
OAK RIDGE FORTH
April 23, 2009

© 2003-2009 – The MapTools Company

This 8K version of Forth for the Zilog Z8
implements a microcontroller version of the 83 Forth
standard. It features a screen editor to facilitate rapid
code development and has a “native code” extension
that permits testing “assembler” code in a Forth
environment. The Forth code is commonly used as part
of a 2K to 64K system, with a Forth kernel occupying
the lower portion of ROM. The system is modular so
that a 2K or 4K version of the Forth kernel can be
developed easily.

Information available on the Internet includes
Starting Forth by Leo Brodie (13 chapters):
 http://home.iae.nl/users/mhx/sf0/sf0.html…
 http://home.iae.nl/users/mhx/sf12/sf12.html

Manuals and technical information on the Z8 family:

 Z8 (8681) User Manual
 Z8 (CMOS series) Manual ,
 Z8 86C91 hardware description

Although the Forth system itself is in Z8
assembler code, most of the material consists of
“precompiled” Forth words. That is, the assembler
code is what Forth itself produces when it compiles a
Forth word. In most cases, the Forth definitions are
included along with their assembler counterparts.

Oak Ridge Forth contains drivers for an external
I2C EEPROM, for a PCF 8574 I2C serial-to-parallel
interface (useful for an implementing an LCD), and a
PC keyboard interface. These driver routines operate
via Port 3. Port 2 is not used by Forth and is available
for use by an application program. The drivers
increase the size of the system by about a 1,200 bytes.

Also included is a package of 4-byte (IEEE 754)
floating point routines. As compiled, these routines
take about 2,000 bytes.

Several routines are described that assume use of
the Zilog 86C93, which has hardware implemented
multiply/divide. These routine include integer sin/cos,
and 128-point fast Fourier transform. Programming for
the 86C93 can be found here

The default configuration Forth system assumes
availability of serial input/output. The shareware

HyperTerminal or TeraTerm are good options.

To use the screen editor with this Forth system, set
the terminal emulator properties to VT220 emulation
with a 50 ms character delay.

The Forth system assumes an 8681, 86C91 or
86C93 Z8 processor. Other Z8-compatible chips, such
as the Sharp LU800, may also be used.

Architecture of the compiler

This implementation of Forth is designed to be as
compact as possible and uses one byte tokens for most
of its words. With the Z8, this implementation is
nearly as fast as the Forth version available from
Micromint. However, execution speed can be
improved by optimizing critical words Oak Ridge
Forth's using its assembly language capability.

Original Z8 architecture and eZ8 (Z8 with flash
memory) compared

In the past few years Zilog has encouraged use of
its eZ8 version of the Z8 (having strict Harvard
architecture) for program development. The eZ8 has
internal flash memory (from 2K to 64K) and an
internal byte-addressable volatile memory (from 2K to
8K). With these versions of the Z8 users are
encouraged to use flash memory memory for program
development and use Zilog's version of “C” as the
development language platform.

The problem with this mode of development is
that when a new or altered version of a program is
needed,
the entire code for the Z8 must be compiled and
loaded into flash memory. And further, as internal
memory can only be used for data (one cannot execute
code located in the internal data store), this means that
new or altered code can reside only in flash memory.

The original Z8 architecture (a hybrid of Harvard
and van Neumann design) permitted a combination of
not-easily-altered code (PROM) plus a large amount of
volatile RAM. Thus, one is able to load PROM with
code that is (mostly) checked out, and incrementally
developing new or altered code in RAM. When the
new or altered code is checked out, it can be

1

http://home.iae.nl/users/mhx/sf0/sf0.html
https://drive.google.com/open?id=1YJg11FiTT8C4sMo0onDqqiwhWCA6bAK4
https://drive.google.com/open?id=1lPl5aQlRYEVSMBDDB1TwLK3uhVJFkzNe
https://drive.google.com/open?id=1lPl5aQlRYEVSMBDDB1TwLK3uhVJFkzNe
https://drive.google.com/open?id=1lPl5aQlRYEVSMBDDB1TwLK3uhVJFkzNe
https://drive.google.com/open?id=15S81fHATGp41ac9XV8C7OTiMhkOvt0uN
https://drive.google.com/open?id=15S81fHATGp41ac9XV8C7OTiMhkOvt0uN
https://drive.google.com/open?id=15S81fHATGp41ac9XV8C7OTiMhkOvt0uN
https://drive.google.com/open?id=13VAVoYhi6u3VIKBXjAuOXDAkPZooVTzC
http://home.iae.nl/users/mhx/sf12/sf12.html

transferred to PROM and the development cycle
repeated with the next code requirement.

One drawback of the original Z8 as compared to
the eZ8 is that two (usually quite valuable) ports are
tied up with external memory communication.
However, with the advent of serial-to-parallel chips for
I2C protocol, it is relatively easy and inexpensive to
add any number of ports to the original Z8
architecture.

One could argue that development in Forth with
the eZ8 architecture does not suffer from the drawback
of “C” with the eZ8, as Forth words, which are just
double-byte data items, can be stored in local eZ8
RAM, then transferred to flash memory once the code
is checked out. The problem with this tact is that Forth
(at least most versions) give a user an ability to
program both in Forth and in native code (Oak Ridge
Forth has these options).

External memory utilization

RAM is assumed to follow ROM. Forth starts by
examining memory to determine the end of ROM and
the start/end of RAM. ROM is always assumed to start
at address zero. If the two bytes at the end of ROM are
–1 (FFFF), then Forth starts as if QUIT was just
entered; otherwise, the word at end of ROM is
assumed to be the address of a Forth word where
execution is to begin. The Forth return stack is started
at the end of RAM; the Forth data stack starts 64 bytes
below the return stack. The Forth dictionary pointer is
initialized to the low address of RAM.

As is usual in Forth, the text input buffer (64 bytes
long plus a one byte sentinel) is located at the end of
the return stack, adjacent to the start of the data stack.
Thus, an underflow of the data stack is usually fatal, as
this stack then starts to overwrite the text input buffer.
The SETALT routine (described in the “utility
routines” section) is available to check for a stack
underflow in the Forth word in which it occurs.

If a system is configured as 32K of ROM followed
by 32K of RAM, then the memory allocation (in hex)
is as follows:

Both the data stack and return stack can be defined to
reside in the register file for RAM-less systems.

Z8 Control Registers

The control registers are initialized as follows:

Note that the distribution version of Forth is
configured for 19.2 KB serial I/O (12.288 MHZ
clock). Also note that the initialization specifies the
“normal bus timing” option (Register F8, bit 5).
Setting F8 to B2h will set memory access to extended
timing and thus decrease execution speed by about 1/2.

Register File Utilization

Bytes 4-16 of the register file are used for interrupt
jumps (see below). The next 32 bytes (10h-2Fh) are
used for Forth system variables. The standard Forth
system register group is the next 16 bytes (30h-3Fh).
Changing the Forth register group from the default is
discussed in the example of an interrupt service
routine (below).

Interrupts

Z8 hardware sends interrupts to one of six vectors
at the first 12 bytes of program memory (ROM). Forth
has addresses in those locations that cause a branch to
indirect branch instructions that reference locations in

2

Z8 Control Register Initialization
F0 SIO --
F1 TMR 00
F2 T1 F0
F3 PRE1 03
F4 T0 01
F5 PRE0 17
F6 P2M FF
F7 P3M 41
F8 P0IM 92
F9 IPR 2B
FA IRQ 00
FB IMR 00
FC FLAGS --
FD RP --
FE-FF SP (see above)

0000 - 1FFF Forth kernel
2000 - 7FFF Available for application code &
drivers
8000 - … Bottom of RAM – start of dictionary
 … - … Screen page areas (1K blocks)
 … - FF7F Data stack
FF80 - FFC0 Text input buffer (65 bytes long)
FFC2 - FFFF Return stack (32 word capacity)

bytes 4-15 of the register file. Thus, a programmer can
place addresses in these low register file locations that
will cause branches to appropriate interrupt handling
routines. As an example, suppose that the interrupt
service routine for Interrupt 0 is located at 4562h. By
placing the address 4562h at register file location 4,
the interrupt proceeds from location 4 in ROM to 94h.
This address contains a JP@ instruction with an
indirect jump via location 4 in the register file. This
indirect jump transfers control to the interrupt routine.
A comprehensive example of writing Forth code for
interrupts appears in the “native code” section.

Case

In general Forth words may be entered in either
upper or lower case. This works because the dictionary
is searched first for the word as entered then, if the
word is not found, the dictionary is searched again
with the entered word converted to upper case. Note,
however, that several native-code words require a
proper case for address mode specification and
condition-testing codes.

The case of words created via a “colon” or
“create” definition is preserved. For this reason, users
should create new words in upper case so that they can
be found whether referred to in upper or lower case.

