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Microsoft Bay Area quantum computing study group

https://blogs.microsoft.com/bayarea/2019/10/08/understanding-quantum-computing-and-q/?_lrsc=dd64fb76-3b07-4299-b0a7-b7c397b00aed


Resources:

Microsoft quantum team

Study Group Tutorial (stay tuned)

Book: Quantum Computation and Quantum Information

Employee blog

Q# documentation http://docs.microsoft.com/quantum

https://cloudblogs.microsoft.com/quantum/author/microsoft-quantum-team/
https://microsoft.sharepoint.com/teams/wwcquantumcomputing/Shared%20Documents/Quantum%20Computation%20and%20Quantum%20Information%20-%2010th%20Anniversary%20Edition.pdf
https://blogs.msdn.microsoft.com/uk_faculty_connection/2018/02/26/the-hitchhikers-guide-to-the-quantum-computing-and-q-blog/
https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fdocs.microsoft.com%2Fquantum&data=02%7C01%7CKitty.Yeung%40microsoft.com%7C29071a1b22614fb9a5fc08d756671eb9%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637072873203036069&sdata=TcgDFSx31xZyVWqHazZYk%2BmL3eETZyZFtsmEbYZD9q0%3D&reserved=0


What is it?
Performing calculations 
based on the laws of 
quantum mechanics

1982: Feynman proposed the idea of creating 
machines based on the laws of quantum 
mechanics

1985: David Deutsch developed Quantum 
Turing machine, showing that quantum 
circuits are universal

1994: Peter Shor came up with a quantum 
algorithm to factor very large numbers in 
polynomial time 

1997: Grover developed a quantum search 
algorithm with O(√N) complexity 



Applications

• Algorithms 
• Cryptography 
• Quantum simulations



Quantum Computer Hardware

• Trapped ions
• Superconducting 
• Topological 

Science, Dec 2016, Vol 354, Issue 6316

2-level system
Superposition
Entanglement
Interference



Trapped Ion

https://sciencenode.org/spotlight/nobel-prize-goes-quantum-
computing-pioneers.php

https://quantumoptics.at/en/mobile/en/news/72-scalable-
multiparticle-entanglement-of-trapped-ions.html

https://sciencenode.org/spotlight/nobel-prize-goes-quantum-computing-pioneers.php
https://quantumoptics.at/en/mobile/en/news/72-scalable-multiparticle-entanglement-of-trapped-ions.html




Trapped 
Ion

Physicists Demonstrate Quantum Memory with Matter Qubits
July 3, 2009 By Lisa Zyga, Phys.org

Honeywell on-chip 
ion trap



Superconducting quantum circuits 

http://iontrap.umd.edu/

Superconductors vs. Trapped Ions 

John Martinis -> Google

http://iontrap.umd.edu/


Classical to quantum mechanical: 
1. effective length of the circuit is smaller than the electron 

scattering length in the circuit; 
2. temperature is low enough: 𝑘𝑘𝑘𝑘 < ħ𝜔𝜔, where 𝑘𝑘 is the 

Boltzmann constant, 𝑘𝑘 is the temperature and 𝜔𝜔 = 𝐿𝐿𝐿𝐿 is 
the natural frequency of the circuit.



Dilution refrigerators

http://www.research.ibm.com/ibm-q/learn/what-is-quantum-
computing/

http://www.research.ibm.com/ibm-q/learn/what-is-quantum-computing/


Topological quantum computer

https://www.nature.com/articles/nature26142

Quantized Majorana Conductance 

Majorana Fermions – particle equals anti-particle
Fractional quantum Hall conductance
Low temperature in magnetic field

https://arxiv.org/pdf/cond-mat/0412343.pdf

https://www.nature.com/articles/nature26142
https://arxiv.org/pdf/cond-mat/0412343.pdf












Q#

• Installing QDK
• https://marketplace.visualstudio.com/items?itemName=quantum.De

vKit
• Visual Studio or Visual Studio Code
• Jupyter Notebook katas

https://docs.microsoft.com/en-us/quantum/quantum-installconfig?view=qsharp-preview
https://marketplace.visualstudio.com/items?itemName=quantum.DevKit
https://github.com/Microsoft/QuantumKatas#run-as-notebook


States – classical bits
| ⟩0 = 1

0 , ⟩|1 = 0
1



| ⟩0 = 1
0 , ⟩|1 = 0

1

⟩|00 = 1
0 ⊗ 1

0 =
1
0
0
0

.

