
© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 1

Introduction to PIC Programming

Programming Baseline PICs in C

by David Meiklejohn, Gooligum Electronics

Lesson 3: Using Timer 0

As demonstrated in the previous lessons, C can be a viable choice for programming digital I/O operations on

baseline (12-bit) PICs, although, as we saw, programs written in C can consume significantly more memory

(a limited resource on these tiny MCUs) than equivalent programs written in assembler.

This lesson revisits the material from baseline lesson 5 (which you should refer to while working through

this tutorial) on the Timer0 module: using it to time events, to maintain the timing of a background task, for

switch debouncing, and as a counter.

Selected examples are re-implemented using the “free” C compilers bundled with Microchip’s MPLAB
1
: HI-

TECH C (in “Lite” mode) and CCS PCB, introduced in lesson 1. We’ll also see the C equivalents of some of

the assembler features covered in baseline lesson 6, including macros.

In summary, this lesson covers:

 Configuring Timer0 as a timer or counter

 Accessing Timer0

 Using Timer0 for switch debouncing

 Using C macros

with examples for HI-TECH C and CCS PCB.

Note that this tutorial series assumes a working knowledge of the C language; it does not attempt to teach C.

Example 1: Using Timer0 as an Event Timer

To demonstrate how Timer0 can be used to measure

elapsed time, baseline lesson 5 included an example

“reaction timer” game, based on the circuit on the right.

To implement this circuit using the Gooligum baseline

training board, connect jumpers JP3, JP12 and JP13 to

enable the pull-up resistor on GP3 and the LEDs on

GP1 and GP2.

If you are using Microchip’s Low Pin Count Demo

Board, you will need to connect LEDs to GP1 and

GP2, as described in baseline lesson 1.

1
 At the time of writing (Feb 2012), MPLAB 8 is bundled with both CCS PCB and HI-TECH C, while MPLAB X is

bundled with HI-TECH C only. You should download the latest version of HI-TECH C from www.microchip.com.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.microchip.com/

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 2

The pushbutton has to be pressed as quickly as possible after the LED on GP2 is lit. If the button is pressed

quickly enough (that is, within some predefined reaction time), the LED on GP1 is lit, to indicate ‘success’.

Thus, we need to measure the elapsed time between indicating ‘start’ and detecting a pushbutton press.

An ideal way to do that is to use Timer0, in its timer mode (clocked by the PIC’s instruction clock, which in

this example is 1 MHz).

The program flow can be represented in pseudo-code as:

do forever

 turn off both LEDs

 delay 2 sec

 indicate start

clear timer

 wait up to 1 sec for button press

 if button pressed and elapsed time < 200ms

 indicate success

 delay 1 sec

end

To use Timer0 to measure the elapsed time, we need to extend its range (normally limited to 65 ms) by

adding a counter variable, which is incremented each time the timer overflows (or reaches a certain value).

In the example in baseline lesson 5, Timer0 is configured so that it is clocked every 32 µs, using the 1 MHz

instruction clock with a 1:32 prescaler. After 250 counts, 8 ms (250 × 32 µs) will have elapsed; this is used

to increment a counter, which is effectively measuring time in 8 ms intervals. This “8 ms counter” can then

be checked, when the pushbutton is pressed, to see whether the maximum reaction time has been exceeded.

As explained in that lesson, to select timer mode, with a 1:32 prescaler, we must clear the T0CS and PSA

bits, in the OPTION register, and set the PS<2:0> bits to 100. This was done by:

 movlw b'11010100' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----100 prescale = 32 (PS = 100)

 option ; -> increment every 32 us

Here is the main assembler code we used to implement the button press / timing test routine:

 ; wait up to 1 sec for button press

 banksel cnt_8ms ; clear timer (8 ms counter)

 clrf cnt_8ms ; repeat for 1 sec:

wait1s clrf TMR0 ; clear Timer0

w_tmr0 ; repeat for 8 ms:

 btfss BUTTON ; if button pressed (low)

 goto btn_dn ; finish delay loop immediately

 movf TMR0,w

 xorlw 8000/32 ; (8 ms at 32 us/tick)

 btfss STATUS,Z

 goto w_tmr0

 incf cnt_8ms,f ; increment 8 ms counter

 movlw 1000/8 ; (1 sec at 8 ms/count)

 xorwf cnt_8ms,w

 btfss STATUS,Z

 goto wait1s

 ; check elapsed time

btn_dn movlw MAXRT/8 ; if time < max reaction time (8 ms/count)

 subwf cnt_8ms,w

 btfss STATUS,C

 bsf SUCCESS ; turn on success LED

(This code is actually taken from baseline lesson 6)

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 3

HI-TECH C

As we saw in the previous lesson, loading the OPTION register in HI-TECH C is done by assigning a value

to the variable OPTION:

 OPTION = 0b11010100; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----100 prescale = 32 (PS = 100)

 // -> increment every 32 us

Note that this has been commented in a way which documents which bits affect each setting, with ‘-’s

indicating “don’t care”.

Alternatively, you could express that using the symbols defined in the processor header file (‘pic12f509.h’ in

this case).

For example, since the intent is to clear T0CS and PSA, and to set PS<2:0> to 100, we could make that

intent explicit by writing:

 OPTION = ~T0CS & ~PSA & 0b11111000 | 0b100;

(‘0b11111000’ is used to mask off the lower three bits, so that the value of PS<2:0> can be OR’ed in.)

Or, you could write:

 OPTION = ~T0CS & ~PSA | PS2 & ~PS1 & ~PS0;

(specifying the individual PS<2:0> bits)

Which approach you use is largely a question of personal style – and you can adapt your style as appropriate.

