon we'll cover the remaining 6502 addressing modes, and also 

discuss the 6502's stack.  

 

Exercises 

1. Use this method of absolute,x table access to modify or create 

a kernel which loads the graphics data from tables. Separate 

each playfield register into its own table, as above. 

2. Can you extend this system to asymmetrical playfield? Don't 

worry, we're going to give a complete asymmetrical playfield 

kernel (and tools!) in the next session. 

3. How would you incorporate color changes into this system 

(i.e. if you wanted clouds on the left, sun on the right)? 

4. Each table requires 1 byte of ROM per PF register per 

scanline. Can you think of ways to reduce this requirement? 

What trade-offs are necessary when reducing the table size? 

5. Find a 6502 cycle-timing reference, and try to calculate 

exactly how many cycles each instruction in your kernel is 

taking. Add-up all the instructions on each line, and work out 

just how much time you have left to do "all the other stuff". 

Such as sprite drawing! 
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Session 20: Asymmetrical Playfields – Part 3 

This session we're going to wrap-up our understanding of playfield 

graphics.  

It doesn't take long before you get sick of doing data by hand, and 

often the time spent in creating tools is repaid many-times-over in the 

increase in productivity and capability those tools deliver. Sometimes 

a tool is a 'hack' in that it's not professionally produced, it has bugs, 

and it isn't user-friendly. But until you've tried creating bitmap 

graphics by hand a bit-at-a-time (and I'm sure that some of you have 

already done this by now), you won't really appreciate something - 

anything! - that can make the process easier. Having prepared you for 

the fairly shocking quality of this, I now point you towards the FSB 

tool which can be found at https://tinyurl.com/dasm-fsb. FSB stands 

for "Full-Screen-Bitmap", and it's the tool I use for generating the 

data for those spiffy Interleaved ChronoColour ™ Full-Screen-

Bitmaps. But it's able to be used for monochrome playfields, too.  

The tool (Windows-only, sorry - if you're on a non-Windows platform 

then you may need to write your own) is run from a DOS command-

line. It takes three graphics files as input (representing the RED, 

GREEN, and BLUE components of a color image) and spits-out data 

which can be used to display the original data on an Atari 2600. For 

now we're not really at the level of drawing color bitmaps - but we'll 

get there shortly. First, let's examine how to use FSB to generate data 

for simple bitmap displays.  

As noted, FSB takes three graphics files as input. Let's simplify 

things, and pass the utility only one file. This equates to having 

exactly the same data for red, green, and blue components of each 

pixel - and hence the image will be black and white (specifically, it 

will be two-color). That's the capability of the '2600 playfield display, 

remember! It's only through trickery that there ever appear to be more 

than two colors on the screen at any time. That trickery being either 

time-based or position-based changing of the background and 

playfield colors to give the impression of more colors.  

Actually, I cheated a bit - if we pass only one file, the utility will 

process it, then have a fit when it can't find the others. As I said, it's a 
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bit of a hack. But sometimes, hacking is OK. Sometime, I'll get a 

round tuit and fix it up.  

Right, let's get right into it. Create yourself a graphic file with a 40 x 

192 pixel image, just 2-colors. It doesn't really HAVE to be two 

colors for the utility to work, but the utility will only process the 

pixels as on or off. It's difficult to create good-looking images in such 

low-resolution and odd aspect ratio. Remember, with a graphics 

package you're probably drawing with square(ish) pixels, so your 40 x 

192 image probably looks narrow and tall. On the '2600 it will be 

pretty much full-screen. That is, the pixels are 'stretched' to roughly 

8x their width. So, if you like, use your paint program's capabilities to 

draw in that aspect ratio. Doesn't matter how you do it, as long as 

your final image is just 40 pixels across, 192 deep.  

Once you have the image, save it as a .BMP, a .JPG or a .PNG file. I 

don't support .GIF as the idea of software patents is abhorrent to me. 

Having said that, I actually am the inventor of one particular piece of 

patented software (It's true! Look it up - that's exercise 1 for today) so 

you just never know when I'm serious or not, do you? Once we have 

that image file, we can feed it into the utility...  

Navigate to where you've placed the utility .exe file, and type (without 

the quotes) "FSB". You'll see something like this...  

D:\Atari 2600\Tools>fsb 
 

FSB -- Atari 2600 Color Image Generatorv0.02 

Copyright (c)2001 TwoHeaded Software 

Contains paintlib code. paintlib is copyright (c) 1996-2000 

Ulrich von Zadow 

 

Usage: FSB [-switch] RED_FILE GREEN_FILE BLUE_FILE 

 

Switches... 

 RED_FILE     File with red component of image (2-color) 

 GREEN_FILE   File with green component of image (2-color) 

 BLUE_FILE    File with blue component of image (2-color) 

 v            Toggle verbose output ON/OFF 

 nNAME        set output filename prefix.  Defaults to IMAGE 

 

Input files may be .BMP, .JPG, or .PNG format. 

 

Reading File: IMAGE 

Unrecognised and/or unsupported file type. 
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If you see that, then the utility is working fine. Ignore the various 

error messages - as I said, it's a hack and incomplete. But it does work 

well-enough for our purposes. If there's much demand/usage and I'm 

embarrassed enough I'll clean it up.  

This time, let's pass an image to it... let's assume we saved our file as 

test.png in the same directory.  

Type (without... you know the drill)... "FSB test.png" 

D:\Atari 2600\Tools>fsb test.png 
 

FSB -- Atari 2600 Colour Image Generatorv0.02 

Copyright (c)2001 TwoHeaded Software 

Contains paintlib code. paintlib is copyright (c) 1996-2000 

Ulrich von Zadow 

 

Reading File: test.png 

Bitmap size: 40 x 170 pixels 

........ 

........ 

........ 

........ 

........ 

........ 

........ 

........ 

........ 

........ 

 

>>>lots of stuff cut from here!! <<< 

 

.*..*.*. 

.*.*.*.* 

..*.*.*. 

**.*..*. 

...*.*.* 

*.*.*.*. 

.*..*..* 

.*.*.*.* 

*.*.*.*. 

..*..*.. 

 

Reading File: IMAGE 

 

Unrecognised and/or unsupported file type. 

 

You'll see a WHOLE LOT MORE of those lines with dots and 

asterisks. This is my debugging visual output of the graphics as the 
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utility is converting the data. Strictly speaking this is not necessary. 

But as I said, it's a hack. Increasingly I'm feeling I need to fix this 

*sigh*. That's one of the problems with releasing your tools for others 

to use. Please IGNORE that last line saying “Unrecognised and/or 

unsupported file type.”  It's uh... a feature. Anyway, plunging on...  

Remember in the previous sessions how we determined that an 

asymmetrical playfield was created by writing to playfield registers 

PF0, PF1, and PF2, and then with exquisite timing writing again to 

those registers before the scanning of the electron-beam across the 

scanline got to display them again? In essence, there are 6 bytes of 

data for each scanline (two of each of the three playfield registers). 

Although 4 bits in playfield 0 aren't used, and there's a potential 

saving there of 8 bits total (i.e. one byte per line) we're not going to 

delve into that sort of saving here. Let's just accept that the utility will 

convert the 40-bit wide image into 'segments' such that we really have 

data for PF0, PF1, PF2 for the left side of each scanline, and more 

data for those registers for the right side of each scanline.  

Some of the examples presented by our astute readers have already 

shown formidable asymmetrical playfield solutions - so good, in fact, 

that I'm not going to trouble with an 'official' asymmetrical playfield 

solution for these tutorials. Take one of the already-presented 

solutions and use that.  

What I would like to discuss, though, is just how the data for a full-

screen-bitmap should be presented. We can organize our data into 192 

scanlines, each having 6 bytes of data - or we could organize it into 6 

columns, each having 192 bytes of data. The first method is more 

intuitive (to me, anyway) but it is a much more inefficient way to 

store our data from the 6502's perspective. In fact, to use the first 

method correctly we would need to use an addressing-mode of the 

6502 that I haven't introduced yet - so let's just look at how the utility 

spits out the data and hopefully as time goes by you will come to trust 

my wisdom and perhaps even understand WHY we did it this way ;-) 

A hint: When using an index register, you can address 256 bytes from 

any given base-address. That is, the index register can range from 0 to 

255, and that register is added to the base address when doing 

absolute indexed addressing to give you a final address to read from 
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or write-to. Now consider if we had our data organized as 192 lines, 

each being 6 bytes long... we could do the following... 

      ldx #0  ; index to the PF data 
      ldy #0  ; line number 
       

ALine lda PFData,x ; PF0 data 
      sta PF0 

      lda PFData+1,x ; the next byte of data (assembler  
                     ; calculates the +1 when assembling) 
      sta PF1 

      lda PFData+2,x ; the next 
      sta PF2 

       

      ; delays here, as appropriate 
       

      lda PFData+3,x ; PF0 data, right side 
      sta PF0 

      lda PFData+4,x ; the next 
      sta PF1 

      lda PFData+5,x ; the next 
      sta PF2 

       

      txa 

      clc 

      adc #6 

      tax  ; increment pointer by one line (6 bytes of data) 
       

      sta WSYNC ; wait till next line 
       

      iny 

      cpy #192 

      bne Aline 

 

The above code essentially assumes that the data for the screen is in a 

single table consisting of 6 bytes per scanline, and that the scanlines 

are stored consecutively. Can you see the problem with this?  

It's a bit obscure, but the problem is when we get to scanline #43. At 

or about that point, the index register used to access the data will be 

42 x 6 (=252) and we come to add 6 to it. So we get 258, right? 

Wrong! Remember, our registers are 8-bits only, and so we only get 

the low 8-bits of our result - and so 252 + 6 = 2 (think of it in binary: 

%11111100 + %00000110 = %100000010 (9 bits) and the low 8 bits 

are %00000010 = 2 decimal). So at line 43, instead of accessing data 

for line 43 we end up accessing data for line 0 again - but worse yet, 

not from the start of the line, but actually two bytes 'in'. Urk! This is a 
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fundamental limitation of absolute indexed addressing - you are 

limited to accessing data in a 256-byte area from your base address. 

There are addressing-modes which allow you to get around this, but 

they're slower - and besides, it's better to reorganize your data rather 

than using slow code.  

OK, so now let's consider if each of the bytes of the playfield (all 6 of 

them) were stored in their own tables. Think of the screen being 

organized into 6 columns each of 192 bytes (the depth of the screen). 

Since each table is now <256 bytes in size, we can easily access each 

one of them using absolute indexed addressing. As an added bonus, 

they can all be accessed using just the one index register which can 

ALSO double as our line-counter. Like this... 

      ldx #0  ; line # 
ALine lda PF0Data,x ; PF0 left 
      sta PF0 

      lda PF1Data,x ; PF1 left 
      sta PF1 

      lda PF2Data,x ; PF2 left 
      sta PF2 

       

      ; delay as appropriate 
       

      lda PF3Data,x ; PF0 right 
      sta PF0 

      lda PF4Data,x ; PF1 right 
      sta PF1 

      lda PF5Data,x ; PF2 right 
      sta PF2 

       

      sta WSYNC 

 

      inx 

      cpx #192 

      bne Aline 

 

The above code assumes that there are 6 tables (PF0Data - PF5Data) 

containing 'strips' or 'columns' of data making up our screen.  
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We COULD have had just a single table with the first 192 bytes being 

column 0, the next being column 1, etc., and letting the assembler 

calculate the actual address from the base address like this (snippet...) 

      ldx #0             ; line # 
ALine lda PFData,x       ; column 0 - PF0 left 
      sta PF0 

      lda PFData+192,x   ; column 1 - PF1 left 
      sta PF1 

      lda PFData+384,x   ; column 2 - PF2 left 
       

      ; delay, etc. 
       

      lda PFData+384+192,x ; column 3 - PF0 right 
       

      ; etc. 
 