⟩|01 = 1
0 ⊗ 0

1 =
0
1
0
0

,

⟩|10 = 0
1 ⊗ 1

0 =
0
0
1
0

,

⟩|11 = 0
1 ⊗ 0

1 =
0
0
0
1

.

Math insert - Tensor product---------------------------------------------------------------------------- 
 

How does tensor product ⊗ work? 
 

�
𝑥𝑥0
𝑥𝑥1
� ⊗  �

𝑦𝑦0
𝑦𝑦1
� =  �

𝑥𝑥0 �
𝑦𝑦0
𝑦𝑦1
�

𝑥𝑥1 �
𝑦𝑦0
𝑦𝑦1
�
� =  �

𝑥𝑥0𝑦𝑦0
𝑥𝑥0𝑦𝑦1
𝑥𝑥1𝑦𝑦0
𝑥𝑥1𝑦𝑦1

�   

and 

�
𝑥𝑥0
𝑥𝑥1
� ⊗  �

𝑦𝑦0
𝑦𝑦1
� ⊗  �

𝑧𝑧0
𝑧𝑧1
� =

⎝

⎜
⎜
⎜
⎜
⎛

𝑥𝑥0𝑦𝑦0𝑧𝑧0
𝑥𝑥0𝑦𝑦0𝑧𝑧1
𝑥𝑥0𝑦𝑦1𝑧𝑧0
𝑥𝑥0𝑦𝑦1𝑧𝑧1
𝑥𝑥1𝑦𝑦0𝑧𝑧0
𝑥𝑥1𝑦𝑦0𝑧𝑧1
𝑥𝑥1𝑦𝑦1𝑧𝑧0
𝑥𝑥1𝑦𝑦1𝑧𝑧1⎠

⎟
⎟
⎟
⎟
⎞

   

and so on.  
 
For example, the number 4 can be represented with a three-bit string 100. 

We can write 
 
  

|4⟩ = |100⟩ =  �0
1� ⊗ �1

0� ⊗ �1
0� =  

⎝

⎜
⎜
⎜
⎜
⎛

0
0
0
0
1
0
0
0⎠

⎟
⎟
⎟
⎟
⎞

  . 

 
 

 





Quantum bits – qubits 

| ⟩𝜓𝜓 = 𝑎𝑎
𝑏𝑏 = 𝑎𝑎 ⟩|0 + 𝑏𝑏 ⟩|1

| ⟩𝜓𝜓 = 𝑎𝑎
𝑏𝑏 ⊗ 𝑐𝑐

𝑑𝑑

=

𝑎𝑎𝑐𝑐
𝑎𝑎𝑑𝑑
𝑏𝑏𝑐𝑐
𝑏𝑏𝑑𝑑

= 𝑎𝑎 ⟩𝑐𝑐|00 + 𝑎𝑎𝑑𝑑 ⟩|01 + ⟩𝑏𝑏𝑐𝑐|10 + ⟩𝑏𝑏𝑑𝑑|11

|𝑎𝑎|2 + |𝑏𝑏|2 = 1 |𝑎𝑎𝑐𝑐|2 + |𝑎𝑎𝑑𝑑|2 + |𝑏𝑏𝑐𝑐|2 + |𝑏𝑏𝑑𝑑|2 = 1



Superposition

Superposition of states is the fundamental factor that’s making 
quantum computing powerful. Because while a classical bit can 
only be in either ⟩|0 or ⟩|1 , a qubit can be in a state where ⟩|0
and ⟩|1 coexist - a complex linear combination between ⟩|0 and 
⟩|1 . Thus, if we make a computing system out of this quantum 

phenomenon, we can have a single qubit that contains 
information that two classical bits would be needed. With N 
qubits, the system can compute 2N classical bits of information. 



