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Abstract

A Continuous Glucose Monitoring System is a medical
device that continuously monitors a patient’s blood glu-
cose concentration, which is essential in the treatment of
diabetes. Although such devices are increasingly used,
their security has not been thoroughly studied. In this
paper, we analyze a widely used wireless blood glu-
cose monitor, the Dexcom G4. We practically demon-
strate a series of security issues in this device that en-
able, amongst others, the tracking of a user and the forg-
ing of incorrect sensor readings. The attacks can be car-
ried out at minimal cost using software-defined radio and
low-cost RF chipsets. Finally, we devise and practically
implement an efficient protocol based on best practices
and well-known crypto algorithms to mitigate the weak-
nesses we discovered.

1 Introduction

According to statistics from the World Health Organi-
zation, approximately 430 million people worldwide are
affected by diabetes [22]. This number is increasing ev-
ery year, leading to serious consequences on both health
and public expenditures. To keep physical wellness, a
diabetic person has to constantly measure their glycemia
and take appropriate countermeasures such as insulin in-
jections. To measure the blood glucose, in the past, most
diabetic patients used to prick a finger in order to take a
blood sample to be used in a special device called blood
glucometer, which uses an electrode containing the en-
zyme glucose oxidase so that glucose reacts and gener-
ates a small amount of electricity that can be read by the
glucometer.

Today, technology in this area has significantly
improved. Continuous Glucose Monitoring Systems
(CGMs) are widely used to wirelessly measure the blood
glucose and improve the therapy of diabetes. A CGM
consists of a replaceable sensor placed under the skin, a

transmitter connected to the sensor, and a receiver that
receives and displays the measurements. The sensor can
be used for several days before it needs to be replaced.
During that time, it provides periodic real-time measure-
ments, which avoids the need for fingerprick-testing glu-
cose levels. The sensor under the skin uses the intersti-
tial fluid to infer the glycemia and passes the value to the
transmitter, which sends it to the receiver.

For transmission, CGM solutions rely on standard
frequencies, for example the Industrial, Scientific, and
Medical (ISM) band around 2.4 GHz. As we show in this
paper, wide-spread systems do not adopt proper crypto-
graphic measures to protect the exchanged data. In the
following, we describe the results of our analysis of Dex-
com G4, a well-known and widely used CGM in many
western countries.

1.1 Related Work

Over the past few years, researchers have been studying
the security issues of medical devices and, in particular,
diabetic therapy systems. Several successful attacks on
the (insufficient) security mechanisms of remotely con-
trolled insulin pumps have been reported [1, 10, 17, 13].
The authors of [13] suggest countermeasures against the
found attacks, giving implementation results on the low-
cost Microcontroller (µC) MSP430 (implemented on a
Spartan-6 FPGA).

Similar attacks have been reported for other medical
devices, e.g. pacemakers and implantable cardiac defib-
rillators [11, 12, 9]. In 2016, a security analysis by the
company MedSec led to significant stock market conse-
quences [15], along with discussion about the disclosure
practices adopted by MedSec and Muddy Waters.

In the context of CGM, several people have tried to
develop open-source libraries for the proprietary proto-
col used by Dexcom G4 in order to read blood glucose
values with other devices. However, just one implemen-
tation [7] documents the basics of the data exchange in
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Dexcom G4. We are not aware of a systematic security
analysis of the Dexcom G4 system; nor of countermea-
sures suitable for this use case where monitoring data
flows uni-directionally from the sensor to the receiver,
similar to a rolling code system in Remote Keyless En-
try (RKE) [6].

1.2 Outline
The paper is structured as follows: in Section 2, we de-
scribe the process and outcomes of our analysis of the
Dexcom G4, documenting the complete protocol. Then,
in Section 3, we describe several attacks on the system
that enable, amongst others, tracking of a diabetic sub-
ject and forging of glucose level readings. A novel pro-
tocol that protects against these threats is described in
Section 4, along with practical implementation results.
In Section 5 we conclude, summarising the main find-
ings and suggesting directions for future work.