What it's important to understand here is that the "+192" etc., is 

*NOT* done by the 6502. Remember how our assembler converts 

labels to their actual values (using the symbol table)? Likewise it 

converts expressions to their actual values - and in this case it will 

take the value of 'PFData' and add to it 192, and put the resulting 16-

bit value as the 2-byte address following the lda op-code. Remember, 

the 6502 absolute addressing mode is simply given a base address to 

which it adds the index register to get a final address from which data 

is retrieved (lda) or to which it is stored (sta).  

The above example with the manual-offset from the base address (that 

is, where +n was added) is functionally identical to the example 

where there were 6 separately named tables. In both cases, the data is 

assumed to be strips of 192 bytes, each strip being one of the columns 

representing the values to put into each of the 6 playfield registers 

(given that there are 6 writes to three registers per-line, I think of the 

three registers as 6 separate registers).  

So that's exactly what FSB does. It creates 6 tables, each representing 

a 'strip' of 192 lines of data for a single register. Those tables are 

saved to a .asm file with the same prefix as the input file, and contents 

like this (abridged)... 
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screen 

 

screen_STRIP_0 

  .byte 240 

  .byte 240 

  .byte 240 

  .byte 240 

  ;188 more bytes here 
 

screen_STRIP_1 

  ;192 bytes here 
 
screen_STRIP_2 

  ;192 bytes here 
 

screen_STRIP_3 

  ;192 bytes here 
 

screen_STRIP_4 

  ;192 bytes here 
 

screen_STRIP_5 

  ;192 bytes here 
 

;end 
 

For space purposes that has been heavily abridged. The file was 

produced from a source-file called 'screen.jpg' - as you can see, the 

filename prefix has been used to create labels to identify the whole 

table ('screen') and also to identify each of the strips 

('screen_STRIP_0', etc). So you can use either of the access methods 

described above, if you wish. Remember, if this file were assembled, 

the values of the symbols 'screen' and 'screen_STRIP_0' would be 

identical as they will be at the same address in the binary.  

So, we have a DASM-compatible file which contains a text-form 

version of the graphics file. How do we include this data into our 

source, so that we may display the data as an image? It's pretty easy - 

and in fact we've already encountered the method when we included 

the 'vcs.h' and 'macro.h' files.  

We just use the include dasm pseudo-op. 

    include "screen.asm" ; or whatever your generated file is 

 

When you use the include pseudo-op, DASM actually inserts the 

contents of the file you specify right then and there into that very spot 
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into the source-code it is assembling. So be careful about where you 

enter that include pseudo-op. Don't put it in the middle of your kernel-

loop, for example! Put it somewhere at the beginning or end of your 

code segment, where it won't be executed as 6502 code. For example, 

after the jump at the end of your kernel, which goes back to the start 

of the frame. 

Exercises 

1. Create a circle as a 40 x 192 image and save it as a .JPG, 

.PNG or .BMP. Convert it to source-code through FSB to 

create source-code data. Can you think of good ways to draw 

circles in such an odd screen-size? Hint - make the size of 

your image the LAST step in the draw process! 

2. Take one of the asymmetric playfield demos from the last 

session and convert it to display the data generated in step 1. 

3. Set the playfield color to a RED for one frame, then the next 

frame set it to a GREEN, and for the third frame set it to a 

BLUE. What effect do you see? What color does the circle 

appear to be? Why? If you haven't cottoned-on yet, this is 

leading towards color-bitmap technology - we may cover that 

in a future session. By using different colors over time, we can 

trick the eye to seeing a different color than those we actually 

use. 

4. How can this temporal color change be used to display a range 

of colors? This is tricky, so don't worry if you can't understand 

it. Hint: don't just change the color each frame! What else can 

you change? 

5. All our discussions about bitmap graphics have revolved 

around the use of asymmetrical (mirrored) playfields. Yet 

some (not many!) games use non-mirrored playfields. What 

timing problems can you see when using non-mirrored 

playfields for bitmap graphics - and why on earth would you 

want to do this? 
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Session 21: Sprites 

It's time to begin our understanding of sprites.  

What are sprites? By now, sprites are well-known in the gaming 

industry. They are small, independently movable objects which are 

drawn by hardware anywhere over the top of playfield graphics. The 

Atari 2600 was the first console to introduce general-purpose sprites - 

back in the day they were called 'player missile graphics'. It was the 

Commodore 64 which introduced the term 'sprites', which we know 

and love.  

The Atari 2600 has two 'players', two 'missiles' and a 'ball' - all of 

these are sprites, and each has various parameters which can be 

adjusted by the programmer (position, size, color, shape, etc). We're 

going to concentrate, this session, on the 'players' and how they work.  

Player graphics have much finer resolution than playfield graphics. 

Each player is 8 pixels wide, and each pixel in a player is just a single 

TIA color-clock in width. In other words, the pixels in player graphics 

are a quarter of the width of the pixels in playfield graphics. The 

graphics of each player are controlled by a single 8-bit TIA register. 

The register for player 0 (the first player) is GRP0 (standing for 

'Graphics, Player 0') and the register for the second player is GRP1. 

When you write data to either of these registers you change the 

visuals of the relevant player sprite being drawn on the screen.  

Just like playfield graphics, the player graphics registers only hold a 

single 'line' of data. If you do not modify the data on-the-fly (that is, 

changing it every scanline), then the TIA just displays the same data 

on every scanline. So kernels using sprite graphics typically modify 

these player graphics registers constantly.  

Surprisingly, though player sprites can be (effectively) positioned 

anywhere on the screen, they do NOT have position registers. Most 

more modern machines (Nintendo, C64, etc.) provided an x,y 

coordinate which was used to position a sprite on the screen. The 

Atari 2600 is a much more primitive beast.  
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The horizontal position of a player sprite is controlled by writing to a 

'reset position' register (RESP0 for sprite 0 and RESP1 for sprite 1). 

When you write to these registers, you cause the hardware to begin 

drawing the relevant sprite... immediately! This is very strange and a 

bit hard to get used to at first. To move a sprite horizontally to any x-

position on a scanline, one has to make sure that the RESP0 write 

happens just before the position on the scanline at which you want the 

sprite to appear. Since the 6502 is running at 1/3 of the clock speed of 

the TIA, this makes it incredibly difficult to write to RESP0 at exactly 

the right time. For every cycle of 6502 time, three pixels (cycles of 

TIA time) pass. So it's only possible to position sprites (through 

RESPx writes) with an accuracy of 1 6502 clock period, or in other 

words three TIA pixels.  

To facilitate fine-positioning of sprites, the TIA has additional 

registers which allow the sprite to be adjusted in position by a few 

pixels. We are not going to cover that this session - but instead we'll 

have a look at how sprite graphics are written, how the course RESPx 

registers are used, and how sprite colors are controlled. Fine 

positioning of sprites is an art in itself, and many solutions have been 

proposed on the [stella] list. We'll get to that in a session or two, but 

for now, let's stick with the basics.  

The sample kernel from http://atariage.com/forums/topic/32481-

session-21-sprites shows a fully working sprite demo.  

There are very few additions from our earlier playfield demos...  

          lda #$56 

          sta COLUP0 

          lda #$67 

          sta COLUP1 

 

In our initialization (before the main frame loop) the above code is 

initializing the colors of the two player sprites. These are random 

purplish colors. You may also change the color on-the-fly by 

rewriting it every scanline. Remember, though - you only have 76 

cycles per scanline - so there's only so much you can cram into a 

single line before you run out of 'space'.  
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MiddleLines  SLEEP 20 

             sta RESP0 

             SLEEP 10 

             sta RESP1 

             stx GRP0         ; modify sprite 0 shape 
             stx GRP1 

             sta WSYNC 

             inx 

             cpx #184 

             bne MiddleLines 

 

The above code sample is the 'guts' of our sprite demo. It doesn't do a 

lot of new stuff. You should already be familiar with the SLEEP 

macro - it just causes a delay of a certain number of 6502 cycles. The 

purpose of the SLEEP macros here is to delay to a position 

somewhere in the middle of the scanline - you may play with the 

values and see the effect on the positioning of the sprites.  

 

Immediately after each SLEEP, there's a write to RESPx for each of 

the player sprites. This causes the TIA to begin drawing the 

appropriate player sprite immediately. And what will it draw?  

             stx GRP0        ; modify sprite 0 shape 
             stx GRP1 

 

Since, in this kernel, the x register is counting the scanline number, 

that is also the value written to both of the graphics registers (GRPx) 

for the player sprites. So the graphics we see will change on each 

scanline, and it will represent a visual image of the scanline counter: 
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That's pretty much all there is to getting sprites up and running. There 

are a few interesting things we need to cover in the coming sessions, 

including sprite size, sprite repeating, priorities, buffered sprite 

drawing, drawing specific images/shapes and lots of other stuff. But 

now you have the basics, and you should be able to do some 

experimenting with what you see here.  

Exercises  

1. Modify the kernel so that the color of the sprite is changed 

every scanline.  How many cycles does this add to your 

kernel?  How many cycles total is each of your lines taking 

now? 

 

Answer: it takes 3 cycles per write to a color register (e.g. stx 

COLUP1), but it takes two or more additional cycles if you 

want to load a specific color. The variation in time depends on 

the addressing mode you use to load the color (e.g. an 

immediate value = 2 cycles, but loading indirectly through a 

zero page pointer to a memory location, indexed by the y 

register, would take 6 cycles!). 

   lda #34         ; 2 
   sta COLUP1      ; 3 
 

   lda (color),y   ; 6 
   sta COLUP1      ; 3 

 

2. Instead of using the scanline to write the shape of the sprite, 

load the shape from a table.  Can you think how it would be 

possible to draw (say) a Mario-shaped sprite anywhere on the 

screen?  This is tricky, so we'll devote a session or more to 

vertical positioning. 

 

Answer: This really is too tricky to answer here. Future 

sessions will cover this problem thoroughly, as its 

fundamental to drawing sprites in your game.  

3. What happens when you use more than 76 cycles on a line - 

how will this code misbehave? 
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Answer: Remember that the TIA and the TV beam are in 

synch. The timing is such that precisely 76 cycles of 6502 time, 

or 228 cycles of TIA time, correspond to *exactly* one 

scanline on the TV. Currently we've been using "sta WSYNC" 

to synchronize our kernel to the start of every scanline. This 

isn't necessary IF our code makes sure that our kernel lines 

take EXACTLY 76 cycles to execute.  

 

But since the above code DOES use "sta WSYNC", a 3 cycle 

instruction, we really only have 73 cycles per line available 

for other processing. If we exceed these 73 cycles, then that 

pushes the "sta WSYNC" past the point at which it's on the 

current scanline and onto the point where it's really on the 

NEXT scanline. And if it happens on the NEXT scanline, it will 

operate as expected (and that, as we know, is by halting the 

6502 until the start of the NEXT scanline).  

 

So essentially, if our code exceeds 76 cycles, then each 

scanline will actually be two scanlines deep! And instead of 

sending, say, 262 scanlines per frame, we'd be sending 524. 

Most TVs cannot cope with this and they will, as noted, 'roll'. I 

just wanted you to understand WHY.  

4. The picture shows sprites over the 'border' areas at top and 

bottom, yet the code which draws sprites is only active for the 

middle section. Why is this happening? How would you 

prevent it? 

 

Answer: A good lesson in how the TIA works. The TIA 

registers hold whatever you put into them, until you next put 

something in to them. So after our last write to the sprite 

registers, the TIA keeps displaying the same shape for sprites, 

on each scanline, until we write again. So what we're really 

seeing in those border areas is the last write (which is actually 

at the bottom of the changing shape area of sprites) repeated 

on the bottom, and then on the top again, until we start writing 

sprite shapes again.  

 

The solution is to write 0 to GRP0 and GRP1 when we've 
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finished drawing our sprites - and, of course, on initialization 

of the system.  

