@
2¢ Add: 100(6362)

| od | PIE:z;.zDESIcN
(@ 9019 Rev1

=

RGQ
R7'*;-)

P42 Watt-A-Live Power Monitor
Arduino Shield Feather Wing
Revl

Designed by Pier42 Electronics Design
Wolfgang Friedrich
Released under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
https://www.tindie.com/stores/pier42/

https://hackaday.io/project/166326-watt-a-live-power-monitor-shield-wing
https://github.com/wolfgangfriedrich/P42-Watt-A-Live

Table of Contents

I o] L= o 0] o1 =Y o1 PSSP 2
Tl Ao o 18T ox [o IO USRS 3
L e 17T 2T <SS 3
DA Ol o [ST =] =T o PRSP 3
DUAI CUITENT FANEE SEIBCE..vtiiiiiiee ittt e et e e s e e s st ee e s s abeeeesabtaeesnabeeesensseeessnnses 4
(Ol ol aT=T ol o o I DIF: T=d 1o FJ PP PPPPPPPRN 5
(O8] =T o 1Y [T R UL =T 0 g T=1 o1 S OTORORORORTRRt 5
POWEr MEASUIrEMENT 1 ...t e et e e e e s e s ere e e e e s s e sannreneeeeee s 6
POWET IMBASUIEMENT 2 ...ttt ettt ettt e e e e et r e e e e e e e e s eabbeee bt et e e e e e s nnsbeeeeeeeesannneneneeenss 6
Y] 8V L <SRN 7
(610] 11 = | o 1 £ 3OO URORUROPPRPPPRPPPOt 7
TIINAZO() ceeveeeereentee et ettt et e stee e stee ettt e suteesateesabaesbeeesaseesasaesssaesssabaesssaesnsaeessseesaseesssessnsseesaseesssesans 7
E=F [0 KViY Lo T o I | TR UROPRRT 8
WEIEEWOIA () cnereieieiiiiie ettt ettt ettt e ettt e e ettt e e e e tbe e e e ataeeeeeabaeaessseee e seasbeeeessaeaeessaeesanssesasansaeeesanseeens 8
(o101 1Yo Te 10 01 I USSP 8
QIZITAIVWIIEE 209 () c.vveeeeeeriieeeeiiie ettt e e ettt e e ettt e e e e bt e e e eetteeeeeetteeeeebaeeesestasaeeesassaeeeenssseeeastaseesassasesanssseennns 9
(o Td =Y [T Yo b 0L I USRS 9
BEETCUITENT () coureieeeiiie ettt et e ettt e ettt e e ettt eeeetaeeeeetbaeeeeaabeeaeesseaaeaeassseeesassaeseassaeasanssasaensseeesansaaens 9
L= LST AV Lo L =Y N) RSP 10
TP OWET () 1eiiiiiiie ettt ettt ettt e e ettt e e et e e e e et e e e e e abeeeeeaabee e e aaaeeeaeeasraea e e abeeeeanbbeeeeanbaeeeanraeeeannres 10

RSV Ty o] n T o] o o] HR RN 11

Introduction

The Watt-A-Live is a versatile embedded power monitor based on the Texas Instruments INA209 with full
connectivity to the unit under test. It measures the load current through a shunt resistor and has separate
GND connections to the power supply and the load to make it a true power monitor.

It is designed as an Adafruit Feather Wing and Arduino Shield. Alternatively it can be used as a breakout
board with any other controller that has 12C and optional GPIO connectivity. 2 jumpers can select between 2
different shunts to measure different current ranges.

The board is populated with a 0.10 Ohm shunt to measure 3.2A to 100pA. Optionally a 500 Ohm shunt can be
added for a current range of 640uA to 20nA. Maximum bus voltage is 26V.

