Application By Jan Axelson

Experimenting With the Z8
Single-Chip Microcomputer

It may not be the latest microcomputer chip, but
it has plenty of life in it to get specialized jobs done

t’s easy to forget that you don’t

have to use the latest technology
in every project. However enticing
the newest technological wonders
may be, they often aren’t required,
or even the best suited, for a particu-
lar task. Something that’s been
around a while may be simpler to use,
and cheaper as well. In the computer
world, the Z8 is a single-chip micro-
computer that has been in use for
over a decade—a long time in terms
of computer years—but still has
plenty of life in it.

Zilog, Inc., probably best known
for its popular Z80 microprocessor.
manufactures the Z8. In contrast to
the Z80, the Z8 is a complete single-
chip microcomputer, with memory
and bit-programmable 1/0 ports, as
well as counter/timers and a UART
(universal asynchronous receiver/
transmitter) for serial communica-
tion. A special version of the chip,
the Z8671, contains a BASIC inter-
preter in ROM for easy program
development.

In this article, we’ll explore the
world of the Z8671 and other Z8s, in-
cluding their architecture, interfac-
ing, programming and resources for
Z8 system design and programming.

About the Z8

The Z8 is especially suited for use in
dedicated devices in which a program
is embedded in EPROM or other
memory device and, along with sup-
port circuitry, executes a single func-
tion or group of related functions.
Possible Z8 projects include data-ac-
quisition systems, motor controllers,
programmable pulse or other wave-
form generators, electronic games,
automotive applications, telephone
switchers, intelligent instruments,
process control and anywhere you

might use a single-chip microcom-
puter or microcontroller.

The Z8 comes in many versions,
ranging from ROM-less units to the
Supers8 series with expanded features
and instruction set. Our focus here is
on the 28671, but the main features,
with the exception of BASIC/Debug
capabilities, are the same as or simi-

lar to those in other versions. At less
than $10, the Z8671 offers a low-cost
introduction to single-chip micro-
computing.

For more on the Z8, Zilog publish-
es a Z8 Family Design Book that’s
several books in one, including data
book, technical manual, application-
note series, programmer’s guide and

+
(o)
<

(SERIAL OUT) P3.7 &
(SERIAL IN) P30 —
RESET —>

R/W <

DS <

AS <

P35 <10

W 0 N O U1 NN

GND — |
P32 — A2
(A8) PO.O <13
(AQ) POI <14
(AI0) PO2 <15
(Al) PO.3 €16
(AI2) PO.4 <A 17
(AIZ) PO.S <18
(AI4) PO.6 <19
(AIS) PO.7 %@o

a0 rp36
39 K— P3l
38 K> P27
37 K> P26
36 K P25
28671 35— pp 4
34K P23
33K P22
32 K P2l
3> P2.0
30 K— P33
29 —> P34
28 K PI.7 (AD7)
27 K= PI6 (AD6)
26 K PIS (ADS)
(
(
(

25 K= P4 (AD4)
24 K> PI3 (ADJ)

23 K> P12 (AD2)
22 K—> PII (ADI)
2l &> PL.O (ADO)

Fig. 1. Pinout of the Z8671 single-chip microcomputer with BASIC/Debug pro-

grammed into on-bound ROM.

52 / COMPUTERCRAFT / December 1991

Say You Saw It In Computercraft

subroutine library. A separate Z8671
BASIC/Debug Reference Manual
describes BASIC/Debug. See the
Sources box elsewhere in this article
for more on these and other resourc-
es mentioned.

The Z8671’s BASIC/Debug is a
bare-bones programming language,
with just 15 keywords. Still, it has
enough capability for writing many
types of programs. In addition, you
can use it as a simple debugger for
testing programs in BASIC or as-
sembly language. BASIC/Debug
makes it easy to examine and modify
on-chip and external memory and to
load and run programs written in
assembly language.

Figure 1 gives the pinout of the
Z8671. This IC can address up to 124
kilobytes of external memory: 62K
each of data and program memory.
An additional 2K of internal ROM
contains BASIC/Debug. For smaller
systems, the Data Memory Select
(DM) control signal can be ignored,
for a maximum 62K of combined da-
ta and program memory.