Dirac notation and wavefunction

−
ħ2

2𝑚𝑚
∇2𝛹𝛹 𝒓𝒓, 𝑡𝑡 + 𝑉𝑉 𝒓𝒓, 𝑡𝑡 𝛹𝛹 𝒓𝒓, 𝑡𝑡 = 𝑖𝑖ħ

𝜕𝜕𝛹𝛹 𝒓𝒓, 𝑡𝑡
𝜕𝜕𝑡𝑡

Schrödinger equation has the form of a wave equation

�
−∞

+∞

𝜙𝜙∗ 𝑥𝑥 𝜓𝜓 𝑥𝑥 𝑑𝑑𝑥𝑥 ≡ 𝜙𝜙|𝜓𝜓

| ⟩𝛹𝛹 denotes “the state with wavefunction” 𝛹𝛹 𝒓𝒓, 𝑡𝑡

𝛹𝛹∗ 𝒓𝒓, 𝑡𝑡 = ⟨𝛹𝛹|

𝜓𝜓 𝑥𝑥 = �
𝑖𝑖

)𝑐𝑐𝑖𝑖𝜙𝜙𝑖𝑖(𝑥𝑥

 

∫ 𝜙𝜙𝑗𝑗 ∗(𝑥𝑥)+∞
−∞  𝜓𝜓(𝑥𝑥)𝑑𝑑𝑥𝑥 =  ∑ 𝑐𝑐𝑖𝑖𝑖𝑖 ∫ 𝜙𝜙𝑗𝑗 (𝑥𝑥)∗+∞

−∞  𝜙𝜙𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝑐𝑐𝑗𝑗  . 
 
In Dirac notation, |𝜓𝜓⟩ = ∑ 𝑐𝑐𝑖𝑖|𝜙𝜙𝑖𝑖⟩𝑖𝑖  , where 𝑐𝑐𝑗𝑗 = 〈𝜙𝜙𝑗𝑗 |𝜓𝜓〉 .  

Therefore the solution 
is a linear combination 
Of all the possible 
wavefunctions



A qubit only has two “wavefunctions”

𝜓𝜓 𝑥𝑥 = �
𝑖𝑖

)𝑐𝑐𝑖𝑖𝜙𝜙𝑖𝑖(𝑥𝑥

| ⟩𝜓𝜓 = 𝑎𝑎
𝑏𝑏 = 𝑎𝑎 ⟩|0 + 𝑏𝑏 ⟩|1

Nature

Computing



Gates

manipulate qubit states (vectors) 
through matrix multiplications

unitarity 𝑈𝑈⟊𝑈𝑈 = 𝐼𝐼

So that it is reversible and probabilities add up to 1

Math insert – unitary, adjoint or Hermitian conjugate ----------------------------------------------------- 
 

In math, unitarity means 𝑈𝑈⟊𝑈𝑈 = 𝐼𝐼 , where 𝐼𝐼  is the identity matrix and the “⟊” symbol 
(reads “dagger”) means adjoint or Hermitian conjugate of matrix 𝑈𝑈. It can be further written as 
𝑈𝑈⟊ = (𝑈𝑈∗)𝑘𝑘 = (𝑈𝑈𝑘𝑘)∗, where “T” denotes transpose and “*” complex conjugate: 

�

𝑈𝑈1
𝑈𝑈2
⋮
𝑈𝑈𝑁𝑁

�

𝑘𝑘

=  (𝑈𝑈1    𝑈𝑈2 … 𝑈𝑈𝑁𝑁) 

and if 𝑎𝑎 =  𝑎𝑎0 + 𝑖𝑖𝑎𝑎1, then 𝑎𝑎∗ =  𝑎𝑎0 − 𝑖𝑖𝑎𝑎1 by definition. Therefore, 

�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑�

⟊
= �𝑎𝑎

∗ 𝑐𝑐∗
𝑏𝑏∗ 𝑑𝑑∗� . 



CNOT

𝐿𝐿𝑁𝑁𝐶𝐶𝑘𝑘 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝐿𝐿𝑁𝑁𝐶𝐶𝑘𝑘| ⟩10 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0
0
1
0

=
0
0
0
1

= | ⟩11 .

Similarly, 𝐿𝐿| ⟩00 = | ⟩00 ,𝐿𝐿| ⟩01 = | ⟩01 and 𝐿𝐿| ⟩11 = | ⟩10 .

Math insert - Matrix multiplication ------------------------------------------------------------------- 
 
Gates are N by N matrices that multiply to state with 2N vector elements. They follow 
the rules such that 
 

�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �

𝑥𝑥
𝑦𝑦� = �𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦

𝑐𝑐𝑥𝑥 + 𝑑𝑑𝑦𝑦� , 

�
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� =  �

𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐𝑧𝑧
𝑑𝑑𝑥𝑥 + 𝑒𝑒𝑦𝑦 + 𝑓𝑓𝑧𝑧
𝑔𝑔𝑥𝑥 + ℎ𝑦𝑦 + 𝑖𝑖𝑧𝑧

�  ′ 

and so on.  
 

