
A NEW ITERATIVE SUPPLY/DEMAND ROUTER WITH RIP-UP CAPABILITY
FOR PRINTED CIRCUIT BOARDS

Eric Rosenberg
AT&T Bell Laboratories

Holmdel, NJ 07733

Abstract

In thls router, an lteratlve, non-sequentlal “supply/demand”
router attempts to find eonfIlet-free (non-crossing or
overlapping) paths for each net. If 100% lntereonnectlon Is
not achieved with supply/demand routlng, the rip-up
procedure removes enough nets to eliminate all confllcts.
Nets that are ripped-up are returned to the supply/demand
router for re-routing. The new router was compared to a
Lee-type router on SIX double-sided boards, and on average
obtalned 6.8% hlgher completion.

1. Introduction

This paper documents and reports computational experience with
a new router for PCB interconnection. The new router is quite
different from existing routers. Most current. routers are sequential
and non-iterative, which means that segments (connections between
two given points in a net) are routed one by one, and the path chosen
for one segment is never modified to make room for a later segment
(channel routers do modify paths in a channel, but we are concerned
here with global Lee-type routers). The segments are typically
ordered (e.g., by increasing length) to increase the chances of
achieving 100%. Unfortunately, there may not exist, any ordering
such that a sequential router can obtain 100%. This is not
surprising, for a sequential router is essentially a “greedy” router,
which allocates routing space based on segment, priority - and greedy
methods cannot in general be expected to solve difficult optimization
problems.

The new router hss two major pieces (see Figure 1): an iferafive,
non-sequential “supply/demand” router and a rip-up procedure. The
supply/demand router attempts to find conflict-free (i.e., .non-
overlapping or crossing) paths for each net. If the supply/demand
router fails to achieve 100% conflict-free routing, the rip-up
procedure removes enough nets to eliminate all conflicts. Nets that
are ripped-up are returned to the supply/demand router for re-
routing.

In the supply/demand router, all nets compete equally for
“valuable” routing resources: nodes in the grid graph. (A node in
this graph corresponds to a “cell” in a cell-based router.) NO net
ordering is done. In each iteration, each net, is routed independently
of the others (and thus all nets can in principle be routed
simultaneously with parallel processing). The net routings are cost
driven: “arc costs” (the nominal costs of moving from one node to an
adjacent node) are combined with “node costs” (costs assigned to the
nodes) to obtain the costs actually used to route the nets. Each net
is routed for minimum cost. If, at the end of an iteration, no node is
used by more than one net then we have succeeded in obtaining a
100% routing. Otherwise, if two or more nets desire a node, the node
is made more expensive. New routing costs are calculated with the

Permission to copy without fee all or part of this material is granted
provided that the Copies are not made-or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

revised node costs, and the nets are then routed again, using the new
routing costs. If a node desired by multiple nets is made sufficiently
expensive, then hopefully at most one net will be willing to pay the
price for using that node - hence the name “supply/demand router”.

NETS TO BE ROUTED

I I

SUPPLY /DEMAND ROUTER 1 RIP-UP PROCEDURE 1

1 I

I

NET ROUTINGS WITH NODE CONFLICTS

FIGURE 4 ROUTER OVERVIEW

If, after a specified number of supply/demand iterations, the
supply/demand router does not. succeed in resolving competition for
nodes, enough nets are ripped-up (i.e., removed) to eliminate all
conflicts. The rip-up problem is modelled as a special type of integer
program (a generalized set covering problem 1131) and a heuristic
solution method, based upon an effective heuristic for the set
covering problem, was devised. The rip-up procedure uses
information about those nodes used by multiple nets to decide the
best set. of nets to remove. The nets not removed are “frozen” (i.e.,
their current routings are now considered permanent. and can no
longer be modified). The nets removed are then routed on whatever
space on the board is not occupied by the frozen nets. The actual
routing of the removed nets is accomplished by again using the
supply/demand router. If, after several iterations, the removed nets
cannot, be routed in the remaining space without. conflicts, then the
rip-up procedure is again applied to remove enough of the nets just
routed to eliminate all conflicts. The new set of nets removed is
again given to the supply/demand router, and this process continues
until all nets are routed without conflicts or no further progress is
possible.