Two of the Z8671’s four eight-bit
I/0 ports are dedicated to external
memory access. Port 1 is a multi-

plexed address/data bus, Port Ois the
high-address bus for accessing ex-
ternal memory.

Two of Port 3’s pins provide the
serial interface to the UART in the
Z8671, allowing communication
with other serial interfaces, such as
an RS-232 port on a PC.

The remaining port pins can be
used as desired. Those pins with al-
ternate functions (interrupt request,
timer input and output, etc.) can be
used for general-purpose input/out-
put applicationsif the alternate func-
tions aren’t needed.

A Development System

Shown in Fig. 2 is a basic system that
can be used for experimenting with
the Z8671. I built this circuit with
Wire Wrap hardware on perforated
board. The circuit could also be built
using point-to-point wiring, or by de-
signing and making a printed-circuit
board for it.

If you’d rather not build your own
development system from scratch,
the Sources box lists manufacturers
of assembled and tested boards that
contain a Z8, memory, serial inter-

face and other circuit elements to use
as a base on which to build your
designs and experiments.

The Fig. 2 circuit contains a Z8671
with BASIC/Debug; 2K of RAM; a
socket for a 2-kilobyte EPROM,
EEPROM, or nonvolatile RAM; a
serial interface for communicating
with a desktop computer or terminal;
14 free port pins; and 34K of free
memory area for connecting to addi-
tional memory devices or other cir-
cuit elements.

The circuit’s serial interface con-
nects to an RS-232 serial port on a
desktop, or host, computer or ter-
minal. By running a communications
program on the host computer, you
can communicate with the Z8, write
and run programs in BASIC, upload
BASIC and assembly-language pro-
grams from your host computer to
the Z8 and download programs from
the Z8 to the host.

The crystal frequency of 7.3728
MHz divides down for accurate baud
rates for serial communication (ac-
cording to the formula given in the
Z8 manual).

The two memory ICs are RAM
and either EPROM, EEPROM or

Professional
Tool Case

SPECIAL
$59.95

Model ARIM5

¢ Two removable pallets
hold over 60 tools

¢ Case top has built-in
document holder

¢ Case bottomis
partitioned into 3 areas

A handsome black case to organize and

transport your valuable tools and instruments. This is

the same quality case used by literally thousands of professional
field engineers. Case is made of high impact polypropylene,

and has snap-action key locks and a padded handle. o‘B

Size: 172" x 121" x 5"
Tools are not included.
Offer expires December 31, 1991,

To order call:
1-800-225-5370

o
Q

What 8051 compiler would Santa

use to automate his workshop!

i
s—\"(‘

% D o0 GO

BCI51T"of course - even Santa knows BASIC!

In MA: (508) 682-2000
Same Day Shipment!

Money Back Guarantee!
Terms: Visa, MC, Amex:

P.O.'s from qualified firms accepted.
Add $6.75 for packing and delivery.

FREE CONTACT EAST CATALOG

Contains thousands of products for testing, repairing & assembling
electronic equipment. To get your free catalog, call (508)682-2000.

BCI51™BASIC cross compiler withintegermath » Supplement BASIC-52
or stand-alone ¢ Now includes 'C51F support » BCI51 with assembler
and utilities $299 + Powerful Dallas DS5000T extensions $149 -
Assembly Language Programmer's Toolkit $99 * superb documentation

Sqgstrancy Tnc.o—s5Z -
I~y /
754 East Roosevelt Avenue Q}\/éx,/

Salt Lake City, Utah 84105
801487-7412 FAX: 801487-3130

CIRCLE NO. 62 ON FREE INFORMATION CARD
Say You Saw It In Computercraft

CIRCLE NO. 47 ON FREE INFORMATION CARD
December 1991 / COMPUTERCRAFT / 53

battery-backed (nonvolatile) RAM
for permanent program storage. The
memory interface is typical of many
other eight-bit systems. For each byte
transferred between external memo-
ry and the Z8, the lower eight bits of
the address are latched to the memo-
ry IC through an 74LS373 transpar-
ent latch, and the higher address bits
and data bits interface directly to the
memory ICs. The Z8’s Read/Write
(R/W) and Data Strobe (DS) control
signals interface to the memory ICs’
Output Enable (OE) and Write En-
able (WE) pins.