2 Analysis of the Dexcom G4 System

In this section, we describe the analysis of the Dexcom
G4 and the details of the employed communication pro-
tocol. We had full access to a working set of sensor,
transmitter and receiver, as well as various expired trans-
mitters. Note that since the device only passively reports
sensor readings, studying such a “live” system is less
problematic than an active medical device (e.g. insulin
pumps or pacemakers).

2.1 Hardware Analysis
The Dexcom G4 sensor is implanted into the patient’s
skin. Via exposed pads, it then connects to a transmitter
that has a five-character identification code engraved on
the back (see Figure 1). This code has to be used every
time the transmitter is replaced when the battery is de-
pleted. In this case, the user has to read the (new) code
from the replacement transmitter and input it in the inter-
face of the receiver. The receiver is a larger, rechargeable
handheld device that displays the current glucose level
(received from the transmitter) and provides a log of past
readings. It can also alarm the user when the glucose
level is outside a configurable range.

We mechanically removed the plastic packaging cov-
ering an old, expired transmitter. The main System on
Chip (SoC) and the antenna are shown in Fig. 2. The
transmitter uses a Texas Instruments CC2510 [20], which
integrates an 8051 µC and a 2.4 GHz ISM transceiver.
When connecting a suitable programmer to the debug
pins of the µC, we found that the read-out protection bit
was set. Therefore, we decided to analyze the CGM sys-
tem without access to a firmware binary.

Figure 1: Back of a Dexcom G4 transmitter, with trans-
mitter code “66DRS”

Texas Instruments CC2510 Antenna

Figure 2: Dexcom G4 transmitter, with coating partially
removed through mechanical grinding

Because the Dexcom transmitter is a wireless device
sold in the US, it has to be tested for Federal Com-
munications Commission (FCC) compliance, which im-
plies, in turn, the obligation to publish specifications on-
line [5, 3]. Furthermore, the transmitter is also cov-
ered by a patent that is publicly available [2]. Addi-
tional information is available in [7]. From these pub-
lic sources, we derived details on the Radio Frequency
(RF) operation of the device. The Dexcom G4 trans-
mitter redundantly transmits on four frequencies (ap-
prox. 2.425 GHz, 2.45 GHz, 2.475 GHz, and 2.477 GHz),
uses Minimum Shift Keying (MSK) modulation, features
a packet length of 224 bit (including preamble), em-
ploys 286.4 kHz channel spacing, and uses a data rate
of 49.987 kBit/s.

2.2 RF Eavesdropping and Transmission
For an initial analysis of the employed protocol, we
decided to use a Software-Defined Radio (SDR) setup



based on the HackRF one [8] and GNU Radio [21].
Using the HackRF, we recorded the IQ data at a fre-
quency of approx. 2.425 GHz (lowest frequency used by
the device), initially with the maximum possible sample
rate of 20 MHz. We found that the transmitter sends a
packet periodically, with an interval of 5 min. between
two packets. We also confirmed that the transmissions
on the other frequencies (2.45 GHz, 2.475 GHz, and
2.477 GHz) are identical repetitions of the packet sent on
the lowest frequency.

We then used the Gaussian Minimum Shift Keying
(GMSK) demodulation block (which also supports plain
MSK) of GNU Radio to convert the raw IQ samples to
binary data. The necessary samples per symbol pa-
rameter for the GMSK demodulator can be found as
samples per symbol = samples rate/symbol rate,
whereas symbol rate = 49.987 kBit/s, since MSK uses
one symbol per bit. With these settings, we obtained the
bitstream representation of the data exchanged via the RF
protocol. Note that GNU Radio packs each bit into the
Least Significant Bit (LSB) of a separate byte.

Subsequently, we implemented the transmission on
the Wixel [16], a low-cost module (Figure 3) that is
based on the Texas Instrument CC2511 (identical to the
CC2510, apart from USB functionality). Using the same
SoC as the Dexcom G4 transmitter helped to reduce
the requirements for our attack, and also allowed for
the realistic evaluation of potential countermeasures. It
also facilitated the development of a mobile attack setup,
cf. Section 3.6.

