
~DmDD~D
COMPUTER LAB
WORKBOOK

DIGITAL EQUIPMENT CORPORATION

COMPUTER LAB WORKBOOK

JOHN L. HUGHES

DESIGN ENGINEER

Copyright © 1969 by

Digital Equipment Corporation

II

TABLE OF CONTENTS

PREFACE .. V

INTRODUCTION .. VII

OPERATING INSTRUCTIONS .. XI

CHAPTER 1 The Binary Concept ... 1
Experiment 1.1: 2-lnput NAND Gate 6
Experiment 1.2: 3-lnput NAND Gate 6
Experiment 1.3: 4-lnput NAND Gate 9
Experiment 1.4: Inverter 9
Experiment 1.5: Substituting Gates 12
Experiment 1.6: Decimal to Binary Encoder 15
Experiment 1. 7: Binary to Decimal Decoder 18

CHAPTER 2 Basic Logic Gates , , .. , , " '" . . 23
Experiment 2.1: AND/NOR Gate 25
Experiment 2.2: NOR Gate Application of

AND/NOR Gate...................... 25
Experiment 2.3: AND/NOR Comparator 27
Experiment 2.4: AND/NOR Gate Used for

Exclusive OR 27
Experiment 2.5: Non-Inverting Gate 28
Experiment 2.6: Equality Detector 29
Experiment 2.7: Parity Bft Generator 31

CHAPTER 3 Flip-Flops '" 33
Experiment 3.1: R·S Flip·Flop 34
Experiment 3.2: Clocked R-S Flip-Flop 36
Experiment 3.3: D Type Flip·Flop 37
Experiment 3.4: J·K Flip·Flop 39
Experiment 3.5: 4-Bit Shift Register.......................... 41

CHAPTER 4 Boolean Algebra to Gating Networks 45
Experiment 4.1: Gating Circuit Simplification 59
Experiment 4.2: Equality and Relative Magnitude

Detector 64

CHAPTER 5 Binary Counters .. 65
Experiment 5.1: Asynchronous Binary Up Counter 67
Experiment 5.2: Modified Asynchronous

Binary Counter 67
Experiment 5.3: Synchronous Binary Up Counter 68
Experiment 5.4: Synchronous Binary

Up/Down Counter............................ 70
Experiment 5.5: Synchronous Modulo 6

Binary Counter 73
Experiment 5.6: Asynchronous Self-Stopping

Modulo 13 Binary Counter.............. 73
Experiment 5.7: Variable Modulus Asynchronous

Binary Up Counter 74

CHAPTER 6 Serial Addition 79
Experiment 6.1: Serial Adder 83
Experiment 6.2: Subtraction Using the Serial Adder.. 84
Experiment 6.3: Multiplication Using the Serial Adder 85

III

CHAPTER 7 Parallel Addition .. 87
Experiment 7.1: Parallel Adder 90
Experiment 7.2: Two's Complement Subtraction 92
Experiment 7.3: One's Complement Subtraction 93
Experiment 7.4: One Step Parallel Addition 93

CHAPTER 8 Binary Coded Decimal Operations 95
Experiment 8.1: The 8421 Counter 95
Experiment 8.2: The Excess 3 Counter...................... 96
Experiment 8.3: The 2421 Counter 9Q
Experiment 8.4: The 5421 Counter 96
Experiment 8.5: Serial BCD Addition 101

CHAPTER 9 Code Conversion and Decoding 105
Experiment 9.1: The 2421 to 8421 Converter 110
Experiment 9.2: The 5421 to 8421 Converter...... 113
Experiment 9.3: Gray to Binary Converter.. 115

CHAPTER 10 System Considerations .. 119
Experiment 10.1: Parallel Adder Control.................... 122
Experiment 10.2: Synchronizers 123
Experiment 10.3: Maximum Frequency.. 126

Appendix A: Checkout Procedures .. 129

Appendix B: Karnaugh Mapping .. 135

Appendix C: TTL Circuitry .. 139 ,
Appendix D: The Computer.. 145

Appendix E: Glossary of Terms .. 156

Appendix F: Decimal to Binary Conversion Table 163

Appendix G: Powers of Two .. 165

Appendix H: Recommended Texts .. 166

Appendix I: COMPUTER LAB Hardware Specifications 167

Appendix J: Warranty .. 169

Appen~ix K: Logic Element Truth Tables. ... 170

IV

PREFACE

This workbook contains a complete course in digital logic. It is intended to
accompany courses in binary arithmetic, Boolean algebra, digital logic or
computer technology. The workbook was developed to be used with Digital
Equipment Corporation's COMPUTER LAB.

Much more material is presented than could be used in any full year labora­
tory course. The extra material is included to allow particular sections of a
course to be emphasized with larger amounts of experimental time. Most
chapters have a main theme experiment followed by a number of sub·experi·
ments that can be used for emphasis. The information presented in the sub­
experiments is not needed to understand later sections of the book and these
sections can be considered supplementary.

The workbook material is prepared on five levels of instruction. The first level
is an introduction to the binary concept. The student is shown how two states
can be used to both perform logic functions and count. Basic logic functions
on the COMPUTER LAB are studied, and the correlation between the binary
and decimal systems is demonstrated.

The second level provides a close look at the logic elements available on the
COMPUTER LAB. The student uses the simpler logic gates to construct some
of the more complex devices. This way, he gains a much greater understand­
ing of these complex mechanisms than would be possible by studying a com­
plete unit.

At the third level, the student studies Boolean algebra, logic truth tables and
how the transition from a logic requirement tel a gating network is accom­
plished. This level uses the complete complex logic elements studied in detail
in the previous level.

The fourth level deals with digital subsystems, beginning with an explanation
of the mathematical process of binary addition. This level also discusses
methods of complementary binary subtraction, binary coded decimal count­
ing, and code conversion.

The final level of learning brings together the knowledge from previous levels
by discussing digital systems.

My thanks go to all the people who have assisted in the writing, preparation
and revision of this book. In particular, I would like to acknowledge the help
given by the following individuals from Digital Equipment Corporation: Mr. G.
Del Rossi, Mr. D. Doyle, Mr. R. Nelson, Mr. J. Richardson; and also, Mr.
J. Knott, Thistletown Collegiate Institute; Mr. J. Miller, Ryerson Polytechnical
Institute; Dr. K. Smith, University of Toronto.

v

GENERAL,FEATURES

With the COMPUTER LAB, DIGITAL offers a complete teaching package. The
unit and workbook are supplemented by the COMPUTER LAB Teacher's Guide
which includes detailed course plans, complete answers for all the questions
in the workbook, additional pictorial wiring diagrams, suggested test ques­
tions and supplementary instructional text.

• Teaches modern computer logic.

• Comprehensive Workbook includes basic text material and ten detailed
experiments.

• Provides up to 200 hours of laboratory study.

• The ten basic chapters are divided into more than 30 experiments.

• Teacher's Guide with answers, additional text, extra problems, and course
plans.

• Easy to use: each logic function is represented on the front panel by MIL
STD-806 symbology. Inputs and Outputs of each internal circuit are acces­
sible through the front panel eyelets.

VI

INTRODUOTION

Computers and computer technology are assuming roles of increasing impor·
tance in today's technically oriented civilization. It is becoming more and
more necessary that secondary schools give students a basic knowledge of
computer fundamentals. For all students, instruction in basic computer con­
cepts helps present and reinforce the important "New Math" principles of
binary arithmetic and Boolean algebra. For the technical student, a knowledge
of computer fundamentals can open a rewarding career in the computer
industry.

The explosive growth in the use and application of computers has created a
tremendous, mostly unfilled, demand for trained people. By 1970, according
to a recent survey, there will be between 100,000 and 150,000 computers in
use. This means that in the next few years, the computer industry will require
more than 150,000 new programmers, over 200,000 new systems analysts,
more than 90,000 new managers and supervisors, plus about 20,000 people
to replace those lost through attrition.

As the computer gradually eliminates jobs in some areas, others are created
requiring new skills and placing new demands on our educational system.
Educators in ever growing numbers agree that all students should receive at
least a basic introduction to the fundamentals of computer technology. All
students will benefit from exposure to fundamental computer concepts, for
the mathematical principles that form an important part of computer tech­
nology are also important in general mathematics programs.

Education in basic computer concepts should begin in secondary schools and
be complemented by specialized training in vocational schools and advanced
college study. Many educators have already accepted this responsibility and
instituted computer technology courses. Texts, curricula and other materials
prepared by the United States Office of Education, the National Science
Teacher Association, The Association for Computing Machines and others,
stress that initial education in computer science should emphasize the basic
concepts and principles that apply to all digital computers. Chief among these
are:

1) Binary arithmetic-the "machine language" of most present day
computers

2) Principles of digital logic-the electronic "switches" that allow computers
to operate and make decisions

3) Two·state memory devices
4) Boolean algebra-the rules for logic manipulation

In teaching computer technology and its associated mathematical concepts,
the student benefits most if he learns the basic principles first, if he becomes
thoroughly familiar with binary arithmetic, Boolean algebra and digital logic.
From this foundation, all other computer·related education builds naturally
and easily, allowing the student to continue his education with the least effort
and best preparation into any of the many careers created by the expanding
computer technology, from computer mathematics to programming to
electronic engineering.