5. Move the SLEEP and RESPx code outside the middle loop - 

place this code BEFORE the loop. What differences would 

you expect to see? Is the result surprising? 

 

Answer: Barring minor timing changes which will cause the 

positions to shift slightly, the effect I was trying to show was 

that it is not necessary to rewrite the RESPx registers every 

scanline. You only need to position your sprites once each, 

and they will remain in that position until you reposition them. 

By moving the reposition outside the loop, we've freed up 

extra cycles in the kernel code for each scanline.  

 

Positioning sprites to any arbitrary horizontal position is quite 

complex, and usually takes at least one whole scanline to do in 

a generic fashion. This is why games which use multiple 

sprites rarely allow those sprites to cross over each other, and 

also the reason why you see distinct 'bands' of sprites in other 

games - the gaps between the bands is where the horizontal 

movement code is doing its stuff. 
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Session 22: Sprites, Horizontal Positioning 

The RESPx registers for each of the sprites are strobe registers which 

effectively set the x position of each sprite to the point on the scanline 

the TIA is displaying when those registers are written to. Put more 

simply, as soon as you write to RESP0, sprite 0 begins drawing and it 

will keep drawing in that position on every scanline. Same for 

RESP1.  

 

This session we're going to have a bit of a play with horizontal 

positioning code, and perhaps come to understand why even the 

simplest things on the '2600 are still an enjoyable challenge even to 

experienced programmers.  

 

As previously noted, it is not possible to just tell the '2600 the x 

position at which you want your sprites to display. The x positioning 

of the sprites is a consequence of an internal (non-accessible) timer 

which triggers sprite display at the same point every scanline. You 

can reset the timer by writing to RESP0 for sprite 0 or RESP1 for 

sprite 1. And based on where on the scanline you reset the timer, you 

effectively reposition the sprite to that position.  

 

The challenge for us this session is to develop code which can 

position a sprite to any one of the 160 pixels on the scanline!  

 

Given any pixel position from 0 to 159, how would we go about 

'moving' the sprite to that horizontal position? Well, as we now know, 

we can't do that. What we can do is wait until the correct pixel 

position and then hit a RESPx register. Once we've done that, the 

sprite will start drawing immediately. So if we delay until, say, TIA 

pixel 80 - and then hit RESP0, then at that point the sprite 0 would 

begin display. Likewise, for any pixel position on the scanline, if we 

delay to that pixel and then hit RESP0, the sprite 0 will display at the 

pixel where we did that.  

 

So how do we delay to a particular pixel? It's not as easy as it sounds! 

What we have to do, it turns out, is keep a track of the exact execution 

time (cycle count) of instructions being executed by the 6502 and hit 

that RESPx register only at the right time. But it gets ugly - because 
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as we know, although there are 228 TIA color clocks on each scanline 

(160 of those being visible pixels), these correspond to only 76 cycles 

(228/3) of 6502 processing time. Consequently only 160/3 = 53 and 

1/3 cycles of 6502 time in the visible part of the scanline. Since each 

6502 cycle corresponds to 3 TIA clocks, it would seem that the best 

precision with which we could hit RESPx is within 3 pixels. But it 

gets uglier still, and we'll soon see why.  

 

The SLEEP macro has been useful to us now, to delay a set number of 

6502 cycles. Consider the following code...  

sta WSYNC ; wait till start of line 
SLEEP 40  ; 20 cycle delay 
sta RESP0 ; reset sprite 0 position 
 

Surely that's a simple and neat way to position the sprite to TIA color-

clock 120? The 120 comes from calculating the 6502 cycle number 

(40) x 3 TIA color clocks per 6502 cycle. The answer to the question 

is "yes and no". Sure, it's a neat way to hardwire a specific delay to a 

specific position. But say you wanted to be able to adjust the position 

to an arbitrary spot. We could no longer use this sort of code. 

Remember, SLEEP is just a macro. What it does is insert code to 

achieve the number of cycles delay you request. The above might 

look something more like this... 

sta WSYNC 

nop  ; 2 cycles 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
nop  ; +2 
sta RESP0 
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We don't really know what the sleep macro inserts, and we don't 

really care. It's documented to cause a delay of n cycles, if you pass it 

n. That's all we can know about it. If we wanted to change n to n+1 

we could do it at compile time, but we couldn't use this sort of code 

for realtime changes of the delay. What we want is a bit of code 

which will wait a variable bit of time.  

And here's where the fun really starts! There are, of course, many 

many ways to do this. And part of the fun of horizontal positioning 

code is that it's just begging for nifty and elegant solutions to doing 

just that. What we're going to do now is just develop a fairly simple, 

possibly inefficient, but workable solution.  

The essence of our solution will be to use a loop to count down the 

delay, and when the loop terminates immediately write the RESPx 

register. So the longer the delay, the more our loop iterates. In 

principle, it's a fine idea. In practice we soon see the severe 

limitations. We should be familiar with simple looping constructs - 

we have already used looping to count the scanlines in our kernels, for 

example. Here's a simple delay loop which will iterate exactly the 

number of times specified in the X register... 

; assume X holds a delay loop count 
SimpleLoop dex 

           bne SimpleLoop 

           sta RESP0 ; now reset sprite position 
 

That's as simple a loop as we can get. Each iteration through the loop 

the value in the X register is decremented by one, and the loop will 

continue until the Z flag is set (which happens when the value of the 

last operation performed by the processor returned a zero result - in 

this case, the last operation would be the 'dex' instruction). So as you 

can see, at just two instructions in size this is a pretty 'tight' loop. 

There's not much you can trim out of it and still have a loop! So 

what's the problem with using a loop like this in our horizontal 

positioning code? Let's have another look at this, but with cycle times 

added… 

SimpleLoop dex  ; 2 
           bne SimpleLoop ; 3 (2) 
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It has been fairly standard notation for a few years now to indicate 

cycle times in the fashion shown above. The number in the comment 

(after each semicolon) represents the number of 6502 cycles required 

to execute the instruction on that line. In this case, the 'dex' instruction 

takes 2 cycles. The 'bne' instruction takes 3 cycles (if the branch is 

taken) and 2 cycles if not. Unfortunately, life isn't always that simple. 

If the branch from the bne instruction to the actual branch location 

crossed over a page (a 256-byte boundary), then the processor takes 

another cycle! So we're faced with the situation where, as we add and 

remove code to other parts of our program, some of our loops take 

longer or shorter amounts of time to execute. No kidding! So when 

we come to doing tightly timed loops where timing is critical, we 

must also remember to somehow guarantee that this sort of shifting 

doesn't happen! That's not our problem today, though - let's assume 

that our branches are always within the same page.  

So what's wrong with the above? Let's go back to our correspondence 

between 6502 cycles and TIA color clocks. We know that each 6502 

cycle is 3 TIA color clocks. So a single iteration of the above loop 

would take 5 cycles of 6502 time - or a massive 15 TIA color clocks. 

No matter what number of iterations of our loop we do, we can only 

hit the RESPx register with a finesse of 15 TIA color clocks! Is this a 

disaster? No, it's not. In fact, the TIA is specifically designed to cater 

for this situation. Before we delve into how, though, let's analyze this 

loop a bit more...  

Since each iteration of the loop chews 15 TIA color clocks, we must 

iterate (x/15) times, where X is the pixel number where we want our 

sprite to be positioned. Put another way, we need to know how many 

15-pixel chunks to skip in our delay looping before we're at the 

correct position to hit RESPx and start sprite display. So when we 

come into this code with a desired horizontal position, we'll have to 

divide that value by 15 to give us a loop count. What's the divide 

instruction? There isn't one, of course!  

So how do we divide by 15?  

Another of those extremely enjoyable challenges of '2600 

programming. Dividing by a power of 2 is easy. The processor 

provides shifting instructions which shift all the bits in a byte to the 
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left or to the right. Consider in decimal, if you shifted all digits of a 

number to the left by one place, and added a 0 at the end of the 

number, you'd have multiplied by 10. Similarly in binary, if you shift 

a number left once, and put a 0 on the end, you've multiplied by 2. 

Dividing by two is thus shifting to the right one digit position, and 

adding a 0 at the 'top' of the number. Typically, multiplication in 

particular and sometimes division are achieved by clever combination 

of shifting and adding numbers.  

But we don't need to do that here. We know that there are only 160 

possible positions for the sprite. Why not have a 160 byte table, with 

each entry giving the loop counter for the delay loop for each 

position? Something like this... 

Divide15 

.POS SET 0 

   REPEAT 160 

   .byte .POS / 15 

.POS SET .POS + 1 

   REPEND 

 

DON'T do things by hand when the assembler can do it for you! What 

I've done here is write a little 'program' to control the assembler 

generation of a table of data. It has a repeat loop of 160 iterations, 

each iteration incrementing a counter by one and putting that counter 

value / 15 in the ROM (with the .byte pseudo-op). This code is 

equivalent to writing... 

Divide15 

   .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 15 entries 
   .byte 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 15 entries 
   ; etc... lots more... 

 

Me, I'd prefer the first example - easier to maintain and modify.  

In any case, the idea of having a table is to give us a quick and easy 

way to divide by 15. To use it, we place our number in an index 

register, and then load the divide by 15 result from the table, using the 

register to give us the offset into the table. Easier to show than 

explain: 
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           ldx Xposition 

           lda Divide15,x  ; xPosition / 15 
           tax 

SimpleLoop dex 

           bne SimpleLoop 

           sta RESP0  ; start drawing the sprite 
 

It's good, and it's bad. Bad because it can't cope with 'loop 0 times' - 

in fact, it will loop 256 times. So let's add one to all the entries in the 

table, which will 'fix' this problem. Just change the '.byte .POS / 15' to 

'.byte (.POS / 15) + 1'. But I think we're digressing, and what I really 

wanted to introduce was the concept of looping to delay for a certain 

(variable) time, and then hitting RESPx at the end of the loop. You 

can see the problems introduced by this method, though, where we 

had to find a way to divide by 15, where we only had 15 color clock 

resolution in our positioning. There are other - and arguably better - 

ways to do horizontal positioning, but let's not make the better the 

enemy of the good. What we're really after right now is a working 

solution.  

So in theory, our positioning code so far consists of dividing the x 

position by 15, looping (skipping 15 color clocks each loop) and then 

hitting the RESP0 register to start drawing the sprite. Is this all there 

is to it? Yes, in a nutshell. But the devil is in the detail. Let's integrate 

what we have so far into a kernel which constantly increments the 

desired X position for the sprite, then attempts to set the x position for 

the sprite each frame (see the source code and sample binary at 

http://atariage.com/forums/topic/32896-session-22-sprites-horizontal-

positioning-part-1).  

Now this is very interesting. Clearly our sprite is moving across the 

screen as our desired position is incrementing. But it's moving in very 

big chunks. We have a bit of optimizing to do before we have a sprite 

positioning system capable of pixel-precise horizontal positioning. 

But it's a start, and we understand it (I hope!).  

There are some observations to make about this code and binary. I've 

introduced a little more 6502, which we can examine now... 
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    inc SpriteXPosition; increment the desired position by 1 pixel 
    ldx SpriteXPosition 

    cpx #160           ; has it reached 160? 
    bcc LT160          ; this is equivalent to branch if less than 
    ldx #0             ; otherwise reload with 0 
    stx SpriteXPosition 

LT160 

    jsr PositionSprite; call the subroutine to position the sprite 
 

This is the bit of code which does the adjustment of the desired 

position, loads it to the x register and calls a 'subroutine' to do the 

actual positioning code. This is our first introduction to the 'bcc' 

instruction, and to the 'jsr' and 'rts' (in the subroutine itself) 

instructions. We have previously encountered the Z flag and the use 

of flags in the processor's status register to determine if branches are 

taken or not. The delay loop uses exactly this. The Z flag isn't the only 

flag set or cleared when operations are performed by the processor. 