Figure 3: Wixel module with USB interface and CC2511
SoC connected to ESP8266

2.3 Dexcom G4 Protocol
The protocol of the Dexcom G4, as originally described
also by [7], is unidirectional i.e. the transmitter sends
measurement values to the receiver, without receiving
any confirmation or control commands. In that sense, the

Dexcom system is similar to a typical RKE system based
on rolling codes and very different from other medical
devices, where commands are usually sent to the im-
planted device (e.g. a pacemaker) to control its opera-
tion. In contrast to RKE systems, the Dexcom G4 oper-
ates autonomously, sending a packet containing the mea-
surement values every five minutes without user inter-
action, resulting in a total of 288 glucose readings per
day. As mentioned, the system uses multiple frequencies
for redundancy, with a hopping time of 500 ms. When a
new transmitter is connected to the receiver, the receiver
waits for the first packets from the given transmitter, and
then aligns its five-minute receiving window to this ini-
tial packet. Any other packet (even with a valid source
address) during the time between two transmissions is
ignored by the receiver.

SimpliciTI Although Texas Instruments does not force
the users to use a specific protocol with the CC2510, they
created a lightweight general-purpose protocol called
SimpliciTI [19]. This protocol was adopted by Dexcom
and used to wrap their proprietary data format into Sim-
pliciTI packets. As shown in Figure 4, a SimpliciTI
contains several fields in addition to the pure data pay-
load. These include the destination and source addresses
dest addr and src addr, as well as port and info to
extend the capabilities of the protocol when it comes to
reliability and multiplexing. txID is a packet counter,
being incremented with each transmission, while len in-
dicates the overall length of the packet in byte.

The Received Signal Strength Indicator (RSSI) and
Link Quality Indicator (LQI) are not actually transmit-
ted over the RF link, but generated during the receiving
phase and provided to the program. The CRC-16 is sent
by the transmitter and checked by the receiver transpar-
ently without involving user code.

The Dexcom G4 transmitter encapsulates its data pay-
load into a SimpliciTI frame and sets the 32-bit source
address in order to identify itself through the five code
characters on the back side of the transmitter. Each char-
acter in the code is represented as a 5-bit value, which
can represent the numbers 0–9 and the subset “ABCDE-
FGHJKLMNPQRSTUWXY” of the alphabet.

Overall, the five-character code hence consumes
25 bit, with the remaining seven bit of src addr set to
zero. Figure 5 shows the visual representation of the 25
bits mapped into characters for a transmitter with code
“66DRS”. While the source address is specific to a par-
ticular transmitter, the destination address has a fixed
value of 0xFFFF, which, according to the SimpliciTI
specification, is the broadcast address.

Dexcom Payload The Dexcom payload, contained in
the payload field of a SimpliciTI packet, has five fields



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

len dest addr src addr port info txID payload RSSI LQI CRC-16

Figure 4: Packet structure of the SimpliciTI protocol, with field lengths given in byte. Preamble not shown. RSSI and
LQI are implicitly added by the receiver, while the CRC-16 is checked and stripped by the RF hardware on receiving

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0

6 6 13 25 26

6 6 D R S

Figure 5: Mapping of the transmitter code to a Simplic-
iTI source address

as shown in Figure 6: two 2-byte fields (raw and
filtered) for the glucose measurement value, a one-
byte field battery indicating the charge of the trans-
mitter’s battery, a one-byte zero padding, and a one-byte
checksum (see Section 2.3 for details) over the previous
fields.

0 1 2 3 4 5 6

raw filtered battery CRC-8

Figure 6: Payload packet of the Dexcom protocol

The raw field contains the actual measurement of the
glucose level in the body; whereas filtered holds the
average of multiple readings within the five minutes be-
tween each transmission. These two are floating point
values, with the first 13 bit for the mantissa and the re-
maining three bits for the exponent (Figure 7).