THE COMPUTER LAB
Digital Equipment Corporation has had extensive experience in computer
education, with over half of its 3000 installed PDP computers in educational

VII

institutions. DIGITAL found a need for a training device to teach basic com­
puter concepts and so developed the COMPUTER LAB, a classroom laboratory
for teaching digital logic and computer fundamentals.

The COMPUTER LAS- is a complete educational package for teaching the
fundamental concepts underlying the theory and operation of all digital com­
puters. In clear experiment-lessons, the student is given step-by-step instruc­
tions in digital logic principles. After mastering the basic material presented
in the COMPUTER LAB course, the student can progress easily through
advanced study into many of the computer-related disciplines. The digital
logic fundamentals presented in the course constitute the basic knowledge
a student needs to build a career as a computer technician or electronics
engineer. A programmer, if he is to use a computer to its fullest potential,
must also be thoroughly familiar with a computer's basic operating principles.

An important part of computer technology is the "New Math". Once, the
binary number system and Boolean algebra were interesting sideroads of
mathematics. Now the computer has given them new importance, for the
computer understands only the binary language and follows the laws of
Boolean algebra. Everyone in school today is exposed to these two vital
elements of the New Math. The COMPUTER LAB not only operates with binary
numbers according to Boolean algebraic laws but graphically demonstrates
these two important concepts. For every student, whether he intends to find a
career within the computer industry or not, the New Math is important and the
COMPUTER LAB makes it easier to understand. Students going on to college
will need to use computer concepts in mathematics, science and engineering
studies. For the technical or vocational student, .a knowledge of the computer
can 'lead to a career in the computer industry.

STEp· BY ·STEP INSTRUCTION

The COMPUTER LAB incorporates the latest advances in computer technology
and the workbook gives the student step-by-step instructions. Each instruction
can be followed by wiring the unit with the easily inserted and removed
patch cords and by testing final designs. The course provides a basic set
of ten chapters, each divided into many complete experiments. Each chapter
deals with a basic 1:0mputer principle and the entire course fully illustrates
the whole range of digital logic principles.
The unit is completely self-contained, compact, portable, and easy to use.
Each of the internal basic digital functions is repr:.esented on the front panel
by a logic symbol in standard, widely-accepted symbology. All connections
for each experiment are made on the front panel with the patchcords, and
the student can progress from one experiment to the next quickly and easily.
Once the student has wired a logiC design, he can test it by supplying signals
in either of two ways. A series of three manuallY'operated switches provides
signals to the logic. The unit also has a clock that automatically supplies
test signals at any point in the system. Eight additional switches provide
sustained signals to the logic and indicator lamps give a visual indication of
the state of the logic at any point on the board. The unit comes complete
with patctrcords and workbook and is ready for immediate use. Because of
the wide variety of logic elements used in the COMPUTER LAB, the student
has complete freedom to design his own experiments and his own. digital
subsystems and range far beyond the basic instructions given in the COM·
PUTER LAB course.

VIII

THE COMPUTER LAB COURSE
As a laboratory instrument for classroom training in digital logic, the unit can
provide a course lasting a full semester, comprising over 200 hours of lab­
oratory work supplemented by 50 hours or more of lecture.

The basic course is organized on five levels of instruction. The instructor can
follow the course material as presented in the workbook or is free to tailor
the course to emphasize specific subject matter, grade levels or rates of
instruction by deleting certain sections and/or adding supplementary informa­
tion in other areas.

The COMPUTER LAB is designed for classroom use in high schools, technical
schools, junior colleges and universities. It can be used for logic circuit ex­
perimental work in research laboratories and in industry. During laboratory
work, at every level of instruction, the student has the opportunity to learn
by doing. At any level, he may easily move back to a lower level to reinforce
some of the more basic concepts taught earlier. As the student becomes
more adept, he may connect several COMPUTER LABs together, one super­
vising the other, to enlarge computational power .

•

IX

~JI ~JI ~JI ~Cl
1<0 KO kO 1<0

II II " "

~~~SD-b~ 
~~ 

HIGH HIGH HIGH 
<>-<> 0-0 C>-O 

~ ~ ~ ~ 

~ ~ -~ ~ 
HIGH HIGH HI6H 
0-0 C>-O C>-O 

~~~~SD-b 

={F~' ={F~ I ~~' ~J I

K 0 M M II GNO _

e>-o <>-<>

COMPUTER LAB

IWI TeH OUTPUTS e>-oo-oo-o 0-00-0 0-0 o-oe>-o
LAMP IIiI'UTS

o-oe>-oo-oo-oo-oo-oo-o<>-<>

Figure 1 COMPUTER LAB Patch panel

x

COMPUTER LAB OPERATING INSTRUCTIONS

LOGIC LEVELS
There are two logic levels used on the COMPUTER LAB; HIGH (HI) and LOW
(La). Several terminals are provided on the patchpanel to give a HIGH logic
level.

II ROCKER SWITCHES
Rocker switches can be used to provide either a HI or a La logic level. If the
upper side of the rocker switch is depressed, the two corresponding switch
output terminals (directly in front of the switch) are taken to a H I level. If the
lower side of a rocker switch is depressed, the two corresponding output
terminalsare taken to a La level.

III PULSER SWITCHES
The outputs of the pulser switches are normally LO. When a pulser is de­
pressed, the corresponding two output terminals go to a HI level. When t.he
pulser is released its output terminals return to the La condition. Internal
circuits connected to the pulsers make sure that when a pulser is depressed
or released, electrical noise generated in the switch is not transmitted to the
pulser output. This special circuitry makes the pulsers useful in applications
requiring noise-free transitions from one level to another. Rocker switches do
not have this feature.

IV PULSES
Pulses are voltages which go from one logic level to another for a short time
and then return to the original level. All pulses have a width which is defined
as the length of time for which the pulse voltage is at the second or transient
level. HI PU LSES a re ones wh ich ,go from La to H I for a short time, then
back to La. LO PU LSES are ones which go from H I to La for a short time,
then back to HI. Pulses can occur one at a time or in a pulse train. Pulse
trains have pulses which occur at a certain repetition rate, normally measured
in pulses per second. (See Figure 2.)

V CLOCK
The clock provides a continuous train of HI pulses. Clock pulses are 50

50
nanoseconds wide (50 x 10-9 seconds or 1,000,000,000 sec.). The frequency
of clock pulses can be continuously varied from less than one pulse per sec­
ond to over 10 million pulses per second. The slowest speed range of the
clock is obtained by connecting the common clock coarse terminal to the left­
most speed-selecting terminal. (See Figure 3.) The repetition rate of the clock
increases with each terminal to the right. The fastest repetition rate is ob­
tained by leaving the clock range selector disconnected. Repetition rates
within each coarse range can be varied using the clock fine control. (Fully
counterclockwise gives the slowest repetition rate in a range; fully clockwise
provides the fastest rate.) The clock range course terminals are to be used
only for selection of clock repetition rate. The clock output is obtained from
the two terminals labeled CLOCK OUTPUT.

XI

\/oLTAGE

LO~----~--~--------~----~--------~--~--

Figure 2

F· FREQUENCY

W' PULSE WIOTH

High Pulse Train

CLOCK RANGE COARSE

qq pPIJ
'" \ J I /

FINE '~\\ J~ /
~ ...

Figure 3 Clock Range Set Slow

VI LAMP INDICATORS

TIME (SEC)

The operation of experiments constructed on the COMPUTER LAB patchpanel
is monitored by the lamp indicators. A lamp will be ON if its corresponding
input is at a HI logic level. A lamp will be OFF if the corresponding input is
at a LO logic level. If no connection is provided to a lamp input, the lamp will
be OFF. Lamps will respond to sustained logic levels and pulses of sufficient
duration to activate the lamp filament. '

VII UNUSED INPUTS
Unused inputs to gates and flip-flops should be connected to the HI terminals
provided on the patchpanel. It is especially important to connect flip-flop Re·
set inputs to a HI terminal when they are used in counters, shift registers,
etc., with no Reset provision. Unless this is done, flip-flops will not operate
properly.

VIII USING TWO OR MORE COMPUTER LABS TOGETHER
Often there are applications where it is necessary to use two or more COM­
PUTER LABS to construct large logic circuits. To use COMPUTER LABS in
this way, connect wires from the GND (ground) terminals on the patchboard
of one COMPUTER LAB to GND terminals on the other units. When construct­
ing circuits of this nature, it is best to try to build major circuit sections on
each COMPUTER LAB. This sectional construction will keep the number of
logic circuit interconnections between COMPUTER LABS to a minimum. Each
COMPUTER LAB used in a large circuit must be plugged in and turned on.

IX WIRING ON COMPUTER LAB
Often a single output is used to drive several gate inputs. There are only two
terminals for each output, but an output can be wired to drive many more
than two inputs by "daisy chaining." This is done by connecting an output
to the first input it has to drive, then connecting a wire from the first input to
the second input, the second to the third, and so on. Figure 4 shows how all
flip-flop clock inputs can be daisy chained and connected to the COMPUTER
LAB clock.