Although it is often preferable to use symbolic bit names to specify just one or two register bits, using binary

constants is quite acceptable if several bits need to be specified at once, especially where some bits need to

be set and others cleared (as is the case here) – assuming that it is clearly commented, as above.

The TMR0 register is accessed through a variable, TMR0, so to clear it, we can write:

 TMR0 = 0; // clear timer0

and to wait until 8 ms has elapsed:

 while (TMR0 < 8000/32) // wait for 8 ms (32 us/tick)

 ;

The “wait up to one second for button press” routine can then the implemented as:

 cnt_8ms = 0;

 while (BUTTON == 1 && cnt_8ms < 1000/8)

 {

 TMR0 = 0; // clear timer0

 while (TMR0 < 8000/32) // wait for 8 ms (32 us/tick)

 ;

 ++cnt_8ms; // increment 8 ms counter

 }

where, previously, ‘BUTTON’ had been defined as a symbol for ‘GP3’.

As discussed in baseline lesson 6, your code will be easier to understand and maintain if you use symbolic

names to refer to pins. If your design changes, you can update the definitions in one place (usually placed at

the start of your c, or in a header file). Of course, you may also need to modify your initialisation statements,

such as ‘TRIS =’. This is a good reason to keep all your initialisation code in one easily-found place, such

as at the start of the program, or in an “init()” function.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 4

Finally, checking elapsed time is simply:

 if (cnt_8ms < MAXRT/8) // if time < max reaction time (8 ms/count)

 SUCCESS = 1; // turn on success LED

Complete program

Here is the complete reaction timer program, using HI-TECH C, so that you can see how the various parts fit

together:

/**

* *

* Description: Lesson 3, example 1 *

* Reaction Timer game. *

* *

* User must attempt to press button within defined reaction time *

* after "start" LED lights. Success is indicated by "success" LED. *

* *

* Starts with both LEDs unlit. *

* 2 sec delay before lighting "start" *

* Waits up to 1 sec for button press *

* (only) on button press, lights "success" *

* 1 sec delay before repeating from start *

* *

* *

* Pin assignments: *

* GP1 = success LED *

* GP2 = start LED *

* GP3 = pushbutton switch (active low) *

* *

**/

#include <htc.h>

#include <stdint.h>

/***** CONFIGURATION *****/

// int reset, no code protect, no watchdog, int RC clock

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC);

#define _XTAL_FREQ 4000000 // oscillator frequency for _delay()

// Pin assignments

#define START GP2 // LEDs

#define SUCCESS GP1

#define BUTTON GP3 // pushbutton

/***** CONSTANTS *****/

#define MAXRT 200 // Maximum reaction time (in ms)

/***** MAIN PROGRAM *****/

void main()

{

 uint8_t cnt_8ms; // counter: increments every 8 ms

 // Initialisation

 TRIS = 0b111001; // configure GP1 and GP2 (only) as outputs

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 5

 OPTION = 0b11010100; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----100 prescale = 32 (PS = 100)

 // -> increment every 32 us

 // Main loop

 for (;;)

 {

 // start with both LEDs off

 GPIO = 0;

 // delay 2 sec

 __delay_ms(2000); // delay 2000 ms

 // indicate start

 START = 1; // turn on start LED

 // wait up to 1 sec for button press

 cnt_8ms = 0;

 while (BUTTON == 1 && cnt_8ms < 1000/8)

 {

 TMR0 = 0; // clear timer0

 while (TMR0 < 8000/32) // wait for 8 ms (32 us/tick)

 ;

 ++cnt_8ms; // increment 8 ms counter

 }

 // check elapsed time

 if (cnt_8ms < MAXRT/8) // if time < max reaction time (8 ms/count)

 SUCCESS = 1; // turn on success LED

 // delay 1 sec

 __delay_ms(1000); // delay 1000 ms

 } // repeat forever

}

CCS PCB

Lesson 2 introduced the ‘setup_counters()’ function, which, as we saw, has to be used if you need to

enable or disable the weak pull-ups. But its primary purpose (hence the name “setup counters”) is to setup

Timer0 and the watchdog timer.

To configure Timer0 for timer mode (using the internal instruction clock), with the prescaler set to 1:32 and

assigned to Timer0, you could use:

 setup_counters(RTCC_INTERNAL,RTCC_DIV_32);

However, CCS is de-emphasising the use of ‘setup_counters()’, in favour of more specific timer and

watchdog setup functions, including ‘setup_timer_0()’:

 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_32);

Note that ‘setup_counters()’ takes two parameters, while ‘setup_timer_0()’ takes a single parameter

formed by OR’ing the two symbols.

Both functions work correctly, but ‘setup_timer_0()’ produces smaller code, since it is only configuring

Timer0, so it is the better choice here.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_2.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 6

As we have seen in the previous lessons, the CCS approach is to expose the PIC’s functionality through

built-in functions, instead of accessing the registers directly.

To set Timer0 to a specific value, use the ‘set_timer0()’ function, for example:

 set_timer0(0); // clear timer0

To read the current value of Timer0, use the ‘get_timer0()’ function, for example:

 while (get_timer0() < 8000/32) // wait for 8ms (32us/tick)

The code is then otherwise the same as for HI-TECH C.