Sometimes the 'carry flag' is also set or cleared. Specifically, when 

arithmetic operations such as addition and subtraction, and also when 

comparisons are done (which are essentially achieved by doing an 

actual addition or subtraction but not storing the result to the register). 

In this case, we've compared the x register with the value 160 (cpx 

#160). This will clear the carry flag if the x register is LESS than 160, 

or set the carry flag if the X register is GREATER than or EQUAL to 

160. I've always used the carry flag like this for unsigned 

comparisons. In the code above, we're saying 'if the x register is >= 

160, then reset it to 0'. All branch instructions cost 3 cycles if taken, 

two if not taken, and an additional cycle if the branch taken crosses a 

page boundary. Branches can only be made to code within -128 or 

+127 bytes from the branch. For longer 'jumps' one can use the 'jmp' 

instruction, which is unconditional.  

For long conditional branches, use this sort of code... 

   cpx #160 

   bcs GT160 ; NOT less than 160  
             ; (bcs is a GREATER or EQUAL comparison) 
   jmp TooFarForLT ; IS less than 160 
 

GT160 

 

   ; lots of code 
 

TooFarForLT ; etc 
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But I digress! The 'jsr' instruction mnemonic stands for "Jump 

Subroutine". A subroutine is a small section of code somewhere in 

your program which can be 'called' to do a task, and then have 

program execution continue from where the call was made. 

Subroutines are useful to encapsulate often-used code so that it 

doesn't need to be repeated multiple times in your ROM. When the 

6502 'calls' a subroutine, it keeps a track of where it is calling FROM, 

so that when the subroutine returns, it knows where to continue code 

execution. This 'return address' is placed on the 6502's 'stack', which 

we will learn about very soon now. The stack is really just a bit of our 

precious RAM where the 6502 stores these addresses, and sometimes 

other values. The 6502 uses as much of our RAM for its stack as it 

needs, and each subroutine call we make requires 2 bytes (the return 

address) which are freed (no longer used) when the subroutine 

returns. If we 'nest' our subroutines, by calling one subroutine from 

within another, then each nested level requires an additional 2 bytes 

of stack space, and our stack 'grows' and starts taking increasing 

amounts of our RAM! So subroutines, though convenient, can also be 

costly. They also take a fair number of cycles for the 6502 to do all 

that stack manipulation - in fact it takes 6 cycles for the subroutine 

call (the 'jsr') and another 6 for the subroutine return (the 'rts'). So it's 

not often inside a kernel that we will see subroutine usage!  

As noted, the 6502 maintains its stack in our RAM area. It has a 

register called the 'stack pointer' which gives it the address of the next 

available byte in RAM for it to use. As the 6502 fills up the stack, it 

decrements this pointer (thus, the stack 'grows' downwards in RAM). 

As the 6502 releases values from the stack, it increments this pointer. 

Generally we don't play with the stack pointer, but in case you're 

wondering, it can be set to any value only by transferring that value 

from the X register via the 'txs' instruction. If you've been following 

closely, you have noticed I added a bit to the initialization section! 

     ldx #$FF 

     txs       ; initialize stack pointer 
 

Without that initialization, the stack pointer could point to anywhere 

in RAM (or even to TIA registers) and when we called a subroutine, 

the 6502 would attempt to store its return address to wherever the 

stack pointer was pointing. Probably with disastrous consequences!  
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Horizontal motion 

The only way to get horizontal positioning code that is robust enough 

to allow TIA-pixel-precise positioning, is by including the horizontal 

motion registers (HMPx, HMMx, HMBL, HMOVE and HMCLR). 

(From the Stella Programmer’s Guide) 

Horizontal motion allows the programmer to move any of 
the 5 graphics objects relative to their current 
horizontal position. Each object has a 4 bit horizontal 
motion register (HMP0, HMP1, HMM0, HMM1, HMBL) that can 
be loaded with a value in the range of +7 to -8 
(negative values are expressed in two’s complement 
from). This motion is not executed until the HMOVE 
register is written to, at which time all motion 
registers move their respective objects. Objects can be 
moved repeatedly by simply executing HMOVE. Any object 
that is not to move must have a 0 in its motion 
register. With the horizontal positioning command 
confined to positioning objects at 15 color clock 
intervals, the motion registers fills in the gaps by 
moving objects +7 to -8 color clocks. Objects cannot be 
placed at any color clock position across the screen. 
All 5 motion registers can be set to zero 
simultaneously by writing to the horizontal motion 
clear register (HMCLR). 

Please see https://tinyurl.com/stella-sprite-positioning for some 

advanced sprite positioning code that uses both RESPx and HMPx 

registers to set the exact horizontal position of the two sprites. 

Instead of having to work with the odd RESPx timing, we have 

abstracted that aspect of the hardware and now reference the sprite 

position through a variable in RAM, and our code positions the sprite 

to the pixel number indicated by this variable. 

Now we've achieved TIA-pixel-precise positioning, we can pretty 

much forget about how this works forever more, and use the 

horizontal positioning code as a black box. Or perhaps a woodgrain 

box might be more appropriate :-) 
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Session 23: Moving Sprites Vertically 

This session we're going to have a preliminary look at vertical 

movement of sprites.  

In the previous sessions we have seen that there are two 8-pixel wide 

sprites, each represented by a single 8-bit register in the TIA itself. 

The TIA displays the contents of the sprite registers at the same 

horizontal position on each scanline, corresponding to where on an 

earlier scanline the RESP0 or RESP1 register was toggled. We 

explored how to use this knowledge to develop some generic 

"position at horizontal pixel x" code which greatly simplified the 

movement of sprites in a horizontal direction.  

Let's now have a look at how to position a sprite vertically.  

Our examples so far have shown how sprites appear as a vertical strip 

the entire height of the screen. This is due, of course, to the single 

byte of sprite data (8 bits = 8 pixels) being duplicated by the TIA (for 

each sprite) on each scanline. If we change the data held in the TIA 

sprite graphics registers (ie: in GRP0 or GRP1), then the next time the 

TIA draws the relevant sprite, we see a change in the shape that the 

TIA draws on-screen. We still see 8 pixels, directly under the 8 pixels 

of the same sprite on the previous scanline - but if we've changed the 

relevant GRPx register then we will see different pixels on (solid) and 

different pixels off (transparent).  

To achieve vertical movement of "a sprite" - and by this, we mean a 

recognizable shape like a balloon, for example - we need to modify 

the data that we are writing to the GRPx register. When we're on 

scanlines where the shape is not visible, then we should be writing 0 

to the GRPx register - and when on scanlines where the shape is 

visible, we should be writing the appropriate line of that shape to the 

GRPx register. Doing this quickly, and with little RAM or ROM 

usage, is the trickiest bit. Conceptually, it's quite simple.  

There are several ways to tackle the problem of writing the right line 

of the shape on the right line of the screen, and nothing when the 

shape isn't on the line we're drawing. Some of them take extra ROM, 
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some require more RAM, and some of them require more cycles per 

line.  

Most kernels keep one of the registers as a "line counter" for use in 

indexing into tables of data for playfield graphics - so that the correct 

line of data is placed in the graphics registers for each scanline. The 

kernels we've created so far also use this line counter to determine 

when we have done sufficient lines in our kernel. For example... 

   ldx #0              ;2 
Kernel  lda PF0Table,x ;4 
   sta PF0             ;3 
   lda PF1Table,x      ;4 
   sta PF1             ;3 
   lda PF2Table,x      ;4 
   sta PF2             ;3 
   sta WSYNC           ;3 
   inx                 ;2 
   cpx #192            ;2 
   bne Kernel          ;3(2) 

 

The above code segment shows a loop which iterates the X register 

from 0 to 192 while it writes three playfield registers on each of the 

scanlines it 'generates'. We've covered all of this in previous sessions. 

The numbers after the semicolon (the comment area) indicate the 

number of cycles that instruction will take (not taking into account 

possible page-boundary crossing, etc). We can see that this simple 

symmetrical playfield modification will take at least 31 cycles of our 

available 76 cycles just to do the three playfield registers on each 

scanline. That leaves only 45 cycles to do sprites, missiles, ball -- and 

let's not forget the other three playfield writes if we're doing an 

asymmetrical playfield.  

Clearly, our scanline loop is extremely starved of cycles, and any 

code we put in there must be extremely efficient. The biggest waste in 

the code above is the comparison. Remember earlier we indicated that 

the 6502 has a flags register, and some of these flags are set/cleared 

automatically after certain operations (on loads and arithmetic 

operations - including register increments and decrements, the 

negative and zero flags are automatically set/cleared). From now on 

we're going to use the 'standard' way of looping and instead of 

specifically comparing a line count with a desired value (eg: counting 
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up to 192), we'll switch to starting at our top value and decrementing 

the line counter and branching UNTIL the counter gets to 0. By using 

our knowledge about the automatic flag setting, we are able to remove 

the comparison from our loop... 

   ldx #192            ;2 
Kernel  lda PF0Table,x ;4 
   sta PF0             ;3 
   lda PF1Table,x      ;4 
   sta PF1             ;3 
   lda PF2Table,x      ;4 
   sta PF2             ;3 
   sta WSYNC           ;3 
   dex                 ;2 
   bne Kernel          ;3(2) 

 

The trick here is that the "dex" instruction will set the Z (zero) flag to 

1 if the x register is zero after the instruction has executed, and 0 if it 

is non-zero. The "bne" instruction stands for "branch if Z is zero" or 

more memorably "branch if the result was not equal (to zero)". In 

short, the branch will be taken if the x register is non-zero. Thus we 

have removed two cycles from our inner scanline loop. But at what 

cost? Since the loop is now counting "down" instead of "up", our 

tables will now be accessed upside-down (that is, the first scanline 

will show data from the bottom of the tables), and our whole playfield 

will "flip" upside-down. That's fine - the solution for this is to change 

the tables themselves so they are upside-down, too!  

All of that was a bit of a diversion - but it's important to understand 

how we are accessing our data in an upside-down fashion merely for 

the purposes of efficiency - in this case, saving us just 2 cycles per 

scanline. But those 2 cycles are some 2.6% of the time we have, and 

every little bit counts.  

Even with this improvement, we have just 47 cycles left to do 

everything else. Let's have a look at what we need to add to this to get 

sprites up and running. Assume we are loading our sprite data from a 

table, just as with the playfield data. We'd need to add... 

   lda Sprite0Data,x ;4 
   sta GRP0          ;3 
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That's 7 cycles, which is OK - but we find that we have an immovable 

(we have no ability to change the vertical position) block of sprite 

data the whole height of the screen - read from the table 'Sprite0Data'. 

This setup would also require that our sprite data table is 192 lines 

high.  

Let's assume, just for a minute, that Sprite0Data was in RAM. Then 

we'd have the ability to use this kernel to do the display and have 

another part of our program draw different shapes into that RAM 

table (i.e. if we were drawing a Pac-Man sprite, we could have the 

first 20 'lines' of the table with 0, then the next 16 lines with the shape 

for the Pac-Man sprite, then the remainder with 0). To move this 

sprite up or down, we'd simply change where in the RAM table we 

were drawing the sprite - and when our kernel came to do the display, 

it wouldn't really care where the sprite was, it would just draw the 

continuous strip of sprite data from the RAM table, and voila! 

Vertically moving sprites.  

And this is exactly how the Atari home computers manage vertical 

movement of sprites. They, too, have a single register holding the 

sprite data - and they, too, modify this register on-the-fly to change 

the shape of the sprite that is being shown on each scanline. But the 

difference is that the Atari computers have a bit of hardware which 

does EXACTLY what our little kernel above does - that is, copy 

sprite data from a RAM buffer into the hardware sprite register.  

The problem for Atari 2600 kernels is that we simply don't have 192 

bytes of RAM to spend on a draw buffer/table for each player sprite. 

In fact, we only have 128 bytes RAM total for our entire program! So 

it's a nice solution - and certainly one that should be used if you are 

programming for some cartridge format with ample RAM - because it 

provides extremely quick (7 cycles) drawing of sprites.  