2. Survey of Related Llterature

In work closely related to our new router, Feo and Hochbaum 131
use Lagrangian duality 151 to determine the feasibility of the routing
problem where all nets are two point nets. Their algorithm is not
designed to find a routing yielding 100% completion, but rather seeks
to determine if it is theoretically possible to achieve 100%

completion. Hu and Shing 161 apply large-scale linear programming
techniques, together with problem reducing heuristics, to solve the
PWB routing problem. No computational results are presented.

24th ACM/IEEE Design Automation Conference

Paper 38. I
0 1987 ACM 0738-100X/87/0600-0721$00.75 721

Iterative routers have been proposed by Rubin 1121, Moore and Ravitz
IlO], and Linsker [S]. In these methods, at each iteration every net is
routed so as to minimize a penalty function which is the sum of path
length and crossover penalties. After each iteration, the crossover
penalty constant is increased. Unlike our new router, these routers
are still “sequential”: at each iteration the crossover penalties
incurred by some net depend on the nets already roufcd in that
iteration. In the simulated annealing method of Vecchi and
Kirpatrick 1161, a “random” route is generated for each net from aaet
of simple alternatives. After a random route is selected for every net,
a penalty function sums, over all arcs in the grid, the number N of
nets using the arc. Comparing the penalty function in the current
and previous iterations, the current routes are selected according to
probabilistic rules. In Soukup’s Lee-based method 1151, if two or
more nets both want to use some cell then the cell is allocated to one
of the competing nets, depending on the net priorities. Net (and
subnet) priorities are in general changed frequently throughout the
routing, so individual cells are reassigned, as the routing progresses,
to different nets.

We now review the literature on rip-up. Existing rip-up
methodology is experimental and heuristic, and is much less
developed than constructive routing. In Rubin 1121, if the iterative
routing procedure fails to route all nets without crossovers, then the
nets with the highest penalties are removed and routed on other
layers or with discrete wire. A similar strategy is used by Linsker 191.
Dees and Karger [2] consider various reroute metrics, and consider
estimating the value of ripping-up some net (in order to make room
for others) and also estimating the success of re-routing some net
that was ripped-up.

One striking feature of current rip-up work is the lack of any
mathematical modeling. One of the contributions of this work is the
recognition that rip-up can be modeled as an optimization problem
for which we propose an effective heuristic solution method,

3. Mathematical Formulatlon of PWB Routlng

We formulate the PWB routing problem on a grid graph with two
or more layers. A node of this graph is defined by an (i,j$) triple,
where k designates the layer. An arc is a link between some node

\

i,g,k) and an adjacent node (i.e., a node (i’,j’,k’) such that

(f-- i’) 1 + 1 (i- i’) 1 + I (k - “‘);I = 1,
denotes the absolute value ot z). If I k -
otherwise it is an arc on a layer.

1 = 1, tiYe!iZ is ! Z!,

Each net is defined by a set of terminal nodes (i.e., nodes
corresponding to the terminal pins) to be interconnected by a Steiner
tree. The optimization problem we consider is to interconnect each
net with a Steiner tree, such that the sum of the arc costs (defined
below) is minimal and no two Steiner trees share a common node.

To formulate this mathematically, let ye, be the binary (0 or 1)
variable such that y,, = 1 if the arc a is used in the Steiner tree
for net 8, and ya, = 0 otherwise. Let z,, be the binary (0 or 1)
variable such that z,, = 1 if the node n is used in the Steiner tree
for net 8, and z,, = 0 otherwise. Let C, be the user-supplied cost
of using arc (I (for any net). For each CJ, C, is given one of three
values: the cost Cl (c2) if u is an arc on the preferred (non-
preferred) direction on a given layer, or the cost CV if u is a via.