0121315

Exponent Mantissa

Figure 7: Bit representation of the raw and filtered

16-bit floating point fields

Recovery of the Dexcom Checksum Algorithm
Since the Dexcom checksum is, in contrast to the Sim-
pliciTI CRC-16, not documented, we attempted to re-
cover the underlying function. As we did not have ac-
cess to the transmitter’s firmware, we started with the
assumption that a one-byte CRC is used. We collected
a number of packets subsequently used for brute-forcing
all possible polynomials of a CRC-8. Additionally, we
implemented a brute force algorithm considering poten-
tial full payload reflection (in which all the bits are re-
versed), byte-wise reflection (when the inversion is done
on each byte), and differences in endianness.

Through brute-force, we confirmed the use of a stan-
dard CRC-8, using no reflection and the following poly-
nomial:

x8 + x5 + x3 + x2 + x1 + x0

This value can be verified using the following two ex-
ample packets that we captured. The Dexcom CRC is
highlighted in green, while the part over which the CRC
is computed is blue:

12FFFFFFFF 3A376300 3F 03 ED 38DD CA39 D5 00 4D

12FFFFFFFF 3A376300 3F 03 D3 0F1D 2199 D5 00 98

The validity and details of the computation of the
CRC (for the second example packet) can be verified on-
line at https://www.ghsi.de/CRC/indexDetails.php?

Polynom=100101111&Message=0F1D+2199+D5+00 .

Receiver Behaviour To understand the different states
of the receiver, we also collected all payloads that pro-
duce a message or a change in the receiver’s behaviour.
The results are depicted in Figure 8.

The standard behaviour of measuring and showing the
blood glucose value is shown in Figure 8a. When the
transmitter is detached from the sensor or the sensor
has lost its capacity to read the glucose value, the pay-
load contains a series of zeros, and an hourglass appears
on the top right corner of the display (Figure 8b). In
this state the receiver forces the user to change the sen-
sor (Figure 8f) after multiple frames with this pattern.
Figure 8c represents the scenario in which the transmit-
ter and the receiver are too far apart for communica-
tion. When the values from the transmitters appear to
be random or without a clear trend (for instance, a value
of 300 mg/dL directly following 60 mg/dL), the receiver
presents a triple question mark (Figure 8d). Also, in this
case, after a series of packets without a stable value, the
receiver forces the user to change the transmitter (Fig-
ure 8f). A value below the threshold of 0xCF of the
battery field produces the message in Figure 8e.

3 Attack Scenarios

As evident from the analysis in Section 2, the Dexcom
G4 protocol does not employ cryptographic algorithms
and therefore neither provides authenticity nor confiden-
tiality. With the knowledge of the CRC algorithm used
on the Dexcom protocol level, an adversary can easily

https://www.ghsi.de/CRC/indexDetails.php?Polynom=100101111&Message=0F1D+2199+D5+00
https://www.ghsi.de/CRC/indexDetails.php?Polynom=100101111&Message=0F1D+2199+D5+00
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Figure 8: Possible states of the Dexcom receiver

generate a valid packet with freely chosen contents1. In
this section, we describe the resulting attack vectors, to-
gether with other threats related to availability and pri-
vacy. Note that we practically performed all mentioned
attacks and developed a Proof-of-Concept (PoC) for each
technique.