 
 



Circuit representation

Target B controlled by A

CNOT



Hadamard H

𝐻𝐻 =

1
2

1
2

1
2

−
1
2



Hadamard H

𝐻𝐻 =

1
2

1
2

1
2

−
1
2

𝐻𝐻| ⟩0 =
1
2

1
2

1
2

− 1
2

1
0

=
1
2
1
2

= 1
2

1
0 + 1

2
0
1

= 1
2

(| ⟩0 + | ⟩1 ) ≡ | ⟩+

𝐻𝐻| ⟩1 =
1
2

1
2

1
2

− 1
2

0
1

= 1
2

(| ⟩0 − | ⟩1 ) ≡ | ⟩− . 



Bloch sphere

Arbitrary state

| ⟩𝜓𝜓 = cos
𝜃𝜃
2 | ⟩0 + 𝑒𝑒−𝑖𝑖𝑖𝑖 sin

𝜃𝜃
2 | ⟩1

H gate

the states | ⟩0 and | ⟩1 are just two special cases with θ = 0° and 180°, respectively.



Pauli gates

𝑋𝑋 = 0 1
1 0

𝑋𝑋
𝛼𝛼
𝛽𝛽 = 𝛽𝛽

𝛼𝛼



Pauli gates

𝑋𝑋 = 0 1
1 0

𝑋𝑋
𝛼𝛼
𝛽𝛽 = 𝛽𝛽

𝛼𝛼

𝑌𝑌 = 0 −𝑖𝑖
𝑖𝑖 0

𝑌𝑌
𝛼𝛼
𝛽𝛽 = 𝑖𝑖 −𝛽𝛽

𝛼𝛼



Pauli gates

𝑋𝑋 = 0 1
1 0

𝑋𝑋
𝛼𝛼
𝛽𝛽 = 𝛽𝛽

𝛼𝛼

𝑌𝑌 = 0 −𝑖𝑖
𝑖𝑖 0

𝑌𝑌
𝛼𝛼
𝛽𝛽 = 𝑖𝑖 −𝛽𝛽

𝛼𝛼

𝑍𝑍 = 1 0
0 −1

𝑍𝑍
𝛼𝛼
𝛽𝛽 =

𝛼𝛼
−𝛽𝛽



General rotation
In general, rotation gates, R, about an axis can be 

described by the angles 𝜙𝜙 and 𝜃𝜃:

𝑅𝑅𝑧𝑧 𝜙𝜙 = 𝑒𝑒𝑖𝑖𝑖𝑖/2 0
0 𝑒𝑒−𝑖𝑖𝑖𝑖/2 ,

𝑅𝑅𝑦𝑦 𝜃𝜃 =
cos 𝜃𝜃

2
sin 𝜃𝜃

2

− sin 𝜃𝜃
2

cos 𝜃𝜃
2

,

and

𝑅𝑅𝑥𝑥 𝜃𝜃 =
cos

𝜃𝜃
2 𝑖𝑖 sin

𝜃𝜃
2

−𝑖𝑖 sin
𝜃𝜃
2 cos

𝜃𝜃
2

=𝑅𝑅𝑧𝑧
𝜋𝜋
2
𝑅𝑅𝑦𝑦 𝜃𝜃 𝑅𝑅𝑧𝑧 − 𝜋𝜋

2
.



General rotation
In general, rotation gates, R, about an axis can be 

described by the angles 𝜙𝜙 and 𝜃𝜃:

𝑅𝑅𝑧𝑧 𝜙𝜙 = 𝑒𝑒𝑖𝑖𝑖𝑖/2 0
0 𝑒𝑒−𝑖𝑖𝑖𝑖/2 ,

𝑅𝑅𝑦𝑦 𝜃𝜃 =
cos 𝜃𝜃

2
sin 𝜃𝜃

2

− sin 𝜃𝜃
2

cos 𝜃𝜃
2

,

and

𝑅𝑅𝑥𝑥 𝜃𝜃 =
cos

𝜃𝜃
2 𝑖𝑖 sin

𝜃𝜃
2

−𝑖𝑖 sin
𝜃𝜃
2 cos

𝜃𝜃
2

=𝑅𝑅𝑧𝑧
𝜋𝜋
2
𝑅𝑅𝑦𝑦 𝜃𝜃 𝑅𝑅𝑧𝑧 − 𝜋𝜋

2
.