For each arc O, let c, be the set of nodes fl such that, if a is
used to route net 8, then node n also becomes dedicated to net 8.
For example, let u be any arc on a layer (i.e., u is not a via). Then
c, is the set consisting of the two end-nodes of arc a. If a is a large
via (whose diameter is much larger than the path width and thus
overlaps neighboring nodes) then c,, contains in general more nodes
than the two end-nodes of arc a.
“inverse operation” of C,:

We also define B,, to be the

For example, on a double-sided board if all viss are microvias (vias
whose diameter is roughly equal to the path width) and node n is not
on the boundary of the grid then I B, I = 5, since there are four
arcs incident to n on the layer containing n and one via incident to
n. Let I B, I denote the cardinality of (number of elements in) the
set B,.

We may now formulate the PWB routing problem sa follows:

minimizeCc, C yar (1.1)

subject to: (~~1) forms a (1.2)
Steiner tree for net 8, 011 5,

C Y,, I I 4, I G,, all n and 5, (1.3)
aEB,
xx,, I 1, all n, (1.4)
,

Yn, = Oorl, and x,,=Oorl, alln,a,s. (1.5)

The objective function is to find the lowest total cost
interconnection routing. The first set of constraints require that an
interconnection routing be found for each net. The second set says
that, for each node n and each net 8, if some arc a in B, is used to
route net 8 (i.e., if ya,= l), then node n must be dedicated to net 8
(i.e., %,,=l). The third set of constraints states that each node rz
can be dedicated to at most one net.

4. Evolutlon of the Supply/Demand Router:
A Lagranglan Relaxation Approach

The supply/demand router is the product of our computational
experience with a combinatorial optimization technique called
Lagrangian relaxation f4], [la]. Th is technique simplifies hard
problems by incorporating difficult constraints into the objective
function. In problem (1) (i.e., the problem defined by (l.lF(1.5) in
Section 3), the difficult constraints are the constraints (1.3), since
they involve both the y,, and Z,, variables. We associate a
nonnegative “Lagrange multiplier” or “price” (Y,, with each
constraint of type (1.3). We then “dualize” the problem by adding to
the objective tunction the sum of the “weighted constraints” to arrive
at the following “relaxed problem”:

min~mi+h,Cy,,+ Can, C Y,,- 14 I G, (2.1)
0 , n,* 8EB,

su6ject to:{ y,,} forms a
I

Steiner tree for net 8, all 8,
(2.2)

I#&, 2 1, all n, (2.3)

y,,, =’ 0 or 1, and z,, = 0 or 1, a// n, a, and 8. (2.4)

Notice that problem (2) completely decomposes into subproblems
dependmg on y,,, and subproblems depending on x,,. In particular,
define

c,, = c*+ c ~*,* (3)
I E c,

Then for each net 8 we obtain the following routing problem,
involving no other nets:

minimize C iTa, y,, (4.1)

subject to:* { y,,} defines a
Steiner tree for net 6,

y,, = 0 or 1, all a and a.

(4.2)

(4.3)

Also, for each node n we obtain the subproblem

maximize I B, I CCX,, z,,

subject to xx,, <I 1,

z,, = 0 or 1,’ all n and 8. (5.3)

Problem (5) is simply interpreted as assigning each node to the
highest bidder (i.e., highest (~a,). Of much greater interest is

Paper 38. I
722

problem (4): Interconnect net s using special “routing costs” defined
by (3). Interpreting CX,, s.e the “price” that net 8 must pay for using
node fl, then, to use arc a to route net 8, we must pay the original
cost C, plus the price of each node that is “influenced” by arc (I
(“influenced” means n E c,). For example, if all viss are micro
viss, then each arc routing cost in (4) is the original cost plus the
price of each endpoint of the arc.

Suppose now that for some iixed choice of multipliers (~a, we
solved each of the subproblems (4) and (5). Then we will obtain a
Steiner tree for each net (from (4)), and each node will be assigned a
net (from (5)). If no two Steiner trees share a common node, then we
have obtained conflict-free routings for all nets; under certain easily
verified conditions these routings will be optimal for (1). However, in
general we may expect that the Steiner trees for two nets, say nets p
and q, may share a common node, say node n. If also crap > ~,,e
then zap = 1 and zap = 0, so the constraint (1.3) for node n and
net q is not satisfied (the constraint (1.3) for node n and net p is
satisfied).