On power-up, BASIC/Debug se-
lects the Z8’s slower extended-bus
timing mode. So access time of the
memory chips isn’t critical.

The two halves of a 74LS139
2-to-4-line decoder provide address
decoding, which selects and enables
the memory ICs, and a baud-rate
selector. Unused outputs of the
74LS139 can be used to select addi-
tional devices at specific addresses in
the system.

The RAM is mapped from 800h to
FFFh (h = hexadecimal). Any mem-
ory reads or writes to addresses in
this range will access the RAM. The

EPROM/EEPROM/NVRAM sock-
et is mapped from 1000h to 17FFh.
An EEPROM or NVRAM in this
socket can be write-protected by
jumpering its WE line to +5 volts.
Addresses from 0to 7FFh aren’t used
in external memory because this is
where the internal ROM for the Z8 is
located.

A baud-rate selector is provided by
three 74LS125 tri-state buffers.
When BASIC/Debug boots, it exam-
ines memory location FFFDh for a
baud-rate setting to use for serial
communication. In the Fig. 2 circuit,
all memory accesses from C000h to
FFFFh will access the baud-rate se-
lector. (To free up portions of this
memory area, additional address de-
coding could be added.) Jumpers or
toggle or slide switches set desired
baud rate, or you can hard-wire in a
single rate, if you prefer.

Free areas of memory include a 2K
block at 1800h, and 16K blocks at
4000h and 8000h. These can be used
to access additional memory or other
components.

The final circuit element is the seri-
al interface, provided by the popular
MAX232 chip. This chip converts the

TTL-level outputs of the Z8671 to
valid RS-232 transmit levels, and in
the other direction converts received
RS-232 signals to TTL levels for in-
put to the Z8671.

The serial interface is required for
program development when using
BASIC/Debug. For final projects
that don’t use the interface, the
MAX232 can be left out.

Thecircuit in Fig. 2 is powered by a
regulated + 5-volt supply. A 0.5-am-
pere supply is more than adequate.

To use the system, you connect its
serial interface to a serial connector
on the host computer (usually a 25-
or nine-pin male subminiature D-
type connector). Figure 2 shows the
pin connections for a typical 25-pin
male D connector. For a nine-pin
male D connector, the pinout is typi-
cally as follows: pin 2—receive (data
in); pin 3—transmit (data out); and
pin 5—ground.

Since RS-232 connections are no-
toriously unpredictable, always veri-
fy that your wiring is correct. Check
the pinout on the host computer’s se-
rial connector to verify that its data
output connects to an input on the
MAX232 and that the MAX232’s

Project Pro

Call For FREE Catalog
Call (800) 800-3321 or (216) 425-8888
Project Pro brings a complete line of electronic
enclosures, hardware, and tools to both the
professional project engineer and the hobbiest.
Everything you need to bring ANY project
Jrom development to finished product.

/

Electronic Enclosures Custom Services Fasteners

* Aluminum * Fabricating *Nickel Plated
* Steel : %rrelening *Black Zinc
L) tum(:)al:(r)-und

Racks Chassis Tools

1710 Enterprise Pky. Twinsburg, Ohio 44087

“&LW

Sorry, sir, the computers are busy—
Pll have to help youin person.