But for normal usage, this technique is not possible or practical.  

Unfortunately, the available alternatives are costly - in terms of 

processing time. The quickest 'generic sprite draw' that I'm aware of at 

the moment takes 18 cycles. Given our 47 cycles remaining in the 

scanline, 36 of these would be taken up drawing just two sprites - and 

that makes asymmetrical playfield, balls and missiles a very 



141 

problematic task. How can we fit all of these into the remaining 11 

cycles of time?  

The short answer is: we can't. And this is why many games revert to 

what is termed a "2 scanline kernel". Instead of trying to fit ALL of 

the updates into a single scanline, the 2 scanline kernel tries to fit all 

of the updates into two scanlines - taking advantage of the TIA's 

persistent state so that registers which have been modified on one 

scanline will remain the same until next modified. A typical two 

scanline kernel will modify the playfield (left side), sprite 0, playfield 

(right side) on the first scanline, then the playfield (left side), sprite 1, 

playfield (right side) on the second scanline - and then repeat the 

process.  

The upshot of this is that our sprites have a maximum resolution of 

two scanlines - that is, we can only modify the shape of a sprite once 

every two lines - and in fact each sprite is updated on alternate lines. 

There's a bit of hardware (a graphics delay of 1 scanline) to 

compensate for this, so that the sprites APPEAR to update on the 

same scanline. This interesting hardware capability shows clearly that 

the designers of the '2600 were well aware of the time limitations 

inherent in trying to update playfield registers, sprites missiles and 

ball in a single scanline - and that they designed the hardware 

accordingly to mask this problem.  

But we're not concerned with two scanline kernels this session. Please 

be aware that they are extremely common - and many games extend 

this concept to multiple-scanline kernels - where different tasks are 

performed in each scanline, and after n scanlines this process repeats 

to build up the screen out of 'meta-scanlines'. It's a useful technique to 

get around the limitations of cycles per line.  

Before we continue, let's have a think about what we want a sprite 

draw to do - it's fine to be able to display a sprite shape anywhere on 

the screen (we've already touched on the horizontal positioning, and 

now we're well on the way to understanding how the vertical 

positioning works) - but sprites typically animate. How can we use 

the code shown so far to animate our sprites as well?  
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If we used the Atari computer method - presented above - of using a 

'strip' of RAM to represent the table from which data is written to the 

screen, and modifying the data written to that table, then the problem 

is fairly simple - we just write different shapes to the table. But if we 

don't HAVE a RAM table, and we're forced to use a ROM table, then 

to get different shapes onscreen, we're going to have to use different 

tables. We can't modify the contents of tables in ROM! But the code 

above has the table hardwired into the code itself. That is... 

   lda Sprite0Data,x 

   sta GRP0 

 

The problem here is that the address of the table is hardwired at the 

time we write our code - and the assembler will happily predetermine 

where this table is in the ROM, and the code will always fetch the 

data from the same table. What we really want to do with a sprite 

routine is not only fetch the data from a table - but also be able to 

change WHICH table we fetch the data from.  

And here is an ideal use for a new addressing mode of the 6502. 

   lda (zp),y 

 

In the above code, 'zp' is a zero page two-byte variable which holds a 

memory address. The 6502 takes the contents of that variable (i.e. the 

address of our table), adds the y register to it, and then uses the 

resulting address as our location from which to load a byte of data. It's 

quite an expensive instruction, taking 5 cycles to execute.  

But now our code for drawing sprites (in principle) can look like 

this... 

   lda (SpriteTablePtr),y 

   sta GRP0 

 

The problem this introduces is that the Y register is used for indexing 

the data table, whereas we were previously using the X register. 

There's no way around this - the addressing mode does not work with 

the X register! So let's change our kernel around a bit, and instead of 

using the X register to count the scanlines, we'll switch to the Y 

register... 
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   ldy #192       ;2 
Kernel  

   lda PF0Table,y ;4 
   sta PF0        ;3 
   lda PF1Table,y ;4 
   sta PF1        ;3 
   lda PF2Table,y         ;4 
   sta PF2                ;3 
   lda (SpriteTablePtr),y ;5 
   sta GRP0               ;3 
 

   sta WSYNC              ;3 
   dey                    ;2 
   bne Kernel             ;3(2) 

 

This is a bit better - now (as long as we previously setup the zero page 

2-byte variable to point to our table) we are able to display any sprite 

shape that we desire, using the one bit of code. Here's what you'd 

need to do to setup your variable to point to the sprite shape data... 

   lda #<Sprite0Data 

   sta SpriteTablePtr 

   lda #>SPrite0Data 

   sta SpriteTablePtr+1 

 

Additionally, the variable should be defined in the RAM segment like 

this... 

SpriteTablePtr ds 2 

 

Now let's review all of that and make sure we understand exactly 

what is happening... We have a zero page variable (2 bytes long) 

which holds the address of the sprite table containing the shape we 

want to display. Addresses are 16-bits long, and we've already seen 

how the 6502 represents 16-bit addresses by a pair of bytes - the low 

byte followed by the high byte (little-endian order). So into our sprite 

pointer variable, we are writing this byte-pair. The '>' operator tells 

the assembler to use the high byte of an address, and the '<' operator 

tells the assembler to use the low byte of an address. These are 

standard operators, but there's another way to do it... 

   lda #address&0xFF  ; low byte 
   sta var 

   lda #address/256   ; high byte 
   sta var+1 
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Other ways exist. It doesn't really matter which one you use - the 

result is the same. We end up with a zero page variable which 

POINTS to the table which is used to give the data for the shape of 

the sprite. In fact, the variable points to the very start of the table.  

And this is our new problem! As we have earlier seen, if we had a 

RAM table, then we could move the sprite up and down by drawing it 

into that table and let our kernel display the whole 'strip' of sprite data. 

The effect would be that the sprite moved up and down on screen. But 

because we don't have that much RAM, we must programmatically 

determine on which scanline(s) the sprite data is to be displayed from 

the table, and which scanline(s) should contain 0-data for the sprite.  

Essentially the process consists of comparing the current line-counter 

(the Y register) with the vertical position required for the sprite. If the 

counter comparison indicates that the sprite should be visible on the 

current scanline, then the data is fetched from the table - else a 0 value 

is used for the sprite data. Rather than stepping through the entire 

process and deriving the optimum result, we're going to just drop in 

the method used by nearly all games these days... 

       sec         ; 2 can often be guaranteed, and omitted 
       tya                    ; 2 
       sbc SpriteEnd          ; 3 
       adc #SPRITE_HEIGHT     ; 2 
       bcs .MBDraw3           ; 2(3) 
       nop                    ; 2 
       nop                    ; 2 
       sec                    ; 2 
       bcs .skipMBDraw3       ; 3 
.MBDraw3 

       lda (Sprite),y         ; 5 
       sta GRP0               ; 3 
.skipMBDraw3 

 

Now here things start to get a bit complex! What the above code 

shows is a sprite draw routine which effectively takes a constant 18 

cycles of time to either draw the sprite data from a table (when it's 

visible), or skip the draw entirely (when it's not visible). 
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There are a few assumptions here... 

1. The last drawn line of a sprite is always 0 - thus subsequent 

lines onscreen do not need to be 'cleared' - the persistent state 

of the TIA GRP registers will be sufficient to ensure the sprite 

is not displayed after the sprite is finished drawing. 

2. A variable 'SpriteEnd' is pre-calculated to indicate the starting 

line number of the sprite. 

3. The sprite is of constant height (here, SPRITE_HEIGHT). 

4. The branches in this code are assumed to NOT cross over page 

boundaries. If they did, then each would incur an additional 

cycle penalty - and the timing for the scanline would be 

incorrect. 

So, that's a bit much to deal with in one whack - and to be honest you 

don't really need to understand the intricacies. Basically the code has 

two different sections - one where the sprite data is drawn from the 

table, and one where the draw is skipped. Each section is carefully 

timed so that after they rejoin at the bottom, they have both taken 

EXACTLY the same number of cycles to execute.  

 

Thomas Jentzsch has presented more optimal code, in the form of his 

'skipdraw' routine - and frankly, I've not bothered taking the time to 

fully understand how it works, either! These sections of code are 

pretty much guaranteed to work efficiently and correctly, provided 

you setup the variables properly.  

;============================================================ 
; Thomas Jentzsch’ Skipdraw 
;============================================================ 

;The best way I knew until now was (if y contains linecounter) 
  tya                   ; 2 
; sec                   ; 2 <- this can sometimes be avoided 
  sbc SpriteEnd         ; 3 
  adc #SPRITEHEIGHT     ; 2 
  bcx .skipDraw         ; 2 = 9-11 cycles 
; ... 
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; --------- or ------------ 
 

;If you like illegal opcodes, you can use dcp (dec,cmp) here: 
  lda #SPRITEHEIGHT     ; 2 
  dcp SpriteEnd         ; 5  initial value has to be adjusted 
  bcx .skipDraw         ; 2 = 9 
; ... 

;Advantages: 
;- state of carry flag doesn't matter anymore (may save 2 
;  cycles) 
;- a remains constant, could be useful for a 2nd sprite 
;- you could use the content of SpriteEnd instead of y for 
;  accessing sprite data 
;- ??? 

;=========================================================== 
;An Example: 
; 
   ; skipDraw routine for right player 
   txa                          ; 2 A-> Current scanline 
   sec                          ; 2 Set Carry 
   sbc slowP1YCoordFromBottom+1 ; 3  
   adc #SPRITEHEIGHT+1          ; 2 calc if sprite is drawn 
   bcc skipDrawRight            ; 2/3 To skip or not to skip? 
   tay                          ; 2 
   lda P1Graphic,y              ; 4 
continueRight: 

   sta GRP0      

;----- this part outside of kernel 

skipDrawRight        ; 3 from BCC 
   lda #0            ; 2 
   beq continueRight ; 3 Return... 

;============================================================ 
 

Though we have covered a lot of ground today I hope you will 

understand the basic principles of vertical sprite movement. In 

summary... 

1. There is no hardware facility to 'move' sprites either 

horizontally or vertically. To achieve horizontal motion, we 

need to hit RESPx register at exactly the right horizontal 

position in a scanline, at which point the appropriate sprite 

will start drawing. To achieve vertical motion, we need to 
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adjust what data we feed to the GRPx registers, so that the 

shape we are drawing starts on the appropriate scanline, and 

scanlines where it is not visible have 0-data. 

2. There are precious few cycles available on scanlines, and 

many of these are taken up by playfield drawing and loop 

management. Sprite drawing can be done efficiently with large 

RAM buffers, but most cartridge configurations don't offer 

this luxury. 

3. Drawing animated sprites can be done efficiently by using an 

indirect zero-page pointer to point to sprite data tables. These 

tables can then be used as source for the sprite draw. 

4. The sprite draw needs to determine, for each scanline, if the 

sprite would be visible on that line - and either take data from 

the correct table, or use 0-data. 

5. Kernels can be extended to multiple-lines (at the cost of 

vertical resolution) to allow all the necessary hardware 

updates to be performed. 

 

Exercises 

1. Modify your current sprite drawing code to use a zero-page 

variable to point to a table of data in your ROM. 

2. Create another data table, and use a variable to determine 

which of the two data tables to display. You might like to have 

it switch between these tables every second, or perhaps use the 

joystick button to determine which is displayed. As a hint - 

remember, you need to setup the zero page pointer to point to 

the table for your sprite draw to use - so all you need to do is 

change this pointer, and leave your kernel code alone. 

3. The more difficult task is to attempt to integrate the generic 

draw (either the code above, or Thomas's code, which should 

appear shortly) into your kernel. This is worth doing - and 
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waiting for! - because once you have this installed, you'll have 

a totally generic kernel which can draw a sprite at practically 

any horizontal and vertical position on the screen and all you 

have to do is tell it WHERE to appear - and voila! 