The theory of Lagrangian relaxation specifies rules 151, utilizing
the solutions of subproblems (4) and (S), for updating the multipliers
a ns in the hopes of achieving routings that do satisfy all the
constraints of (1). If, for some n and 8 the corresponding constraint
in (1.3) is violated, then CY,, is increased. If there is slack in the
constraint, LY,, is decreased. If the constraint is satisfied exactly,
(~a, is unchanged.

A code implementing the Lagrangian relaxation technique was
written, solving subproblems (4) using the Steiner tree heuristic in
171. Using small problems constructed by the author (e.g., 10 nets on
a square grid 30 nodes on a side), many experiments were made with
various updating rules. We found that the updating rules changed
the multiplers CY,, in undesirable ways, sometimes causing the
multipliers to oscillate without converging, and sometimes causing
the multipliers to move too slowly to accomplish the required effects.
In particular, we noted that, for a given node, multiple nets would
often be in contention for the node, with no net becoming the clear
winner ss the iterations progressed. Thus, not only did we fail to
achieve a feasible solution to (1) but the routes generated in step (4)
often varied greatly from iteration to iteration. Fortunately, a way
was discovered to rectify these problems while still retaining the
attractive economic interpretation afforded by Lagrangian relaxation.

6. The Supply/Demand Router

The supply/demand router is an iterative procedure, inspired by
the Lagrangian relaxation method described above. In each iteration
of the Supply/Demand Router, each net is routed, using special
“routing costs”, independently of the other nets; Then the routing
costs are updated and the next iteration begins. Two major
departures from the Lagrangian relaxation approach were taken to
produce the supply/demand router: (i) using a single node cost
(independent of 8) at each node, and (ii) ignoring the variables z,,
and the associated problems (3). In addition, price updating has been
simplified. To explain this, we introduce the new concepts of node
color and usage. We associate with each node)1 a node “color” K,,.
The color represents the number of the net that is currently assigned
to the node. For example, K,, = 8 means that net 8 is currently
assigned to node n. We allow the node color to be either positive,
negative, or zero. If Km = 0, then no net is currently assigned to the
node. If K, = 8 and 8 <O, then net 8 is temporarily aerigned to
the node. If K,, = 8 and 8 > 0, then net 8 is permonenlly oeaigned
to the node in the eurrenr ilerafion of the supply/demand router.
Note the emphasis on “current iteration”: a permanent assignment
may become a temporary assignment at the end of an iteration.

Node Costs. The supply/demand router uses a set of node costs
{pa}. The price pa is the price charged to any net that wants to
use node n in its routing. It has the same function as the prices
{cu,,} arising from Lagrangian relaxation. However, our costs are
simpler (one subscript instead of two) and lead to a more stable

router.

Routing Costs. The supply demand router in each iteration
calculates a set of “arc prices” i d,}. The arc prices are defined by
substituting p,, for (Y,, in formula (3):

The arc prices are used in the following way. For each arc a and
each net 8 let d,O, be the routing cost, in the current iteration, to net
8 of using arc u in the Steiner tree. Then the following simple rule is
used to define di:
nE C,,; df,=

d,,- ’ - BIG if Km > 0 and 8 # K,, for any
d,, otherwise. Thus, the routing cost for net 8 to

use arc a is BIG if some node in c,, was permanently assigned to
another net at the end of some previous iteration [see Section 7).
Otherwise, the routing cost is set to d,, a value independent of 8.
Using the same d, for each net makes good economic sense: .the price
of an item should not depend on the identity of the prospective
buyer. At the end of the iteration, the node prices {pa} are updated
by the rules detailed in Section 7.

6. Rip-up

Rip-up is executed after a specified number of supply/demand
iterations (or until a stopping criterion is reached). The rip-up
problem can be formulated as an integer program as follows. Let

N- the set of all nodes,
M=
S=

A=

where

Ihe set if nodea
be set of net8 u

all . . . * alp

used by more than one net,
Loee routing use8 node8 in M,

p = N 1, the cardinality of N,
q = S I, the cardinality of S, I

%* =
1

1 if net 8 uses node n

0 otherwise,
r,= the penalty cost for removing net s,
6, = the number of nets using node n.