XII

@@@@@@@@

--COMf'UT£R L EW LlllllIE~
, 2 5

PULst:

Figure 4 Daisy Chaining Clock Inputs

XIII

XIV

CHAPTER 1
THE BINARY CONCEPT

INTRODUCTION

There are a large number of devices with only two states or possible condi­
tions. For example, a light switch has only two states: it can be on or off.
Similarly, a doorbell button can be either pressed or released, causing a
bell to be on or off. The point of a ball pOint pen can be either extended or
retracted. These two-state devices can be classed into two groups. Group 1
has memory, Group 2 does not have memory. for example, a light switch
has memory; it remembers the last state it was put into. If it is turned on,
it remains on until it is turned off. The ball point pen also has memory; if
the point is extended it remains extended until the button at the end of the
pen is pushed to retract it. Once the point is retracted, it remains retracted
until it receives a command to extend. The door bell push-button is a device
without memory; the bell will ring only as long as the button is depressed.
Once the button is released it does not remember that it has been depressed
and the bell stops ringing.

Decisions are often based on a number of YES or NO type conditions, two­
state conditions. For example, if a driver sees a red light OR a stop sign OR
an obstacle in the path of travel of his car, he stops. Symbolically the stop
decision could be represented as in Figure 1.1. Each one of the conditions
which would make the driver stop are either present or not present. They are
two-state conditions: the red stop light can be on or off; the stop sign can
be present or not present; the obstacle can be present or not present. If any
one or more of these conditions is present, the driver will stop. All possible
combinations o"f conditions which can occur can be represented in a table.
Figure 1.2 is a table showing all the possible conditions that can occur be­
tween the stop light, stop sign and the obstacle. This type of table is known
as a truth table. The number of possible conditions in a two-state truth table
is equal to 2N where N is the number of two-state variables considered.

STOPLIGHT =i:J-
STOPSIGN OR STOP

OBSTACLE

Figure 1:1 Stop Decision

"
CONDITIONS RESPONSE

Stop Sign Obstacle Stop Light (Stop)

No No
No Yes
Yes No
Yes Yes
No No
No Yes
Yes No
Yes Yes

1

Mechanical situations can also: be represented in a· symbolic form. If, for in­
stance, a door has two locks, the door would be secure if one lock or the other
lock is bolted. Figure 1.3 shows how this condition can be represented sym­
bolica"y. Again, a" possible conditions that can exist with the locks can be
represented in a truth table, as shown in Figure 1.4.

LOCK *1 =8-BOLTED
.. OR DOOR SECURE

LOCK.2 ..
BOLTED

Figure 1.3 Door With Two Locks

LOCK # 1 BOLTED LOCK # 2 BOLTED DOOR SECURE

NO
NO
YES
YES

II GATES

NO
YES
NO
YES

Figure 1.4 Door;With Two Locks Truth Table

NO
YES
YES
YES

The two above examples demonstrate logical decisions. The results. of the
first logical decision could be STOP or DO NOT STOP. The result of the second
logical decision could be the door is SECURE or the door is NOT SECURE.
The two·state outcome of these logical decisions depends on the state of the
examined two-state input conditions. In the first example, the examined con­
ditions were the stop light, the stop sign and the obstacle. In the second'
example, the examined conditions were the two locks on the door. Logical
decisions can be made by human beings and by many types of devices,
among them electrical devices, mechanical devices, hydraulic devices; etc.
Regardless of the type of device, the decision can be represented symbolica"y
in a standard form.

OR Gate
The OR logical decision has been demonstrated in both the above examples.
The standard symbol for this logical OR decision is shown in Figure 1.5. This
symbol is called an OR gate. The inputs or conditions examined by an OR
gate are on the left of Figure 1.5; The result or output of an OR gate is on
the right of Figure 1.5. OR gates may have two or more inputs but only one

.output. Figure 1.5 shows a two-input OR gate. The OR condition is met, or the
gate is enabled, if one or more of the inputs is present. In general, a gate is
enabled when its input conditions are met. The driving example described
earlier can be represented in a standard symbolic form as shown in figure
1.6 by a 3-input OR gate. This gate will operate 'a~ described in the truth table
in Figure 1.2.

I "PUTS { ~ } OUTPUT

Figure 1.5 Standard OR Symbol

STOPLIGHT =D-
STOPSIGN STOP

OBSTACLE

Figure 1.6 OR Driving Decision

AND Gate
Another type of decision involves the AND function. For example, if a driver
were at an intersection when the light turned green AND the path of travel
were clear, the driver would go. Both input conditions must be present before
the driver can go. Figure 1.7 shows a symbolic representation of this AND
decision. Figure 1.8 is a truth table showing all the possible input conditions
and the resultant output conditions. (Note: there are 22 possible combina­
tions of the two two-state variables.) The AND gate can have two or more in­
puts, all of which must be present for the gate to be enabled.

Inverter

PATH CLEAR =D- GO

GREEN LIGHT

Figure 1.7 AND Driving Decision

Light Green Path Clear Go

No
No
Yes
Yes

No
Yes
No
Yes

No
No
No
Yes

Figure 1.8 AND Driving Decision Truth Table

There are applications where it is convenient to take information and change
it into its opposite state. A device to perform this function is known as an
INVERTER. The symbols for an inverter are shown in Figure 1.9. If an inverter
receives YES information at its input on the left, it would give NO information
at its output on the right. If it received NO information at its input, it would
give YES information at its output. Figure 1.10 is a set of truth tables which
show the operation of the inverter. Figure 1.10(a) shows how the inverter
can be used to invert YES or NO information.

INPUT I OUTPUT

NO
YES

1.10(a)

NO ---{>--- YES

Figure 1.9 Inverter

INPUT

1
o

OUTPUT

o
1

1.10(b)

INPUT

A
A

OUTPUT

A
A

1.10(c)

Figure 1.10 Inverter Truth Tables

3

Figure 1.10(b) shows how the inverter can be used to invert 1 or 0 informa·
tion, a 1 representing a YES, a 0 representing a NO. Figure 1.1 O(c)shows a
method of representing condition "A" and the inversion of that condition
"not A." Not A, or the invers19n of A, is representee!. by A. If A is at the input
of the inverter, its opposite, A, is at the output. If A is at the input of an in·
verter, its opposite, A, is at the output.

Summary
In an OR gate, the output is 1, or the gate is enabled, whenever one or more
of the inputs are 1. The output of an OR gate is 1 if anyone or more of the
following conditions are met: input A is 1, OR input B is 1, OR input C is
1, etc.

In an AND gate, the output is 1, or the gate is enabled when, and only when,
the inputs are 1, regardless of the number of inputs. The output of an AND
gate is 1 only when input A is 1, AND input B is 1, AND input C is 1, etc.

In an Inverter, the output is always the opposite, or inverse, of the input. An
output is 1 when its input is O. An Inverter output is 0 when its input is 1.

Negated Input OR Gate
The inverter can be used with the AND and OR gates to extend their capabil·
ities. If both inputs to an OR gate are fed through inverters, as in Figure 1.11,
the OR gate functions in an opposite or complementary manner. With in·
verted inputs, the OR function will be present when one input, or the other,
or both, are not present. In other words, the negated input OR gate will be
enabled when one or both inputs are not present. Figure 1.12 shows the truth
table for a 2·input negated input OR gate. A "1" represents a"present"or YES
condition. A "0" represents a"not present"or NO condition. In standard sym­
bology, a small circle on the input line of an OR gate symbol, as shown in
Figure 1.13, is used to replace the inverter symbol used in Figure 1.11.

A

~OUTPUTC
Figure 1.11 Negated Input OR Function

INITIAL
CONDITIONS

INVERTED
CONDITIONS

A B A 8
o
o
1
1

o
1
o
1

1
1
o
o

1
o
1
o

Figure 1.12 Negated Input OR Truth Table

Figure 1.13 Negated Input OR

=00 See note on page 21.

4

OUTPUT
C

1
1
1
o

NAND Gate
Similarly, an AND gate, with an inverter at its output, can be used to perform
an opposite or complementary function, as shown in Figure 1.14. The truth
table for this function in Figure 1.15 shows that the output from the inverted
AND will not be present when both inputs are present. The inverted AND
function is enabled when both inputs are present. This type of gate is repre­
sented in Figure 1.16 with a small circle attached to the output of the AND
gate to replace the inverter symbol. Since the gate is performing a "not" AND
function when enabled, it is called a NAN 0 gate.

~OUTPUTC

Figure 1.14 AND Gate with Inverted Output

A B C OUTPUT C

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Figure 1.15 AND Gate and Inverter Truth Table

Figure 1.16 NAND Gate

Equality of NAND and Negated Input OR Gates
If the truth tables for the negated input OR gate and the NAND gate are com­
pared, as in Figure 1.17, it is readily evident that they are identical. For cor­
responding input conditions, the output conditions are equal for the NAND
and negated input OR gates.

A B OUTPUT A B OUTPUT

0 0 1 0 0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

Figure 1.17(a) Negated Input Figure 1.17(b) NAND Gate
OR Gate Truth Table Truth Table

The operation of NAND and negated input OR gates is identical in every way,
except in the way that the operation is interpreted. There are a number of
N~ND gates on the COMPUTER LAB. These gates can be interpreted as
either NAND gates or negated input OR gates.

5

III COMPUTER LAB LOGIC FUNCTIONS
The COMPUTER LAB uses electronic logic functions which recognize two
voltage levels, HI and LO. It is advisable at this time to review the COMPUTER
LAB specifications for rocker switches and lamp indicators given in the intro­
duction. The COMPUTER LAB uses inverting logic for a number of reasons.
Chief among these is the versatility and ease of use_ Also, all modern com­
puters use inverting logic elements.