That should keep you busy. Enjoy! 
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Session 24: Some Nice Code 

In session 22, we learned that to horizontally position a sprite, we 

need to trigger the RESPx register at the appropriate position in the 

scanline, at which point the sprite will display immediately. To move 

to an arbitrary horizontal position, we need to trigger RESPx just 

before the TIA is displaying the appropriate color clock. Our solution 

has been to use the desired X-position of the sprite as the basis for a 

delay loop which starts at the beginning of a scanline, delays until 

roughly the correct position, adjusts the HMPx fine-tune horizontal 

position register and then 'hits' RESPx to immediately position the 

sprite.  

Since the minimal time for a single loop iteration is 5 cycles 

(involving a register decrement, and a branch), and 5 cycles 

corresponds to 15 TIA color-clocks, it follows that our delay-loop 

approach can only position RESPx writes with an accuracy of 15 TIA 

color-clocks. This is fine, though, as the hardware capability of fine-

positioning sprites by -8 to +7 pixels perfectly allows the correct 

position of the sprite to be established.  

The approach taken previously has been to effectively divide the 

position by 15 (either through a table-lookup, or 'clever' code which 

simulated a divide by 15 using a divide by 16 (quick) + adjustment) 

and use that value as the iteration counter in a delay loop. This 

approach works, and has been fairly standard for a number of years. 

This is the approach presented in our earlier tutorial.  

A recent posting to the [stella] list of an independent discovery of a 

'new' method much improves on this technique. In actual fact, the 

technique was already known and documented in the list... but for 

various reasons these things don't always become well-known. The 

'new' technique of horizontal positioning rolls the divide-by-15 and 

the delay loop into a single entity. 

        sec 

.Div15  sbc #15      ; 2 
        bcs .Div15   ; 3(2) 

 

Now that may not look like much, but it's absolutely brilliant! Every 

iteration through the loop, the accumulator is decremented by 15. 
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When the subtraction results in a carry, the accumulator has gone 

'past' 0, and our loop ends. Each iteration takes exactly 5 cycles (with 

an extra 2 cycles added for the initial 'sec' and one less for the final 

branch not taken). The real beauty of the code is that we also, 'for 

free', get the correct -8 to +7 adjustment for the fine-tuning of the 

position (which with a little bit of fine-tuning can be used for the 

HMP0 register)! Read the relevant post on [stella] here... 

http://www.biglist.com/lists/stella/archives/200403/msg00260.html 

For this brilliant bit of coding, our thanks go to R. Mundschau 

; Positions an object horizontally 
; Inputs: A = Desired position. 
; X = Desired object to be positioned (0-5). 
; scanlines: If control comes on or before cycle 73 
; then 1 scanline is consumed. 
; If control comes after cycle 73 then 2 scanlines are  
; consumed. 
; Outputs: X = unchanged 
; A = Fine Adjustment value. 
; Y = the "remainder" of the division by 15 minus an  
; additional 15. 
; control is returned on cycle 6 of the next scanline. 
 

PosObject  SUBROUTINE 

           sta WSYNC      ; 00     Sync to start of scanline. 
           sec            ; 02     Set the carry flag so no 
                          ;        borrow will be applied  
                          ;        during the division. 
 

.divideby15 sbc #15       ; 04     Waste the necessary amount  
                          ;      of time dividing X-pos by 15! 
 

           bcs .divideby15  

                    ; 06/07   
                    ; 11/16/21/26/31/36/41/46/51/56/61/66 
 

           tay 

           lda fineAdjustTable,y  ; 13 -> Consume 5 cycles by 
                                     ; guaranteeing we cross a 
                                     ; page boundary 
           sta HMP0,x 

 

           sta RESP0,x   ; 21/ 26/31/36/41/46/51/56/61/66/71 
                           ; Set the rough position. 
           rts  

 

;----------------------------- 
; This table converts the "remainder" of the division by 15 
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; (-1 to -15) to the correct fine adjustment value.  
; This table is on a page boundary to guarantee the processor 
; will cross a page boundary and waste a cycle in order to be 
; at the precise position for a RESP0,x write 
 

           ORG $F000 

 

fineAdjustBegin 

           DC.B %01110000; Left 7  
           DC.B %01100000; Left 6 
           DC.B %01010000; Left 5 
           DC.B %01000000; Left 4 
           DC.B %00110000; Left 3 
           DC.B %00100000; Left 2 
           DC.B %00010000; Left 1 
           DC.B %00000000; No movement. 
           DC.B %11110000; Right 1 
           DC.B %11100000; Right 2 
           DC.B %11010000; Right 3 
           DC.B %11000000; Right 4 
           DC.B %10110000; Right 5 
           DC.B %10100000; Right 6 
           DC.B %10010000; Right 7 
 

fineAdjustTable EQU fineAdjustBegin - %11110001 

           ; NOTE: %11110001 = -15 
 

One interesting aspect of this code is the access to the table with a 

(conceptual) negative index (-1 to -15 inclusive). Negative numbers 

are represented in two's complement form, so -1 is %11111111 which 

is *exactly* the same as 255 (%11111111). So how can we use 

negative numbers as indexes? We can't! All indexing is considered to 

be with positive numbers. So if our index was -1, we would actually 

index 255 bytes past the beginning of our table. The neat bit of code 

at the bottom sets the conceptual start of our table to 241 bytes 

BEFORE the start of the actual data so that when we attempt to access 

the -15th element of the table, we ACTUALLY end up at the very 

first byte of the "fineAdjustBegin" table. Likewise, when accessing 

the -1th element, we ACTUALLY access the last element of the table. 

It's all very neat!  

Finally, since we need to account for every cycle in this code very 

carefully (as the horizontal position depends on exactly where we 

write the RESP0 value), we need to take into account the possibility 

that an extra cycle is being thrown in when we access 
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fineAdjustTable,y and that access crosses a page boundary. By 

positioning the table being accessed exactly on a page boundary, the 

code guarantees that every access incurs an extra cycle 'penalty' and is 

therefore consistent for all cases.  

I don't take any credit for this, I just admire it. I consider this a 

BRILLIANT bit of coding, so hats-off to R. Mundschau and thanks 

for sharing!  

Another "BRILLIANT" bit of code, but this time from yours truly, is 

the 8-byte system clear. We touched on this earlier in Session 12, but 

I thought I'd give a quick run-down on exactly how that code works... 

       ldx #0  

       txa  

Clear  dex  

       txs  

       pha  

       bne Clear 

 

We assume that when this code starts, the system is in a totally 

unknown state. Firstly, X and A are set to 0, and we enter the loop. 

• The loop begins: X-register is decremented (to 255) and this 

value is placed in the stack pointer (now $FF) 

• The accumulator(0) is then pushed onto the stack, so 

memory/hardware location $FF is set to 0, and the stack 

pointer decrements to $FE  

• Since the tsx and pha don't affect the flags, the branch will be 

based on the decrement of the x register  

• If non-zero, then we repeat the loop. 0 will be written to 256 

consecutive memory locations starting with $FF and ending 

with 0 (inclusive). Loop will terminate after 256 iterations.  

• On the final pass through, x would be decremented to 0, and 

this placed in the stack pointer. We then push the accumulator 

(0) onto the stack (which effectively writes it to memory 

(TIA) location 0) and as a consequence the stack pointer dec-

rements (and wraps!) back to $FF  

• At the conclusion of the above, X = 0, A = 0, SP = $FF, a 

near-perfect init! 

 

That could be the best 8-bytes ever written ;-) 
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Session 25: Advanced Timeslicing 

Time is tight. Really tight! The general approach has been to think of 

the TV frame as the limiting factor for the capabilities of the machine. 

Whatever you can do in "one frame" (i.e., nominally @60Hz on 

NTSC or @50Hz on PAL)... that's IT. So in fact you can work out 

exactly how much time you have to do stuff. As we've seen in earlier 

tutorials, the '2600 programmer has to pump data out to the TIA in 

synch with the TV as it's drawing scanlines. You need to feed the TV 

scanlines to draw a proper picture. There are 76 cycles per scanline, 

and 262 scanlines per standard TV frame (312 for PAL). So 76 * 262 

= 19912 cycles per frame. Multiply that by the NTSC frame rate 

(actually 59.94Hz) and you get.... 1193525.28 (i.e., there's our 

1.19MHz CPU clock speed). It all makes sense. 

So, just 262 lines. The visible screen is smaller than that, of course 

(usually 192 scanlines of actual graphics)-- so we only need to pump 

data to the screen for a smaller number of lines. The rest is black, 

nothing to see. Below is a good visual diagram of where the time 

goes.  
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So, during those blank lines, the CPU doesn't have to pump data to 

the screen. In fact these two major areas of "blackness" (that is, the 

vertical blank, and the overscan) account for 37 scanlines (*76 = 2812 

cycles) and 30 scanlines (*76 = 2280 cycles). Now that's not exactly 

swimming in available CPU capacity but it's better than nothing. So 

the general usage of these blank areas has been to whack in "stuff" 

that takes a fair bit of time to do. 

The problem is, you can't whack in too MUCH stuff. Because when 

those 37 scanlines of time have elapsed, you MUST be writing to the 

TIA again to make sure the next frame is displaying properly. Same 

for the 30 lines of overscan. There's no getting around it; you take too 

much time, and you stuff up the timing, and consequently the TV 

picture will roll, judder and basically look horrible. The hard and fast 

rule has been to simply stay within the limitation, or to reduce the 

number of visible scanlines to give more processing time for doing 

more complex STUFF. Each scanline of visible data you sacrificed, 

you got 76 scanlines of available time to do your stuff. A 

compromise. 

Fortunately, we have the timer registers. These are single countdown 

registers that will regularly decrement a value written to them. I only 

use TIM64T -- this one counts 64 cycle blocks. If I write 10 to it, then 

I would expect it to reach 0 some 640 cycles later. So, the usage has 

been to calculate the amount of time before the screen drawing has to 

(re)commence, divide by 64, and put that value in TIM64T. By 

reading INTIM and waiting until that reaches 0, you effectively wait 

the right number of cycles. You can do your (variable time) "stuff" 

and not really care about how long it takes (as long as it doesn't take 

TOO long), and after it's finish you enter a tight loop just reading 

INTIM and waiting for it to go to 0. When it goes to 0, fire off a 

WSYNC and then begin the TV frame drawing once again. 

That's how it's BEEN done, but that's not how I did it in Boulder 

Dash! 

The INTIM register effectively tells you not only if you're out of time, 

but also exactly how MUCH time you have remaining (in blocks of 

64 cycles if you're using TIM64T). So, if you think about it, you can 

actually make decisions about if you should call a subroutine based on 
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this value. For example, say you had a small routine which you know 

takes (say) 1000 cycles to run. That's 1000/64 units (= 15.625). So, if 

INTIM was reading 16 or greater you KNOW you can call that 

subroutine and not run out of time! This gets rather nice. Given a 

guaranteed maximum run-time for any subroutine (and you get this by 

cycle-counting the subroutine very, very carefully), you can use this 

knowledge to determine if/when it's appropriate to call that 

subroutine. Furthermore, after you HAVE called the subroutine, you 

can repeat the process -- look at INTIM and determine if there's 

enough time to run OTHER subroutines. 

So the whole concept of '2600 programming basically changes here. 

Now we have an asynchronous system, where you have a queue of 

"tasks" that you have to do. These tasks in Boulder Dash are generally 

creature logic (process a boulder, the amoeba, etc.). Each of these 

tasks are cycle-counted so we know exactly how long the worst-case 

is. And each of these tasks is only run if there's available time. If not, 

then they simply return and in the next chunk of available time, they 

will be called again.  