Note that 6, > 1 if n E M. We wish to determine the decision
variables

{

1 if net s is removed

y*= 0 otherwise.

The rip-up problem may now be stated as follows:

minimize C rr y8
#ES

subject C a,, y, 2 b,- 1, all n E M,
#ES
y, = 0 or 1, all 8 E s.

The objective is to minimize the sum of the penalty costs for
removed nets, subject to the constraint that enough nets must be
removed so that each node previously in conflict now has at most one
net using it. (We say “at most” since, in the process of removing the
nets, a node which was in conflict may now not be used by any net.)

The Greedy Algorithm.
The integer program defined above is nearly identical to the classical
set covering problem 113
if each right-hand-side b

(it would be exactly a set covering problem
u- 1 were replaced by 1). Since this is a

Paper 38. I

723

specially structured integer program, we will employ a heuristic
solution procedure rather than an optimum-finding integer
programming code. The following greedy algorithm generalizes the
heuristic of Chvatal]l] for set covering problems.

Start: i= 0, MO+ M, y, + 0 for all 8 E 5’
At iteration i:

1. Find that net 8’ for which y, = 0 and

rr/ c %r is minimal.
n E c,

2. Set y,* + 1.

3. Set 6, 4- 6, - On,*, for all n E N.

4. Set Mi+, + {n E Mi 1 b, > l}.

5. STOP if Mi+l= a, otherwise set i = i+ 1 and go to 1.

The greedy procedure, being a heuristic, cannot, in general be
expected to actually determine the optimal solution of the above
integer program. The effect of non-optimality of our heuristic is to
possibly remove more nets than necessary to eliminate conflicts.
However, since removed nets are re-routed, the penalty for non-
optimality can be expected to be small.

The rip-up heuristic requires a choice of objective functions.
Possible objective functions are (i) remove the fewest possible nets,
(ii) remove a set, (call it S) of nets such that the sum of the number of
segments of the nets in S is minimal, (iii) remove a set S of nets such
that the sum of the lengths of the nets in S (as measured by the
number of arc8 in the current routing) is minimal, and (iv) remove a
set. S of nets such that the SUM of the number of vias (in the current
routing) of the nets in S is minimal. All of our experiments to date
use objective (ii).

7. Requlred Updates

This section details the updating rules for the entire supply-
demand/rip-up router. In particular, we update the node prices p,,,
which are updated to reflect the competition for the node by the nets,
and the node colors K,,, which was used when defining the routing
costs. We also introduce “node counters” and a scheme called “node
reserving”.

There are six types of updates; Figure 2 illustrates their inter-
relationships.

Type 11 Updates Made Before the Flrst Supply/Demand
Router Execution.
1. Specify which nets are to be routed (e.g., signal nets only, or all
nets).

Type 2: Updates Made at the Start of the Supply/Demand
Router.
The following assignments are made at the start of each execution of
the supply/demand router.
1. Initialize the node costs p,, .

Type 3: Updates Made at the Start of Each Inner Iteration.
1. Initialize the node colors K, for all permanently assigned nodes
(e.g., nodes covered by a terminal land for net 8 are permanently
assigned to net 8).

2. Define and initialize a new array { u,,} where u,, is the number of
nets using node n

Type 4: Updates Made After a Net has been Routed.
The following updates are made in each supply/demand inner
iteration after any net is routed (thus we do these updates in each
iteration after net 1 is routed, after net 2 is routed, etc.) These
updates involve only that single net just routed (call it net 8). Recall
that node n is used by net 8 if n E ca for some arc a used in the
Steiner tree for net 8.

Paper 38.1

724

1. Update Km and u,, for each node n used in the net 8 routing.

Type 6: Updates Made at the End of an iteration.
The following updates are made at the conclusion of each iteration of
the supply/demand router. They have the functions of adjusting the
node costs to reflect competition, and implementing a “node
reservation policy”.
1. Update each node costs pm, based on the node counter u,.
2. For each node, if the node is used by exactly one net, then we
permanently assign it, to (reserve it for) that net,. If the node is
permanently assigned to (reserved For) some net that has not been
frozen, but the node is unused in the current iteration, we un-reserve
it so that some other nets have the chance to use this node in the
next iteration.