Complete program

Here is the complete reaction timer program, using CCS PCB:

/**

* *

* Description: Lesson 3, example 1 *

* Reaction Timer game. *

* *

* User must attempt to press button within defined reaction time *

* after "start" LED lights. Success is indicated by "success" LED. *

* *

* Starts with both LEDs unlit. *

* 2 sec delay before lighting "start" *

* Waits up to 1 sec for button press *

* (only) on button press, lights "success" *

* 1 sec delay before repeating from start *

* *

* *

* Pin assignments: *

* GP1 = success LED *

* GP2 = start LED *

* GP3 = pushbutton switch (active low) *

* *

**/

#include <12F509.h>

#define GP0 PIN_B0 // define GP pins

#define GP1 PIN_B1

#define GP2 PIN_B2

#define GP3 PIN_B3

#define GP4 PIN_B4

#define GP5 PIN_B5

/***** CONFIGURATION *****/

// int reset, no code protect, no watchdog, int RC clock

#fuses NOMCLR,NOPROTECT,NOWDT,INTRC

#use delay (clock=4000000) // oscillator frequency for delay_ms()

// Pin assignments

#define START GP2 // LEDs

#define SUCCESS GP1

#define BUTTON GP3 // pushbutton

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 7

/***** CONSTANTS *****/

#define MAXRT 200 // Maximum reaction time (in ms)

/***** MAIN PROGRAM *****/

void main()

{

 unsigned int8 cnt_8ms; // counter: increments every 8 ms

 // Initialisation

 // configure Timer0: timer mode, prescale = 32 (increment every 32 us)

 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_32);

 // Main loop

 while (TRUE)

 {

 // start with both LEDs off

 output_b(0); // clear GPIO

 // delay 2 sec

 delay_ms(2000); // delay 2000 ms

 // indicate start

 output_high(START); // turn on start LED

 // wait up to 1 sec for button press

 cnt_8ms = 0;

 while (input(BUTTON) == 1 && cnt_8ms < 1000/8)

 {

 set_timer0(0); // clear timer0

 while (get_timer0() < 8000/32) // wait for 8 ms (32 us/tick)

 ;

 ++cnt_8ms; // increment 8 ms counter

 }

 // check elapsed time

 if (cnt_8ms < MAXRT/8) // if time < max reaction time (8ms/count)

 output_high(SUCCESS); // turn on success LED

 // delay 1 sec

 delay_ms(1000); // delay 1000 ms

 } // repeat forever

}

Comparisons

As we did in the previous lessons, we can compare, for each language/compiler (MPASM assembler, HI-

TECH C and CCS PCB), the length of the source code (ignoring comments and white space) versus program

and data memory used by the resulting code:

Reaction_timer

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 53 55 4

HI-TECH C (Lite mode) 23 83 6

CCS PCB 22 84 6

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 8

The C source code is around half as long as the assembler version, but the code generated by both C

compilers is significantly larger (around 50%) and uses more data memory – again illustrating the trade-off

between programmer efficiency (source code length / complexity) and resource-usage.

Example 2: Background Process Timing

We saw in baseline lesson 5 that one of the key uses of timers is to provide regular timing for “background”

processes, while a “foreground” process responds to user signals. Timers are ideal for this, because they

continue to run, at a steady rate, regardless of any processing the PIC is doing. On more advanced PICs, a

timer is generally used with an interrupt routine, to run these background tasks. But as we’ll see, they can

still be useful for maintaining the timing of background tasks, even without interrupts.

The example in baseline lesson 5 used the circuit from example 1, flashing the LED on GP2 at a steady 1

Hz, while lighting the LED on GP1 whenever the pushbutton is pressed.

The 500 ms delay needed for the 1 Hz flash was derived from Timer0 as follows:

 Using a 4 MHz processor clock, providing a 1 MHz instruction clock and a 1 µs instruction cycle

 Assigning a 1:32 prescaler to the instruction clock, incrementing Timer0 every 32 µs

 Resetting Timer0 to zero, as soon as it reaches 125 (i.e. every 125 × 32 µs = 4 ms)

 Repeating 125 times, creating a delay of 125 × 4 ms = 500 ms.

This was implemented by the following code:

main_loop

 ; delay 500 ms

 banksel dly_cnt

 movlw .125 ; repeat 125 times (125 x 4 ms = 500 ms)

 movwf dly_cnt

dly500 clrf TMR0 ; clear timer0

w_tmr0 movf TMR0,w ; wait for 4 ms

 xorlw .125 ; (125 ticks x 32 us/tick = 4 ms)

 btfss STATUS,Z

 goto w_tmr0

 decfsz dlycnt,f ; end 500 ms delay loop

 goto dly500

 ; toggle flashing LED

 movf sGPIO,w

 xorlw b'000100' ; toggle LED on GP2

 movwf sGPIO ; using shadow register

 movwf GPIO

 ; repeat forever

 goto main_loop

And then the code which responds to the pushbutton was placed within the timer wait loop:

w_tmr0 ; repeat for 4 ms:

 ; check and respond to button press

 bcf sGPIO,1 ; assume button up -> indicator LED off

 btfss GPIO,3 ; if button pressed (GP3 low)

 bsf sGPIO,1 ; turn on indicator LED

 movf sGPIO,w ; update port (copy shadow to GPIO)

 movwf GPIO

 movf TMR0,w

 xorlw .125 ; (125 ticks x 32 us/tick = 4 ms)

 btfss STATUS,Z

 goto w_tmr0

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 9

The additional code doesn’t affect the timing of the background task (flashing the LED), because there are

only a few additional instructions; they are able to be executed within the 32 µs available between each

“tick” of Timer0.

HI-TECH C

This assembly code, can be implemented in C as:

 for (;;)

 {

 // delay 500 ms while responding to button press

 for (dc = 0; dc < 125; dc++) // repeat 125 times (125 x 4 ms = 500 ms)

 {

 TMR0 = 0; // clear timer0

 while (TMR0 < 125) // repeat for 4 ms (125 x 32 us)

 { // check and respond to button press

 sGPIO &= ~(1<<1); // assume button up -> LED off

 if (GP3 == 0) // if button pressed (GP3 low)

 sGPIO |= 1<<1; // turn on LED on GP1

 GPIO = sGPIO; // update port (copy shadow to GPIO)

 }

 }

 // toggle flashing LED

 sGPIO ^= 1<<2; // toggle LED on GP2 using shadow reg

 } // repeat forever

There is no need to update GPIO after the LED on GP2 is toggled, because GPIO is being continually

updated from sGPIO within the inner timer wait loop.

