Low Loss, High Isolation SP6T Wideband RF Switch Suitable For 5MHz to 3000MHz Frequency Range

By:

Aditya Mukherjee Subham Kundu

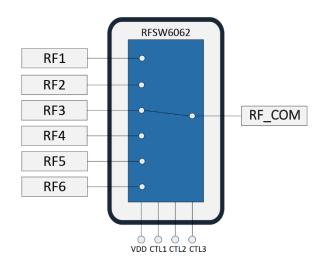
Under the guidance of:

Malay Gangopadhyay Kaushik Patra Rintu Kumar Gayen Kuntal Bhattacharya Tutai Kumar Dalal

January 2020

SP6T Wideband RF Switch

(Single Pole Six (6) Throw)


Wireless Addon | Modular | ASUS Tinker Board

50Ω 5 to 3000 MHz 1 x 6 (RFSW6062) **FRC Connector** 5 to 3000 MHz 1 x 6 (RFSW6062) 1 x 6 (RFSW6062) 1 x 6 (RFSW6062) 1 x 6 (RFSW6062) 9 Sto 3000 MHz operation 9 Sto 30

Note: The FRC cable must be connected such that the notch in the FRC plug lines up with the notch in the socket on the RF switch board and the notch on the other plug must fall on the outside edge of the Tinker board.

Block Diagram:

CTL pins are tolerant up to 3.3V not 5V.

RF_COM is connected to any one of RF1-6 at a time. The connection is configured using a 3-bit control logic using CTL1, CTL2 & CTL3.

v0.1

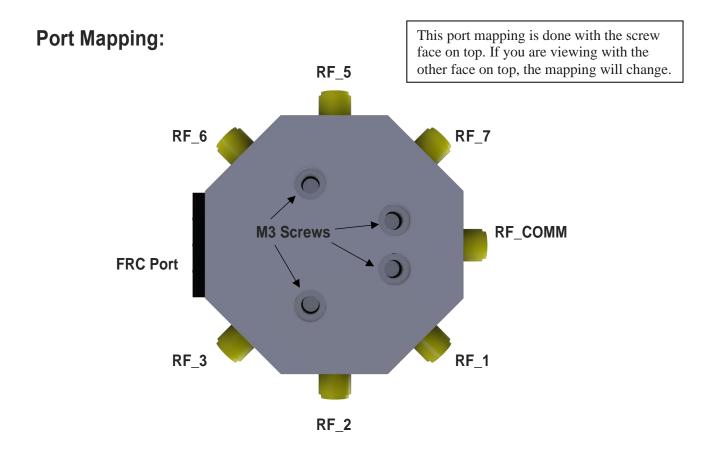
CTL3	CTL2	CTL1	MODE
0	0	0	ALL OFF
0	0	1	RF1
0	1	0	RF2
0	1	1	RF3
1	0	0	RF4
1	0	1	RF5
1	1	0	RF6

For technical support contact adityam545@gmail.com

PINOUT:

NC	VCC (5V)	
NC	VCC (5V)	
NC	GND	
CTL_3	CTL_2	
GND	CTL_1	
	NOTCH	

PIN	PIN FUNCTIONS	
PIN	NAME	FUNCTION
1	NC	Not Connected
2	VCC (5V)	Power Supply
3	NC	Not Connected
4	VCC (5V)	Power Supply
5	NC	Not Connected
6	GND	Ground
7	CTL_3	Switch Control Logic 3
8	CTL_2	Switch Control Logic 2
9	GND	Ground
10	CTL_1	Switch Control Logic 1

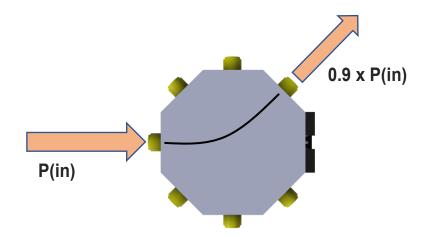

Pins Used On The Tinker Board:

		2 VCC5V_SYS
	3 GP8A4_I2C1_SDA	4 VCC5V_SYS
3	5 GP8A5_I2C1_SCL	6 GND
5	GP0C1_CLKOUT	8 GP5B1_UART1TX
9	¹⁰ 9 GND	10 GP5B0 UART1RX
	14 [11]GP5B4_SPI0CLK_UART4CTSN	12 GP6A0_PCM/I2S_CLK
11	13 GP3B6_SPIU_TXD_UART4TX	14 GND
Quad-core		16 GP5B2_UART1CTSN
1.8GnZ 23	24 / VCC33 IO	18 GP5B3_UART1RTSN
25	26 [19 GP8B1_SPI2TXD	20 GND
	³⁰ 21 GP8B0 SPI2RXD	22 GP5C3
33	34 23 GP8A6_SPI2CLK	24 GP8A7_SPI2CSN0
35		26 GP8A3_SPI2CSN1
39		28 GP7C2_I2C4_SCL
	OCSN0_UART4RTSN	30 GND
	31 GP5C0_SPI0CSN1	32 GP7C7_UART2TX_PWM3
	33 GP7C6_UART2RX_PWM2	34 GND
	35 GP6A1_PCM/I2S_FS	36 GP7A7_UART3RX
	37 GP7B0_UART3TX	38 GP6A3_PCM/I2S_SDI
	39 GND	40 GP6A4_PCM/I2S_SDO

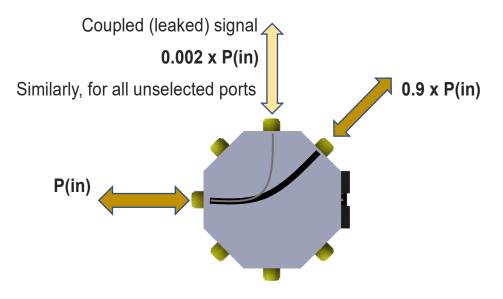
wiringPi	CTL_1	wPi 16
winniger	CTL_2	wPi 15
Pin Numbers:	CTL_3	wPi 7

Power-up / Power-down Sequence and Operation Controls

Power-up / Power-down	Sequence for Power-up and Power-down from Supply that is Connected to V_{DD} Pin	
Power-up	Turn on VDD, then CTL1, CTL2, and CTL3 then (20µs or greater), apply RF signal	
Power-down	Turn off RF signal, then CTL1, CTL2, and CTL3, then turn off V_{DD}	
Switching Ports	Turn off RF signal, then change CTL1, CTL2, and CTL3 state, then (5µs or greater). Turn on RF signal	

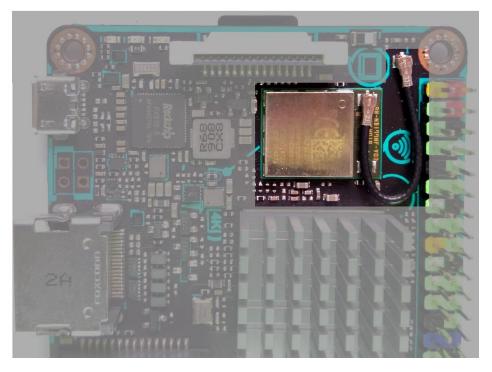

RF Parameters (2.45GHz):

1. Average reflected power from selected port or RF_COMM = <u>-11dB</u> => <u>0.08 x P(in).</u>

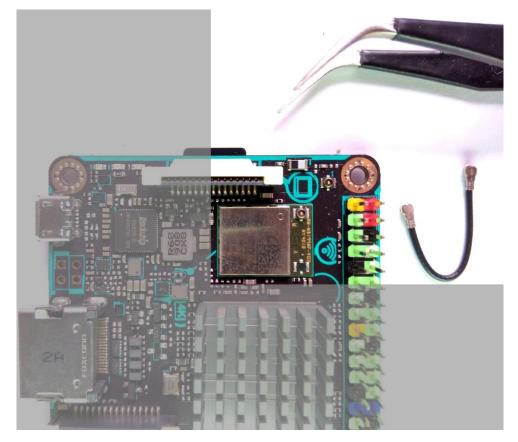


0.08x P(in) gets reflected back

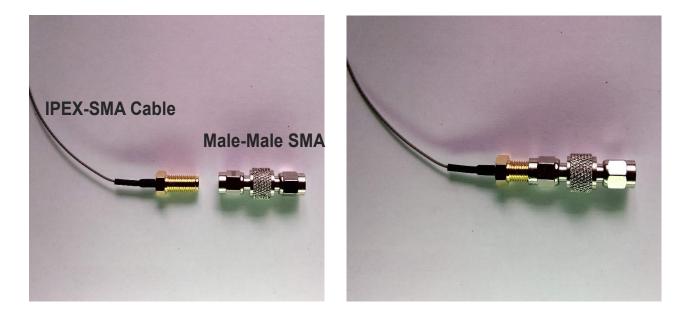
- 2. Avg insertion loss (IL) incl coaxial loss = <u>1.6dB</u> => <u>0.7xP(in)</u> gets transmitted.
- 3. Avg insertion loss (IL) excl coaxial loss = <u>0.5dB</u> => <u>0.9xP(in)</u> gets transmitted.