CIRCLE NO. 70 ON FREE INFORMATION CARD
54 / COMPUTERCRAFT / December 1991

Say You Saw It In Computercraft

“ 2 FMCROCOMPUTER 9 @I o 1800
5y d 6 8000h) 10. 1000h
IOuF % 0 ‘ o 74Lsize 5 aoo0n | 1] 74880] @
= 4 0000h 12 0000h
T |RST ve AS [C2OOOH
73728427 2
XTAL2 AS 2_°| A Is
— 19 = ADDRESS
3 A4 DECODNG
} XTALI ey -
~ a2}
]IOPF j})pF 28671 al]
2o
32 5 - A) EPROM/
33 i IS 21" EEPROM/
o A9 A1 ag N5 ag AVRAL
13 23 23
P23 o N2
g] - A8 A8 A8
et P2-5 d %g I
371 © o6 YOI 08220 VO
2] P26 V02 1702
38 . 5 5
—1P27 1703 —— 1703
5 28 3 ALE 2 A 5 t 5
Rty Ldps o7 o7y iy vos \—2 A7 V04 |
el ADE e 06 osr 4 S|k vos =] \—3 A6 vos -
“p32 ADS F—ag D5 05 A—1as vos —] N1 as 1706 ——]
03 Aoa > D4 04l % Bl YA vor (2 N ad vor {2
s 24 Y | 7asss MYy PIE 0) 5 0)
“yp34 AD3 =] 03 03 A3 108 F— A3 1708 |
0 23 4 5 P 6
—1p35 AD2 =] 02 02— A2 A2
40 2 7 6 7 7
={P36 ADI] o ol Al P a
4 2 8 0 J s 8
P37 R/W S ADO Y DO Q0| A j A
T W OB & WE O &
I e T ~
— au 2 {20 |8 o |2 |2 [®
5 WRTE |0
7 . 6 2 PROTECT
[£
5 . 8 o
6)Ls02P ﬂ@ — —
“Sv
.SV
_ 10K
Ene — I
OF [SERAL BAUD RATE SELECT Rl S SR
oF A L NTERFACE owicn
y 5 Oy 2_T A B C BAWD “Sv
4 MAX232 y .6_]9‘; open open open 300 10K
O.F_l_‘ open open closed © ,4
: | 8 {s 6 AD
¢ : 5 I open dosed open 1200
h " B open closed closed 2400 Sy
jr>" closed open open 4800
0 75 025 3 closed upen closed 9600 10K
) pr
closed dosed open 19200 9 08 aD2
) _{ :>_
‘<IL D25. pn 2 closed dosed closed IS0 _Z’/
9/ e 8 =
L=
5y————>025 pn 7

Fig. 2. Adevelopment system for the Z8671, including RAM, nonvolatile memory and serial interface.

Say You Saw It In Computercraft December 1991 / COMPUTERCRAFT / 55

output connects to an input on the
host computer.

To communicate with the Z8671,
run a communications program
(Procomm, Kermit or whatever oth-
er one you prefer) on the host, setting
the communications protocol for the
baud rate you’ve selected on the
Z8671 board, with eight data bits, no
parity and one or two stop bits. (The
Z8 adds two stop bits to transmitted
data, and received data must have at
least one stop bit.)

Using BASIC/Debug

When the Z8671 powers up or is re-
set, the ““:”” BASIC/Debug prompt
appears on the host computer’s
screen. From here, you can write and
run programs in BASIC, execute
statements in immediate mode and
upload and download programs.

Figure 3 shows BASIC/Debug’s
keywords and operators. If you’re
used to QuickBASIC, or even GW
BASIC, BASIC/Debug will seem
primitive. You won’t find control
structures like WHILE ... WEND or
even FOR . .. NEXT loops. Only in-
teger variables and calculations are
allowed, and 26 variables—from A
to Z—are the maximum.

BASIC/Debug does, however,
permit you to write and execute many
simple programs quickly. For its in-
tended use, the elaborate text-for-
matting, graphics and similar capa-
bilities found in other BASICs aren’t
needed. Listing 1 shows an example
BASIC/Debug program that prompts
for a memory location and then
prints the contents of the 16 bytes
beginning at that location.

In BASIC/Debug, reading from
and writing to external and internal
memory, including ports and other
registers, uses the signal character @,
rather than BASIC’s usual PEEK
and POKE statements. For example,
the statement PRINT @2048 causes
the contents of memory location
2048 to be displayed on the host com-
puter’s screen. A % prefix indicates
hexadecimal. Therefore, the state-
ment PRINT @ %800 gives the same
result as the previous example.

The statement @ %900@%F8
writes the value F8h to location 900h.

At times, you may want to exam-
ine or modify the value of a 16-bit
word, rather than an eight-bit byte.

GOTO
IF/THEN

REM
RETURN

STOP

USR
subroutine.
variables.