Note the syntax used to set, clear and toggle bits in the shadow GPIO variable, sGPIO:

 sGPIO |= 1<<1; // turn on LED on GP1

 sGPIO &= ~(1<<1); // turn off LED on GP1

 sGPIO ^= 1<<2; // toggle LED on GP2

We could instead have written:

 sGPIO |= 0b000010; // turn on LED on GP1

 sGPIO &= 0b111101; // turn off LED on GP1

 sGPIO ^= 0b000100; // toggle LED on GP2

But the right shift (‘<<’) form more clearly specifies which bit is being operated on.

If we define symbols representing the port bit positions:

#define nFLASH 2 // flashing LED on GP2

#define nPRESS 1 // "button pressed" indicator LED on GP1

we can write this statements as:

 sGPIO |= 1<<nPRESS; // turn on indicator LED

 sGPIO &= ~(1<<nPRESS); // turn off indicator LED

 sGPIO ^= 1<<nFLASH; // toggle flashing LED

These symbols can also be used when configuring the port directions:

 TRIS = ~(1<<nFLASH|1<<nPRESS); // configure LEDs (only) as outputs

This makes the code clearer, more general, and therefore more maintainable.

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 10

However, this approach doesn’t work well on bigger PICs, which have more than one port. You still need to

keep track of which port each pin belongs to, and if you change your pin assignments later, you may well

need to make a number of changes throughout your code.

A more robust approach is to make use of bitfields within C structures.

For example:

struct {

 unsigned GP0 : 1;

 unsigned GP1 : 1;

 unsigned GP2 : 1;

 unsigned GP3 : 1;

 unsigned GP4 : 1;

 unsigned GP5 : 1;

} sGPIObits;

It is then possible to refer to each bit as a structure member, for example:

 sGPIObits.GP1 = 1;

and if we also defined a symbol such as:

#define sPRESS sGPIObits.GP1

we can then write this as:

 sPRESS = 1;

That’s nice – we have “shadow bits” and we can refer to them easily by symbolic names – but there’s still a

problem. As well as being able to access individual bits, we also need to be able to refer to the whole

shadow register as a single variable, to read or update all the bits at once. After all, that’s the whole point of

using a shadow register.

We want to be able to change a single bit, as in:

 sGPIObits.GP1 = 1; // set shadow GP1

and also read the whole shadow register in a single operation, as in:

 GPIO = sGPIO; // copy shadow register to port

How can we do both?

The C union construct is intended for exactly this situation, where we need to access the memory holding a

variable in more than one way.

We can define for example:

union { // shadow copy of GPIO

 uint8_t port;

 struct {

 unsigned GP0 : 1;

 unsigned GP1 : 1;

 unsigned GP2 : 1;

 unsigned GP3 : 1;

 unsigned GP4 : 1;

 unsigned GP5 : 1;

 };

} sGPIO;

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 11

This allows us to refer to the shadow register as sGPIO.port, representing the whole port, in a single

operation. For example:

 sGPIO.port = 0; // clear shadow register

or

 GPIO = sGPIO.port; // update port (copy shadow to GPIO)

We can also refer to the individual shadow bits as, for example:

 sGPIO.GP1 = 1; // set shadow GP1

If we define symbols representing these shadow bits:

#define sFLASH sGPIO.GP2 // flashing LED (shadow)

#define sPRESS sGPIO.GP1 // "button pressed" indicator LED (shadow)

we can rewrite the previous bit-manipulation statements as:

 sPRESS = 1; // turn on indicator LED

 sPRESS = 0; // turn off indicator LED

 sFLASH = !sFLASH; // toggle flashing LED

The big advantage of this technique is that, if (on a larger PIC) you were to move one of these functions

(such as the flashing LED) to another port, you only need to modify the symbol definition and perhaps your

initialisation routine. The rest of your program could stay the same – these statements would still work.

Defining the shadow register as a union incorporating a bitfield structure may seem like a lot of trouble for

an apparently small benefit, but it’s an elegant approach that will pay off as your applications become more

complex.

Complete program

Here is how this shadow register union / bitfield structure definition is used practice:

/**

* *

* Description: Lesson 3, example 2b *

* *

* Demonstates use of Timer0 to maintain timing of background actions *

* while performing other actions in response to changing inputs *

* *

* One LED simply flashes at 1 Hz (50% duty cycle). *

* The other LED is only lit when the pushbutton is pressed *

* *

* Uses union / bitfield structure to represent shadow register *

* *

* *

* Pin assignments: *

* GP1 = "button pressed" indicator LED *

* GP2 = flashing LED *

* GP3 = pushbutton switch (active low) *

* *

**/

#include <htc.h>

#include <stdint.h>

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 12

/***** CONFIGURATION *****/

// int reset, no code protect, no watchdog, int RC clock

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC);

// Pin assignments

#define sFLASH sGPIO.GP2 // flashing LED (shadow)

#define sPRESS sGPIO.GP1 // "button pressed" indicator LED (shadow)

#define BUTTON GP3 // pushbutton

/***** GLOBAL VARIABLES *****/

union { // shadow copy of GPIO

 uint8_t port;

 struct {

 unsigned GP0 : 1;

 unsigned GP1 : 1;

 unsigned GP2 : 1;

 unsigned GP3 : 1;

 unsigned GP4 : 1;

 unsigned GP5 : 1;

 };

} sGPIO;

/***** MAIN PROGRAM *****/

void main()