EXPERIMENT 1.1: 2-INPUT NAND GATE
Figure 1.18 shows a NAND gate with the inputs connected to rocker switches
which can provide either a HI or a LO signal on either gate input. The output
is connected to a lamp indicator. The same circuit is shown pictorially in
Figure 1.19. Construct this circuit on the COMPUTER LAB. The rocker switch
outputs are also connected to indicator lamps to give a visual indication of
the input condition.

ROCKER
SWITCHES

HI

LO ---0

HI--o

LO ---0

Figure 1.18 2-lnput NAND Gate Test Circuit

TO LAMP
INDICATOR

Figure 1.20 is a truth table showing the operation of a 2-input NAND gate.
Test the NAND gate by checking each condition of the truth table and filling
in the final column to indicate whether the lamp was on or off, with H I repre­
senting the lamp on, and LO representing the lamp off. Compare the truth
table you have made to the one in Figure 1.15.

SWITCHES LAMP INDICATOR
A B

LO LO
LO HI
HI LO HI
HI HI

Figure 1.20 NAND Gate Truth Table

EXPERIMENT 1.2: 3-INPUT NAND GATE
Connect the 3-input NAND gate, as shown pictorially in Figure 1.21. Test its
operation by observing the output condition for all possible input conditions;
the truth table is shown in Figure 1.22. Complete the final column giving the
indication obtained on the lamps. A HI will be indicated when the lamp is on;
a LO, when the lamp is off. Again, the rocker switch outputs have been con­
nected to indicator lamps to indicate visually the input conditions.

6

~JI ~J\ ~J\ ~JI
",0 KO KO teO

A It R R

~~~~~ 
HIGH HIGH HIGH 
0-<> 0-0 0-<> 

HIQH 
0-<> 

HIQH 
0-<> 

HltH 
0-0 

~JI ~JI ~JI ~J' 
K 0 K K • 

OND . OND 
0-0 0-<> 

LAMP INPUTS 
0-0 0-0 0-0 0-0 c>-o 

@@@@@@@@ 

mamaama ErE BlIlllE= COMPUTER LAB 

I Z , 

PULSE 

Figure 1.19 2-lnput NAND Gate Test 

7 



~J' ~c' ~J' =Q!c' 
KO KO <0 KO 

R R R R 

~ ~ ~ ~ 

~~~~ 
HIGH HIGH HIGH
o-<l o-<l o-<l

(5. @@@@@@@@

mamlDla
COMPUTER LAB

, 2 3

PU~Sf

Figure 1.21 3-lnput Gate Test

8

tf',

A B C OUTPUT

LO LO LO HI'
LO LO HI HI
LO HI LO
LO HI HI
HI LO LO
HI LO HI
HI HI LO
HI HI HI

Figure 1.22 3-input NAND Gate Truth Table

EXPERIMENT 1.3: 4·INPUT NAND GATE
Test the operation of the 4-input NAND gate on the COMPUTER LAB by
connecting the circuit shown in Figure 1.23. Complete the final column in the
truth table in Figure 1.24, with a HI indicating the lamp on, and a LO iridi­
cating the lamp off.

A B C 0 OUTPUT

LO LO LO LO HI
LO LO LO HI HI
LO LO HI LO HI
LO LO HI HI
LO HI LO LO
LO HI LO HI
LO HI HI LO
LO HI HI HI
HI LO LO LO
HI LO LO HI
HI LO HI LO
HI LO HI HI
HI HI LO LO
HI HI LO HI
HI HI HI LO
HI HI HI HI

Figure 1.24 4-lnput NAND Gate Truth Table

EXPERIMENT 1.4: INVERTER
An inverter can be constructed as shown in figure 1.25.

OUTPUT ----.

INPUT ~
I

Figure 1.25 Inverting Function from 2-lnput NAND

Make this inverter by connecting the circuit shown in Figure 1.26. Test its
operation and complete the truth table shown in Figure 1.27. By supplying a

9

,,,(0

~Jt ~Jt ~Jt ~Jt
kO kO kO kO

" " " II

~~~~~ 
HIGH HIGH HI8M 
0-0 0-0 0-0 

@@@@@@@@ 

- .. 
COMPUTER LAB 

I Z ~ 

PULSE 

Figure 1.23 4-lnput NAND Gate Test Circuit 

10 



~Jt ~ct ~~t ~ct 
KO KO KO KO 

R R R R 

~~~~~ 
~~~6 

HIGH HIGH HIGH 
~ 0--0 ~ 

~ ~ ~ ~ 

~~~~ 
HIGH HIGH Hl(iH

0--0 ~

~~~~~ 
~ ----

K 0 K : J( K 

GND ' GND 
0--0 ~ 

SWITCH OUTPUTS 
0--0 CH) 0--0 0--0 0--0 CH) 0--0 

LAMP INPUTS 
0-0 0--0 0--0 0--0 0-0 0--0 

@@@@@@@@ 

malilla 
COMPUTER LAB 

t 2 5 

PULSE 

Figure 1.26 2·lnput NAND Gate Used as an Inverter 

11 



constant HI to one input of a 2-input NAND gate, the gate becomes, in effect, 
a I-input NAND gate. The condition of the one remaining input now controls 
the gate output. If the remaining input is HI, the gate output will be LO; if 
that input is LO, the output will be HI. The gate is now functioning as an in­
verter. The standard inverter symbols are shown on the right of Figure 1.25. 

INPUT 

LO 
HI 

OUTPUT 

Figure 1.27 Inverter Truth Table 

EXPERIMENT 1.5: MULTIPLE INPUT GATE USAGE 

There are logic systems and subsystems to be constructed on the COM­
PUTER LAB which will require more NAND gates with a specific number of 
inputs than are available on the patch panel. In cases such as this, gates with 
a greater number of inputs can be substituted for gates with fewer inputs. For 
instance, a 4-input gate can be substituted for a 3-input gate by connecting 
the unused input to a HI level and using the other 3 inputs as a normal 
3-input NAND gate. Connect the circuit shown pictorially in Figure 1.28 and 
complete the truth table for this 4·input NAND gate used to substitute for a 
3-input NAND gate, as shown in Figure 1.29. 

A 

LO 
LO 
LO 
LO 
HI 
HI 
HI 
HI 

QUESTIONS 

B 

LO 
LO 
Hl 
HI 
LO 
LO 
HI 
HI 

C 

LO 
HI 
LO 
HI 
LO 
HI 
LO 
HI 

OUTPUT 

HI 
HI 

Figure 1.29 Truth Table for 4-lnput NAND Gate 
Used as 3-lnput NAND Gate 

1. Make a truth table similar to the one you have completed in Figure 1.20 
for a two-input NAND gate when used as an inverter. Which conditions 
on the initial truth table cannot occur? Why? 

2. When a 4-input NAND gate has one of its inputs connected to HI, what 
conditions cannot occur in the truth table in Figure 1.24? 

3. Show how a 3-input NAND gate can be used as an inverter. 
4. Show two techniques for using a 3-input NAND gate as a 2-input NAND 

gate. 
5. Explain why a NAND gate can be used to perform the negated input OR 

function. 

IV BINARY NUMBERS 
The decimal system has 10 distinct states represented by the digits 0, 1, 2, 
3, 4, 5, 6, 7, 8, 9. However, there are counting systems which use other than 
10 distinct states. Consider, for example, an apartment building where there 
are 8 apartments on each of 7 floors. The owner wants to number each apart-

12 



~~~~~ 
~~~ 

HIGH HIGH HIGH 
0-0 0-0 

~ ~ ~ r.----K>-'rI--/ 

~ ~ ~Il~ 
HIGH HIGH. II HIGH 

~~~ ~r~~~ 

~JI ~cl III~JI ~JI
.0 • 00 00

GND GND
0-0 0-0

mlliDma
COMPUTER LAB

I 2 ,

PUl..SE

Figure 1.28 4-lnput NAND Gate Used as a 3-lnput NAND Gate

13

ment with the first digit of the number indicating the floor of that apartment
and the second digit indicating the number of the apartment on that particu­
lar floor. The logical sequence of numbers would be 00, 01, 02, 03, 04, 05,
06, 07, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, ... etc. This counting se­
quence has used only 8 unique states or digits. The digits used are 0, 1, 2,
3, 4, 5, 6, 7. The number system is called the octal number system, because
it has a base of 8 distinct states.