3.1 Jamming
The first and perhaps most obvious attack involves jam-
ming the four transmission frequencies. To carry out
this attack, it is possible to use the HackRF or directly
the Wixel (transmitting a continuous stream of random
data). This attack does not necessarily require align-
ment to the five-minute transmission interval between
transmitter and receiver. However, our implementation
synchronizes the time window and performs frequency-
hopping to jam each of the four frequencies only when
necessary, making it harder to detect the jammer. It is
important that the jamming is frequency-aligned with the
original carrier and that the channel spacing is properly
set. Due to the low transmit power of the Wixel, our im-
plementation relies on both the HackRF and three Wixel
modules. It was necessary to bypass the normal packet
handling behaviour of the CC2511 and use Direct Mem-
ory Access (DMA) to generate the desired continuous
data stream. Figure 9 depicts the resulting spectrum dur-
ing jamming. On the side of the receiver, jamming has
the effect depicted in Figure 8c. The Dexcom G4 receiver

1Note that online brute-forcing the 8-bit checksum value would be
also feasible, but rather time-consuming due to the five-minute trans-
mission interval

Figure 9: Spectrum during jamming of Dexcom G4

cannot distinguish whether the channels are disturbed or
whether the transmitter is out of range.

3.2 Replay and Forging Incorrect Sensor
Readings

Replaying old packets (and thus old sensor readings) to
the receiver is not trivial because transmitter and receiver
work in a synchronized time window with aligned trans-
mission counter txID. Therefore, it is essential to send a
correctly formed packet exactly before the original trans-
mitter. Note that, however, adapting txID is possible
even without knowledge of the Dexcom-specific check-
sum (Section 2.3), since the value is part of the Simplic-
iTI frame, which is only covered by the CRC-16. To



align the transmission window, our PoC implementation
on the Wixel receives the payload, synchronizes its inter-
nal timer to align to the window, increments the txID,
and transmits multiple copies of the previously caught
packet on the first frequency a few milliseconds before
the Dexcom transmitter sends its next packet. It is suf-
ficient to transmit only on the first frequency because, if
the packet is well constructed, the receiver accepts it and
just discards the other frequencies.

In a similar way, we could also generate completely
new packets accepted by the receiver: after creating
the desired, freely chosen contents, the Dexcom CRC
is computed, and the frame is wrapped in a SimpliciTI
packet with correct source address and txID. This packet
is then transmitted aligned with the receiving window as
described for the replay attack.

Figure 10: Forged readings on Dexcom G4

3.3 Forcing Transmitter and Sensor Re-
placement

Being able to generate packets from scratch means that
it is feasible to force the receiver to mistakenly believe
the transmitter has low battery or that the sensor does not
work anymore. To achieve the former effect, it is suffi-
cient to send a correctly formed payload with the battery
field set to a value lower than 0xCF. The latter attack re-
quires multiple frames with inconsistent readings to con-
vince the receiver that the sensor has failed (due to the re-
ceiver’s tolerance for wrong readings). Considering the
market price of approximately USD $90 for the sensor
and USD $200 for the transmitter, both attacks incur in a
considerable expenditure for the user.

3.4 Receiver Denial-of-Service
In addition to temporarily jamming the RF channel, it
is also feasible to perform a semi-permanent Denial-of-
Service (DoS) attack on the receiver. This technique is

based on (slowly) misaligning the receiving time win-
dow. Since the receiver has to account for clock drift
and inaccuracies in the transmitter’s and its own oscilla-
tors, it has to continuously calibrate the receive window
based on the prior transmissions. Injecting multiple valid
packets slightly before the original transmitter causes the
receiver to align its receive window with the adversary’s
out-of-sync packets. This procedure is illustrated in Fig-
ure 11. After a while, this leads to a complete loss of the
original synchronization. In our experiments, the only
way to recover from this situation was to reboot the re-
ceiver.

Time Window

Time Window

Shift
Real Packet

Fake Packet Real Packet
Missed

t

t+1

Figure 11: Misaligning the receiver’s window

3.5 Tracking and Localization
Since the transmitter periodically broadcasts packets in-
cluding a unique identifier without user interaction, it can
be potentially used to track a specific diabetic subject. A
low-cost 2.4 GHz module like the Wixel is sufficient to
receive the packets from several meters. It is conceivable
that higher ranges can be achieved with better RF equip-
ment. Furthermore, by using multiple receivers, it is pos-
sible to roughly estimate the user’s location based on the
RSSI values. To that end, we first measured the RSSI
value received by a Wixel for different distances between
transmitter and Wixel, cf. Table 1. Due to the variance
of the RSSI, especially when obstacles prevent the sig-
nal to pass, our model averages multiple measurements,
considering the sensor on the diabetic subject frontally
facing the Wixel’s antenna (direct exposure for the re-
ceiver) or facing backwards (in which the body weakens
the signal).