{

 uint8_t dc; // delay counter

 // Initialisation

 GPIO = 0; // start with all LEDs off

 sGPIO.port = 0; // update shadow

 TRIS = ~(1<<1|1<<2); // configure GP1 and GP2 (only) as outputs

 OPTION = 0b11010100; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----100 prescale = 32 (PS = 100)

 // -> increment every 32 us

 // Main loop

 for (;;)

 {

 // delay 500 ms while responding to button press

 for (dc = 0; dc < 125; dc++) // repeat 125 times (125 x 4 ms = 500 ms)

 {

 TMR0 = 0; // clear timer0

 while (TMR0 < 125) // repeat for 4 ms (125 x 32 us)

 { // check and respond to button press

 sPRESS = 0; // assume button up -> indicator off

 if (BUTTON == 0) // if button pressed (low)

 sPRESS = 1; // turn on indicator LED (shadow)

 GPIO = sGPIO.port; // update port (copy shadow to GPIO)

 }

 }

 // toggle flashing LED

 sFLASH = !sFLASH; // toggle flashing LED (shadow)

 } // repeat forever

}

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 13

CCS PCB

There are no new features to introduce. We only need to convert the references to GPIO and TMR0 in the

HI-TECH C code into the CCS PCB built-in function equivalents:

 while (TRUE)

 {

 // delay 500 ms while responding to button press

 for (dc = 0; dc < 125; dc++) // repeat for 500ms (125 x 4ms = 500ms)

 {

 set_timer0(0); // clear timer0

 while (get_timer0() < 125) // repeat for 4ms (125 x 32us)

 { // check and respond to button press

 sPRESS = 0; // assume button up -> LED off

 if (input(BUTTON) == 0) // if button pressed (low)

 sPRESS = 1; // turn on LED (shadow)

 output_b(sGPIO.port); // update port (copy shadow to GPIO)

 }

 }

 // toggle flashing LED

 sFLASH = !sFLASH; // toggle flashing LED (shadow)

 } // repeat forever

The shadow register union is defined in much the same way as for HI-TECH C:

union { // shadow copy of GPIO

 unsigned int8 port;

 struct {

 unsigned GP0 : 1;

 unsigned GP1 : 1;

 unsigned GP2 : 1;

 unsigned GP3 : 1;

 unsigned GP4 : 1;

 unsigned GP5 : 1;

 };

} sGPIO;

and symbols defined to represent the shadow register bits corresponding to the LEDs and pushbutton:

#define sFLASH sGPIO.GP2 // flashing LED (shadow)

#define sPRESS sGPIO.GP1 // "button pressed" indicator LED (shadow)

#define BUTTON PIN_B3 // pushbutton on GP3

Note that we have to use ‘PIN_B3’, instead of ‘GP3’. In previous examples, we defined ‘GP3’ as an alias for

‘PIN_B3’, but we can’t do that anymore, because ‘GP3’ has been defined as an element of sGPIO.

Comparisons

Here is the resource usage summary for the “Flash an LED while responding to a pushbutton” programs (the

C versions defining the shadow register as a union containing a bitfield structure, as above):

Flash+PB_LED

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 37 31 2

HI-TECH C (Lite mode) 30 67 4

CCS PCB 29 47 6

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 14

The C source code is comparatively long in this example, because of the shadow register union / bitfield

structure definition. It’s a big part of the source code – something you wouldn’t normally bother with, for

such a small program. But we’ll keep doing it this way, because it’s good practice that will serve us well as

our programs become longer, and the extra lines of variable definition won’t seem to be such a big deal.

It’s interesting to note that the code generated by HI-TECH C (in ‘Lite’ mode) is now much larger than that

generated by the CCS compiler – showing the impact of having most optimisation disabled. The paid-for

versions of HI-TECH C could be expected to generate more compact code.

Example 3: Switch debouncing

The previous lesson demonstrated one method commonly used to debounce switches: sampling the switch

state periodically, and only considering it to have definitely changed when it has been in the new state for

some minimum number of successive samples.

This “counting algorithm” was expressed as:

count = 0

while count < max_samples

 delay sample_time

 if input = required_state

 count = count + 1

 else

 count = 0

end

As explained in baseline lesson 5, this can be simplified by using a timer, since it increments automatically:

reset timer

while timer < debounce time

 if input ≠ required_state

 reset timer

end

This algorithm was implemented in assembler, to wait for and debounce a “button down” event, as follows:

wait_dn clrf TMR0 ; reset timer

chk_dn btfsc GPIO,3 ; check for button press (GP3 low)

 goto wait_dn ; continue to reset timer until button down

 movf TMR0,w ; has 10ms debounce time elapsed?

 xorlw .157 ; (157 = 10ms/64us)

 btfss STATUS,Z ; if not, continue checking button

 goto chk_dn

This code assumes that Timer0 is available, and is in timer mode, with a 1 MHz instruction clock and a 1:64

prescaler, giving 64 µs per tick.

Of course, since the baseline PICs only have a single timer, it is likely that Timer0 is being used for

something else, and so is not available for switch debouncing. But if it is available, it is perfectly reasonable

to use it to debounce switches.

This was demonstrated by applying this timer-based debouncing method to the “toggle an LED on

pushbutton press” program developed in baseline lesson 4.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 15

HI-TECH C

Timer0 can be configured for timer mode, with a 1:64 prescaler, by:

 OPTION = 0b11010101; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----101 prescale = 64 (PS = 101)

 // -> increment every 64 us

This is the same as for the 1:32 prescaler examples, above, except that the PS<2:0> bits are set to ‘101’

instead of ‘100’.