So, this is how the timeslicing engine works! Every part of the game 

logic is broken down into as small (quick) units of code as 

practicable. Rather than have the whole processing for an object in a 

single huge and costly block of code, where possible these are broken 

down into even smaller "sub-tasks". And those tasks are effectively 

placed in a queue which is processed by the task manager. The task 

manager is a tight loop which pulls a task off the task stack, vectors to 

the appropriate handler for the task, and repeats. The tasks themselves 

are responsible for deciding if there's enough time for them to do their 

own stuff (i.e., fairly object-oriented in that regard). If a task doesn't 

think there's enough time (again, by simply reading INTIM and 

comparing with its own timing equate), it simply returns. If it has 

enough time to do its stuff, it does so and makes sure that it's no 

longer on the task queue. Tasks can even add other tasks to the queue, 

for later processing! 

The upshot of all this is that a game doesn't have to be able to handle 

the very worst case most expensive thing ever in a single frame. The 

tasks split across multiple frames, if needed. In other words, there's 

now a separation between game logic (running over multiple frames if 
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requried) and the frame display (running exactly at the TV frame 

rate). Yes, Virginia, '2600 games can slow down. Now for most 

situations this isn't ideal -- but in reality it doesn't really matter. Most 

of the gameplay for the '2600 Boulder Dash just never slows down. 

But occasionally, very occasionally (say, when an amoeba turns into 

200 boulders and they all start falling at the same time) -- well, the 

system can handle it. Because although it may only have enough 

processing power to handle (say) 20 boulders in a single frame, that's 

OK, because the other boulders are effectively stacked and processed 

the next frame. And the queue may be really big for a few game 

loops, and the game will lag... probably not very noticeably... but 

when the queue is empty again, everything is back to running full 

speed. 

So the above is the secret to making much more complex games than 

have heretofore been produced on the machine. You CAN keep the 

TV display going full speed (60Hz) while doing processing-intensive 

game logic. And you CAN do very, very, very complex game logic 

taking absolutely heaps of processing time. The trick, as noted, is to 

separate out the two so they are not synchronous -- and to divide the 

complex logic into discrete, very quick, sub-components. 

Divide and conquer! 
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Appendix A: 6502 Opcodes – from www.6502.org 

 

ADC (ADd with Carry) 

Affects Flags: S V Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     ADC #$44      $69  2   2 
Zero Page     ADC $44       $65  2   3 
Zero Page,X   ADC $44,X     $75  2   4 
Absolute      ADC $4400     $6D  3   4 
Absolute,X    ADC $4400,X   $7D  3   4+ 
Absolute,Y    ADC $4400,Y   $79  3   4+ 
Indirect,X    ADC ($44,X)   $61  2   6 
Indirect,Y    ADC ($44),Y   $71  2   5+ 
 
+ add 1 cycle if page boundary crossed 
 

ADC results are dependent on the setting of the decimal flag. In 
decimal mode, addition is carried out on the assumption that the 
values involved are packed BCD (Binary Coded Decimal). 
There is no way to add without carry. 
 

AND (bitwise AND with accumulator) 

Affects Flags: S Z 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     AND #$44      $29  2   2 
Zero Page     AND $44       $25  2   3 
Zero Page,X   AND $44,X     $35  2   4 
Absolute      AND $4400     $2D  3   4 
Absolute,X    AND $4400,X   $3D  3   4+ 
Absolute,Y    AND $4400,Y   $39  3   4+ 
Indirect,X    AND ($44,X)   $21  2   6 
Indirect,Y    AND ($44),Y   $31  2   5+ 
 
+ add 1 cycle if page boundary crossed 
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ASL (Arithmetic Shift Left) 

Affects Flags: S Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Accumulator   ASL A         $0A  1   2 
Zero Page     ASL $44       $06  2   5 
Zero Page,X   ASL $44,X     $16  2   6 
Absolute      ASL $4400     $0E  3   6 
Absolute,X    ASL $4400,X   $1E  3   7 
 

ASL shifts all bits left one position. 0 is shifted into bit 0 and 
the original bit 7 is shifted into the Carry. 
 

BIT (test BITs) 

Affects Flags: N V Z 
 
MODE           SYNTAX       HEX LEN TIM 
Zero Page     BIT $44       $24  2   3 
Absolute      BIT $4400     $2C  3   4 
 

BIT sets the Z flag as though the value in the address tested were 
ANDed with the accumulator. The S and V flags are set to match bits 
7 and 6 respectively in the value stored at the tested address. 
BIT is often used to skip one or two following bytes as in: 
 
CLOSE1 LDX #$10   If entered here, we 
       .BYTE $2C  effectively perform 
CLOSE2 LDX #$20   a BIT test on $20A2, 
       .BYTE $2C  another one on $30A2, 
CLOSE3 LDX #$30   and end up with the X 
CLOSEX LDA #12    register still at $10 
       STA ICCOM,X upon arrival here. 
 
Beware: a BIT instruction used in this way as a NOP does have 
effects: the flags may be modified, and the read of the absolute 
address, if it happens to access an I/O device, may cause an 
unwanted action. 
                  

Branch Instructions 

Affect Flags: none 
 
All branches are relative mode and have a length of two bytes. 
Syntax is "Bxx Displacement" or (better) "Bxx Label". See the notes 
on the Program Counter for more on displacements. 
 
Branches are dependent on the status of the flag bits when the op 
code is encountered. A branch not taken requires two machine cycles. 
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Add one if the branch is taken and add one more if the branch 
crosses a page boundary. 
 
MNEMONIC                       HEX 
BPL (Branch on PLus)           $10 
BMI (Branch on MInus)          $30 
BVC (Branch on oVerflow Clear) $50 
BVS (Branch on oVerflow Set)   $70 
BCC (Branch on Carry Clear)    $90 
BCS (Branch on Carry Set)      $B0 
BNE (Branch on Not Equal)      $D0 
BEQ (Branch on EQual)          $F0 
 
There is no BRA (BRanch Always) instruction but it can be easily 
emulated by branching on the basis of a known condition. One of the 
best flags to use for this purpose is the oVerflow which is 
unchanged by all but addition and subtraction operations. 
 
A page boundary crossing occurs when the branch destination is on a 
different page than the instruction AFTER the branch instruction. 
For example: 
 
  SEC 
  BCS LABEL 
  NOP 
 
A page boundary crossing occurs (i.e. the BCS takes 4 cycles) when 
(the address of) LABEL and the NOP are on different pages. This 
means that 
 
      CLV 
      BVC LABEL 
LABEL NOP 
 
the BVC instruction will take 3 cycles no matter what address it is 
located at. 
 

BRK (BReaK) 

Affects Flags: B 
 
MODE           SYNTAX       HEX LEN TIM 
Implied       BRK           $00  1   7 
 
BRK causes a non-maskable interrupt and increments the program 
counter by one. Therefore an RTI will go to the address of the BRK 
+2 so that BRK may be used to replace a two-byte instruction for 
debugging and the subsequent RTI will be correct. 
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CMP (CoMPare accumulator) 

Affects Flags: S Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     CMP #$44      $C9  2   2 
Zero Page     CMP $44       $C5  2   3 
Zero Page,X   CMP $44,X     $D5  2   4 
Absolute      CMP $4400     $CD  3   4 
Absolute,X    CMP $4400,X   $DD  3   4+ 
Absolute,Y    CMP $4400,Y   $D9  3   4+ 
Indirect,X    CMP ($44,X)   $C1  2   6 
Indirect,Y    CMP ($44),Y   $D1  2   5+ 
 
+ add 1 cycle if page boundary crossed 
 
Compare sets flags as if a subtraction had been carried out. If the 
value in the accumulator is equal or greater than the compared 
value, the Carry will be set. The equal (Z) and sign (S) flags will 
be set based on equality or lack thereof and the sign (i.e. A>=$80) 
of the accumulator. 
  

CPX (ComPare X register) 

Affects Flags: S Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     CPX #$44      $E0  2   2 
Zero Page     CPX $44       $E4  2   3 
Absolute      CPX $4400     $EC  3   4 
 
Operation and flag results are identical to equivalent mode 
accumulator CMP ops. 
  

CPY (ComPare Y register) 

Affects Flags: S Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     CPY #$44      $C0  2   2 
Zero Page     CPY $44       $C4  2   3 
Absolute      CPY $4400     $CC  3   4 
 
Operation and flag results are identical to equivalent mode 
accumulator CMP ops. 
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DEC (DECrement memory) 

Affects Flags: S Z 
 
MODE           SYNTAX       HEX LEN TIM 
Zero Page     DEC $44       $C6  2   5 
Zero Page,X   DEC $44,X     $D6  2   6 
Absolute      DEC $4400     $CE  3   6 
Absolute,X    DEC $4400,X   $DE  3   7 
 

EOR (bitwise Exclusive OR) 

Affects Flags: S Z 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     EOR #$44      $49  2   2 
Zero Page     EOR $44       $45  2   3 
Zero Page,X   EOR $44,X     $55  2   4 
Absolute      EOR $4400     $4D  3   4 
Absolute,X    EOR $4400,X   $5D  3   4+ 
Absolute,Y    EOR $4400,Y   $59  3   4+ 
Indirect,X    EOR ($44,X)   $41  2   6 
Indirect,Y    EOR ($44),Y   $51  2   5+ 
 
+ add 1 cycle if page boundary crossed 
              

Flag (Processor Status) Instructions 

Affect Flags: as noted 
 
These instructions are implied mode, have a length of one byte and 
require two machine cycles. 
 
MNEMONIC                       HEX 
CLC (CLear Carry)              $18 
SEC (SEt Carry)                $38 
CLI (CLear Interrupt)          $58 
SEI (SEt Interrupt)            $78 
CLV (CLear oVerflow)           $B8 
CLD (CLear Decimal)            $D8 
SED (SEt Decimal)              $F8 
 
Notes: 
  The Interrupt flag is used to prevent (SEI) or enable (CLI) 
maskable interrupts (aka IRQ's). It does not signal the presence or 
absence of an interrupt condition. The 6502 will set this flag 
automatically in response to an interrupt and restore it to its 
prior status on completion of the interrupt service routine. If you 
want your interrupt service routine to permit other maskable 
interrupts, you must clear the I flag in your code. 
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  The Decimal flag controls how the 6502 adds and subtracts. If set, 
arithmetic is carried out in packed binary coded decimal. This flag 
is unchanged by interrupts and is unknown on power-up. The 
implication is that a CLD should be included in boot or interrupt 
coding. 
 
  The Overflow flag is generally misunderstood and therefore under-
utilized. After an ADC or SBC instruction, the overflow flag will be 
set if the twos complement result is less than -128 or greater than 
+127, and it will cleared otherwise. In twos complement, $80 through 
$FF represents -128 through -1, and $00 through $7F represents 0 
through +127. Thus, after: 
 
  CLC 
  LDA #$7F ;   +127 
  ADC #$01 ; +   +1 
 
the overflow flag is 1 (+127 + +1 = +128), and after: 
 
  CLC 
  LDA #$81 ;   -127 
  ADC #$FF ; +   -1 
 
the overflow flag is 0 (-127 + -1 = -128). The overflow flag is not 
affected by increments, decrements, shifts and logical operations 
i.e. only ADC, BIT, CLV, PLP, RTI and SBC affect it. There is no op 
code to set the overflow but a BIT test on an RTS instruction will 
do the trick. 
  

INC (INCrement memory) 

Affects Flags: S Z 
 
MODE           SYNTAX       HEX LEN TIM 
Zero Page     INC $44       $E6  2   5 
Zero Page,X   INC $44,X     $F6  2   6 
Absolute      INC $4400     $EE  3   6 
Absolute,X    INC $4400,X   $FE  3   7 
  

JMP (JuMP) 

Affects Flags: none 
 
MODE           SYNTAX       HEX LEN TIM 
Absolute      JMP $5597     $4C  3   3 
Indirect      JMP ($5597)   $6C  3   5 
 
JMP transfers program execution to the following address (absolute) 
or to the location contained in the following address (indirect). 
Note that there is no carry associated with the indirect jump so: 



163 

AN INDIRECT JUMP MUST NEVER USE A VECTOR BEGINNING ON THE LAST BYTE 
OF A PAGE 
For example if address $3000 contains $40, $30FF contains $80, and 
$3100 contains $50, the result of JMP ($30FF) will be a transfer of 
control to $4080 rather than $5080 as you intended i.e. the 6502 
took the low byte of the address from $30FF and the high byte from 
$3000. 
 