Addition
Subtraction
Multiplication

PR N S

equal

less than
not equal
greater than

\

BV VAAAL

ND logical AND

> ge

Displays text messages or numeric values.
PRINT HEX HEX displays values in hexadecimal.
Indicates unexecuted comment or remark.
Ends a subroutine by returning control to the
line following a GOSUB.

RUN Causes the current program to execute.

Ends program execution and clears GOSUB stack.
Unconditionally branches to a machine-langquage
Can pass and return up to two

Signed division (range:
Unsigned division (range:

less than or equal

GO Unconditionally branches to a machine-language
subroutine.
GOSUB Unconditionally branches to a subroutine

specified by line number.

Unconditionally branches to a line number.

Initiates a conditional operation or branch.

LET Assigns the value of an expression to a variable
or memory location.

prompt, then reads input values (separated by
commas) from the keyboard and stores the values

INPUT discards

values remaining from previous IN, INPUT, or RUN
IN uses values left in the buffer,

Resets R4-R5, indicating that RAM is ready to

INPUT/IN Requests information from the user with "2"
in the indicated variables.
statements.
then requests new data.
LIST Displays program listing.
NEW
store a new program.
PRINT/

PRINT

-32768 to +32767)
0 to 65535)

greater than or equal

hexadecimal (otherwise decimal)
indirect byte address
indirect word address

Fig. 3. Keywords, operators and special characters available in BASIC/Debug.

For example, BASIC/Debug stores
the address of the first location in ex-
ternal RAM in Registers 8 and 9. To
determine this value, you could read
both registers and add their weighted
values, but there’s an easier way. The
signal character ‘° *” references a 16-
bit word consisting of the specified
byte and the one following it. So the
statement PRINT 8 displays the
16-bit value (from 0to 65,535) stored
in Registers 8 and 9.

Although BASIC/Debug has no
FOR...NEXT loops, you can ac-
complish the same thing by using an
index, or count, variable, an
IF...THEN statement that tests the
value of the index variable and calls a

subroutine if the IF statement is true.
Listing 1 uses this technique to step
through the 16 values it displays.
BASIC/Debug indicates syntax
and other errors by number only.
The numeric codes are explained in
the BASIC/Debug manual; so at
first you’ll want to keep this handy as
you program. You’ll soon memorize
the codes that pop up often.
BASIC/Debug’s line editor lets
you backspace to correct typing mis-
takes, but once you press RETURN,
the entire line must be typed again to
make a change. Instead of entering a
long, involved program from within
BASIC/Debug, you can write a pro-
gram with a text editor that produces

56 / COMPUTERCRAFT / December 1991

Say You Saw It In Computercraft

pure ASCII output, and then use
your communications software to
upload the program to the Z8 sys-
tem’s memory. In the other direc-
tion, downloading a program to the
host computer is an easy way to save
your code for re-loading.

Most communications programs
include functions for uploading and
downloading files. These are the
same functions used for sending and
receiving files to and from a BBS,
and the procedure is similar when
transferring files from and to the
Z8671. Select ASCII format for the
transfer, and use a LIST statement to
download the current BASIC/De-
bug program to the host computer.
Uploading a program in ASCII for-
mat will store it in RAM as if you had
typed it in at the keyboard.

On power-up, BASIC/Debug tests
external memory non-destructively,
beginning at 800h, to see how much
RAM the system contains. A pointer
to the high boundary of RAM is
stored in an internal register. A small
area of RAM is reserved for storing
variables, the input line buffer and
GOSUB stack.

Circuits that have a program
stored in EPROM may have no need
for external RAM. In this situation,
BASIC/Debug uses the Z8’s internal
registers for storage, with some oper-
ating limitations due to the reduced
memory available.

If a program is stored in nonvola-
tile memory, BASIC/Debug can run
it automatically on power-up. On
power-up, BASIC/Debug checks ex-
ternal memory location 1020h, and if
it finds a program, automatically
runs it. This feature allows you to
develop a program in RAM, then
transfer it to EPROM, EEPROM or
nonvolatile RAM for permanent
storage and automatic starting.