The default is to retain the character count and the
first three letters of new Forth words. Thus, new Forth
words ABCD and ABCE (both four letters long and
both starting “ABC” will be considered identical. The
default can be overridden by specifying a new
character count in the Forth variable WIDTH.

Loading and Storing

@ At
… X A à … X V

The number at the top of stack specifies an address
which is replaced with the 16-bit number at that
address. If the number is less than 100h, the address is
interpreted as a register file address. The most
significant byte is in the lower-numbered address.

! Store
… X V A à … X

The number second on the stack is store in
memory at the location specified by the number on the
top of stack. If the number is less than 100h, the
address is interpreted as a register file address. The
most significant byte is in the lower-numbered

address. Remember that registers 80-EF are not
defined in the 8681 version of the Z8, and registers F0-
FF are system registers.

C@ Char-At
… X A à … X C

The number at the top of stack specifies an
address. A 16-bit number - the lower 8-bits from the
character at the specified address and zeros in the high
order part - replaces the number specifying the
address.

C! Char-Store
… X C Aà … X

The number at the top of stack specifies an
address. The lower 8-bits of the number at second
from top are stored at the specified address.

+! Plus-Store
… X I A à … X

The address specified at the top of stack is
incremented by the second value on the stack.

CMOVE Character move
… X S D N à … X

N characters are moved from a source location (S)
to a destination location (D) starting at the beginning
of the source. Note that if the destination is one greater
than the source, this instruction can be used to fill the
source area by propagating N bytes.

CMOVE> Character move - higher
… X S D N à … X

N characters are moved from a source location (S)
to a destination location (D) starting at the end of the
source area.

Logical and Arithmetic

+ Plus
… X A B à … X S

The two 16-bit values on the stack are replaced by
their sum.

 Minus
… X T B à … X D

The number at top of stack is subtracted from the
number second from top and the result replaces them
on the stack.

1+ One-plus
… X T B à … X D

3

The number at top of stack is incremented by one.

NEGATE Negate
… X A à … X R

The 16-bit value on the stack is replaced by its
negative.

D+ D-Plus
… X AL AH BL BH à … X SL SH

The two 32-bit values on the stack are replaced by
their sum.

DNEGATE D-Negate
… X L H à … X RL RH

The 32-bit value on the stack is replaced by its
negative.

AND And
… X A B à … X R

A logical “and” is performed on the two numbers
at the top of stack. They are then replaced with this
result.

OR Or
… X A B à … X R

A logical “or” is performed on the two numbers at
the top of stack. They are then replaced with this
result.

U* Unsigned Multiply
… X A B à … X L H

The two numbers at top of stack are multiplied,
assuming they are unsigned quantities. The 32-bit
result replaces the arguments on the stack.

U/ Unsigned Divide
… X A B D à … X R Q

The 16-bit number at top of stack divides the
double number at the second and third positions on the
stack. Both quantities are interpreted as unsigned
quantities. The remainder and quotient replace the
arguments on the stack.

S* Signed Multiply
… X A B à … X L H

The two numbers at top of stack are multiplied,
assuming they are signed quantities. The 32-bit result
replaces the arguments on the stack.

S/ Signed Divide
… X L H D à … X R Q

The 16-bit number at top of stack divides the
double number at the second and third positions on the

stack. Both quantities are interpreted as signed
quantities. The remainder and quotient replace the
arguments on the stack. The results are a “floored
division” as defined in the Forth 83 standards. For
example:

Thus Q * D + R = N, where Q is the quotient, D is the
denominator, R is the remainder and N is the
numerator.

If a 86C91 processor, which has hardware multiply
and divide, is used, these functions can be used in
Forth via the fast multiply and fast divide definitions:

Stack Manipulaton

DROP
… X V à … X

This word at top of stack is removed.

DUP
… X V à … X V V

This word at top of stack is duplicated.

SWAP
… X A B à … X B A

The two words at top of stack are swapped.

ROT Rotate
… X A B C à … X B C A

The word third from the top of stack is placed at
the top – the two words formerly at top of stack are
pushed down.

PICK
… N à … V

The word at a depth of N in the stack is duplicated
and place at the top of stack. Thus 1 PICK is
equivalent to the word OVER.

4

 10 / 7 = 1 R: 3
-10 / 7 = -2 R: 4
 10 / -7 = -2 R: -4
-10 / -7 = 1 R: -3

:A FU* FD 0E RIM OR, 4 R POP, 5 R POP,
 2 R POP, 3 R POP, 6 40 RIM LD, NOP,
 NOP, NOP, 3 R PUSH, 2 R PUSH, 1 R PUSH,
 0 R PUSH, FD F0 RIM AND, EXIT,

:A FU/ FD 0E RIM OR, 4 R POP, 5 R POP,
 0 R POP, 1 R POP, 2 R POP, 3 R POP,
 6 20 RIM LD, NOP, NOP, NOP, NOP,
 1 R PUSH, 0 R PUSH, 3 R PUSH, 2 R PUSH,
 FD F0 RIM AND, EXIT,

TWIXT
… L H V à … R

Places the value “true” (-1) on the top of stack if
the value at top of stack is between the lower and
upper [inclusive] limits (3rd and 2nd on the stack),
“false” (0) otherwise.

>R Onto-R
… X N à … X

The word at top of stack is removed and placed on
the return stack.

R> R-Onto
… X à … X N

The word at top of the return stack is removed and
placed on the stack.

I
… X N à … X

The word at top of the return stack is copied to the
stack.

Input / Output

KEY
… X à … X V

This word causes the computer to wait until a
value has been entered via the serial port. The value
appears as the lower 8 bits in a 16 bit word at the top
of stack..

EMIT
… X C à … X

This word writes a character to the serial port
using the lower 8 bits of the 16 bit word at top of
stack..

BASE
… X à … X A

This word places the address of the current
number base on the stack. Base is a two-byte (word)
variable.

H. H-Dot
… X V à … X

This word removes the number at top of stack and
converts it to a string of four characters (in the current
number base) which are then sent to the serial port.
Note that the number is interpreted as an unsigned
quantity.

D. D-Dot
… X V à … X

This word removes the signed double word at top
of stack and converts it to a string of characters that
are sent to the serial port. The Forth number base
controls the characters used to represent of the
number. The common Forth output word, “.” (DOT),
is simply defined as

: . S->D D. ;

To define a version of “DOT” that always
produces a number in base 10

 : . BASE @ 5 5 + BASE ! SWAP
 S->D D. BASE ! ;

Although this appears complicated, it simply saves
the current number base on the stack, changes the base
to 10, outputs the number, and then restores the base to
its original value.

WORD
… X C à … X A

This word reads one word from the input stream to
temporary area at the end of the dictionary. The count
of the characters in the word (a byte) preceeds that
word itself. The address of the preceeding count byte
is left on the stack.

NUMBER
… X C à … X DL DH

This word converts the counted character string
(its address is the argument on the stack) to a double
word constant. If the character string contains an
embedded decimal point, the count of the digits to the
right of the decimal point is placed in the system
(byte) variable, PRDP (places to the right of the
decimal point).

Using # for formatted output

<# Into-Pound
Pound
#S Pound-S
SIGN Sign
#> Pound-Into
… X S L M à … X (If SIGN is used)
 … X L M à … X (If SIGN is not used)

The “#” words are used to output a variable
number of digits (n the current number base) of a
double length argument. For example, the following
will output the magnitude of a double length number
as three digits:

5

<# # # # #> TYPE

To output a a signed number (rather than the
magnitude), you must put the sign of the number on
the stack underneath the double length number itself
and use the “SIGN” word, as follows:

<# # # # SIGN #> TYPE

Remember that the current number base is used.
To use base regardless of the currently set base, set the
base to 10 and retore the previous base as is in the
example shown in explanation of D.

TYPE Type
… X N A à … X

This word is generally used only with the “#” type
of formatted output. It assumes that a string of N
characters has been placed at the the address at top of
stack and outputs the characters to the serial port.

.″ Dot-quote
This word defines a quoted string that begins after

the space following the word, and ends with a quote.
This word can only be used in word definitions. Thus
the construct:

: msg .” A message ” ;

when run, produces

 msg A message OK

COUNT Count
This word assumes the address of a quoted string

is on the stack. The quoted string must be in the form
of a count, followed by the string itself. The address is
placed by the count of the characters in the string

Condition Testing

Condition setting Forth words use –1 (FFFFh) as
true and 0 as false.
= Equals
… X A B à … X R

If the two numbers at top of stack are equal, they
are replaced with true (-1) – otherwise they are
replaced with false (0).

>= Greater Than or Equals
… X L R à … X R

If the number beneath the top of stack is greater
than or equal to the number at top, they are replaced
by true (-1) – otherwise they are replaced with false
(0).

=0 Equals Zero
… X V à … X R

If the number at top of stack is zero, it is replaced
with true (-1), otherwise it is replaced with false (0).