Based on the data from Table 1, we then fitted an RSSI
path loss model as shown in Figure 12. This model can
be used to estimate the distance between Wixel and the
transmitter, based on the received RSSI value. We set
up three Wixel modules at equal distance of 6 m be-
tween each other, covering the area where a target is
to be localized as shown in Figure 13. The Wixels are



RSSI
Distance (m) Front Back Average

0.2 -37 -40 -38.5
0.5 -40 -38 -44
1 -58 -72 -65
2 -63.5 -69.5 -66.5
3 -66 -72.5 -69.3
4 -68 -81 -74.5
5 -72 -82 -77

Table 1: RSSI measurements for different distances and
orientations
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Figure 12: Fitted RSSI path loss model based on Table 1

configured to connect to a WiFi network using the well-
known ESP8266 SoC [4] to configure the devices and
receive RSSI measurements. A central controlling com-
puter then aggregates the RSSI measurements and per-
forms a trilateration algorithm (based on the min-max
algorithm [18]) to obtain the position of the target. In
the given (small) setting, the error in localizing the user
was below 1 m. However, improvements are feasible and
left for future work.

3.6 (Mobile) Hijacker and Locator
PC application We developed a PC application (using
the NodeJS Electron framework) that provides a unified
interface to the PoCs for the above attacks. A sketch of
the application’s interface is shown in Figure 14.

On the top left, the tool displays a history of read-
ings for a selected transmitter (which is also shown in
a graph on the bottom right), and allows to carry out the
described attacks. The software connects to the Wixel
via WiFi (or alternatively USB) and to the HackRF via
USB. Amongst others, it performs the localization (Sec-
tion 3.5), aggregating the RSSI values from all sources
and displaying the result on the top right.

For fake packet injection, the application either sup-

ESP8266 + Wixel ESP8266 + Wixel

Wixel

Base Station

WiFi WiFi

USB

Figure 13: Localising a Dexcom G4 transmitter with
three Wixel modules connected by WiFi

Figure 14: PC tool main screen

ports the constant replay of an old value or the trans-
mission of arbitrary values. For the former attack, the
software simply replays an already received packet, with
proper adjustment of the txID. In the latter attack, an arbi-
trary value (or trend, see Figure 15) is sent via the closest
antenna (determined by the RSSI).

Figure 15: PC tool sending forged packets with a trend



Smartphone application In order to use the features
of the PC software without the need of a computer, we
developed a similar application for an Android smart-
phone, using the USB OTG functionality to connect a
Wixel to the smartphone. Our app can record Dexcom
G4 transmitter identifiers along with the geolocation.
This would allow to carry out a form of “wardriving”
to collect information about diabetics in a certain area.
Figure 16 shows the interface of the app, with the trans-
mitter “66DRS” detected, and a distance estimate being
computed based on the RSSI path loss model from Sec-
tion 3.5.

Figure 16: Smartphone app, with transmitter “66DRS”
detected and a distance estimate computed

4 Improved Protocol and Countermea-
sures

In the literature, various countermeasures for similar sys-
tems have been discussed, see for example [13, 14].
However, these proposals usually focus on authentica-
tion (e.g. preventing replay and packet forgery) rather
than also considering confidentiality (to prevent track-
ing). Besides, countermeasures against jamming are usu-
ally not taken into account. In this section, we briefly
describe potential modifications to the Dexcom G4 pro-
tocol that protect against all these threats.

Approach To this end, we make use of the hardware
AES engine provided by the CC2510/11 SoC (used in the
transmitter), which executes a single-block AES-128 in
40 clock cycles (780µs at the default clock of 26 MHz).