BINARY DECIMAL
26 25 24 23 22 21 20 102 101 100

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 2
0 0 0 0 0 1 1 .0 0 3
0 0 0 0 1 0 0 0 0 4
0 0 0 0 1 0 1 0 0 5
0 0 0 0 1 1 0 0 0 6
0 0 0 0 1 1 1 0 0 7
0 0 0 1 0 0 0 0 0 8
0 0 0 1 0 0 1 0 0 9
0 0 0 1 0 1 0 0 1 0
0 0 0 1 0 1 1 0 1 1
0 0 0 1 1 0 0 0 1 2
0 0 0 1 1 0 1 0 1 3
0 0 0 1 1 1 0 0 1 4
0 0 0 1 1 1 1 0 1 5
0 0 1 0 0 0 0 0 1 6
0 0 1 0 0 0 1 0 1 7
0 0 1 0 0 1 0 0 1 8

1 1 0 0 1 0 0 1 0 0
1 1 0 0 1 0 1 1 0 1
1 1 0 0 1 1 0 1 0 2

Figure 1.30 Binary Counting Sequence

Similarly, if there are only two unique states to work with, a counting system
can be evolved: this is the binary or two-state counting sequence. Figure 1.30
shows the binary count sequence and decimal numbers of corresponding
value_ Digital computers are composed of two-state logic elements which can
use the brnary system. Just as the decimal system is based on powers of 10,
the binary system is based on powers of 2. Each binary digit carries a weight
or multiplier which is a power of 2, as shown in figure 1.30. The least sig-
nificant, or right-most digit, carries a weight or multiplier of 20 or 1. The next
most significant binary digit carries a weight or multiplier of 21. The next
most significant binary digit carries a weight or multiplier of 22 and so on. A
detimal number is weighted with the right-most column having a multiplier or
weight of 100 • The next most significant column has a multiplier of 10 I or 10.
The next most significant column has a weight of 102 or 100, and so on. For
instance, the decimal number 136 is equal to:

1 X 102 + 3 X 101 + 6 X 100 •

likewise the binary number 1100 is:
1 X 23 + 1 X 22 + 0 X 21 + 0 X 20

which is equivalent to 12 in the decimal number system. When referring to a
digit in a binary number, the term "bit" (contracted from binary digit) is used_

14

V DECIMAL TO BINARY CONVERSION
To convert a binary number into decimal.add the decimal weights of each
binary bit which is a 1. Thus the binary number 1001100 is equivalent in
value to the decimal number 2 6 + 23 + 22 = 76. This binary to decimal
conversion suggests a method for converting decimal numbers into binary
numbers.

That method is to subtract the largest power of 2 which is less than or equal
to the decim.al number being converted. The second step is the same as the
first and it is performed on the remainder from the first step. The process
continues until the remainder of successive subtractions equals O. Example,
convert 76 into binary.

-76-26 = 12
12-23 = 4
4-22 = 0

Thus 76 equals 26 + 23 + 22. As was shown in Figure 1.30. the 22 is the
third position from the right of a binary number; 23 is the fourth position
from the right of a binary number; 26 is the seventh position from the
right in a binary number. The binary equivalent of a decimal number 76 is,
therefore, 1001100.

QUESTIONS
6. Convert the following binary numbers into decimal:

A) 10010110 F) 100011110
B) 0110011 G) 10011001
C) 11110111 H) 10101010
D) 1000001 I) 110110110
E) 0001000 J) 011011011

7. Convert the following decimal numbers into binary:
A) 148 F) 4 X 103

B) 277 G) 49
C) 53 H) 875
D) 256 I) 94
E) 512 J) 117

EXPERIMENT 1.6: DECIMAL TO BINARY ENCODER
To communicate with a computer. it is necessary to convert input informa­
tion into the binary language which the computer understan~s. One device
that does this translation is an encoder. Figure 1.31 shows an encoder for
converting the decimal digits 0 to 7 into a three-bit binary number. Construct
the circuit on the COMPUTER LAB according to the pictorial diagram in Figure
1.32. Recall that the NAND ated in u ates are the same in
funct! ga es on the COMPUTE B can be use
schematic in Figure 1.31 requires the negated input OR function.

15

TO LAMP INDICATORS

HI

LO

4 3 2
ROCKER SWITCHES

Figure 1.31 Decimal to Binary Encoder

Decimal To Binary Encoder Operating Instructions
1. Set all the rocker switches to the HI condition. Observe and record the

condition of the lamps.
2. Set the"I"rocker switch to the LO condition. Observe and record the con­

dition of the lamps.
3. Reset the"l"rocker switch to the H I condition. Set the"2"rocker switch to

the LO condition. Observe and record the condition of the lamps.
4. Continue setting one rocker switch at a time to the LO condition and

observe and record the indication obtained on the lamps for each of the
7 rocker switches.

QUESTIONS
8. Compare the recorded indication of the lamps which you have obtained

to the binary count sequence in Figure 1.30.
9. At what level (HI or LO) should a switch input be for conversion? Why?

10. At what level must all switch inputs other than the ones being converted
be? Why?

11. Explain the operation of the decimal to binary encoder by explaining the
operation of each gate.

12. Design an encoder to convert the decimal numbers from 0 to 15 into
binary.

16

\

22 2\ 20

@@@@@@@@

--COMPUTER LAB

I I S 7 6 !I 4 3 2. \ 0

~'E

Figure 1.32 Decimal to Binary Encoder

17

EXPERIMENT 1.7: BINARY TO DECIMAL DECODER

When a computer has completed an operation the answer is usually given in
binary form. Since most people are used to working in decimal, it is often
necessary to decode the output information. One method is to use a NAND
gate decoder, such as the one shown in Figure 1.33. The partial truth table
in Figure 1.35 shows the operating rules for the decoder. Note that in the'
table the (-) symbol is used to indicate negation.

For example, when ~ is a I, it indicates that the 2° switch is in the LO posi­
tion, or that the 2° bit is a 0 in the number being decoded. To detect the
number 101, a NAND gate would look for the conditions 22, 2i and 20. When
that NAND gate is enabled, it would indicate the presence of the number 101
by giving a LO output (which could turn a lamp out). Complete the truth
table in Figure 1.35 to show the complete operating rules for the 3-bit binary
to decimal decoder. Construct the decoder as shown in the pictorial diagram
in Figure 1.34.

22 21 20 22 2i 20
0 0 0 1 1 1
0 0 1 1 1 0

'0 1 0 1 0 1
0 1 1
1
1

Figure 1.35 Binary to Decimal Decoder Operating Truth Table

Binary To Decimal Decoder Operating Instructions

DECIMAL

o
1
2
3
4
5
6
7

1. Place all sw.itches in the LO position. Observe and record lamp outputs.
2. Place 20 switch in the HI position. Observe and record lamp outputs.
3. Return 20 switch to the LO position. Place 21 switch to the H I position.

Observe and record lamp outputs.
4. Continue testing the decoder by plaCing the switches in the positions

indicated by the binary count sequence in Figure 1.30 with a HI repre­
senting a 1, and LO representing a O.

QUESTIONS
13. Explain how the logic elements in the binary to decimal decoder operate.
14. Design and construct the circuitry necessary to decode the binary num·

ber 101 into the decimal number 5.
15. Design the circuitry to decode the binary numbers up to 1111 into

decimal.
16. Why is a base 2 number system well suited for two-state devices such

as those used on the COMPUTER LAB?

SUPPLEMENTARY QUESTIONS
17. There are 24 ways that two 2-state devices can be coded to represent

the numbers 0 to 3. Complete the table in Figure 1.36 to show all of the
possible ways.

18

TO LAMP INDICATORS

2'

LO HI

Figure 1.33 Binary to Decimal Decoder

19

:=Q!
J , ~J , ~J , :=Q!J ,
KO KO KO •

It It It R

@@@@@@@@
11543210

COMPUTER LAB Em UlllllE= 123 22 2'zO
1'ULSf:

Figure 1.34 Binary to Decimal Decoder

20

DEVICE 1 DEVICE 2

LO LO
LO HI
HI LO
HI HI

ABCDEFGHIJKLMNOPQRSTUVWX

00000011
11223300
2313122·
3231213·

Figure 1.36

Which of the 24 ways is easiest to follow and expand? Why?
Expand the code you have chosen to show the truth table for the
complete count sequence available if four 2-state devices were used.

18. Construct a truth table for the numbers from 0 to 22 in the base 3
number system. (Use the digits 0, 1, 2.)

19. Design an encoder to encode the decimal numbers 0 to 8 into base 3
representation using the gates you have worked with.

20. What difficulties arise in using the COMPUTER LAB for' number systems
with a base other than 2?

21. The symbol for the NOR gate is shown in Figure 1.37. What alternative
interpretation can be given to this gating function? Why?

Figure 1.37 NOR Gate

NOTE: A small circle(s) at the input(s) to any element indicates that the
relatively low (L) input signal enables the function. Conversely,
the absence of a small circle indicates that the relatively high (H)
input signal enables the function.

A small circle at the symbol output indicates that the output terminal
of the enabled function is relatively low (L).

21

INTRODUCTION

CHAPTER 2

BASIC LOGIC GATES

The COMPUTER LAB uses electronic devices to perform the logic operations
discussed in Chapter 1. When using these devices, their special prop­
erties must be considered. One of the things discussed in this experiment is
the basic rules which must be followed when using the 2-state elements on
the COMPUTER LAB.

The AND/NOR gate will be introduced. This is an extremely useful gate which
can be used in circuits to determine the equality of two binary numbers. This
experiment also covers simple applications of both the NAND and the
AND/NOR gates to perform non-inverting logic functions.

II BASIC RULES FOR USING COMPUTER LAB FUNCTIONS
A Levels
A level is a voltage which is held constant for a long time. It may either be
HI or LO. A HI level can be detected by a lamp; that is, a lamp will be lit if
the input to the lamp is HI. If the input to a lamp is LO, it will not be lit.
Sustained logic levels are provided by the rocker switches on the front of the
COMPUTER LAB panel.

B Pulses
Pulses are voltages which go from one logic level to a second logic level for
a short time and then return to the original level. Figure 2.1 shows a HI pulse:
a voltage that goes from LO to HI, remains there for a short time, and then
returns to LO. Figure 2.2 is a LO pulse: a level that goes from HI to LO, re­
mains there for a short time and then returns to HI. H I pulses are provided
by the pulser switches and the clock. A pulser switch will provide the HI level
as long as the switch is depressed. The clock provides a continuous train of
HI pulses of very short duration. The time between clock pulses can be
varied from 1 second to less than 1/10,000,000 of a second; that is, the clock
can be slowed to provide 1 pulse per second or it can be speeded up to pro­
vide as many as 10,000,000 pulses per second.