In fact, any arbitrary single quantum logic gate can be 
decomposed into a series of rotation matrices:

𝑈𝑈 = 𝑒𝑒𝑖𝑖𝑖𝑖 𝑒𝑒−𝑖𝑖𝑖𝑖/2 0
0 𝑒𝑒𝑖𝑖𝑖𝑖/2

cos
𝜃𝜃
2 − sin

𝜃𝜃
2

sin
𝜃𝜃
2 cos

𝜃𝜃
2

with the only constraint on the gate being unitary. Here, 𝑒𝑒𝑖𝑖𝑖𝑖 is a 
global phase shift that can be added without affecting the 
behavior. 



Hadamard revisit





Measurement – not a gate

⟩|𝜓𝜓 = ⟩𝑐𝑐00|00 + ⟩𝑐𝑐01|01 + ⟩𝑐𝑐10|10 + 𝑐𝑐11 ⟩|11

𝑃𝑃 = |𝑐𝑐00|2 + |𝑐𝑐01|2

⟩|𝜓𝜓′ =
⟩𝑐𝑐00|00 + ⟩𝑐𝑐01|01
𝑃𝑃

Not reversible

After measurement

If first qubit is 0



Measurement

If we use the wavefunction approach, we can derive the
value we’d expect to measure for a large number of
measurements of a given observable, M. The expectation value
can be obtained as

𝑀𝑀 = 𝜓𝜓|𝑀𝑀|𝜓𝜓 = ∑𝑗𝑗𝑚𝑚𝑗𝑗 |𝑐𝑐𝑗𝑗|2 ,

where 𝑚𝑚𝑗𝑗 is each measurement result of 𝑀𝑀, and |𝑐𝑐𝑗𝑗|2 = 𝑃𝑃(𝑚𝑚𝑗𝑗)
is the probability of getting result 𝑚𝑚𝑗𝑗. Obtaining 𝑚𝑚𝑗𝑗 leaves the
system in the state | �𝜓𝜓𝑗𝑗 . This unavoidable disturbance of the
system caused by the measurement process is often described
as a “collapse,” a “projection” or a “reduction” of the
wavefunction.



2-norm Vs 1-norm 
https://www.scottaaronson.com/democritus/lec9.html

To read more rigorous mathematical derivations of the
axioms in modern quantum theory:

• https://arxiv.org/abs/quant-ph/0101012
• https://arxiv.org/abs/1011.6451
• https://arxiv.org/abs/quant-ph/0104088

�
𝑖𝑖
𝑝𝑝𝑖𝑖 = 1

�
𝑖𝑖
𝑎𝑎𝑖𝑖 2 = 1

1-norm
Classical

2-norm
Quantum mechanical

Generalized probability theory
-> forget about wavefuntions,
just look at probability

Amplitude can be positive, negative or complex 

https://www.scottaaronson.com/democritus/lec9.html
https://na01.safelinks.protection.outlook.com/?url=https://arxiv.org/abs/quant-ph/0101012&data=02|01||e6c373b510414df1dde208d61338d5e0|72f988bf86f141af91ab2d7cd011db47|1|0|636717532290977878&sdata=rnzSVxuIMdEji6msSqMJnSRV6k15EXJI1ssA5kMGZsI%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https://arxiv.org/abs/1011.6451&data=02|01||e6c373b510414df1dde208d61338d5e0|72f988bf86f141af91ab2d7cd011db47|1|0|636717532290987887&sdata=V8hp0DioUBdQVdKGZPwCvUlEDDuhrAtG9dibGdAXeuk%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https://arxiv.org/abs/quant-ph/0104088&data=02|01||e6c373b510414df1dde208d61338d5e0|72f988bf86f141af91ab2d7cd011db47|1|0|636717532290987887&sdata=ygy%2BEMrTnB4FTGShwLB4DWh7jz7BYR15Nn9Sk1DLqAk%3D&reserved=0


Interference



Interference

𝑃𝑃 𝐿𝐿 = 0.7 × 0.8 + 0.3 × 0.1 = 0.59, or 59%.