By removing parts of the SimpliciTI frame, a packet of
our protocol still fits into the 18 byte used in the Dexcom
protocol. Our protocol furthermore provides:

1. encryption of privacy-relevant data (src addr, glu-
cose values) using AES-128 in Counter (CTR)
mode,

2. authentication of the full frame with AES-128 as
CMAC,

3. unique, random keys per transmitter, and
4. a random choice of frequencies to mitigate narrow-

band jamming (to an extent).

To raise the bar for jamming, the transmitter selects
for frequencies at random. This prevents simple narrow-
band jamming without some initial profiling, since the
adversary first has to determine the frequencies of in-
terest. Obviously, it is still possible to use high-power
wide-band jammers, or implement forms of more intel-
ligent jamming, which is a fundamental problem of RF
systems and therefore very hard to counter.

As mentioned, we replaced the SimpliciTI protocol
with an ad-hoc protocol in order to preserve the packet
length of 18 byte. Our packet structure is shown in Fig-
ure 17. The light-grey fields src addr, raw, filtered,
and battery are encrypted, while dest addr and port

are sent in clear. The final 4-byte Message Authentica-
tion Code (MAC) is computed over all previous fields,
authenticating the packet in a encrypt-then-MAC config-
uration. Due to the fixed packet length, length extension
attacks are avoided and padding oracles are of no concern
(since no padding is necessary). Note that the counter
(in our case 11-byte) used to prevent replay attacks is
never exchanged during normal operation, but implicitly
tracked by both sides and used in the CTR mode encryp-
tion. The protocol steps are described in more detail next.

Key generation All secrets used in the protocol are
generated by the transmitter on its first power-on at ran-
dom. Alternatively, to avoid the need for random number
generations, all values could be generated offline during
manufacturing, and simply be programmed into the SoC
in a secure environment. The following values are gen-
erated during this phase:

KT = hash(ID,Kmanu)

ctr = GenerateRandom()

ctrp = GenerateRandom()

KE = GenerateRandom()

KA = GenerateRandom()

f req = GenerateRandom()

where ID is the code of the transmitter, Kmanu is a
manufacturer-wide key, KT is a transport key (used dur-
ing pairing), ctr and ctrp are counters for AES-CTR, KE
is the encryption key, KA is the MAC key, and f req is



0 1 2 3 4 5 6 7 8

dst addr port src addr

raw filtered battery MAC

Figure 17: Encrypted and authenticated frame

a set of frequencies. The transmitter-specific transport
key KT is derived from the manufacturer key and the
transmitter identifier using a hash function, e.g. SHA-
256. Note that KT is only used during setup, so even if
the attacker obtains Kmanu, he has to be present during
the pairing phase (next paragraph) to obtain KE and KA.
In the following, EK,ctr (·) refers to AES-128 CTR en-
cryption under key K and counter ctr, and CMACK (·) to
CMAC computation under key K.

Pairing During pairing, the transmitter sends the se-
crets necessary for the receiver to decrypt and authenti-
cate packets during normal operation. The transmission
of these values (ctr, KA, KE , f req) is secured using the
transport key KT , cf. Figure 18. The transmitter enters
pairing mode when first connected to a sensor (i.e. used
by the patient) and then periodically broadcasts the en-
crypted data and the counter used for encryption (overall
68 byte):

c = EKT ,ctrp(ctr,KA,KE , f req)

Transmit(c,ctrp)

Because the communication is one-way, the transmitter
has no knowledge when the receiver has correctly re-
ceived the parameters. For this reason, this phase re-
mains active for a certain amount of time. Afterwards,
the transmitter enters normal operation. On the receiver
side, the user enters the identifier ID (from the back of
the transmitter) and the receiver performs the key deriva-
tion to obtain KT . Then, upon receiving a pairing packet,
the keys are unwrapped and normal operation is entered.