If you’ve developed a program in
RAM and want to save it to a file for
use with an EPROM programmer,
you need to save the code exactly as
it’s stored in the RAM. Although
LIST works well for downloading
files for later uploading, the LIST
statement adds line feeds and trans-
lates line numbers from binary for-
mat to ASCII; so it’s not suitable for
downloading files for EPROM pro-
gramming.

A solution is to download the file
in binary format. Listing 2 is a short

30 A=0
40 IF A<16 THEN 100
50 STOP

110 A=A+l
120 GOTO 40

10 PRINT "beginning address?”
20 INPUT X:REM beginning memory location to display

Listing 1. BASIC/Debug Program Prompts for a Memory Location and Displays
Values Stored in 16 Locations, Beginning With Requested Location.

100 PRINT HEX (@ (X+A)):REM display stored value

X=0

10020
10030 X=X+1
10040 GOTO 10010

Listing 2. Program Transmits BASIC/Debug Program in Binary Format to the
Z8671's Serial Port.

10010 GO €%61,@(%800+X):REM write byte to serial port
IF € (%800+X)=%FF THEN STOP

program that writes the current pro-
gram in RAM to the serial port in bi-
nary format. This listing can be ap-
pended to any BASIC/Debug pro-
gram and called with GOTO 10000.
To use this technique, the host com-
puter must be able to receive and save
files in the binary format. ASCII
downloading protocols strip nulls
and/or the eighth bit of each byte; so
it won’t work for this purpose.
Another option for saving a BA-
SIC program is to copy the program
directly into a nonvolatile RAM or
EEPROM. Listing 3 is a program
that can be appended to a BASIC/
Debug program to copy the current
program to memory beginning at
1020h. GOTO 10000 causes the pro-
gramto be copied. After copying, the
WE line of the nonvolatile RAM or
EEPROM must be jumpered to + 5
volts to prevent overwriting and pro-
vide autostarting. Or the IC can be
removed and inserted into an EP-
ROM programmer that can then

copy the contents into an EPROM.

Port 2’s pins and the six remaining
Port 3 pins can be used to interface to
switches, LCD or LED displays, ana-
log-to-digital or digital-to-analog
converters or other devices and com-
ponents. The ports have active pull-
ups and pull-downs that are compati-
ble with TTL loads. As Fig. 1 shows,
the direction of Port 3’s pins is fixed,
while Port 2’s pins can be pro-
grammed individually to serve as in-
puts or outputs.

Zilog’s BASIC/Debug manual
contains definitions and examples of
each keyword, as well as sections on
how BASIC/Debug uses memory
and programming tips for maximum
execution speed and minimum mem-
ory use.

Assembly-Language
Programming

For functions that BASIC/Debug
can’t handle, you can program in as-

Listing 3. Program Copies a Program From RAM Into EEPROM or Nonvolatile
RAM for Permanent Storage.

10000 X=0
10010
10020
10030 X=X+1

10040 GOTO 10010

€(%1020+X)=@(%800+X):REM copy RAM byte to NV memory
IF @(%1020+X)=%FF THEN STOP

Say You Saw It In Computercraft

December 1991 / COMPUTERCRAFT / 57

sembly language and call the pro-
gram from BASIC/Debug. For low-
cost (free) assembly-language pro-
gramming, I discovered two versions
of a freeware Z8 cross-assembler on
the Circuit Cellar Ink BBS (see
Sources box). Z8§CAIPC.ARC for
MS-DOS computers assembles pro-
grams in Intel hex, Motorola S-re-
cord or a special Z8 file format.
Z8CA1AM.ARC is an Amiga ver-
sion of the same assembler.

After assembling a program, you
can program an EPROM or other
memory IC with the assembled code
or simply upload the file into the Z8’s
external RAM for testing.

The special Z8 file format is handy
for uploading to RAM. A short (five-
line) BASIC/Debug program, along
with acommunications program, up-
loads a program assembled in Z8 for-
mat to the desired location in mem-
ory in the Z8 system. Once the pro-
gram is loaded into memory, you can
callit from BASIC/Debug witha GO
@ statement. More details on this
and how to use the assembler are giv-
en in the documentation files.