Program Flow Control

IF – THEN
IF – ELSE – THEN
… X V à … X

BEGIN – WHILE – REPEAT
The words within the begin/repeat sequence are

repeated until the word on the stack tested by “while”
is zero.

BEGIN – UNTIL
This words between the begin/until sequence are

repeated until the word on the stack tested by “until” is
true (not zero).

DO – LOOP
DO – +LOOP
… X H L à … X

These two constructs differ only in that +LOOP
increments the loop count by the number found at the
top of stack. At the start of a loop the high limit (next
to top of stack) and start value (top of stack) are
removed and placed on the return stack. Forth 83
conventions are used for controlling the looping
process. Thus

10 0 DO … LOOP

will execute 10 times with indices 0, 1, …, 9. The
construct

-10 0 DO .. –1 +LOOP

will execute 11 times with indices 0, -1, …, -9, -10.

I
… X à … X I

This word places a copy of the DO control (the top
of the return stack) on the stack.

LEAVE
… X à … X

6

This word causes the loop to terminate at the next
encounter with LOOP or +LOOP, regardless of the
value of the loop index.

CASE
n1 OF ... ELSE
 …
n2 OF ... ELSE
DROP ...

ENDCASE
… X V à … X

The “CASE” construct is a convenient way of
writing a nested set of “IF” conditions. CASE assumes
that a value to be tested is on the stack at the time
CASE is encountered. Each “n OF ... ELSE”clause
causes the initial value to be compared to n and the
phrase following executed if equal. The DROP ... at
the end is executed if no match occurs.

Screen Editor

The screen editor assumes VT220 emulation.
Loading a code page (up to 1024 characters) can be
done with the terminal emulators “transfer file”
function. With Hyperterminal, this is Transfer >
SendTextFile. To save a code page, use the Forth word
“LIST” to list a page, use the mouse to mark the block,
then paste it in your word processor. For example, to
list the page at 9000 (hex), use:

9000 400 LIST

SCR
… X à … X A

This word places the address of the screen variable
on the stack. To set the screen address to 8000h, use
the words:

8000 SCR !

EDIT
This word displays an editable screen of the 1024

(400h) characters at the screen address. The editor
responds to the cursor movement arrow keys,
backspace, and return. Five control characters are also
available: ^b to blank the page and insert the
terminator word “;S” at the end of the page; ^n to
insert a new line; ^y to delete an entire line, ^o to
toggle the “insert/type-over” mode; and ^x to exit the
editor.

Because of the processing necessary to process an
inputted character in “insert” mode, change to
“overwrite” when loading characters from a file.

ENS Edit next screen
EPS Edit prior screen

Start an edit of the next screen and prior screen,
respectively.

ES Edit screen
This word assumes a screen address follows. The

screen address is loaded into the screen variable and
that screen is displayed for editing.

LSCR
This word attempts to load the current screen (and

possibly subsequent screens) continuing until a “;S”
control word is encountered.

\ Back-slash
This word causes the compiler to ignore the

remainder of the current line. Thus this symbol can be
used as the start of a comment at the end of a line.

;S Semicolon-S
This word terminates a compilation initiated by

LSCR.

Native Code Definitions

Although most of the native code words
correspond to their Z8 assembler counterparts, there
are a few significant differences. Chief among these
are the words for Load (LD).

In this implementation, LD is reserved for versions
of instruction having opcodes of the form En and Fn
(E3, E4, E5, E6, E7, F3 and F5). The “indexed”
versions of load (opcodes C7 and D7) are given the
special identifiers LDX and STX. The “group register”
versions of “load” (r8, r9) have the identifiers LDGR
and STGR respectively. The “load group register
immediate” (opcodes “rC”) has the identifier
LDGRIM.

Another minor difference is in the definition of
INC. This identifier refers only to opcodes 20h and
21h. The “group register” version of INC (Opcode
“nE”) is given the special identifier INCGR.

The “load constant” and “load external”
mnemonics are also different from their assembler
counterparts. (This is mainly done to clearly
differentiate between “load group register from” and

7

“store group register to” versions of these instructions.
The code “LDC” and “LDE” load from memory to a
group register; “STC” and “STE” store a a group
register value in memory. The auto-increment versions
of these instructions follow the same convention. Thus
we have:

For the “load indexed” opcodes C7 and D7, the index
register is specified following the source or destination
address modified by the index. STX means store a
group register into an indexed destination location;
LDX means load a group register from an indexed
source location. Thus we have:

These compile into the three-byte sequences
D7 A1 F0 and C7 A1 F0.

The Forth operand sequences correspond to the Z8
assembler conventions: all definitions are in
destination/source order (when both are required)
followed by an address mode indicator (when
required). Thus, the code for “load register 9 from
register 6 is

 Forth Assembler
9 6 RR LD, LD 9,6

This produces the three-byte result E4 06 09.

Oak Ridge Forth reserves the words R0..R9, RA..
RF and their lower case counterparts, r0 … r9, rA .. rF
for use in native code definitions. These correspond to
references to registers in the current register group.
For example, for “load group register 9 from 46h”, one
can write

 Forth Assembler
r9 46 LDGR, LD R9, 46h

This will compile into the word 9846. The
complementary operation, “store group register 9 in
46h” is

 Forth Assembler
46 r9 STGR, LD 46h, R9

This compiles into the word 9946. The convention
usually adopted is to use lower case “rn” when a four-
bit register designation is referred to, and a capital R -
“Rn” - when an eight bit group register reference in
the form “En” is used. Also, remember that STGR can
not reference a group register (Ex) as a destination.

Several special words are predefined to indicate
the address mode for native code definitions. These are

 Address Code
 Mode Example Produced

R R2 R DEC, 00E2
IR R2 IR DEC, 01E2
rr r2 r3 rr ADD, 0223
rIr r2 r3 rIr ADD, 0323
RR 47 32 RR ADD, 043247
RIR 47 32 RIR ADD, 053247
Irr r6 r5 Irr LD, F365
RR 46 RR INCW, A046
RIM 45 7F RIM LD, E6457F
IRIM 32 7F IRIM LD, E7327F
IRR 32 45 IRR LD, F54532

Note that the address modes must be stated in proper
case.

The following table shows the acceptable address
modes for instructions

The following codes are used for condition testing:
always

8

 Forth Assembler
r6 r8 LDC, LDC R6,@RR8
r8 r5 STC, LDC @RR8,R5
r6 r8 LDCI, LDCI R6,@RR8
r8 r5 STCI, LDCI @RR8,R5

Forth Assembler
F0 r1 rA STX, LD 240(R1), R10
rA F0 r1 LDX, LD R10, 240(R1)

rr rIr RR RIR RIM IRIM
x1 ADC x2 SUB x4 OR x6 TCM xA CP
x0 ADD x3 SBC x5 AND x7 TM xB XOR

RR RIR RIM IRIM IRR
E4,E5,E6,E7 LD

R IR
B0,B1 CLR 60,61 COM 40,41 DA 00,01 DEC
20,21 INC 50,51 POP 70,71 PUSH 90,91 RL
10,11 RLC E0,E1 RR C0,C1 RRC D0,D1 SRA
F0,F1 SWAP

rIr Irr
C2,D2 LDC C3,D3 LDCI 82,92 LDE 83,93 LDEI
C2,D2 STC C3,D3 STCI 82,92 STE 83,93 STEI

RR IR
80,81 DECW A0,A1 INCW

(No address mode used)
nC LDGRIM n8 LDGR n9 STGR nE INCGR
8F DI 9F EI BF IRET FF NOP
EF CF CF RCF AF RET DF SCF
31 SRP D6,D4 CALL

never
carry
nc (no carry)
z (zero)
nz (non zero)
pl (plus)
mi (minus)
ov (overflow)
nov (no overflow)
eq (equal)
ge (greater or equal to)
lt (less than)
gt (greater than)
le (less than or equal to)
uge (unsigned greater or equal to)
ult (unsigned less than)
ule (unsigned less or equal to)
ne (no equal)

These condition codes are intended for use with
the structured control statements (if, else, then, etc.)
that are discussed below. Note that the condition test
codes are all lower case.