Type 13: Updates Made Al’ter Rip-up.
The node updates made in rip-up have the job of telling the
supply/demand router which nodes are now occupied by the frozen
nets. Note that, by a frozen net we mean below any net frozen in the
current application of rip-up or trozen in a prior application. By
currently routed nets we mean those nets rout.ed by the
supply/demand router execution immediately preceding the current
rip-up execution. The updates are as follows.
1. Update the set of nets to be routed.
2. Update the node colors K, and node counters u,, for all nodes
used in the current routing&

FIGURE 2 FLOW OF UPDATES

8. Computatlonal Results and Comparisons

In this section we present. some results, for six double sided boards
(no multi-layer boards were routed), comparing our router and a
sequential, non-iterative Lee-type router. Referring to Table 1, Bl
and B2 were constructed to test the router; the others are real
boards. The routing areas (in inches) are 6.5x4.5 (B3), 10x7.6 (B4),

9.8x3.5 (BS), and 5.5x9 (B6). Only signal nets were routed (not power
and ground). All boards were routed on a 25 mil grid. Signal path
width and clearance are 10 mils. Vias are 50 mils in diameter. To
make valid comparisons, the same assumptions were made for the Lee
router. We used the heuristic in]7] to compute Steiner trees. For
the boards Bl, B2, and B3, seven iterations were performed for each
execution of the supply/demand router; six iterations were used for
the other three boards. Results with the new Supply-Demsnd/Rip-
Up (SDRU) and Lee routers are presented in Table 1. For each

board, the table lists (i) the number of signal nets, (ii) the number of
signal segments (a net with N terminal nodes has N - 1 segments),
(iii) the percentage of segments routed (conflict-free) by the Lee
router, and (iv) the percentage of segments routed (conflict-free) by
the SDRU router.

Table 2 gives information, for each board, on the number of nets
and segments removed after each execution of the rip-up procedure.
An entry of zero nets (or segments) removed indicates that the
current execution of the supply/demand router routed the current
nets with no conflicts (and thus 100% conflict-free routing was
achieved for the entire board). The CPU time on an IBM 3033 for
these runs (for the prototype Fortran code) was 14 minutes for Bl, 56
minutes for B2, 5.2 hours for B3, 2.5 hours for B5, and about 18 hours
for B4 and B6. (It is evident from Table 2 that, for B4 and B6,
considerable effort was expended, with little success, in the latter
iterations; the router should terminate when it is observed that little
progr.ess is being made.) Relatively, very little time was spent in rip-
up; e.g., for board B3 the total CPU time for rip-up was under 3
minutes. Finally, early results with the C language production
implementation of the code (currently being developed by D.B.
Mellen and W.J. Li) show a great speedup: CPU times on a 2.8 mips
computer are 6 minutes for B2, 4.4 hours for B4, 1 hour for B5, and
3.7 hours for B6. The use of parallel processing for net routings could
provide substantial additional speedup.

Table 3 gives information about the progress made by the first
execution of the supply/demand router. Here “nodes” is the number
of nodes in conflict (i.e., used by more than one net), and “count”
means the sum, over all nodes in conflict, of the number of nets using
the node. In the notation of Section 7.