Full feature set:

e Adafruit Feather Wing and Arduino Uno Shield connector option

e Current monitor with 2 different ranges for high current and sleep mode measurements
® Positive and negative current flow

® Bus voltage monitor with 2 dedicated GND terminals

e Communication interface: 12C up to 3.4MHz

e 16 12C addresses selectable through resistor options

e 6 dedicated signaling pins (SMBus Alert, Warning, Overlimit, Critical, Convert and 1 GPI0O)
e QOperating supply voltage 3.0V to 5.5V

e Optional 4mm Banana plugs for bypass

e Size: 71mm x 54mm (2.8" x 2.1")

Hardware

The Watt-A-Live Power Monitor Wing/Shield is designed for the Adafruit Feather and Arduino Uno, but also
runs on the Mega and the Due. It can also be used as a breakout board or on a breadboard (thanks to the
normal Wing connector spacing. The current version needs a HW fix in form of 2 patch wires for full Arduino
functionality (use of CRITICAL and OVER pins).

[2C address select

If more than one device is used, the 12C address on every board must be set to unique value. 16 address are
available for the chip and fully supported by this board.

Here is a table showing all address options. The 7-bit address is used as parameter in the config function
P42_INA209 ().

Al A0 7bit addr 8bit addr Populate Resistor
GND GND 0b100.0000 0x40 0x80 +R/W R8 R7
GND vdd 0b100.0001 0x41 0x82 +R/W R8 R6
GND SDA 0b100.0010 0x42 0x84 +R/W R8 R4
GND SCL 0b100.0011 0x43 0x86 +R/W R8 R2
Vdd GND 0b100.0100 0x44 0x88 +R/W R5 R7
Vdd Vdd 0b100.0101 0x45 O0x8A +R/W R5 R6
Vdd SDA 0b100.0110 0x46 0x8C +R/W R5 R4
Vdd SCL 0b100.0111 0x47 Ox8E +R/W R5 R2
SDA GND 0b100.1000 0x48 0x90 +R/W R3 R7
SDA Vvdd 0b100.1001 0x49 0x92 +R/W R3 R6
SDA SDA 0b100.1010 Ox4A 0x94 +R/W R3 R4
SDA SCL 0b100.1011 0x4B 0x96 +R/W R3 R2
SCL GND 0b100.1100 0x4C 0x98 +R/W R1 R7
SCL vdd 0b100.1101 0x4D 0x9A +R/W R1 R6
SCL SDA 0b100.1110 Ox4E 0x9C +R/W R1 R4
SCL SCL 0b100.1111 Ox4F Ox9E +R/W R1 R2

A handy table on the board shows the address selection in a compact form.

Dual current range select

The 2 current measuring ranges can be selected by 2 jumpers on the board.
The 3-pin header J3 selects the mode of operation.

1) Use of the high current range only. This gives a more accurate result because the measurement is
done on the terminals of the shunt directly. Jumper in position 1-2 as shown in the picture.

2) Switchable operation between high current and low current mode. Jumper in position 2-3. Pin 3 is
the open visible pin in the picture.

r;mx; R‘i 5

SH0NE

R14

Connection Diagrams

Current Measurement
If only the current to the load is of interest, a tap into the positive power wire is sufficient. Current is
calculated from the voltage drop over the shunt resistor.

Power Measurement 1
For additional power or bus voltage measurements, GND of the target device must be connected to the
sensor board. The board provides 2 GND terminals for a complete separation of source and load wiring.

Power Measurement 2
A minimum wire configuration for power or bus voltage measurements would look like this.

W~
IRh
>3

Software

Support for the 500Q shunt is now available. And the warning register and pin state monitoring is highly
experimental.

Depending whether the Arduino or Feather platform is being used, the ti_ina209.h file needs to be edited.

Il For correct function the respective pin mappings have to be enabled in the ti_ina209.h file. !!!

Constants

The following constants are provided by the library. They are useful to make the code adapting to other
resolutions.

Name Description
All register addresses see datasheet and ti_ina209.h
All register bits see datasheet and ti_ina209.h
CALIB_VALUE 0x4096 | Calibration value if a manual calibration was performed. See Ti
INA209 datasheet for details.
SHUNT_R 0.1 or | Shunt value that is enabled by the jumpers on the board
500

TLINA209()

Board pinout and 12C address configuration. Multiple boards can be used with different class names and 12C
addresses.