C Input Loading

Figure 2.1 High Pulse

HI n
LO---..J L. __ _

-.I L PULSE
---, ~ WIDTH

HI---.....

U LO

Figure 2.2. Low Pulse

Each logic input on the COMPUTER LAB imposes a certain load on the out·
put driving it. A quantitative measurement of the load imposed by an input
on the output driving it is described as a number of load units. An output

23

must provide drive capability. e.qual to or greater than. the sum .Of the. load
units of all the inputs it is driving. All gate inpiJts on the COMPUTER LAB
panel impose a load of one load unit. Clock and reset inputs on the flip-flops
impose a load of two load units. The lamp inputs impose a load of 5 load
units. If one output were driving 1 gate input, 1 flip-flop reset input, and one
lamp input, that output would have to drive a total load of 1 + 2 + 5 = 8
load units_
D Output Drive
The drive capabilities of the gates, flip-flops, clock and pulsers are limited:
fan-out is a quantitative measure of the drive capability of a logic device.
The fan-out of a logic element indicates the maximum sum of load units the
element can drive .. All the logic outputs on the patch panel of the COM­
PUTER LAB have a fan-out of 10. The clock, pulsers and rocker switches have
a fan-out of 30. Therefore, a gate output is capable of driving any combina­
tion of inputs which imposes a load of 10 load units or less. For instance,
one gate output can drive 10 gate inputs_
E Output Connections
Because of the electronic configuration of the logic elements in the COM­
PUTER LAB, outputs from gates, flip-flops, pulsers, clock, switches, etc. must
be connected only to inputs. Outputs must not be connected to outputs. If
outputs are connected together, an indeterminate condition will reside in the
logic network and the results of an experiment would be inaccurate.
F The Clock
The clock provides a continuous train of H I pulses at its output. The repeti­
tion rate of these clock 'pulses is variable from 1 pulse per second up to
10,000,000 pulses per second. The clock has several available speed ranges.
By connecting a wire from the common terminal to the left-most frequency
selecting terminal, the clock operates at its lowest speed. By leaving the com­
mon terminal disconnected and the frequency terminals all disconnected, the
clock operates at its highest speed. The clock fine control provides fine ad­
justment of speed within each coarse range.
G Ground Outputs
Ground outputs (labeled "gnd") are provided in the bottom corners of the
COMPUTER LAB patch panel. They should be used only to connect one com­
puter lab to another to perform complex experiments.

III THE AND/NOR GATE
The AND/NOR gate is a single logic element capable of performing compound
logic functions. Figure 2.3 is a symbolic diagram of the gating functions per­
formed by the AND/NOR gate. Since this is a single logic element; it is im­
possible to use any of the individual functions within the AND/NOR gate
separately.

A

INPUTS x>---- OUTPUT

Figure 2.3 AND/NOR Gate

24

Only 4 inputs and 1 output are accessible. The truth table for the AND/NOR
gate is shown in Figure 2.4. If either of the AND functions in the gate is en­
abled, by a H I at both its inputs, the output NOR gate will also be enabled
and the output of the AND/NOR gate as a whole will be LO. If neither of the
AND functions in the AND/NOR gate is enabled, the AND/NOR gate will be
disabled and its output will be HI.

INPUTS OUTPUT

A B C D

LO LO LO LO HI
LO LO LO HI HI
LO LO HI LO HI
LO LO HI HI LO
LO HI LO LO HI
LO HI LO HI HI
LO HI HI LO HI
LO HI HI HI LO
HI LO LO LO HI
HI LO LO HI HI
HI LO HI LO HI
HI LO HI HI LO
HI HI LO LO LO
HI HI LO HI LO

'HI HI HI LO LO
HI HI HI HI LO

Figure 2.4 AND/NOR Gate Truth Table

EXPERIMENT 2.1: AND/NOR GATE
Test one of the AND/NOR gates on the COMPUTER LAB by connecting its
four inputs to rocker switch outputs and its output to a lamp input. Verify
that the gate operates as outlined in the truth table in Figure 2.4.

EXPERIMENT 2.2: NOR GATE APPLICATION OF AND/NOR GATE
Connect the 2 AND inputs of each half of the AND/NOR gate together as
shown in Figure 2.5. Connect one rocker switch to each of the AND inputs of
the AND/NOR gate. Leave the lamp driver connected to the output of the
gate. Show the operation of the AND/NOR gate connected in this manner by
completing the truth table in Frgure 2.6.

OUTPUT

Figure 2.5 NOR Application of AND/NOR Gate

25

INPUTS OUTPUT
A 8

1-0 LO HI

LO HI LO

HI LO

HI HI

Figure 2.6 NOR TRUTH TABLE

The AND/NOR gate when connected as outlined above, is performing the
NOR function shown symbolically in Figure 2.7. An alternate representation
for the NOR function is a negated input AND, as shown in Figure 2.8.

QUESTIONS

~ OUTPUT INPUTS

Figure 2.7 NOR Gate o OUTPUT INPUTS

Figure 2.8 Negated Input AND Gate

1. Construct a truth table for the negated input AND gate, and compare
it to the truth table you have made in Figure 2.6. Explain why the NOR
gate and the negatej:! input AND gate are different interpretations of the
same logic function.

2. Make a truth table for the operation of the logic function shown in
Figure 2.9.

A

B

o

c

Figure 2.9

26

•
EXPERIMENT 2.3: AND/NOR COMPARATOR
The AND/NOR gate can also be used to compare two bits of binary informa­
tion to determine whether or not they are equal. A simple way to perform this
comparison uSing ali AND/NOR gate and two inverters is shown in Figure
2.10. This circuit determines whether or not the two binary bits A and Bare
in the same state and are therefore equal. The truth table in Figure 2.11 shows
that if both A and B are equal, the output is H I. If A and B are not equal,
the output is LO. Construct the 2·bit comparator of Figure 2.10 on the
COMPUTER LAB, connecting the inputs to rocker switches and the output
to an intlicator lamp. Test the comparator for each set of conditions in the
truth table in Figure 2.11, and verify that it operates as outlined.

f

Figure 2.10',AND/NOR Comparator

A B A= B

LO , LO ; HI

LO HI LO

HI LO LO

HI HI ' HI

Figure 2;11 Comparator Truth Table

QUESTIONS
3. Explain the operation' of the gates in the comparator .for each of the 4

input conditions.

EXPERIMENT 2.4:AND/NOR GATE USED FOR EXCLUSIVE OR
The normal 2-input OR function is present or enabled if one input or the
other .or both, are HI . Another type of OR function is the Exclusive OR.
This function is enabled if one input or the other, but not both, is present.
In other words, the dutputis HI if the :inputs -are different. The Exclusive OR
function can be constructed using the lAND/NOR gate with two inverters, as
shown in Figure 2.12. Complete the truth tabl~ for the Exclusive OR function
shown in Figure 2.13.

27

•

A

8

A EXCLUSIVE ~ 8

Figure 2.12 AND/NOR Exclusive OR

A B A Exclusive OR B

LO LO LO

LO HI HI

HI LO

HI HI

Figure 2.13 Exclusive OR Truth table

Construct the circuit shown in Figure 2.12 on the COMPUTER LAB. Connect
inputs to rocker switches and connect the output to a lamp indicator. Test
the circuit by verifying that the Exclusive OR circuit operates as outlined in
the truth table in Figure 2.13.

QUESTIONS
4. What function would be obtained by putting an inverter on the output

of the Exclusive OR circuit?

EXPERIMENT 2.5: NON·INVERTING GATES
Even though the COMPUTER LAB uses inverting gates, it is sometimes neces·
sary to have non-inverting functions. Non-inverting functions can be con­
structed from inverting gates and separate inverters. To convert an inverting
gate input to a non-inverting input, connect -an inverter to the input. To con­
vert an inverting output to a non-inverting output, connect an inverter to the
output. For example in Figure 2.14a an AND function is constructed by in­
verting the output of a NAND gate. Construct this AND function on the
COMPUTER LAB, connecting the two inputs to the rocker switches and the
output to a lamp. Make a truth table to confirm that the function con­
structed is operating as an AND gate. Compare your truth table with the
AND gate truth table in Figure 2.14b.

28

QUESTIONS

A

-" D-~

A

o
o
1
1

Figure 2.14a AND Function

B

o
1
o
1

OUTPUT
A and B

o
o
o
1

Figure 2.14b AND Gate Truth Table

5. Construct an OR function using a' NAND gate with inverters at the two
inputs. Make a truth table for its operation.

6. Make an AND function using two inverters and the ANDINOR gate in
the NOR application.

7. Make an OR function using an AN DINOR gate in the NOR configuration
plus one inverter.

8. What is the most convenient way to construct an AND function?
9. What is the most convenient way to construct an OR function?

EXPERIMENT 2.6: THE EQUALITY DETECTOR
There are many applications in a computer where it is necessary to compare
the value of two numbers and determine if they are equal. The comparator
constructed previously in this experiment will indicate if two bits are equal.
To determine if two complete binary numbers are equal, corresponding bits
of the binary numbers can be compared using a comparator circuit. The out·
puts from a number of comparator circuits can be brought into an AND
function to determine if the two numbers as a whole are equal. The circuit
in Figure 2.15 is an equality detector composed of four comparator circuits
which will determine if two 4-bit binary numbers are equal. If the two num·
bers are equal, there will be a HI or 1 at the output.