Source Address(ID)

Temporary Pairing
Key (KT)

Master Key (Kmanu)

AES-CTR (E)

Encipher Key (KE)

Encipher Counter (ctr)

MAC Key (KA)

Frequencies (freq)

Pairing Counter (ctrp)

Cipher Text (c) Pairing Counter (ctrp) To the receiver

Randomly Generated

52 bytes
16 bytes

68 bytes
52 bytes

Figure 18: Overview of cryptography during pairing

Normal encryption and authentication During nor-
mal operation, the transmitter periodically sends en-

crypted and authenticated packets, as mentioned before:

c = EKE ,ctr(ID,raw, f iltered,battery)

MAC =CMACKA(ctr,c,dst addr, port)

Transmit(c,MAC)

The overall design of the protocol is depicted in Fig-
ure 19. The freshness of the packets is implicitly checked
by the counter used for AES-CTR encryption. For
each transmitted/received packet, both transmitter and
receiver increment the counter. Even if the receiver has
not received a valid packet during its time window, it still
increments the counter, assuming the same has happened
on the transmitter’s side. Hence, the protocol can cope
with unreliable communication without the need for ex-
plicit re-synchronization. Furthermore, the receiver may
also accept a certain range of counter values in the future.

Encipher Counter (ctr)AES-CTR (E)

Encryption Key
(KE)

Source Address (src_addr)

Raw (raw)

Filtered (filtered)

Battery (battery)

Payload

CBC-MAC
(CMAC)

11 bytes16 bytes

Cipher Text (c)

9 bytes

MAC (MAC)

4 bytes

Destination Address (dest_addr) To the receiver
18 bytes

9 bytes

MAC Key (KA)

Port (port)

Destination Address
(dst_addr) Port (port)

5 bytes

Figure 19: Encryption and authentication of normal
packets

5 Summary and Future Work

In this paper, we present the results of the analysis of
the Dexcom G4, a widely used CGM. We report the full
inner workings of the utilized transmission protocol, in-
cluding the Dexcom checksum algorithm. Based on this
analysis, we demonstrate a series of attacks, allowing for
forging of glucose readings, jamming of the communi-
cation channels, as well as tracking and localization of
a Dexcom G4 user. Finally, we propose an improved
(cryptographically secured) protocol that mitigates these
threats. The improved protocol can be implemented on
the CC2510 µC used in the Dexcom G4 with minimal
runtime overhead, preserving the currently used packet
size of 18 byte during normal operation.



This paper offers various opportunities for future re-
search. First, our proposed protocol should be thor-
oughly scrutinized, possibly with a formal proof. Sec-
ondly, it would be interesting to further explore the
ranges achievable for tracking and localizing user with
specialized RF hardware (e.g. directional antennas, bet-
ter receivers). Finally, other CGMs and similar sensing
medical devices could be studied.

Responsible Disclosure

Before the publication we contacted Dexcom in Septem-
ber 2016 and discussed our results with them. They are
exploring ways to mitigate the security issues. We have
provided this paper to Dexcom. The following statement
summarizes the reaction of the vendor:

“At Dexcom, our mission is to empower people to take
control of their diabetes and we put our customers safety
and security before anything else. More than 200,000
people with diabetes have successfully used the Dexcom
CGM systems to improve their lives without a single re-
ported incident involving cybersecurity.

Our development teams have thoroughly reviewed and
discussed this paper with the authors to examine the
cybersecurity vulnerabilities of the Dexcom G4 PLAT-
INUM CGM (G4) system. We have completed an as-
sessment and determined that the cybersecurity risk to
users is extremely low.

We also note that in 2015, the next generation Dex-
com G5 Mobile CGM (G5) system was introduced to
the market with further cybersecurity enhancements. We
continue to invest in people, technologies and systems to
ensure that the security of our current and future products
is continually improved.

We appreciate the authors for their dedication to sci-
ence and people with diabetes and for sharing in our goal
to make Dexcom CGM systems the securest available.

For inquiries, please contact Steven Pacelli, Executive
Vice President, Strategy and Corporate Development,
Dexcom, at 858-200-0200.”
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