These words indicate the beginning and end of a
Z8 native-code definition:
:A Colon-A
EXIT, Exit

The following lists the assembler mnemonics
recognized by this Forth implementation:

ADC, Add with carry
ADD, Add
AND, And
CALL, Call
CCF, Complement carry flag
CLR, Clear
COM, Complement
CP, Compare
DA, Decimal adjust
DEC, Decrement
DECW, Decrement word
DJNZ, Decrement & jump non-zero
DI, Disable interrupts
INC, Increment
INCW, Increment word
INCGR, Increment group register
IRET, Interrupt return
JP, Jump indirect
LD, Load (three byte or indirect)
LCE, Load constant
LCEI, Load constant & auto increment
LDGR, Load group register
LDGRIM, Load group register immediate

LDX, Load indexed
LDE, Load external
LDEI, Load external & auto increment
NOP, No operation
OR, Or
POP, Pop from stack
PUSH, Push to stack
RCF, Reset carry flag
RET, Return from call
RL, Rotate bits left arithmetic
RLC, Rotate bits left through carry
RR, Rotate bits right arithmetic
RRC, Rotate bits right through carry
SBC, Subtract with carry
SCF, Set carry flag
SBC, Subtract with carry
SRA, Shift right arithmetic
SRP, Set register pointer
STC, Store constant
STCI, Store constant & auto increment
STE, Store external
STEI, Store external & auto increment
STGR, Store group register
STX, Store indexed
SUB, Subtract
SWAP, Swap nibbles
TCM, Test complement under mask
TM, Test under mask
XOR, Exclusive or

Notice the absence of the conditional (and
unconditional) “jump” instructions – opcodes cD
(three-byte instruction - two-byte destination) and cB
(two byte instruction - one byte relative address).
These were omitted with the intent is that users will
avail themselves of the structured conditional
statements provided (if, else, then, etc.). The only
“jump” instruction included is the “jump indirect”
(opcode 30h). The instruction DJNZ (decrement &
jump if non-zero) is provided, but it is used as part of a
structured construct. DJNZ is discussed in the next
section.

A special native-code word, GF (GoForth),
provides a link to a Forth definition from within a
native code definition. Thus, one can use the
constructs:

: msg .” A little message ” ;
:A test GF msg exit,

When executed, the native-code word definition
“test” will print out “A little message” using the Forth
word “msg”.

9

Native Code Program Flow Control

These native-code constructs are analogous to
their conventional Forth counterparts, except that the
condition-test indicator controls branching when the
“if” is encountered. Secondly, the option of a two-byte
address or relative address jump corresponds to the
upper and lower case versions of the code.

For example, suppose group register 6 is to be
loaded from 42 or 43 depending on whether group
register 5 is zero or one. This could be written:

In this example, the lower case
“if, … else, … then,” compiles into the instructions:

4255 OR R4,R4
EB04 JR NZ,$+4
5842 LD R8,42h
8B02 JR $+2
5843 LD R8,43h

If upper-case versions are used, the code generated
(stating at location 2008h) is:

2008 4255 OR R4,R4
200A ED2012 JP NZ,$+4
200D 5842 LD R8,42h
200F 8D2014 JP $+2
2012 5843 LD R8,43h
2014 …

The “decrement and jump non-zero” instruction is
provided, but this instruction is used only with a
structure. Thus to build a loop using this instruction,
one uses the structure:

BEGIN,
 …
rx DJNZ,

Note that both of words are suffixed with a
comma. The instruction DJNZ, assumes a register
designation is on the stack when it is compiled.

Here is a simple example of a complete native
code program using the structure just given. It shows
that the sum of the number from 0 to n (n odd) is
n*(n+1)/2. This example for n=63 returns the result
7E0 (in decimal, 2016 = 63*32)

In this example, the number is accumulated in the
word r6/r7; r8 is the counter initialized to 63, and the
result is pushed onto the stack, low byte first.

Simple loops are constructed with the words
UNTIL, (upper-case for loops longer than 128 bytes)
and until, (lower-case for loops 128 bytes or shorter).
Similar to other Forth flow constrol words, a loop is
set up
 begin,
 …

(condition code) until,

The condition code is the same as those used with
“if, … then, … else,” Thus, a simple loop to
implement a “move characters” function (source,
target, count on the stack) could be implemented as:

An Interrupt Service Routine Example

The following example shows how to write a simple
seconds display using the native code facility to
implement an interrupt service routine. The program
uses the T1 timer and its prescaler to furnish
interrupts.

10

:A MoveChars
 rC R POP, rD R POP,
 rA R POP, rB R POP, r8 R POP, r9 R
POP,
 begin,
 r6 r8 LDC, rA r6 STC,
 r8 RR INCW, rA RR INCW, rC RR DECW,

:A test
r6 0 LDGRIM, r7 0 LDGRIM, r8 3F

LDGRIM,
begin,
r7 r8 rr ADD, r6 0 rIM ADC,

r8 DJNZ,
r7 R PUSH, r6 R PUSH,

r5 r5 rr OR,
z if,
 r5 42 LDGRIM,
else,
 r5 43 LDGRIM,

then,

IF, – THEN,
if, -- then,

IF, – ELSE, – THEN,
if, -- else, -- then,

When the initialization routine INITSR is run, it
disables interrupts and initializes the T1 counter and
it’s prescaler to 256 and 64 (their maximum counts),
respectively. After INITSR is run, entering the Forth
word EI enables interrupts and starts the timer
interrupts. The interrupt service routine is in “native
code” so that the service routine starting address
(which is entered into the jump vector location 0E in
the register file) is two more that the execution address
of a normal Forth word definition. Note that the
interrupt service routine uses the GOForth word to
transfer control to a Forth-coded display routine when
the timer furnishes an interrupt.

Locations 40 and 41 are used for a count-down
accumulator and the elapsed seconds. The initial value
of the accumulator is 93 ≈ 12,228,000 / (8*256*64).
The interrupt routine ISR uses group registers 50h-5Fh
for Forth system registers for the Forth code to display
the count. The only register that has to be initialized in
this new area is the return stack register, R0/R1
(located at 50h-51h).

Some Utility Routines

FILL
… T c F à …

Fill the target address with c bytes of the fill
character F.

?S
… à …

Display the current status of the stack.

DUMPHEX
… T c à …

Dump c bytes starting at the target address as an
Intel hex format suitable for ROM programming.

DUMP T
… à …

Dump 256 bytes starting at the target address in
hex and as characters.

LIST
… T c à …

List c bytes starting at the target address T. The
display is in a format that may be selected and copied
into a text editor.

HIBYTE
… n à … R

The high byte of the double byte value at top of
stack is placed in the low byte of the result; the high
byte of the result is zero. Equivalent to dividing the
(unsigned) value at top of stack by 256.

Compilation and Related Topics

 : Colon
 ; Semi-colon

These words indicate the beginning and end of a
Forth word definition.

CONSTANT
This word compiles the word following as a

constant. For example,

471B CONSTANT K4

creates the constant K4 with the value 471B. The
constant uses only two bytes when compiled rather
than the four bytes usually required for a constant.
However, the definition itself requires nine bytes (5
bytes for the head, four bytes for the body), so the gain
occurs only if the constant is used many times in a
program.

′ TIC
… T à … T A (If not compiling)

If compiling, this word causes code to be
generated that will place the execution location of the
following word on the stack when TIC is executed. If
not compiling, the address of the word following is
placed on the stack. This word uses Forth 83
convention of producing the execution address of a
Forth word.

, COMMA
… X A à … X

Store the word on the stack at HERE and advance
HERE by 2.

C, C-COMMA
… X C à … X

11

: TOUT DUP A BASE ! 0 <# # # #> TYPE 10 BASE ! D
EMIT ;
: M 5D 40 C! 41 C@ 1+ DUP 3C >= IF 3C - THEN TOUT 41
C! ;
:A EI EI, EXIT, :A DI DI, EXIT,
:A ISR 40 R DEC, z if, 50 r0 RR LD, 51 r1 RR LD, 50
SRP,
 GF M then, 30 SRP, IRET,
: INITSR DI
 0 F2 C! \ zero T1
 3 F3 C! \ zero PT1, int clock, set mod n
 8 F9 C! \ IPR to A>B>C
 20 FB C! \ interrupt on T1
 A F1 C! \ enable T0 and T1
 5D 40 C! \ initialize acc to 96

Store the low byte of the word on the stack at
HERE and advance HERE by 1.

COMPILE
When executed, this word will compile the

following word into the Forth definition being
constructed.

[COMPILE]
This word causes the following immediate word to

be compiled (as if it was not immediate) rather than
immediately executed.

[Into immediate
] Into compile

These words cause the compiler to temporarily
return to immediate mode and return to compile mode.

CREATE
This word places the succeeding Forth word in the

dictionary. The “smudge” bit is set, meaning that the
word can’t be executed.

SMUDGE
This routine simply resets the “smudge” bit of the

most recently defined Forth word, thus making it
executable.

<BUILDS
>DOES

These two words are used to create a special
compiling sequence. It can be thought of as an
“enhanced” version of the “: … ;” (colon .. semicolon)
type of definition. An extensive discussion regarding
this pair of words is in Brodie’s Starting Forth.

ALLOT
… X V à … X

This word increments the dictionary pointer by the
word at top of stack, thus reserving space in the
dictionary.

I2C EEPROM Utilities

The EEPROM utilities assume a page identifier
has been set before the calls are made. The identifier,
located at the base system address (in the distribution
version this variable is at location 10h), contains the
bits “ORed” into the poll byte (A0 or A1) to identify
the page address. The value in the identifier is twice
the page address.

POLL
… X à … X R

This routine polls the EEPROM as many as 256
times seeking a true (ACK) response. The result (true
-1 or false - 0) is left on the stack.