. .

29

TO ROCKER
SWITCHES TO LAMP

ORIY£R

Figure 2.15 Four-Bit Equality Detector

A4 . A3 A2 A, B4 B3 B2 8,

Figure 2.16 Switch Usage for Equality Detector

Construct the equality detector as shown in Figure 2.15. Connect the switch
inputs shown in Figure 2.16 with number A on the left of the switch register
and number B on the right of the switch register. Connect the output of the
equality detector to a lamp indicator. Verify that the circuit does in fact
operate as an equality detector by setting one number into the A switch
register and trying the B register in all 16 possible states. Note the condition
of the switches in the B register which causes the lamps to light. Repeat this
procedure for two or three different settings of the number in switch register
A.

30

QUESTIONS
10. Explain the operation of the gates in the equality detector in Figure 2.15.
11. Design an equality detector for two 8-bit switch registers using only

AND/NOR gates, two-input NAND gates and four-input NAND gates.
EXPERIMENT 2.7: PARITY BIT GENERATOR
There are a number of ways to check that a binary number transmitted
from' one device to another is accurate. One way is to count the number of
l's in a binary number and, if there are an odd number of 1 's, add another
bit (called a parity bit),equal to one, to the end of the number. If the sum of
the number of l's in a binary number is even, a parity bit equal to 0 is added
to the end of the number.
If a number and its parity bit are checked at any later time, there should al­
ways be an even number of 1 's. The composite number is now said to have
even parity. Data transmitted over a long distance often has a parity bit
added so that the receiving computer or logic system can check the accuracy
of a number before accepting it.
Suppose the information for preparing a pay check of $128 was transmitted
from one computer to another as the binary number 10000000. If the 27 bit
of information was for some reason changed, the binary number would be­
come 00000000 and the check would be written for $0. Had the system used
parity, the number transmitted initrally would have been 100000001 and the
number recei\(ed with the error would have been 000000001. When the re­
ceiving computer did a check for parity, the error would be discovered and
the receiving computer would request the sending computer to re-transmit
the information.
Complete the truth table in Figure 2.17 to show what parity bit should be
added to the end of all 16 possibilities for 4 binary bits of information to
maintain even parity. Construct the parity bit generator in Figure 2.18 con­
necting the inputs to rocker switches and the parity bit output to an indicator
lamp. Connect the outputs of the four rocker" switches to indicator lamps as
well to give an indication of the binary number being read into the circuit.
The parity bit generator uses successive Exclusive OR circuits to detect an
uneven number of l's. Test the circuit and verify that it operates as outlined
f~.r each condition of the truth table in Figure 2.17.

o
o
o
o
o
o
o
o
1
1
1
1
1
1
1
1

BINARY NUMBER

o
o
o
o
1
1
1
1
o
o
o
o
1
1
1
1

o
o
1
1
o
o
1
1
o
o
1
1
o
o
1
1

o
1
o
1
o
1
o
1
a
1
o
1
a
1
a
1

Figure 2.17 Parity Bit Truth Table

31

PARITY BIT

o
1
1
o
1
o

QUESTIONS
12. Explain how successive Exclusive OR circuits can detect that an uneven

number of 1's is present in the number and then generate a 1 parity
bit.

13. Design a circuit for a 5-bit parity checker which could check the numbers
generated by the parity generator in Figure 2.18.

SWITCH
INPUTS

Figure 2_18 Parity Bit Generator

SUPPLEMENTARY QUESTIONS

TO LAMP

INDICATOR

14. Design and construct a circuit using an ANDjNOR gate where the output
will be LO if inputs A and 8 are HI, or input C is HI.

15. Design a parity bit generator for four information bits to generate a
number and parity· bit combination which will always give an odd num­
berof l's. (odd parity)

16. Design and construct a circuit using only NAND gates to perform the
same function as the AND/NOR gate.

-17. Will a parity bit checker be able to determine if two bits of one binary
number have changed value during a transmission of information?

32

CHAPTER 3 '
FLIP-FLOPS

INTRODUCTION

The logic devices studied to this point have all required a continuous input
level to operate. Once the input le,o'el was removed, the device would not re­
member its previous input condition. In addition to gates, a computer requires
devices that will retain their condition after an input has been removed. One
example of a device without memory is a push-button. The push-button is
energized only as long as the button is depressed. A light switch illustrates a
device with memory. When a light switch is turned on, it will stay on until it
receives an impulse to turn off. After it is turned off it will stay off until an­
other"on"impulse is received. If there were no electrical devices with memory,
a button would have to be held depressed to keep a light on.

In a computer.one device which has memory is called a fUp-flop: an electronic
logic element which remembers the last instruction it received. In many ways
it is similar to a light switch. If a flip-flop receives an instruction to go to the
"I" condition it does so and stays there until instructed to go to the "0"
condition. If it is in the "1" condition and receives an instruction to go to the
"0" condition, it does so and stays there until instructed to return to the "I"
condition.

All flip-flops have a 1 and 0 output. If the 1 output is HI, it indicates that the
flip-flop is in the "1" condition. If the 0 output is HI,the flip-flop is in the "0"
condition. The 0 output always presents the opposite or complement of the
information at the 1 output. There are therefore only two possible output con·
ditions, either the 1 output H I and the 0 output LO or the 1 output LO and
the 0 output H I.

Examining either output indicates the state of the other output and the
condition of the flip-flop. Only the condition of one output must be known to
determine the condition of the flip-flop; however, two outputs are provided
for convenience. The truth table in Figure 3.1 shows the two possible output
conditions for a flip·flop and the corresponding definition for the flip·flop
state.

OUTPUTS
I 0

HI
LO

LO
HI

FLIP-FLOP
STATE

Figure 3.1

"!"
"0"

In this experiment several types of flip-flops will be constructed using only
NAND gates. The internal logic operation of flip-flops can be more closely
studied by building them from standard gating functions than would be pos­
sible using the complete flip-flops supplied on the COMPUTER LAB patch
panel.

II THE R-S FLIP-FLOP
The Reset·Set(R-S) is the simplest to construct and easiest to understand
flip-flop. It has two inputs, a SET input and a RESET input, and two outputs,
a 1 and a O. If a LO pulse is received on the SET input, the flip-flop goes to

33

the "I" condition and remains there after the pulse has been removed. If a
LO pulse is received on the RESET input, theflip·flop goes to the "0" condi­
tion and remains there.

TO ROCKER
SWITCHES'

TO LAMP
INDICATORS

Figure 3.2 R·S Flip·Flop Using Negated Input OR (NAND) Gates

The circuit in Figure 3.2 is an R-S flip-flop composed of negated input OR
(NAND) gates. Assume that both the Set and Reset inputs are HI and that the
flip-flop is initially;in the "1" condition with its 1 output HI and its 0 output
LO. In this state gate A will have a HI output and will present a high level to
the upper input of gate 8. The RESET input and the SET inputs are both dis­
abled when HI. Gate 8 will have two HI inputs present and its output will
therefore be LO. The ~O output of gate 8 will present a LO input to gate A
which will enable gate A and produce a HI at A's output. Therefore, gate 8 is
continually enabling gate A and gate A is continually disabling gate 8. The
two gates are "latched" in a condition that will remain until the input con­
ditions are changed.

Similarly in the ."0" condition, gate 8 is continually enabled by gate A and
gate A is continually disabled by gate 8.' This again is a latched conciition
which will remain until the flip-flop receives another input.

If the flip-flop is initially in the "0" condition and a LO pulse is present on
the SET input, gate A will be enabled and provide a HI at its output and a
HI at the input to gate 8. Gate -8 will be disabled because the RESET is HI
and the input presented by gate A is HI. Gate 8's output will therefore go
LO. In the LO condition, it will enable the lower input of gate A and will es­
tablish a latched "1" condition. Similarly if the flip-flop is initially in the"t'
condition, and 'a LO pulse is presented on the RESET line, gate 8 is enabled
causing gate A to be disabled and creating a latched "0" co'ndition.

If both inputs of an R-S flip-flop are simultaneously enabled with a LO pulse,
both outputs will go HI .for the duration of the enabling pulses. When both
enabling pulses are removed, the flip-flop will go to an indeterminate state: it
could latch in either the "1" or the "0" condition. 8ecause of this inde­
terminate state, care must be taken when using an R-S flip-flop to insure
that both inputs are not simultaneously enabled.

EXPERIMENT 3.1: R-S FLIP-FLOP
Figure 3.3. is a truth table showing the output conditions which will result
when the combinations of initial conditions and Signal inputs occur as shown

34
I'

in columns one through four. Line one and line five will result in the inde­
terminate conditions previously described. Construct the R-S flip-flop as
shown in Figure 3.2; connect the 1 and 0 outputs to separate lamp indicators.
Connect SET and RESET inputs to rocker switches. Test the circuit you have
constructed to verify each line in the truth table in Figure 3.3.

flip-flop in "1"
condition initially

flip-flop in "0"
condition initially

QUESTIONS

(1) (2) (3) (4)

INITIAL CONDITIONS PULSED SIGNAL INPUTS

1 OUTPUT o OUTPUT SET INPUT RESET INPUT

HI LO LO LO
HI LO LO HI
HI LO HI LO
HI LO HI HI

LO HI LO LO
LO HI LO HI
LO HI HI LO
LO HI HI HI

Figure 3.3. R-S Flip-Flop Truth Table

(5) (6)

OUTPUT RESULT

1 OUTPUTjO OUTPUT

INDETERMINATE
HI

I
LO

LO HI
HI LO

IN DETEr INATE
HI LO
LO HI
LO HI

1. Assuming both inputs are H I, explain why the R-S flip-flop stays locked
in one state or the other. Outline how each gate is operating in your
explanation.