Full-featured Z8 assemblers are
available as well from Zilog and
others. Another possibility is to use a
universal cross-assembler that sup-
ports the Z8. Such a cross-assembler
is a single program that assembles
programs for a variety of microcom-
puters from different families.

A convenient feature of the Z8’s
architecture is that any of its general-
purpose registers can be used as an
accumulator, address pointer, index
register or on-chip stack. This con-
trasts with many other devices in
which specific registers are dedicated
to these purposes, and, for example,
all calculations must be funneled
through an accumulator.

An inconvenient Z8 feature is that
several of its internal registers are
write-only. To configure the I/0
ports, you write values to their mode
registers, but there’s no way of read-
ing the values back.

Packaging options for the Z8671
include a 40-pin DIP (dual in-line
package) and a 44-pin surface-mount
chip carrier. Besides the Z8671, other
Z8 versions (none of these have BA-
SIC/Debug) include the following:

78681/82—A ROM-less version.
Like the Z8671, but without BA-
SIC/Debug in ROM. Assembly-lan-

guage or compiled programs must be
stored in external memory.

Z8603/13—A ROM-less version
with a piggyback socket for a2716 or
2732 EPROM. This space-saving
version allows you store a program in
EPROM without having to wire the
EPROM to the Z8. Since standard
EPROMs are used, no special adapt-
ers are required for your EPROM
programmer, unlike many other
microcomputers that have embedded
into them EPROM:s.

7Z8601/11—Contains mask-pro-
grammed user program in 2K or 4K
of ROM. For mass production of
chips with a single program.

Z8600—A 28-pin version.

786C91—A CMOS ROM-less ver-
sion.

78800—A Super8 version, with
improved instruction set that in-
cludes multiply and divide instruc-
tions, Boolean and BCD (binary-
coded decimal) operations, DMA
(direct memory access) controller,
ability to run at 20 MHz and other
improvements.

Z86C27/97 DTC digital television
controller. An application-specific
version, containing a Z8, an on-
screen-display video controller and
13 pulse-width-modulator outputs.
It’s meant for use in color-television
control products. Zilog is continuing
to develop other application-specific
Z.8s meant for specialized markets.

Send comments, suggestions and
questions on topics relating to de-
signing, building and programming
microcontrollers or other small, de-
dicated computers to Jan Axelson,
ComputerCraft, 76 North Broad-
way, Hicksville, NY 11801. For a
personal response, please include a
self-addressed, stamped envelope.

Next time: low-power designs for
battery-powered projects.

Jan Axelson

I —

BASICON, Inc.

14273 NW Science Park Dr.

Portland, OR 97229

Voice: 503-626-1012

FAX: 503-643-4686

MC-1z microcontroller board with Z8
BASIC/Debug, expander module, Z8
assembler

Circuit Cellar Ink BBS
Modem: 203-871-1988
300/1,200/2,400 bps, 8-N-1
Z8 cross assemblers

Jameco

1355 Shoreway Rd.

Belmont, CA 94002
Voice: 415-592-8097
FAX: 415-592-2503

Z8 chips

JDR Microdevices
2233 Samaritan Dr.
San Jose, CA 95124
Voice: 1-800-538-5000
FAX: 1-800-538-5005
Z8 chips

Micromint

4 Park St.

Vernon, CT 06066

Voice: 203-871-6170

FAX: 203-872-2204

BCCl11 Z8 BASIC Computer, expan-
sion boards, Z8 FORTH chip

PseudoCorp.

716 Thimble Shoals Blvd.

Suite E

Newport News, VA 23606

Voice: 804-873-1947

FAX: 804-873-2154

Z8 assembler, disassembler, simulator

Software Science

3750 Roundbottom Rd.

Cincinnati, OH 45244

Voice: 513-561-2060

ProtoQuick Z8 development board, ap-
plication notes

Zilog, Inc.

210 Hacienda Ave.

Campbell, CA 95008-6609

Voice: 408-370-8000

Z8 single-chip microcomputer; Z§8
Family Design Handbook (No.
03-8275-03); Z8671 BASIC/Debug
Reference Manual (No. 03-3149-03) Wl

58 / COMPUTERCRAFT / December 1991

Say You Saw It In Computercraft