PNWOS Place N words on stack
… X A N à … X Rn Rn-1 ... R1 F

This routine reads N words from the EEPROM
starting with the address at next to top of stack. If
successful, the resulting N words are placed on the
stack. The validity of the result of the read (true [-1] or
false [0]) is left at the top of the stack. The top-most
result word is the lowest address read.

TNBTR Transfer N bytes to RAM
… X Ra Ea N à … X F

This routine transfers N bytes from EEPROM to
RAM starting with the EEPROM address given
underneath the top of stack. at third from top of stack.
If successful, the resulting N words are placed in RAM
starting at third from top of stack. The validity of the
result of the read (true [-1] or false [0]) is left at the
top of the stack.

TNBFR Transfer N bytes from RAM
… X Ra Ea Nà … X F

This routine transfers N bytes to the EEPROM
from RAM starting with the RAM address at third
from top of stack. If successful, the resulting N words
are placed in EEPROM memory starting at the address
given underneath the top of stack. The validity of the
result of the write (true [-1] or false [0]) is left at the
top of the stack. The writing assumes the EEPROM
can be written in blocks up to 128 bytes long..

PCF 8574 I2C/Parallel Utility

PIA Read/Write a byte to 8574 interface
… X B à … X F

This routine is used to read or write a byte to a
PCF 8574 serial/parallel interface. The routine uses the
I2C device identifier located at the base system address
(in the distribution version this variable is at location
10h). This identifier should be 40, 42,...4E for the
PCF8574 interface and 70, 72,...7E for the PCF8574A.

If writing, the byte to be written is in the low byte
of the argument on the stack. The high byte of the
argument is FF. The result word on the stack is FFFF
is an ACK was received, 0 otherwise.

If reading, the argument byte must contain FE in

12

the high byte of the argument on the stack. The result
will be in the low byte of the word returned on the
stack. The high byte of the result is FF is an ACK was
received, 0 otherwise.

An argument of 0 (as a word on the stack) is used
to simply poll the device. A return of FFFF means an
ACK was received, 0 otherwise.

LCD Implementation

This example uses the 8574A to provide an
interface to a HD44780-based LCD character display.
The interface uses a 4-bit mode method of
communication. Lines A0-A3 of the 8574A are
connected to the four high LCD addresses, LCD pins
11-14. 8574A lines A4-A6 are connected to the LCD
Enable, R/W and RS (Register select) pins. The
address of the 8574 is taken from the I2C device
identifier located at the base system address (in the
distribution version this variable is at location 10h). In
the following example, the 8574A address of the LCD
interface is 70 (hex).

In this implementation the error flag returned by
the PIO interface (the result of the call to PIO in the
word PY) is simply ignored.

1LSET 2LSET Initialize a 1-line or 2-line LCD
These routines initialize a one line or two line

mode of the LCD. The initialization will blank the
LCD, but will not turn it on. One of these routines
must be the first call to the LCD interface and may not
be used again after that first call.

LCDON Turn on the LCD
This routine turns on the LCD and displays a

blinking cursor at position 0.

SETADD Move the LCD cursor
… X L à … X

The LCD cursor is moved to the location given in
the low byte of the word at top-of-stack. The first line
of the display starts at location 0; the second line (if
available) starts at location 40 (hex).

CLEAR Clear the LCD display
The LCD display is cleared and the cursor is

returned to address 0.

WLCD Write byte to an LCD
… X C B à … X

This routine writes the low byte of the word on the
stack to the character LCD via an 8574. The low byte
in the word at next-to-top of stack is specifies the
Register Select (RS) and R/W signals:

Thus, to write a “#” character (23 hex) on the LCD at
the current character position, use

 40 23 WLCD

RBF Read the Busy Flag and current address
… X à … X B

This routine reads the busy flag of the LCD. The
high bit of the low byte of the word on the stack is the
busy flag. The remainder of the byte is the current
character address of the LCD.

PT ... X1 Write a character string to the LCD
When executed, these routines write a space-

delimited string to the LCD at the LCD's current
cursor position. This routine is the LCD equivalent of
." word for the serial output. To write the string “Z8
Forth driver” starting at location 0 use:

: Test 0 SETADD
 PTX STRING Z8 Forth Driver” X1 ;

The cursor is positioned at the end of the displayed
string. The word STRING compiles the succeeding
characters up to a quote; the routine PTX places the
compiled characters on the stack; and the routine X1
sends the characters on the stack to the display.

PC Keyboard Utility

GAL Get a line from the keyboard
… X A à … X

This routine accepts lower and upper case

13

:A S r8 R POP, r9 R POP, r9 R SWAP, r9 r PUSH, r8 R
PUSH, EXIT,
: PY PIO DROP ; : PX HERE C@ OR PY ;
: 1LSET 70 10 C! FE82 PY FE92 PY FE82 PY ;
: NOUT FE80 OR DUP DUP PX 10 OR PX PX ;
: NIN FEAF PY FEBF PY FFFF PIO FEAF PY ;
: WLCD SWAP HERE C! DUP S 0F AND NOUT 0F AND NOUT ;
: LCDON 0 0F WLCD ; : 2LSET 1LSET 0 28 WLCD ;
: SETADD 0 SWAP 80 OR WLCD ; : CLEAR 0 1 WLCD ;
: RBF NIN NIN 0F AND SWAP S F0 AND OR ;
: X1 0 4 WLCD RBF OVER + 1 - DUP >R SETADD
 0 DO 40 SWAP WLCD LOOP R> 1+ SETADD ;
:A PT r6 R CLR, r9 r2 LDC, rA r9 STGR, r2 R INCW, begin,
 r7 r2 LDC, r7 R PUSH, r6 R PUSH, r2 R INCW, r9 DJNZ,
 rA R PUSH, r6 R PUSH, EXIT,
: OUTTOLCD 0 DO I OVER + C@ 40 SWAP WLCD LOOP DROP ;
: H.LCD RBF SWAP 0 <# # # # # #> OUTTOLCD 4 + SETADD ;

 RS R/W Argument
 0 0 0
 0 1 2
 1 0 4
 1 1 6

characters from the keyboard and terminates when
ENTER is keyed. The functions associated with the
ALT and CTRL key, the keys on the alternate keypad,
and the cursor control keys (home, end, arrow keys,
etc.) are not recognized. The interface assumes that the
data and clock lines are brought into ports 3,1 and 3,2
and that each line has a 10K pullup. This use of Port 3
input lines is compatible with the EEPROM and 8574
interface routine implementations of the I2C interface.
Locations 40-4F of the register file are used by the
keyboard interrupt processor of the GAL routine. The
result of the line of input is stored at HERE.

The routine requires one argument on the stack.
This argument is the address of a routine that will
echo input to some display device as characters are
typed on the PC keyboard. A simple example to echo
characters to the serial line is to provide the address of
EMIT. Thus to supply the address of EMIT use
' EMIT.

A Forth word to collect a line of input and simply
print it out (again) after return from the GAL routines
is:
 : X ' EMIT GAL CR HERE C@ 1
 DO HERE I + C@ EMIT LOOP CR ;

Fast Multiply/Divide in the Z86C93

The Z86C93 provides a fast 16x16 unsigned
multiply and 32x16 divide. To show how these
functions as used, below is an implementation of a 16-
bit sin approximation originally given for the Analog
Devices ADSP-2100. This algorithm produces a 16 bit
sine for a 16-bit argument. The argument represents
each quadrant as a 4000 bit quantity. Thus the first
quadrant (0-90º) is 0-4000h. The second is 4000h-
7FFFh; the third 8000h-C000h, and the fourth is C000-
0. Similarly, the result is scaled by 7FFFh, so the sine
of 4000h is 7FFFh. The approximation is accurate ±2.

The Forth ISIN program, which is shown below, is
an example of how to code mainly in assembler using
Forth words.