TI_INA9 (byte address);

Pin Pin Nr Pin Nr Direction Default Description
Feather Arduino

WARN_PIN 15 13 Out OC with pull-up | Set when a SMBus warn condition is
present.

ALERT_PIN 14 12 Out OC with pull-up | Set when an alert condition is
present.

GPIO_PIN 16 11 In/Out In with pull-up | General purpose I0.

CONV_PIN 12 10 In In with pull-up | Triggers a conversion.

OVER_PIN 1 2 Out OC with pull-up | Set when an over/under condition is
present.

CRIT_PIN 0 3 Out OC with pull-up | Set when critical condition is present.

Example: setup board with 12C address 0x40

TI_INA209 ina209_40(0x40); // instantiate ina2@9_40 of class INA209 with I2C address
0x40. Address depends on set resistors on the board.

readWord ()

Read a 16bit register value from the controller.

word readWord (byte reg_addr);

Value Size Description

Reg_addr
return value

byte
word

register address
Result of the read command: register content

Example: Read Status register

Result = ina2@9_4@.readWord(STATUS_REG);
= Result will be OxXXXX.

writeWord ()

Read a 16bit register value from the video controller.

void SPIReadRegisterl6 (byte address, word data);

Value Size Description

address byte Opcode of the video controller command, also called register address
data word | 16 bit data word to write into specified register

return value void No return value

Example: Write Configuration register address 0x00

ina209_40.writeWord(CONFIG_REG, @x3FFA);
= No return result.

pinMode209 ()

Set the direction of the GPIO pin, with similar syntax as the Arduino digital pin commands.

void pinMode209 (uint8_t mode);

Value Size Description

mode | Uint8_t | Set either as INPUT or OUTPUT | |

Example: Set GPIO as an output.
ina209_40.pinMode209 (OUTPUT);

digitalWrite209 ()

Set the GPIO pin to HIGH or LOW, with similar syntax as the Arduino digital pin commands. Its voltage level
will be set to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, OV (ground) for LOW.

void digitalWrite209 (uint8_t value);

Value Size Description

value | uint8_t | Set either to HIGH or LOW | |

Example: Set GPIO to a HIGH level.
ina209_40.digitalWrite209 (HIGH);

digitalRead209 ()

Read the GPIO pin and return the value either HIGH or LOW, with similar syntax as the Arduino digital pin
commands.

return digitalRead209 ();

Value Size Description

value | uint8_t | HIGH or LOW | |

Example: Read GPIO pin value.
Return = ina209 4@.digitalRead209 ();

getCurrent ()

Read the current register value from the controller and return the real world current measured in mA. With
the variable shunt value, the 2 different shunt resistors on the board can be easily supported.

float getCurrent (float shunt_f);

Value Size Description
shunt_f float Shunt value in Ohm.
return value float measured current in mA.

Example: Read current value.

#tdefine SHUNT_R 0.1
Serial.print(ina209_40.getCurrent(SHUNT_R));

getVoltage ()

Read the bus voltage register value from the controller and return the real world voltage measured in V. With
the variable shunt value, the 2 different shunt resistors on the board can be easily supported.

float getVoltage (float shunt_f);

Value Size Description
shunt_f float Shunt value in Ohm.
return value float measured voltage in V.

Example: Read voltage value.

#tdefine SHUNT_R 0.1
Serial.print(ina209_40.getVoltage (SHUNT_R));

getPower ()

Read the power register value from the controller and return the real world power calculated in W. With the
variable shunt value, the 2 different shunt resistors on the board can be easily supported.

float getPower (float shunt_f);

Value Size Description
shunt_f float Shunt value in Ohm.
return value float measured voltage in W.

Example: Read power value.

#tdefine SHUNT_R 0.1
Serial.print(ina2@9_40.getPower (SHUNT_R));

This is a living document. Any missing content will be added as appropriate.

Revision Control

Version Data Changes
0.1 23.June 2019 | Madman Chicken-Scratch Manifesto
1.0 7.July 2019 | Added Hackaday.io project # and getVoltage/Current/Power function

headers (not implemented yet)

1.1 21.July 2019 | Implemented getVoltage/Current/Power functions