The timer-based debounce algorithm, given above in pseudo-code, is readily translated into C:

 TMR0 = 0; // reset timer

 while (TMR0 < 157) // wait at least 10 ms (157 x 64 us = 10 ms)

 if (GP3 == 1) // if button up,

 TMR0 = 0; // restart wait

Using C macros

This fragment of code is one that we might want to use a number of times, perhaps modified to debounce

switches on inputs other than GP3, in this or other programs.

As we saw in baseline lesson 6, the MPASM assembler provides a macro facility, which allows a

parameterised segment of code to be defined once and then inserted multiple times into the source code.

Macros can also be used when programming in C.

For example, we could define our debounce routine as a macro as follows:

#define DEBOUNCE 10*1000/256 // switch debounce count = 10 ms/(256us/tick)

// DbnceLo()

//

// Debounce switch on given input pin

// Waits for switch input to be low continuously for DEBOUNCE*256/1000 ms

//

// Uses: TMR0 Assumes: TMR0 running at 256 us/tick

//

#define DbnceLo(PIN) TMR0 = 0; /* reset timer */ \

 while (TMR0 < DEBOUNCE) /* wait until debounce time */ \

 if (PIN == 1) /* if input high, */ \

 TMR0 = 0 /* restart wait */

Note that a backslash (‘\’) is placed at the end of all but the last line, to continue the macro definition over

multiple lines. To make the backslashes visible to the C pre-processor, the older “/* */” style comments

must be used, instead of the newer “//” style.

This macro can then be used within your program as, for example:

 DbnceLo(GP3); // wait until button pressed (GP3 low)

You can define macros toward the start of your source code, but as you build your own library of useful

macros, you would normally keep them together in one or more header files, such as ‘stdmacros.h’, and

reference them from your main program, using the #include directive.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 16

Complete program

Here is how this timer-based debounce code (without using macros) fits into the HI-TECH C version of the

“toggle an LED on pushbutton press” program:

/**

* Description: Lesson 2, example 3a *

* *

* Demonstrates use of Timer0 to implement debounce counting algorithm *

* *

* Toggles LED when pushbutton is pressed then released *

* *

* Pin assignments: *

* GP1 = flashing LED *

* GP3 = pushbutton switch (active low) *

* *

**/

#include <htc.h>

#include <stdint.h>

/***** CONFIGURATION *****/

// int reset, no code protect, no watchdog, int RC clock

__CONFIG(MCLRE_OFF & CP_OFF & WDT_OFF & OSC_IntRC);

// Pin assignments

#define sFLASH sGPIO.GP1 // flashing LED (shadow)

#define BUTTON GP3 // pushbutton

/***** GLOBAL VARIABLES *****/

union { // shadow copy of GPIO

 uint8_t port;

 struct {

 unsigned GP0 : 1;

 unsigned GP1 : 1;

 unsigned GP2 : 1;

 unsigned GP3 : 1;

 unsigned GP4 : 1;

 unsigned GP5 : 1;

 };

} sGPIO;

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure port

 GPIO = 0; // start with LED off

 sGPIO.port = 0; // update shadow

 TRIS = 0b111101; // configure GP1 (only) as an output

 // configure timer

 OPTION = 0b11010101; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----101 prescale = 64 (PS = 101)

 // -> increment every 64 us

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 17

 // Main loop

 for (;;)

 {

 // wait for button press, debounce using timer0:

 TMR0 = 0; // reset timer

 while (TMR0 < 157) // wait at least 10 ms (157 x 64 us = 10 ms)

 if (BUTTON == 1) // if button up,

 TMR0 = 0; // restart wait

 // toggle LED

 sFLASH = !sFLASH; // toggle flashing LED (shadow)

 GPIO = sGPIO.port; // write to GPIO

 // wait for button release, debounce using timer0:

 TMR0 = 0; // reset timer

 while (TMR0 < 157) // wait at least 10ms (157 x 64us = 10ms)

 if (BUTTON == 0) // if button down,

 TMR0 = 0; // restart wait

 } // repeat forever

}

CCS PCB

To configure Timer0 for timer mode with a 1:64 prescaler, using CCS PCB, use:

setup_timer_0(RTCC_INTERNAL|RTCC_DIV_64);

This is the same as we have seen before, except with ‘RTCC_DIV_64’ instead of ‘RTCC_DIV_32’.

The timer-based debounce algorithm can then be expressed as:

 set_timer0(0); // reset timer

 while (get_timer0() < 157) // wait at least 10 ms (157 x 64us = 10ms)

 if (input(GP3) == 1) // if button up,

 set_timer0(0); // restart wait

In the same way as for HI-TECH C, this could instead be defined as a macro, as follows:

#define DEBOUNCE 10*1000/256 // switch debounce count = 10 ms/(256us/tick)

// DbnceLo()

//

// Debounce switch on given input pin

// Waits for switch input to be low continuously for 10 ms

//

// Uses: TMR0 Assumes: TMR0 running at 256 us/tick

//

#define DbnceLo(PIN) \

 set_timer0(0); /* reset timer */ \

 while (get_timer0() < DEBOUNCE) /* wait until debounce time */ \

 if (input(PIN) == 1) /* if input high, */ \

 set_timer0(0) /* restart wait */

and then called from the main program as, for example:

 DbnceLo(GP3); // wait until button pressed (GP3 low)

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 18

Complete program

Here is how the timer-based debounce code (without using macros) fits into the CCS PCB version of the

“toggle an LED on pushbutton press” program:

/**

* *

* Description: Lesson 2, example 3a *

* *

* Demonstrates use of Timer0 to implement debounce counting algorithm *

* *

* Toggles LED when pushbutton is pressed then released *

* *

* *

* Pin assignments: *

* GP1 = flashing LED *

* GP3 = pushbutton switch (active low) *

* *

**/

#include <12F509.h>

/***** CONFIGURATION *****/

// int reset, no code protect, no watchdog, int RC clock

#fuses NOMCLR,NOPROTECT,NOWDT,INTRC

// Pin assignments

#define sFLASH sGPIO.GP1 // flashing LED (shadow)