:A MS rE R POP, rF R POP, FD 0E RIM OR,
 4 28 RR LD, 5 29 RR LD, 2 2A RR LD, 3 2B RR LD,
 6 40 RIM LD, NOP, NOP, NOP, 0 R PUSH, 1 R PUSH,
 2 R PUSH, FD F0 RIM AND, rE JP,

:A MF FD 0E RIM OR, 4 22 RR LD, 5 23 RR LD,
 2 28 RR LD, 3 29 RR LD, 6 40 RIM LD, NOP, NOP,
 NOP, 2 80 RIM TM, nz if, 0 R INCW, then,
 29 1 RR LD, 28 0 RR LD, FD F0 RIM AND, RET,
: 'MS ' MS 2 + CALL, ; : 'MF ' MF 2 + CALL, ;

:A AX3 rE R POP, rF R POP, rA R POP,

 rD rA rr ADD, rA R POP, rC rA rr ADC, rA R POP,
 rB rA rr ADC, rE JP, : 'AX3 ' AX3 2 + CALL, ;

:A ISIN 22 R POP, 23 R POP, rA 22 LDGR, rA R RL,
 FC rA STGR, 22 40 RIM TM, nz if, 22 R COM,
 23 R COM, 22 R INCW, then, 23 23 RR ADD,
 22 22 RR ADC, 22 R DECW, mi if, 22 R INCW, then,
 28 22 RR LD, 29 23 RR LD, 2A 32 RIM LD,
 2B 40 RIM LD, 'MS rD R POP, rC R POP, rB R POP,
 'MF 2A 00 RIM LD, 2B 53 RIM LD, 'MS 'AX3 'MF
 2A 55 RIM LD, 2B 34 RIM LD, 'MS rA R POP,
 rD rA rr SUB, rA R POP, rC rA rr SBC, rA R POP,
 rB rA rr SBC, 'MF 2A 08 RIM LD, 2B B7 RIM LD,
 'MS 'AX3 'MF 2A 1C RIM LD, 2B CE RIM LD, 'MS
 'AX3 rD 10 RIM ADD, rC 0 RIM ADC, rB 0 RIM ADC,
 rA 5 LDGRIM, begin, rB R SRA, rC R RRC, rD R RRC,
 rA DJNZ, rC 80 RIM TM, nz if, rC 7F RIM LD,
 rD FF RIM LD, then, FC 1 RIM TM, nz if,
 rD R COM, rC R COM, rC R INCW, then, rD R PUSH,
 rC R PUSH, EXIT,

On a 12 Mhz Z8, this approximation calculates a
sine in about 412μsec.

Fast Fourier Transform – A More Elaborate
Example Using the Z86C93 Fast Multiply/Divide

Oak Ridge Forth includes a fast Fourier transform
routine(FFT) that uses the fast multiply of the Z86C93.
This routine is mostly written in the Forth version of
the Z8 assembly language and incorporates a version
of the integer sine routine just described. The FFT
calculates transforms for 3 ≤ p ≤ 7, where the number

of points, n, is n = 2
p
 (n = 8, 16, 32, 64, 128). As

written, the data is located at page A0 (A000-A0FF)
and the imaginary part (the result) at page A1
(A100-A1FF). The lower half of page A2
(A200-A27F) is temporary storage for sines and
cosines. In addition to the standard Forth user area (the
default is locations 30-3F of the register file), the FFT
uses register file locations D0-DF.

The version of the integer sine routine in the FFT
assumes an argument 0 ≤ arg ≤ FFFF that corresponds
to the range 0 ≤ angle ≤ π.

The results in page A1 appear in the conventional
FFT order. Beginning in A100, the words in the result
correspond to the frequencies f=0, 1/NΔ, 2/NΔ,
3/NΔ, ... (N/2-1)/NΔ,
 ±1/NΔ, -(N/2-1)/NΔ, ..., -1/NΔ.

On a 12 Mhz Z86C93 the FFT calculates a 128-
point transform in about 500 ms. The FFT program
itself requires 1400 bytes.

Floating Point Package

14

The floating point package is analogous to the
integer routines. In general, the name for a floating
point function is the same as the integer routine except
for an appended leading “F”:

F+ Floating Add
F- Floating Subtractions
F* Floating Multiply
F/ Floating Divide
FDUP Floating DUP
FOVER Floating OVER
FDROP Floating DROP
FSWAP Floating SWAP
FABS Floating ABS
FNEG Floating Negate
F>= Floating >=
D->F Double integer to float
F->D Float to double integer
FNAN? Floating NotANumber?
F. Output in ±nnn.nnn format
E. Output in ±n.nnnnn±n format
FCON Floating constant definition

The routines assume floating point variables are
on the stack. If the routine requires two arguments, the
argument at top of stack is the second argument.

The output word F. requires a format word on the
stack. The format word is in the form mmnn where
mm is the width of the output field and nn is the
number of places to the right of a decimal. Thus the
format word 0702 specifies a field 7 characters wide
and two places to the right of the decimal. For
example, the following sequence

FCON 3.14159 0702 F.

produces the result: 3.14 in a field seven characters

wide. The F. routine produces results with up to 8
decimal digits. If a number requires more than 8 digits,
the result field is filled with asterisks. Note that the
floating output routines always produce a base 10
result.

The IEEE 754 floating point format defines an
eight bit exponent (offset by 128) and 24 bit mantissa.
This definition provides 6 to 7 significant digits in a

range of approximately 10
±38

. Examples of numbers in
this format are:

 1.0 8140 0000
 -1.0 81C0 0000
10.0 8450 0000
 Pi 8264 87EE

Underflows are set to zero; overflows are set to
NotANumber, which is FF80 0000. An attempt to
divide by zero also results in a NAN result.

The routine FCON is used to convert a following
(base 10) number to floating point format. This routine
is similar to LITERAL: In compile mode FCON
compiles a floating constant definition into the current
word; if in immediate mode the floating constant is
left on the stack. For example, the definition:

: T FCON 3.14159 ;

compiles a constant definition into the definition of T
so that when the word is executed it loads the floating
equivalent of 3.14159 onto the stack. Numbers defined
by this routine are limited to those expressible in 6 hex
digits, that is ±8388607, regardless of the placement of
the decimal point. For numbers outside this range, use
the E. output word.

15

 \ FFT 9am 5 February 2005

 \ Auxiliary routines for inner loop
 \ Add X*Y to an accumulator.
 \ X and Y are assumed already loaded in multiply registers
 \ the Accumulator is three bytes: D0, D1, and D2.
:A MABCD r0 r2 LDGR, r0 r4 rr XOR, r0 R RL, FC 0 STGR, \ Set UF1=1 if different signs, else 0
 r2 80 RIM TM, nz if, r2 R COM, r3 R COM, r2 R INCW, \ Negate X if necessary
 r2 80 RIM TM, nz if, r2 R DECW, then, then,
 r4 80 RIM TM, nz if, r4 R COM, r5 R COM, r4 R INCW, \ Negate Y if necessary
 r4 80 RIM TM, nz if, r4 R DECW, then, then,
 r6 40 LDGRIM, NOP, NOP, NOP, FC 1 RIM TM, z if, \ UF1 will control whether to add to or
 D3 r3 RR ADD, D2 r2 RR ADC, D1 r1 RR ADC, D0 r0 RR ADC, else, \ subtract from the accumulator
 D3 r3 RR SUB, D2 r2 RR SBC, D1 r1 RR SBC, D0 r0 RR SBC, then,
 RET, : 'M ' MABCD 2 + CALL, ;

 \ Negates the sin stored in D8,D9
:A SS D8 R COM, D9 R COM, D8 R INCW, RET, : 'SS ' SS 2 + CALL, ;

 \ Clears the accumulator
:A ZD D0 R CLR, D1 R CLR, D2 R CLR, D3 R CLR, RET, : 'ZD ' ZD 2 + CALL,

 \ Inner code
 \ D0-D3 cross product and ti:D0-D1, f:D2-D3, frj,qr:D4-D5, fij,qi:D6-D7,
 \ sin:D8-D9, cos:DA-DB, tr:DC-DD, i:DE, j:DF, rErF: vector
 \ r9 temp, i:rA-rB, j:rC-rD, A000: fr[]; A100: fi[]
 \ STACK (not changed)
:A IC FD R PUSH, D0 SRP, \save RP, set RP=D0
 rF rF rr ADD, rF R PUSH, rE rE rr ADD, rE R PUSH, \save 2j, save 2i

 rE A0 LDGRIM, r4 rE LDC, rF R INC, r5 rE LDC, rE A1 LDGRIM, \frj=fr[j];
 r7 rE LDC, rE R DEC, r6 rE LDC, \fij=fi[j]

 0E SRP, 'ZD \RP=0E, tr=0
 r2 DA LDGR, r3 DB LDGR, r4 D4 LDGR, r5 D5 LDGR, 'M \tr=c*fr
 r2 D8 LDGR, r3 D9 LDGR, r4 D6 LDGR, r5 D7 LDGR, 'M \tr=tr+s*fi
 DC D0 RR LD, DD D1 RR LD, 'SS 'ZD \save tr, sin=-sin, ti=0
 r2 DA LDGR, r3 DB LDGR, r4 D6 LDGR, r5 D7 LDGR, 'M \ti=c*fi
 r2 D8 LDGR, r3 D9 LDGR, r4 D4 LDGR, r5 D5 LDGR, 'M 'SS \ti=ti-s*fr, sin=-sin