Classical Quantum mechanical

𝑎𝑎𝑐𝑐 = 0.7 × 0.8 − 0.3 × 0.1

𝑃𝑃 𝐿𝐿 = 𝑎𝑎𝑐𝑐 2 ≈ 0.548, or 54.8%.



Entanglement

�|𝜑𝜑± = ⟩|01 ± ⟩|10
2

and �|𝜙𝜙± = ⟩|00 ± ⟩|11
2

Bell states

Take ⟩|𝜙𝜙+ as an example, upon measuring the first qubit, one obtains two possible results:

1. First qubit is 0, get a state ⟩|𝜙𝜙′ = ⟩|00 with probability ½.
2. First qubit is 1, get a state ⟩|𝜙𝜙′′ = ⟩|11 with probability ½. 

If the second qubit is measured, the result is the same as the above. This means that measuring
one qubit tells us what the other qubit is.



Entanglement
Math insert – entangled states cannot be factored back to individual qubits-------------- 
 
Remember in section 1.1, a two-qubit state can be obtained by doing a tensor product 
of two individual one-qubit states. However, a Bell state cannot be factored back into 
two individual qubits. For example,  
 

|𝜙𝜙±� = |00⟩±|11⟩
√2

=  

⎝

⎜
⎛

1
√2
0
0
1
√2⎠

⎟
⎞

 . 

 
If we want to factor it back to two separate qubits as in �𝑎𝑎𝑏𝑏�⊗�𝑐𝑐𝑑𝑑� , then this set of 
equations need to be simultaneously satisfied 
 
𝑎𝑎𝑐𝑐 = 1

√2
 , 𝑎𝑎𝑑𝑑 = 0, 𝑏𝑏𝑐𝑐 = 0 and  𝑏𝑏𝑑𝑑 = 1

√2
 . Unfortunately, it is impossible. This set of 

equations has no solution. It can only be 50% chance of getting |00⟩ = �1
0�⊗�1

0� or 

|11⟩ = �0
1�⊗�0

1�.  

 
 

 



Creating Bell states

Try proving this table



Greenberger – Horne – Zeilinger (GHZ) states

⟩|𝐺𝐺𝐻𝐻𝑍𝑍 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
⟩|000 + ⟩|111

2

⟩|𝐺𝐺𝐻𝐻𝑍𝑍 𝑔𝑔𝑠𝑠𝑔𝑔𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠 =
⟩|0 ⊗N + ⟩|1 ⊗N

2

Imagine there are N entangled qubits. Because they are
correlated, by measuring one qubit, we know the result of
another qubit. If N = 500, there are 2500 possible states in the
system - more than the number of atoms in the Universe. Yet if
they are all entangled, the Universe stores and calculates that
amount of data simultaneously. This is the power of Nature
that quantum computing utilizes.



Superdense coding
⟩|𝜙𝜙+ =

⟩|00 + ⟩|11
2

To send ‘01’, she applies an X gate ⟩|𝜑𝜑+ =
⟩|01 + ⟩|10

2

https://en.wikipedia.org/wiki/File:Superdense_coding.png


Superdense coding
⟩|𝜙𝜙+ =

⟩|00 + ⟩|11
2

To send ‘01’, she applies an X gate ⟩|𝜑𝜑+ =
⟩|01 + ⟩|10

2

To send ‘10’, she applies a Z gate ⟩|𝜙𝜙− =
⟩|00 − ⟩|11

2

https://en.wikipedia.org/wiki/File:Superdense_coding.png


Superdense coding
⟩|𝜙𝜙+ =

⟩|00 + ⟩|11
2

To send ‘01’, she applies an X gate ⟩|𝜑𝜑+ =
⟩|01 + ⟩|10

2

To send ‘10’, she applies a Z gate ⟩|𝜙𝜙− =
⟩|00 − ⟩|11

2

For ‘11’, she uses an 𝑖𝑖Y gate or a Z * X gate ⟩|𝜑𝜑− =
⟩|01 − ⟩|10

2

https://en.wikipedia.org/wiki/File:Superdense_coding.png


Teleportation

First two qubits Third qubit Alice tells Bob to 
00 [𝛼𝛼|0⟩ + 𝛽𝛽|1⟩] do nothing 
01 [𝛼𝛼|1⟩ + 𝛽𝛽|0⟩] apply X 
10 [𝛼𝛼|0⟩ − 𝛽𝛽|1⟩] apply Z 
11 [𝛼𝛼|1⟩ − 𝛽𝛽|0⟩] apply X and Z 

 



Teleportation

⟩|𝐴𝐴′ ⟩|𝜙𝜙+ = (𝛼𝛼 ⟩0 + 𝛽𝛽 ⟩1 ) ⟩|00 + ⟩|11
2

= 1
2
𝛼𝛼 ⟩000 + 𝛼𝛼 ⟩011 + 𝛽𝛽| ⟩100 + 𝛽𝛽| ⟩111 .