#define BUTTON PIN_B3 // pushbutton on GP3

/***** GLOBAL VARIABLES *****/

union { // shadow copy of GPIO

 unsigned int8 port;

 struct {

 unsigned GP0 : 1;

 unsigned GP1 : 1;

 unsigned GP2 : 1;

 unsigned GP3 : 1;

 unsigned GP4 : 1;

 unsigned GP5 : 1;

 };

} sGPIO;

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure port

 output_b(0); // start with LED off

 sGPIO.port = 0; // update shadow

 // configure Timer0:

 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_64); // timer mode, prescale = 64

 // -> increment every 64 us

 // Main loop

 while (TRUE)

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 19

 {

 // wait for button press, debounce using timer0:

 set_timer0(0); // reset timer

 while (get_timer0() < 157) // wait at least 10ms (157x64us = 10ms)

 if (input(BUTTON) == 1) // if button up,

 set_timer0(0); // restart wait

 // toggle LED

 sFLASH = !sFLASH; // toggle flashing LED (shadow)

 output_b(sGPIO.port); // write to GPIO

 // wait until button released (GP3 high), debounce using timer0:

 set_timer0(0); // reset timer

 while (get_timer0() < 157) // wait at least 10ms (157x64us = 10ms)

 if (input(BUTTON) == 0) // if button down,

 set_timer0(0); // restart wait

 } // repeat forever

}

Example 4: Using Counter Mode

So far we’ve used Timer0 in “timer mode”, where it is clocked by the PIC’s instruction clock, which runs at

one quarter the speed of the processor clock (i.e. 1 MHz when the 4 MHz internal RC oscillator is used). As

discussed in baseline lesson 5, the timer can instead be used in “counter mode”, where it counts transitions

(rising or falling) on the PIC’s T0CKI input.

To illustrate how to use Timer0 as

a counter, using C, we can use the

example from baseline lesson 5.

An external 32.768 kHz crystal

oscillator (as shown on the right)

is used to drive the counter,

providing a time base that can be

used to flash an LED at a more

accurate 1 Hz.

To configure the Gooligum

baseline training board for use

with this example, connect

jumpers JP22 (connecting the 32

kHz clock signal to T0CKI) and

JP12 (enabling the LED on GP1).

If you are using Microchip’s Low Pin Count Demo Board, you will need to build the oscillator circuit

separately, as described in baseline lesson 5.

If the 32.768 kHz clock input is divided (prescaled) by 128, bit 7 of TMR0 will cycle at 1 Hz.

To configure Timer0 for counter mode (external clock on T0CKI) with a 1:128 prescale ratio, we need to set

the T0CS bit to ‘1’, PSA to ‘0’ and PS<2:0> to ‘110’. This was done by:

 movlw b'11110110' ; configure Timer0:

 ; --1----- counter mode (T0CS = 1)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----110 prescale = 128 (PS = 110)

 option ; -> increment at 256 Hz with 32.768 kHz input

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com/devboards/base-mid/base-mid.html
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 20

The value of T0SE bit is irrelevant; we don’t care if the counter increments on the rising or falling edge of

the input clock signal – only the frequency is important. Either edge will do.

Bit 7 of TMR0 (which is cycling at 1 Hz) was then continually copied to GP1, as follows:

loop ; transfer TMR0<7> to GP1

 clrf sGPIO ; assume TMR0<7>=0 -> LED off

 btfsc TMR0,7 ; if TMR0<7>=1

 bsf sGPIO,1 ; turn on LED

 movf sGPIO,w ; copy shadow to GPIO

 movwf GPIO

 ; repeat forever

 goto loop

HI-TECH C

As always, to configure Timer0 using HI-TECH C, simply assign the appropriate value to OPTION:

 OPTION = 0b11110110; // configure Timer0:

 //--1----- counter mode (T0CS = 1)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----110 prescale = 128 (PS = 110)

 // -> increment at 256 Hz with 32.768 kHz input

To test bit 7 of TMR0, we can use the following construct:

 if (TMR0 & 1<<7) // if TMR0<7>=1

 sFLASH = 1; // turn on LED

This works because the expression “1<<7” equals 10000000 binary, so the result of ANDing TMR0 with

1<<7 will only be non-zero if TMR0<7> is set.

Complete program

Here is the HI-TECH C version of the “flash an LED using crystal-driven timer” program:

/**

* *

* Description: Lesson 2, example 4 *

* *

* Demonstrates use of Timer0 in counter mode *

* *

* LED flashes at 1 Hz (50% duty cycle), *

* with timing derived from 32.768 kHz input on T0CKI *

* *

* *

* Pin assignments: *

* GP1 = flashing LED *

* T0CKI = 32.768 kHz signal *

* *

**/

#include <htc.h>

#include <stdint.h>

/***** CONFIGURATION *****/

// ext reset, no code protect, no watchdog, int RC clock

__CONFIG(MCLRE_ON & CP_OFF & WDT_OFF & OSC_IntRC);

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 21

// Pin assignments

#define sFLASH sGPIO.GP1 // flashing LED (shadow)

/***** GLOBAL VARIABLES *****/

union { // shadow copy of GPIO

 uint8_t port;

 struct {

 unsigned GP0 : 1;

 unsigned GP1 : 1;

 unsigned GP2 : 1;

 unsigned GP3 : 1;

 unsigned GP4 : 1;

 unsigned GP5 : 1;

 };

} sGPIO;

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure port

 TRIS = 0b111101; // configure GP1 (only) as an output

 // configure timer

 OPTION = 0b11110110; // configure Timer0:

 //--1----- counter mode (T0CS = 1)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----110 prescale = 128 (PS = 110)

 // -> increment at 256 Hz with 32.768 kHz input

 // Main loop

 for (;;)

 {

 // TMR0<7> cycles at 1 Hz, so continually copy to LED

 sFLASH = 0; // assume TMR<7>=0 -> LED off

 if (TMR0 & 1<<7) // if TMR0<7>=1

 sFLASH = 1; // turn on LED

 GPIO = sGPIO.port; // copy shadow to GPIO

 } // repeat forever

}

CCS PCB

To configure Timer0 for counter mode, instead of timer mode, using the CCS PCB ‘setup_timer_0()’

function, use either ‘RTCC_EXT_L_TO_H’ (to count low to high input transitions on T0CKI), or

‘RTCC_EXT_H_TO_L’, (for high to low transitions), instead of ‘RTCC_INTERNAL’.

In this example, we don’t care if the counter increments on rising or falling edges – it will count at the same

rate in either case. So it doesn’t matter whether we use ‘RTCC_EXT_L_TO_H’ or ‘RTCC_EXT_H_TO_L’ here.

We can configure the timer with either:

 setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_128);

or

 setup_timer_0(RTCC_EXT_H_TO_L|RTCC_DIV_128);

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 22

To test bit 7 of TMR0, we could use the following:

 if (get_timer0() & 1<<7) // if TMR0<7>=1

 sFLASH = 1; // turn on LED

However, CCS PCB does provide a facility for accessing (testing or setting/clearing) bits directly.

The bit to be accessed must first be declared as a variable, using the #bit directive.

For example:

#bit TMR0_7 = 0x01.7 // bit 7 of TMR0

This variable can then be used the same way as any other single-bit variable, and can be tested directly.

For example:

 if (TMR0_7) // if TMR0<7>=1

 sFLASH = 1; // turn on LED

Or, for clarity, you may prefer to write:

 if (TMR0_7 == 1) // if TMR0<7>=1

But for testing a status bit, most programmers will readily understand the ‘if (TMR0_7)’ form.

As you can see, defining bit variables in this way makes for straightforward, easy-to-read code. However,

CCS discourages this practice; as the help file warns, “Register locations change between chips”. For

example, the code above assumes that TMR0 is located at address 0x01. If this code is migrated to a PIC

with a different address for TMR0, and you forget to change the bit variable definition, the problem may be

very hard to find – the compiler wouldn’t produce an error. Your code would simply continue to test bit 7 of

whatever register happened to now be at address 0x01.

So although, by using the #bit directive, you can make your code clearer and more efficient, you should use

it carefully. Using the CCS built-in functions is safer, and easier to maintain.

Complete program

Here is how the code, using CCS PCB, with the #bit pre-processor directive, for the “flash an LED using

crystal-driven timer” fits together:

/**

* *

* Description: Lesson 2, example 4 *

* *

* Demonstrates use of Timer0 in counter mode *

* *

* LED flashes at 1 Hz (50% duty cycle), *

* with timing derived from 32.768 kHz input on T0CKI *

* *

* *

* Pin assignments: *

* GP1 = flashing LED *

* T0CKI = 32.768 kHz signal *

* *

**/

#include <12F509.h>

© Gooligum Electronics 2012 www.gooligum.com.au

Baseline PIC C, Lesson 3: Using Timer0 Page 23

#bit TMR0_7 = 0x01.7 // bit 7 of TMR0

/***** CONFIGURATION *****/

// ext reset, no code protect, no watchdog, int RC clock

#fuses MCLR,NOPROTECT,NOWDT,INTRC

// Pin assignments

#define sFLASH sGPIO.GP1 // flashing LED (shadow)

/***** GLOBAL VARIABLES *****/

union { // shadow copy of GPIO

 unsigned int8 port;

 struct {

 unsigned GP0 : 1;

 unsigned GP1 : 1;

 unsigned GP2 : 1;

 unsigned GP3 : 1;

 unsigned GP4 : 1;

 unsigned GP5 : 1;

 };

} sGPIO;

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure Timer0:

 setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_128); // counter mode, prescale = 128

 // -> increment at 256 Hz

 // with 32.768 kHz input

 // Main loop

 while (TRUE)

 {

 // TMR0<7> cycles at 1 Hz, so continually copy to LED

 sFLASH = 0; // assume TMR<7>=0 -> LED off

 if (TMR0_7) // if TMR0<7>=1

 sFLASH = 1; // turn on LED

 output_b(sGPIO.port); // copy shadow to GPIO

 } // repeat forever

}

Summary

These examples have demonstrated that Timer0 can be effectively configured and accessed using the HI-

TECH and CCS C compilers, with the program algorithms being able to be expressed quite succinctly in C.

We’ve also seen that using symbolic names and macros can help make your code more maintainable, and

how the union and bitfield structure constructs can be used to make it possible to access both a whole

variable and its individual bits, in an elegant way.

In the next lesson we’ll see how these C compilers can be used with processor features such as sleep mode

and the watchdog timer, and to select various clock, or oscillator, configurations.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_4.pdf

	Introduction to PIC Programming
	Programming Baseline PICs in C
	Lesson 3: Using Timer 0
	/Example 1: Using Timer0 as an Event Timer
	HI-TECH C
	Complete program

	CCS PCB
	Complete program

	Comparisons

	Example 2: Background Process Timing
	HI-TECH C
	Complete program

	CCS PCB
	Comparisons

	Example 3: Switch debouncing
	HI-TECH C
	Using C macros
	Complete program

	CCS PCB
	Complete program

	Example 4: Using Counter Mode
	HI-TECH C
	Complete program

	CCS PCB
	Complete program

	Summary