 D0 SRP, rF R POP, \RP=D0, rrEF=A1+2*i
 r6 rE LDC, rF R INC, r7 rE LDC, rE A0 LDGRIM, \qi=fi[i]
 r5 rE LDC, rF R DEC, r4 rE LDC, \qr=fr[i]

 r4 R SRA, r5 R RRC, r6 R SRA, r7 R RRC, \qr=qr>>1,qi=qi>>1

 r2 r4 LDGR, r3 r5 LDGR, r3 rD rr ADD, r2 rC rr ADC, \f=qr+tr
 rE r2 STC, rF R INC, rE r3 STC, rE A1 LDGRIM, \store f in fr[i], point to A1+2i+1
 r2 r6 LDGR, r3 r7 LDGR, r3 r1 rr ADD, r2 r0 rr ADC, \f=qi+ti in fi[i]
 rE r3 STC, rE R DEC, rE r2 STC, rF R POP, \store f, rrEF=A1+2*j

 r7 r1 rr SUB, r6 r0 rr SBC, rE r6 STC, rF R INC, rE r7 STC, \qi=qi-ti, store in fi[j]
 rE A0 LDGRIM, \point to A0+2j
 r5 rD rr SUB, r4 rC rr SBC, rE r5 STC, rF R DEC, rE r4 STC, \qr=qr-tr, store in fr[j]
 FD R POP, RET, : 'IC ' IC 2 + CALL, ; \restore RP

 \ Middle code
 \ Default RP
 \ stack: k, istep, L, n=2^p, m <top> --> stack: k, istep, L, n=2^p
 \ rErF: vector & i,j, rD:L, rC:istep, rB:n, rA:k, r9:m,
:A MC rE R POP, r9 R POP, rE R POP, rB R POP, \r9=m, rB=n=2^p, rD=L, rC=istep, rA=n,
 rE R POP, rD R POP, rE R POP, rC R POP, rE R POP, rA R POP, \rB=k, r9=m, rD=L, rC=istep, rA=k,
 FF 8 RIM SUB, FE 0 RIM SBC, \ preserve k, istep, L, n=2^p
 rF r9 LDGR, rA R INC, \rF=m
 begin, rF rF rr ADD, rA DJNZ, \2j=m<<2k,
 DE rF STGR, FD R PUSH, D0 SRP, \save RP, set RP to D0
 rE A2 LDGRIM, r8 rE LDC, rF R INC, r9 rE LDC, \load sin(j) and cos(j)
 rF 80 RIM ADD, rB rE LDC, rF R DEC, rA rE LDC, FD R POP, \restore RP
 begin, DE r9 STGR, DF r9 STGR, DF rD RR ADD, 'IC r9 rC ADD, \i=m, start inner loop, DE:i=m, DF:j=i+L
 nc if, r9 rB rr CP, SWAP uge until, then, EXIT, \do IC, i=i+istep, i<n?

 \ Auxiliary routines for isin:
:A MS r4 D6 LDGR, r5 D7 LDGR, r6 40 LDGRIM, NOP, NOP, RET,
:A MF r2 D4 LDGR, r3 D5 LDGR, r4 D6 LDGR, r5 D7 LDGR,
 r6 40 LDGRIM, NOP, NOP, NOP, D6 r0 STGR, D7 r1 STGR, RET,
: 'MS ' MS 2 + CALL, ; : 'MF ' MF 2 + CALL, ;
:A AX3 D2 r2 RR ADD, D1 r1 RR ADC, D0 r0 RR ADC, RET,
: 'AX3 ' AX3 2 + CALL, ;
: PP SWAP r2 SWAP LDGRIM, r3 SWAP LDGRIM, ;

 \ isin assumes the argument 0-FFFF (0<=arg<pi/2).
 \ argument is in D4D5, result is left in D0D1
 :A isin D4 80 RIM TM, nz if, D4 R COM, D5 R COM, D4 R INCW, mi if,
 D4 R DECW, then, then, D6 D4 RR LD, D7 D5 RR LD, FD R PUSH,

16

 FD 0E RIM LD, 32 40 PP 'MS D0 r0 STGR, D1 r1 STGR, D2 r2 STGR,
 'MF 00 53 PP 'MS 'AX3 'MF 55 34 PP 'MS D2 r2 RR SUB,
 D1 r1 RR SBC, D0 r0 RR SBC, 'MF 08 B7 PP 'MS 'AX3 'MF 1C CE PP
 'MS 'AX3 FD R POP, D2 10 RIM ADD, D1 0 RIM ADC, D0 0 RIM ADC,
 rA 3 LDGRIM, begin, D2 D2 RR ADD, D1 R RLC, D0 R RLC, rA DJNZ,
 D0 80 RIM TM, nz if, D0 7F RIM LD, D1 FF RIM LD, then, RET,
: 'isin ' isin 2 + CALL, ;

 \ Interface to isin for FORTH
:A asin D4 R POP, D5 R POP, 'isin D1 R PUSH, D0 R PUSH, EXIT,

 \ icos assumes the argument 0-FFFF (0<=arg<pi/2)
:A icos D4 80 RIM TM, z if, D4 R COM, D5 R COM, D4 7F RIM AND,
 'isin else, D4 7F RIM AND, 'isin D1 R COM, D0 R COM, D0 R INCW,
 then, RET, : 'icos ' icos 2 + CALL, ;

 \ Initialize sin/cos values in A200 & A280
 \ Stack: ..., p, 2^p <TOS> --> ...
:A INIT DE R POP, DF R POP, DE R POP, DE R POP, FD R PUSH,
 D0 SRP, rF R SRA, rE R DEC, r9 R CLR, SCF, begin,
 r9 R RRC, rE DJNZ, rC A2 LDGRIM, rD R CLR, rE R CLR,
 r4 R CLR, r5 R CLR, begin r4 rE LDGR, r5 R CLR, 'isin
 rC r0 STC, rD R INC, rC r1 STC, r4 rE LDGR, r5 R CLR, 'icos
 rD 80 RIM ADD, rC r1 STC, rD R DEC, rC r0 STC, rD 7E RIM SUB,
 rE r9 rr ADD, rF DJNZ, FD R POP, EXIT,

 \ Re-order data A000-A0FF. A100-A1FF (imaginary part) is zero
 \ STACK: ..., n=2^p --> ...
 \ rF: nn=n-1, rCrD:mvec, rArB:mrvec, r8r9: temps, r7:mr, r6:m
 \ r9:L, r8: cntr Imaginary part assumed all zero
 \ rF:n=2^m, rE:n-1, rCrD:kvec, rB:kr, rArB:krvec,
:A ROD rF R POP, rF R POP, rF R DEC, r7 R CLR, r6 1 LDGRIM,
 rA A0 LDGRIM, rC A0 LDGRIM, begin, r9 rF LDGR, begin,
 r9 R SRA, r8 r7 LDGR, r8 r9 rr ADD, r8 rF rr CP,
 ult until, r7 r9 rr AND, r7 r9 rr ADD, r7 R INC,
 r7 r6 rr CP, gt if, rB r7 LDGR, rB rB rr ADD, rD r6 LDGR,
 rD rD rr ADD, r8 rC LDC, r9 rA LDC, rC r9 STC, rA r8 STC,
 rD R INC, rB R INC, r8 rC LDC, r9 rA LDC, rC r9 STC,
 rA r8 STC, then, r6 R INC, r6 rF rr CP, eq until, EXIT, ;S

 \ Use sin for real (A000) data. Zero the imaginary (A100) part
 \ Stack: p --> p
: DATA 1 OVER 0 DO DUP + LOOP OVER 8000 SWAP 2 DO 0 2 U/ SWAP
 DROP LOOP OVER 0 SWAP 0 DO DUP asin A000 I + I + ! OVER + LOOP
 DROP DROP DUP DUP 0 DO A000 I + I + @ NEGATE OVER A000 + I +
 I + ! LOOP DUP + 0 DO 0 A100 I + ! 2 +LOOP DROP ; ;S

 \ Main FFT routine
 \ Stack: p where there are n=2^p data points in A000
: FFT DUP 0 1 ROT ROT DO DUP + LOOP \ stack: p, n
 OVER OVER INIT DUP ROD HERE ! \ initialize sin/cos, generate data, re-order data
 1 - 1 BEGIN DUP DUP + SWAP HERE @ OVER 0 \ stack: k=k-1 -> k, L=1 -> k, L, istep=2*L ->
 \ k, istep, L, 0 Begin middle loop
 DO I MC LOOP DROP \ stack: k, istep, L, n=2^p, m; drop n=2^p
 DROP SWAP 1 - SWAP DUP HERE @ >= \ drop old L, istep is new L, k=k-1, copy L, L>=n?
 UNTIL ; \ k, L=istep, test -> k, istep