B6 I 149 I 213 1 93.3 I 100

BB] lQ5 1 405 1 89.1 1 Q4.5

Table 2: Nets and Segments Removed in Each Rip-up

Rip-up No. 1 2 3 4 5 0 7 8

Bl
nets 4 OS _ - _ _ -
segments 11 0 _ _ - - _ -

B2
“&S 17 4o- - - _ -

segments 25 5 0 - - - - -

83
nets 57 31 14 3 0 - - -
segments 90 48 18 4 0 - - -

B4
nets 81 48 27 14 8 4 3 2
segments 132 74 42 18 8 4 3 2

BS
nets 70 33 15 2 0 - - -
segments 101 41 20 3 0 - - -

B6
nets 08 80 41 32 21 17 18 14
segments 216 130 89 92 38 29 24 22

Table 3: Progress of Supply/Demand Routing Prior to First Rip-up

Iteration 1 2 3 4 5 0 7

Bl
nodes* 607 422 331 193 100 22 34

count** 1519 1051 828 495 412 45 68

B2
nodes 781 858 474 483 332 411 291

count 1818 1919 1309 1200 972 984 965

B3
nodes 2623 2609 2504 2415 2431 1909 2068

count 7210 7087 7378 7893 7988 7119 7151

B4
nodes 5844 5248 4971 4031 4288 4289

count 15471 18005 17119 15793 16210 14338

B5
nodes 3382 3500 2683 2671 2243 2121

count 8841 10211 8081 8278 7319 6008

Bll
nodes 5837 4504 4172 4697 4130 3908

count 10091 15819 13787 13907 13143 12408

nodes: number of nodes in conflict (I.e., used by >I “et)
count: sum (over all nodes In conflict) of the number of nets using the node

9. Current Status and Future Work

Work is underway to implement a production version of the new
router. Extensive testing will be used to determine the best strategy
for terminating the supply/demand iterations and choosing the best
rip-up objective function.

Acknowledgments

The author wishes to thank G.A. Kochman, M.E. Meth, G.L.
Miller, C.W. Rosenthal, and J.P. White for many helpful suggestions,
and J.P. Grossmann for developing very useful graphics capabilities.
The rip-up procedure was coded by J.S. Harrison.

REFERENCES

{l] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem”,
Mathematics of Operafiona Research, 4, (1979) 233-235.
]2] W. A. Dees and P. G. Karger, “Automated Rip-up and Reroute
Technique”, Proc. 19 Deeign Automation Conjerence, (1982) 432-439.
[3] T. A. Feo and D. S. Hochbaum, “A Lagrangian Relaxation Method
for Testing the Infeasibility of Certain VLSI Routing Problems”,
unpublished manuscript, November, 1985.
[4] M. L. Fisher, “The Lagrangian Relaxation Method for Solving
Integer Programming Problems”, Managemenf Science, t7, (1981) l-
18.
[S] M. Held, P. Wolfe, and H. Crowder, “Validation of Subgradient
Optimization”, Mafhematical Programming, 6, (1974) 62-88.
[S] T. C. Hu and M. T. Shing, “A Decomposition Algorithm for
Circuit Routing”, in Mathematical Programming Study td (R. W.
Cottle, ed., North Holland, Amsterdam, 1985), pp. 87-103.
[7] L. Kou, G. Markowsky, and L. Berman, “A Fast Algorithm for
Steiner Trees”, Acto Informatica, 1.5, (1981) 141-145.
[S] C. Y. Lee, “An Algorithm for Path Connections and its
Applications”, IRE Trans. Electron. Comput., EC-IO, (1961) 346-365.
[9] R. Linsker, “An Iterative Improvement Penalty-Function-Driven
Wire Routing System”, IBM J. Rec. Develop., 28, (1984) 613-624.
[lo] A. Moore and C. Ravitz, “Weighted and Iterative Multi-Wire
Routing”, IBM Technical Disclosure Bullefin, e5, (1982) 3619-3628.
[ll] C. H. Papadimitriou and K. Steiglitz, Combinatorial
Oplimizafionr Algorithm8 and Complezify, (Prentice-Hall, Englewood
Cliffs, NJ 1982).
[12] F. Rubin, “An Iterative Technique for Printed Wire Routing”,
Proc. 11 Design Automation Workshop, (1974) 308-313.
1131 H. M. Salkin, Integer Programming, (Addison-Wesley, Reading,
MA, 1975).
1141 J. F. Shapiro, “A Survey of Lagrangian Techniques for Discrete
Optimization”, Annata of Discrefe Mathematics, 5, (1979) 113-138.

Paper 38.1
725

(151 J. Soukup, “Global Router”, Proc. 16 Deeign Aufomolion
Conjerence, (1979) 481-484.
[16] M. P. Vecchi and S. Kirpatrick, “Global Wiring by Simulated
Annealing”, IEEE Trans. Computer-Aided Deeign CALM, (1983) 215-
222.

Paper 38. f
726