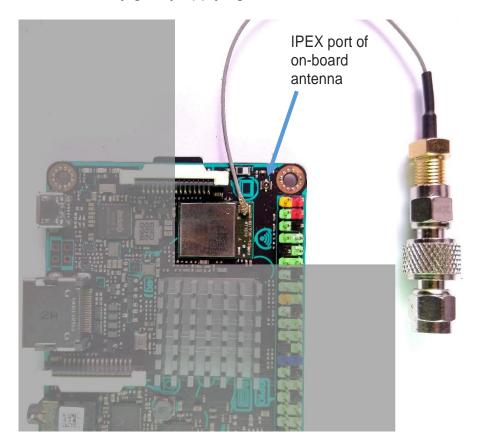


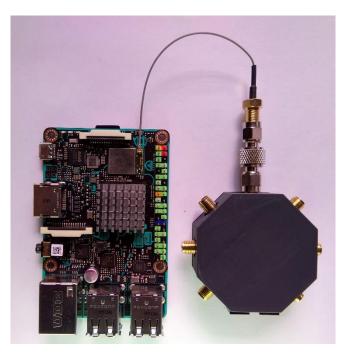
4. Average isolation between selected port and other ports = <u>26dB</u> => <u>0.002 x P(in)</u> The power level of the leaked or coupled signal on the unselected ports is as low as 0.002 times (or -26dB) the power level on the selected port.



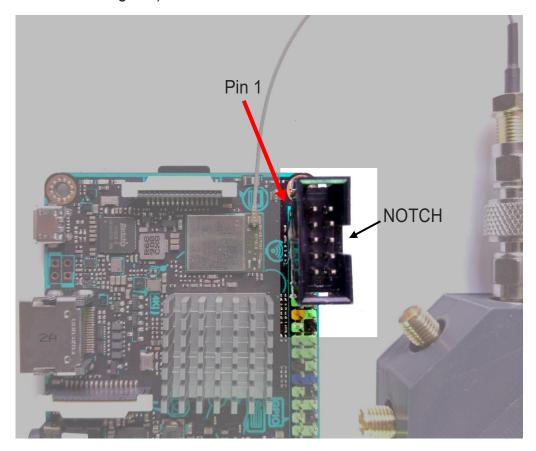
Connecting the Tinker Board:


• Locate the green RF module and the short IPEX coaxial connector connecting it with the on-board antenna.

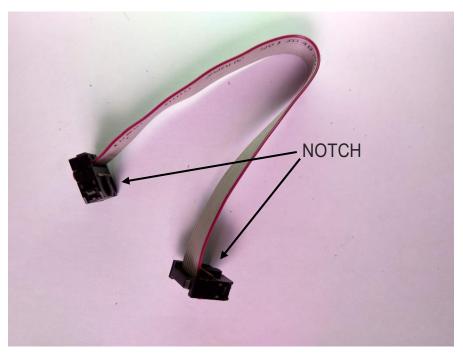

• Carefully unplug both ends using a pair of tweezers.


• Connect the male-male SMA connector with the IPEX-SMA cable.

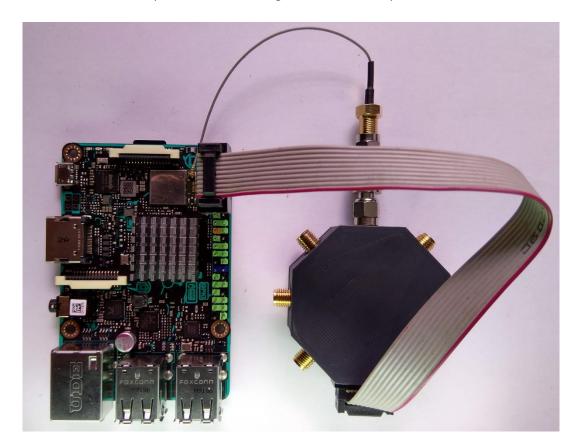
 Connect the IPEX port of the IPEX-SMA cable to the IPEX port on the green RF board (not the IPEX port of the on board antenna) by lining it up carefully and pressing it down with your nails or a small hard surface like the end of toothpick till you feel a "click/snap". Check the connection by gently applying tension on the cable.



• Connect the RF switch's RF_COMM port with the other end of the cable (SMA Male).



Department of Electronics and Communication Engineering Institute of Engineering and Management, Kolkata, India


 Plug in the female header side of the FRC to female header converter on the tinker board male pins starting from pin 1. Also, keep the notch of the FRC box socket on the outside (as shown in the diagram).

• Get 10 pin FRC cable and make sure that the notches on both ends line up on the same side.

• Finally connect the RF switch and the tinker board with the FRC cable, again paying attention to the notch (we've had enough of the notch!).