17

 Floating Point Package 2pm 16 April 2005

: NAN? 0 0080 D+ OR 0= ; : FDROP DROP DROP ; : FNAN 0 FF80 ;
: -ROT SWAP >R SWAP R> ; : FSWAP >R -ROT R> -ROT ; : FDUP OVER
 OVER ; :A FNEG rC R POP, rD R POP, rE R POP, rF R POP,
 rF R COM, rE R COM, rD R COM, rE R INCW, z if, rD R INC, then,
 rF R PUSH, rE R PUSH, rD R PUSH, rC R PUSH, EXIT, : FOVER >R
 >R FDUP R> -ROT R> -ROT ; : BV? FOVER FOVER NAN? -ROT NAN? OR
 IF FDROP FDROP FNAN 0 ELSE -1 THEN ; :A FN? rC R POP,
 rD R POP, rD R PUSH, rC R PUSH, rD 80 RIM AND, rD R PUSH,
 rD R PUSH, EXIT, : SABS FN? IF FNEG 1 ELSE 0 THEN ; : MBP SABS
 >R FSWAP SABS >R FSWAP R> R> - ; :A FNORMX rC R POP, rD R POP,
 rE R POP, rF R POP, rB 19 LDGRIM, begin, rD 40 RIM CP, ult if,
 RCF, rF R RLC, rE R RLC, rD R RLC, rC R DEC, SWAP rB DJNZ,
 then, rB rB rr OR, z if, rC R CLR, then, rF R PUSH, rE R PUSH,
 rD R PUSH, rC R PUSH, EXIT,
: FNORM FN? IF FNEG FNORMX FNEG ELSE FNORMX THEN ;

:A MDP r4 R POP, r5 R POP, rB R CLR, rC R POP, rD R POP,
 rE R POP, rF R POP, r6 R POP, r7 R POP, r8 R POP, r9 R POP,
 r6 R PUSH, rC R PUSH, rF rF rr ADD, rE rE rr ADC, rD rD rr ADC,
 r9 r9 rr ADD, r8 r8 rr ADC, r7 r7 rr ADC, rA R CLR, rC R CLR,
 R4 JP, : 'P ' MDP 2 + CALL, ;
:A MDE r4 R POP, r5 R POP, rA 80 RIM TM, nz if, RCF, rA R RRC,
 rB R RRC, rC R RRC, r8 R INCW, then,
 r8 r8 rr OR, nz if, r6 R PUSH, r6 R PUSH, r8 80 RIM TM,
 nz if, r6 R PUSH, r6 R PUSH, else, r6 80 LDGRIM, r6 R PUSH,
 r6 FF LDGRIM, r6 R PUSH, then, else, rC R PUSH, rB R PUSH,
 rA R PUSH, r9 R PUSH, then, EXIT, : 'E ' MDE 2 + CALL, ;

: D->F DUP HIBYTE 0= OVER HIBYTE FF = + 1+ IF
 FDROP FNAN ELSE FF AND 9700 OR FNORM THEN ;
: FABS FDUP NAN? 0= IF SABS DROP THEN ;
:A FMULX 'P r6 18 LDGRIM, begin, RCF,
 r9 1 RIM TM, nz if, rC rF rr ADD, rB rE rr ADC, rA rD rr ADC,
 then, rA R RRC, rB R RRC, rC R RRC, r7 R RRC, r8 R RRC,
 r9 R RRC, r6 DJNZ, r8 R CLR, r9 R POP, r7 R POP, r9 r7 rr ADD,
 r8 r6 rr ADC, r9 81 RIM SUB, r8 r6 rr SBC, 'E
: F* BV? IF MBP >R FMULX R> IF FNEG THEN THEN ;
:A DBY2 r6 R POP, r7 R POP, r8 R POP, r9 R POP, RCF,
 r6 R RRC, r7 R RRC, r8 R RRC, r9 R RRC, r9 R PUSH, r8 R PUSH,
 r7 R PUSH, r6 R PUSH, EXIT,

:A FDIVX 'P r5 R CLR, r6 19 LDGRIM, begin, r9 rF rr SUB,
 r8 rE rr SBC, r7 rD rr SBC, CCF, r5 1 RIM TM, nz if, SCF,
 else, nc if, r9 rF rr ADD, r8 rE rr ADC, r7 rD rr ADC, RCF,
 then, then, r4 FC LDGR, r6 1 RIM CP, ne if, FC r4 STGR,
 rC R RLC, rB R RLC, rA R RLC, r9 R RLC, r8 R RLC, r7 R RLC,
 r5 R RLC, SWAP r6 DJNZ, then, r8 R CLR, r6 R CLR, FC r4 STGR,
 carry if, rC 1 RIM ADD, rB r8 rr ADC, rA r8 rr ADC, then,
 r7 R POP, r9 R POP, r9 r7 rr SUB, r8 r6 rr SBC,
 r9 80 RIM ADD, r8 r6 rr ADC, 'E : F/ BV? IF FDUP OR IF
 MBP >R FDIVX R> IF FNEG THEN ELSE FDROP FDROP FNAN THEN THEN ;
: MB10 FDUP D+ FDUP >R >R FDUP D+ FDUP D+ R> R> D+ ;
: F->D FDUP NAN? IF DROP 0 8000 ELSE DUP FF AND DUP 80
 AND IF FF00 OR THEN SWAP HIBYTE 97 SWAP - DUP 0 >= IF
 DUP 1 >= IF 0 DO DBY2 LOOP THEN ELSE FDROP 0 0 THEN THEN ;

:A FADDX r8 R POP, r9 R POP, rA R POP, rB R POP, rC R POP,
 rD R POP, rE R POP, rF R POP, r6 FD LDGR, r6 8 RIM ADD,
 r8 rC rr CP, ult if, r7 rC LDGR, r7 r8 rr SUB, r7 16 RIM CP,
 ugt if, rF R PUSH, rE R PUSH, rD R PUSH, rC R PUSH, EXIT, then,
 else, r6 4 RIM ADD, r7 r8 LDGR, r7 rC rr SUB, r7 16 RIM CP,
 ugt if, rB R PUSH, rA R PUSH, r9 R PUSH, r8 R PUSH, EXIT,
 then, then, r4 r6 LDGR, r6 R INC, r5 r6 LDGR, r6 R INC,
 r7 r6 LDGR, r7 R INC, begin, r8 rC rr CP, ne if, r4 IR INC,
 r5 IR SRA, r6 IR RRC, r7 IR RRC, SWAP never until, then,
 r4 rD LDGR, r5 r9 LDGR, r4 R RL, r5 R RL, rF rB rr ADD,
 rE rA rr ADC, rD r9 rr ADC, r5 r4 rr ADC, r5 R RRC, rD R RRC,
 rE R RRC, rF R RRC, rC R INC,
 rF R PUSH, rE R PUSH, rD R PUSH, rC R PUSH, EXIT,
: F+ BV? IF FADDX FN? IF FNEG FNORMX FNEG ELSE
 FNORMX THEN THEN ; : F- FNEG F+ ;

: F>= BV? IF FNEG F+ SWAP DROP 80 AND 0= ELSE FDROP
 0 THEN ;
: F. -ROT FDUP NAN? IF ." NAN" DROP FDROP ELSE ROT DUP
 HIBYTE >R OVER 80 AND 7F81 + >R FF AND >R FABS 0 8140 I IF I
 0 DO 0 8450 FMULX LOOP THEN FMULX DUP HIBYTE 97 >= IF R>
 DROP R> DROP R> 0 DO 2A EMIT LOOP FDROP ELSE 80 OVER HIBYTE
 >= IF FDROP 0 0 ELSE DUP FF AND SWAP HIBYTE 96 SWAP - DUP IF
 0 DO DBY2 LOOP 1 0 D+ ELSE DROP THEN DBY2 THEN BASE @ ROT ROT
 A BASE ! <# I IF R> 0 DO # LOOP ELSE R> DROP THEN 2E HOLD #S
 ROT BASE ! R> ROT ROT SIGN #> R> OVER - DUP 1 >= IF 0 DO 20

18

 EMIT LOOP ELSE DROP THEN TYPE THEN THEN ;

: E. FDUP NAN? IF ." NAN" FDROP ELSE DUP 80 AND IF ." -" FNEG
 THEN 6 >R 0 8140 BEGIN FOVER FOVER FDIVX 977A1201. F>= WHILE
 0 8450 FMULX R> 1+ >R REPEAT FDIVX 0 8140 BEGIN FOVER FOVER
 FMULX 947A11FF. FSWAP F>= WHILE 0 8450 FMULX R> 1 - >R REPEAT
 FMULX 98 OVER HIBYTE - >R FF AND MB10 FDUP D+ R> DUP 1 >= IF
 0 DO DBY2 LOOP ELSE DROP THEN R> BASE @ >R >R A BASE !
 <# 7 0 DO # LOOP 2E HOLD # #> TYPE R> DUP 0 >= IF ." +" THEN
 S->D D. R> BASE ! THEN ; : PRDP 11 C@ DUP FF = IF DROP -1
 THEN ; : FCON BASE @ A BASE ! 20 WORD NUMBER DUP HIBYTE >R
 00FF AND 9700 OR R> IF FDROP FNAN ELSE FNORM PRDP 1 >= IF
 0000 8140 PRDP 0 DO 0000 8450 FMULX LOOP F/
 THEN THEN ROT BASE ! 1C C@ IF ' DLITERAL C + @ , , , THEN ;
 IMMEDIATE ;S

19