JSR (Jump to SubRoutine) 

Affects Flags: none 
 
MODE           SYNTAX       HEX LEN TIM 
Absolute      JSR $5597     $20  3   6 
 
JSR pushes the address-1 of the next operation on to the stack 
before transferring program control to the following address. 
Subroutines are normally terminated by a RTS op code. 
 

LDA (LoaD Accumulator) 

Affects Flags: S Z 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     LDA #$44      $A9  2   2 
Zero Page     LDA $44       $A5  2   3 
Zero Page,X   LDA $44,X     $B5  2   4 
Absolute      LDA $4400     $AD  3   4 
Absolute,X    LDA $4400,X   $BD  3   4+ 
Absolute,Y    LDA $4400,Y   $B9  3   4+ 
Indirect,X    LDA ($44,X)   $A1  2   6 
Indirect,Y    LDA ($44),Y   $B1  2   5+ 
 
+ add 1 cycle if page boundary crossed 
  

LDX (LoaD X register) 

Affects Flags: S Z 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     LDX #$44      $A2  2   2 
Zero Page     LDX $44       $A6  2   3 
Zero Page,Y   LDX $44,Y     $B6  2   4 
Absolute      LDX $4400     $AE  3   4 
Absolute,Y    LDX $4400,Y   $BE  3   4+ 
 
+ add 1 cycle if page boundary crossed 
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LDY (LoaD Y register) 

Affects Flags: S Z 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     LDY #$44      $A0  2   2 
Zero Page     LDY $44       $A4  2   3 
Zero Page,X   LDY $44,X     $B4  2   4 
Absolute      LDY $4400     $AC  3   4 
Absolute,X    LDY $4400,X   $BC  3   4+ 
 
+ add 1 cycle if page boundary crossed 
 

LSR (Logical Shift Right) 

Affects Flags: S Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Accumulator   LSR A         $4A  1   2 
Zero Page     LSR $44       $46  2   5 
Zero Page,X   LSR $44,X     $56  2   6 
Absolute      LSR $4400     $4E  3   6 
Absolute,X    LSR $4400,X   $5E  3   7 
 
LSR shifts all bits right one position. 0 is shifted into bit 7 and 
the original bit 0 is shifted into the Carry. 
  

Wrap-Around 

Use caution with indexed zero page operations as they are subject to 
wrap-around. For example, if the X register holds $FF and you 
execute LDA $80,X you will not access $017F as you might expect; 
instead you access $7F i.e. $80-1. This characteristic can be used 
to advantage but make sure your code is well commented. 
 
It is possible, however, to access $017F when X = $FF by using the 
Absolute,X addressing mode of LDA $80,X. That is, instead of: 
 
  LDA $80,X   ; ZeroPage,X - the resulting object code is: B5 80 
 

which accesses $007F when X=$FF, use: 
 
  LDA $0080,X ; Absolute,X - the resulting object code is: BD 80 00 
 
which accesses $017F when X = $FF (a at cost of one additional byte 
and one additional cycle). All of the ZeroPage,X and ZeroPage,Y 
instructions except STX ZeroPage,Y and STY ZeroPage,X have a 
corresponding Absolute,X and Absolute,Y instruction. Unfortunately, 
a lot of 6502 assemblers don't have an easy way to force Absolute 
addressing, i.e. most will assemble a LDA $0080,X as B5 80. One way 
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to overcome this is to insert the bytes using the .BYTE pseudo-op 
(on some 6502 assemblers this pseudo-op is called DB or DFB, consult 
the assembler documentation) as follows: 
 
  .BYTE $BD,$80,$00  ; LDA $0080,X (absolute,X addressing mode) 
 
The comment is optional, but highly recommended for clarity. 
In cases where you are writing code that will be relocated you must 
consider wrap-around when assigning dummy values for addresses that 
will be adjusted. Both zero and the semi-standard $FFFF should be 
avoided for dummy labels. The use of zero or zero page values will 
result in assembled code with zero page opcodes when you wanted 
absolute codes. With $FFFF, the problem is in addresses+1 as you 
wrap around to page 0. 
 

Program Counter 

When the 6502 is ready for the next instruction it increments the 
program counter before fetching the instruction. Once it has the op 
code, it increments the program counter by the length of the 
operand, if any. This must be accounted for when calculating 
branches or when pushing bytes to create a false return address 
(i.e. jump table addresses are made up of addresses-1 when it is 
intended to use an RTS rather than a JMP). 
 
The program counter is loaded least significant byte first. 
Therefore the most significant byte must be pushed first when 
creating a false return address. 
 
When calculating branches a forward branch of 6 skips the following 
6 bytes so, effectively the program counter points to the address 
that is 8 bytes beyond the address of the branch opcode; and a 
backward branch of $FA (256-6) goes to an address 4 bytes before the 
branch instruction. 
 

Execution Times 

Op code execution times are measured in machine cycles; one machine 
cycle equals one clock cycle. Many instructions require one extra 
cycle for execution if a page boundary is crossed; these are 
indicated by a + following the time values shown. 
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NOP (No OPeration) 

Affects Flags: none 
 
MODE           SYNTAX       HEX LEN TIM 
Implied       NOP           $EA  1   2 
 
NOP is used to reserve space for future modifications or effectively 
REM out existing code. 
  

ORA (bitwise OR with Accumulator) 

Affects Flags: S Z 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     ORA #$44      $09  2   2 
Zero Page     ORA $44       $05  2   3 
Zero Page,X   ORA $44,X     $15  2   4 
Absolute      ORA $4400     $0D  3   4 
Absolute,X    ORA $4400,X   $1D  3   4+ 
Absolute,Y    ORA $4400,Y   $19  3   4+ 
Indirect,X    ORA ($44,X)   $01  2   6 
Indirect,Y    ORA ($44),Y   $11  2   5+ 
 
+ add 1 cycle if page boundary crossed           
 

Register Instructions 

Affect Flags: S Z 
 
These instructions are implied mode, have a length of one byte and 
require two machine cycles. 
 
MNEMONIC                 HEX 
TAX (Transfer A to X)    $AA 
TXA (Transfer X to A)    $8A 
DEX (DEcrement X)        $CA 
INX (INcrement X)        $E8 
TAY (Transfer A to Y)    $A8 
TYA (Transfer Y to A)    $98 
DEY (DEcrement Y)        $88 
INY (INcrement Y)        $C8 
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ROL (ROtate Left) 

Affects Flags: S Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Accumulator   ROL A         $2A  1   2 
Zero Page     ROL $44       $26  2   5 
Zero Page,X   ROL $44,X     $36  2   6 
Absolute      ROL $4400     $2E  3   6 
Absolute,X    ROL $4400,X   $3E  3   7 
 
ROL shifts all bits left one position. The Carry is shifted into bit 
0 and the original bit 7 is shifted into the Carry. 
  

ROR (ROtate Right) 

Affects Flags: S Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Accumulator   ROR A         $6A  1   2 
Zero Page     ROR $44       $66  2   5 
Zero Page,X   ROR $44,X     $76  2   6 
Absolute      ROR $4400     $6E  3   6 
Absolute,X    ROR $4400,X   $7E  3   7 
 
ROR shifts all bits right one position. The Carry is shifted into 
bit 7 and the original bit 0 is shifted into the Carry. 
 

RTI (ReTurn from Interrupt) 

Affects Flags: all 
 
MODE           SYNTAX       HEX LEN TIM 
Implied       RTI           $40  1   6 
 
RTI retrieves the Processor Status Word (flags) and the Program 
Counter from the stack in that order (interrupts push the PC first 
and then the PSW). 
Note that unlike RTS, the return address on the stack is the actual 
address rather than the address-1. 
 

RTS (ReTurn from Subroutine) 

Affects Flags: none 
 
MODE           SYNTAX       HEX LEN TIM 
Implied       RTS           $60  1   6 
 
RTS pulls the top two bytes off the stack (low byte first) and 
transfers program control to that address+1. It is used, as 
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expected, to exit a subroutine invoked via JSR which pushed the 
address-1. 
RTS is frequently used to implement a jump table where addresses-1 
are pushed onto the stack and accessed via RTS e.g. to access the 
second of four routines: 
 
 LDX #1 
 JSR EXEC 
 JMP SOMEWHERE 
 
LOBYTE 
 .BYTE <ROUTINE0-1,<ROUTINE1-1 
 .BYTE <ROUTINE2-1,<ROUTINE3-1 
 
HIBYTE 
 .BYTE >ROUTINE0-1,>ROUTINE1-1 
 .BYTE >ROUTINE2-1,>ROUTINE3-1 
 
EXEC 
 LDA HIBYTE,X 
 PHA 
 LDA LOBYTE,X 
 PHA 
 RTS 
  

SBC (SuBtract with Carry) 

Affects Flags: S V Z C 
 
MODE           SYNTAX       HEX LEN TIM 
Immediate     SBC #$44      $E9  2   2 
Zero Page     SBC $44       $E5  2   3 
Zero Page,X   SBC $44,X     $F5  2   4 
Absolute      SBC $4400     $ED  3   4 
Absolute,X    SBC $4400,X   $FD  3   4+ 
Absolute,Y    SBC $4400,Y   $F9  3   4+ 
Indirect,X    SBC ($44,X)   $E1  2   6 
Indirect,Y    SBC ($44),Y   $F1  2   5+ 
 
+ add 1 cycle if page boundary crossed 
 
SBC results are dependent on the setting of the decimal flag. In 
decimal mode, subtraction is carried out on the assumption that the 
values involved are packed BCD (Binary Coded Decimal). 
There is no way to subtract without the carry which works as an 
inverse borrow. i.e., to subtract you set the carry before the 
operation. If the carry is cleared by the operation, it indicates a 
borrow occurred. 
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STA (STore Accumulator) 

Affects Flags: none 
 
MODE           SYNTAX       HEX LEN TIM 
Zero Page     STA $44       $85  2   3 
Zero Page,X   STA $44,X     $95  2   4 
Absolute      STA $4400     $8D  3   4 
Absolute,X    STA $4400,X   $9D  3   5 
Absolute,Y    STA $4400,Y   $99  3   5 
Indirect,X    STA ($44,X)   $81  2   6 
Indirect,Y    STA ($44),Y   $91  2   6     
 

Stack Instructions 

These instructions are implied mode, have a length of one byte and 
require machine cycles as indicated. The "PuLl" operations are known 
as "POP" on most other microprocessors. With the 6502, the stack is 
always on page one ($100-$1FF) and works top down. 
 
MNEMONIC                        HEX TIM 
TXS (Transfer X to Stack ptr)   $9A  2 
TSX (Transfer Stack ptr to X)   $BA  2 
PHA (PusH Accumulator)          $48  3 
PLA (PuLl Accumulator)          $68  4 
PHP (PusH Processor status)     $08  3 
PLP (PuLl Processor status)     $28  4 
 

STX (STore X register) 

Affects Flags: none 
 
MODE           SYNTAX       HEX LEN TIM 
Zero Page     STX $44       $86  2   3 
Zero Page,Y   STX $44,Y     $96  2   4 
Absolute      STX $4400     $8E  3   4 
 

STY (STore Y register) 

Affects Flags: none 
 
MODE           SYNTAX       HEX LEN TIM 
Zero Page     STY $44       $84  2   3 
Zero Page,X   STY $44,X     $94  2   4 
Absolute      STY $4400     $8C  3   4  



 

  



 

  



 

  

 