⟩𝐿𝐿𝑁𝑁𝐶𝐶𝑘𝑘|𝐴𝐴′ ⟩|𝜙𝜙+ =
1
2
𝛼𝛼 ⟩000 + 𝛼𝛼 ⟩011 + 𝛽𝛽| ⟩110 + 𝛽𝛽| ⟩101

1
2
�

�

𝛼𝛼 | ⟩0 +| ⟩1
2

| ⟩00 + 𝛼𝛼 | ⟩0 +| ⟩1
2

| ⟩11 + 𝛽𝛽 | ⟩0 −| ⟩1
2

| ⟩10 +

𝛽𝛽 | ⟩0 −| ⟩1
2

| ⟩01

⟩Let |𝐴𝐴′ = 𝛼𝛼 ⟩0 + 𝛽𝛽 ⟩1



Teleportation

If the first qubit is 0, the state after measurement
becomes

1
2

| ⟩00 (𝛼𝛼 ⟩0 + 𝛽𝛽 ⟩1 ) + | ⟩01 (𝛼𝛼| ⟩1 + 𝛽𝛽| ⟩0 ) .

If then another measurement is done on the second qubit and 
it is 0, the state becomes

1
2

| ⟩00 (𝛼𝛼 ⟩0 + 𝛽𝛽 ⟩1 ) .

This also tells us that the third qubit is in state 𝛼𝛼 ⟩0 + 𝛽𝛽 ⟩1 . 



A common mistake
https://quantumfactsheet.github.io/

https://quantumfactsheet.github.io/


Encryption

They can’t communicate faster than light, but at least they can
communicate securely.



Q# exercise: option 1

No installation, web-based Jupyter Notebooks
• The Quantum Katas project (tutorials and exercises for learning 

quantum computing) https://github.com/Microsoft/QuantumKatas

https://github.com/Microsoft/QuantumKatas


Q# exercise: option 2

Prerequisites
• Install VS Code and Quantum Development Kit extension according to 

instructions
• The Quantum Katas project (tutorials and exercises for learning 

quantum computing) https://github.com/Microsoft/QuantumKatas

https://docs.microsoft.com/en-us/quantum/quantum-installconfig?view=qsharp-preview
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FMicrosoft%2FQuantumKatas&data=02%7C01%7CKitty.Yeung%40microsoft.com%7C29071a1b22614fb9a5fc08d756671eb9%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637072873203016148&sdata=O9Dkr6Vv8ApwPq%2Faty784Zanub2ddytAqJaqoNslaOg%3D&reserved=0


Q# exercise: option 3

Prerequisites
• Please install Jupyter Notebooks and Q# following the instructions at 

https://docs.microsoft.com/quantum/install-guide#develop-with-
jupyter-notebooks (any platform and any editor is fine)

• The Quantum Katas project (tutorials and exercises for learning 
quantum computing) https://github.com/Microsoft/QuantumKatas

https://docs.microsoft.com/quantum/install-guide#develop-with-jupyter-notebooks
https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FMicrosoft%2FQuantumKatas&data=02%7C01%7CKitty.Yeung%40microsoft.com%7C29071a1b22614fb9a5fc08d756671eb9%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637072873203016148&sdata=O9Dkr6Vv8ApwPq%2Faty784Zanub2ddytAqJaqoNslaOg%3D&reserved=0


Q# exercise: Single-qubit gates

1. Go to Basic Gates katas Task 1.1
2. Task 1.8 

3. Task 2.1
Q# exercise: Two-qubit gates



Q# exercise: Superposition and Entanglement

1. Go to Superposition katas Task 4
2. Task 6
3. Try completing other tasks



Q# exercise: Measurement

1. Go to Measurement katas Task 1.1 r
2. 1.3
3. Try completing other tasks



Q# exercise: Teleportation

1. Go to Teleportation katas Task 1.1-1.7
2. Try completing other tasks
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