2. Explain how the transition from the "I" to the "0" condition takes place
when the flip-flop receives a RESET pulse. Attempt to operate the SET
and RESET rocker switches simultaneously to perform steps one and
five in the truth table in Figure 3.2. Were the results consistent? Why?

3. What is the fan-out of each of the R-S flip-flop outputs?

III CLOCKED R-S FLIP-FLOP
Most often when a flip-flop is used, it is best to enable, or condition, its
inputs with levels first and then allow it to make the required transition after
it receives a pulse from another source. The pulse source in a digital system
is called a "clock." The COMPUTER LAB has a clock included. However, for
this experiment, the pulser switches will be used to provide single pulses in­
stead of the train of pulses supplied by the clock.

The clocked R-S flip-flop has two separate circuit sections as shown in Figure
3.4. The flip-flop section is identical to the R-S flip-flop previously examined.
There is also a steering network which steers clock pulses to either SET or

35

RESET the flip-flop. If the SET input line is enabled with a HI level, gate A
will be enabled when a HI pulse is presented at the clock input. When gate A
is enabled, it will provide a LO SET signal to the R-S flip·flop and the
flip·flop will go to the "I" condition. If the SET input line has a LO level
and the RESET line is enabled with a H I level, gate B will be enabled when
a HI clock pulse occurs. When gate B is enabled, a LO RESET signal will be
presented to the flip-flop and it will go to the "0" condition.

TO ROCKER SET
SWITCH ----f

TO PULSER CLOCK
SWITCH

TO ROCKER RE_S_E_T_--f
SWITCH

Figure 3.4 Clocked NAND Gate R·S Flip-Flop

EXPERIMENT 3.2: CLOCKED R-S FLIP-FLOP

TO LAMP
INDICATORS

Figure 3.5 is a truth table which shows all eight possible initial conditions
that can exist prior to a clock pulse. Complete the final columns to show what
conditions are present after the clock pulse. Note that if both the SET and
RESET inputs are enabled before a clock pulse, the flip-flop condition is in­
determinate after the pulse. Construct the circuit in Figure 3.4, connecting
the SET and RESET inputs to rocker switches and the clock input to a pulser
switch. Connect both the 0 and 1 outputs to lamp indicators. Test the circuit
to verify that it operates as outlined in the truth table in Figure 3.5.

INITIAL CONDITIONS SIGNAL INPUTS AFTER CLOCK PULSE

1 OUTPUT o OUTPUT SET RESET 1 OUTPUT o OUTPUT

LO HI LO LO
LO HI LO HI LO HI
LO HI HI LO HI LO
LO HI HI HI
HI LO LO LO
HI LO LO HI LO HI
HI LO HI LO HI LO
HI LO HI HI

Figure 3.5 Clocked R-S Flip-Flop Truth Table

QUESTIONS
4. When does a flip-flop transition take place, on the leading edge or the

trailing edge of a HI clock pulse? Why?

36

5.' Why is th.e output indeterminate if both the SET 'and RESET inputs are
enabled when the clock pulse occurs? '

6. Explain the operation of the flip-flop by outlining the function of each
gate.

IV D TYPE FLlP·FLOP
One way of insuring that there can be no indeterminate state in the operation
of a flip-flop is to provide only one conditioning input which can either be HI
or LO. The 0 type flip-flop has only one conditioning input, the 0 or data
input. Whatever information is present at the D input prior to and during the
clock pulse propagates to the "1" output when the leading edge of the clock
pulse occurs. If the D input is H I prior to and during a clock pulse, the flip·
flop goes to the" 1" condition; if the D input is LO before and during a clock
pulse, the flip-flop goes to the "0" condition.

EXPERIMENT 3.3 D TYPE FlIP·FLOP
Figure 3.6 is a simplified D type flip-flop. If HI information is present on the
o conditioning input, gate A is enabled when a HI clock pulse occurs and SET
information is passed ontothe R-S flip-flop section causing the flip-flop to latch
in the "1" condition. If a LO level is present on the 0 input, gate B is en­
abled 'when a clock pulse occurs and a RESET pulse is passed through, caus­
ing the R-S flip-flop to go to the "0" condition. Complete the truth table in
Figure 3.7 to show the operation of a D type flip-flop. Construct the circuit in
Figure 3.6 on the COMPUTER LAB connecting the 0 input to .a rocker switch
and the clock input to a pulser switch. Connect both the 1 and the a outputs
to lamp indicators. Test the circuit to verify that it operates as outlined in
the truth table in Figure 3.7.

TO ROCKER "0" INPUT
SWITCH

TO
INDICATORS

Figure 3.6 0 Type Flip-Flop

INITIAL CONDITIONS o INPUT AFTER CLock PULSE

1 OUTPUT a OUTPUT 1 OUTPUT a OUTPUT

LO HI LO LO HI
HI LO LO LO HI
LO HI HI
HI LO HI

Figure 3.7 o Type Flip-Flop Truth Table

37

QUESTIONS
7. Explain the operation of the D type flip·flop by noting the function of

each of the gates.
8. Are there any indeterminate states in the truth table for this device?
9. Design a circuit to SET or RESET the flip·flop directly, independent of

the state of the st~ering network.

V MASTER-SLAVE J-K FLIP-FLOP
One of the most useful flip-flops available is the J·K flip-flop. The two unique
features of a J·K flip·flop are: A) a clock pulse will not cause any transitions
in the flip-flop if neither the J nor the K input is enabled prior to the clock
pulse, and B) if both the J and the K inputs are enabled before a clock pulse,
the flip-flop will complement or change state when the clock pulse occurs. If
a 1 is present before the clock pulse, a 0 will be present after the clock pulse
and if a 0 is present before the pulse, a 1 will be present after. There is no
~eterminate condition in the operation of a J-K flip·~. =-
The J-K flip·flops used in the COMPUTER LAB are master-slave devices which
trigger on the trailing edge of a clock pulse. They are actually two flip-flop
circuits: a master flip-flop and a slave flip-flop. The information which is
present at the J and K inputs is transmitted to the master flip-flop on the lead­
ing edge of a HI clock pulse and held there until the trailing edge of the clock
pulse occurs when it is allowed to pass through to the slave flip-flop. If the
J input is enabled and the K input is disabled prior to a clock pulse, the flip·
flop will go to the "1" condition. If the K input is enabled and the J input is
disabled prior to the clock pulse, the flip·flop will go to the "0" condition. If
neither the J nor the K input is enabled before a clock pulse, the flip-flop will
remain in whatever condition it is in. If both the J and the K inputs are en­
abled, the flip·flop will complement on the trailing edge of the H I clock pulse
and go to the opposite of whatever state it was in.

TO ROCKER
SWITCH

TO LAMP INDICATOR

Figure 3.8 Master-Slave J·K Flip-Flop

38

I OUTPUT

TO LAMP
INDICATORS

Figure 3.8 shows a functional ltigtc diagram of a master slave J-K flip-flop
using NAND gates. Gates C and D are the master flip-flop. Gates G and H
are the slave flip-flop. Gates A and B are the steering network of the master
flip-flop and the steering network for the slave flip-flop is comprised of gates
E, F, and I. The 1 output of the master fli -flo is oint X. The operation of
the flip-flop will e s u Ie by examining e a ransition of the flip­
flops, with both the J and the K inputs enabled with a HI level before the
clock pulse. When the leading edge of a HI clock pulse occurs, gate B will be
enabled with three H I inputs. This will provide a RESET signal for the master
flip-flop which will then go to the "0" condition. Th slav . -flo
in the "I" condition
a I F, thereby blocking inputs t I -
fop. When the trailing edge of the 0 rs, gate F will be enabled
with a HI level at both its inputs and a RESET signal'will be provided to the
slave flip-flop, which will then go to the "0" condition. The next clock pulse,
with both the J and K enabled, would cause the master flip-flop to go to the
"1" condition on the leading edge of the clock pulse and cause the slave
flip-flop to go to the "1" condition on the trailing edge of the pulse. Figure
3.9 is a truth table for the J-K flip-flop showing all eight possible initial con­
ditions.

INITIAL CONDITIONS FINAL CONDITIONS
OUTPUTS INPUTS OUTPUTS

1 0 J K 1 0

LO HI LO LO LO HI
LO HI LO HI LO HI'
LO HI HI LO MI LO
LO HI HI HI
HI LO LO LO
HI LO LO HI
HI LO HI LO
HI LO HI HI -

Figure 3.9 Master-Slave J-K Flip-Flop Truth Tab!e

EXPERIMENT 3.4: J·K FLIP-FLOP
Complete the truth table in Figure 3.9 to show the final conditions that would

suit after a clock pulse.

Construct the flip-flop in Figure 3.8 on the COMPUTER LAB connecting the J
and K inputs to rocker switches, the clock input to the pulser switch and the
1 outputs of both the master and the slave flip-flop to lamp indicators. (The
1 output of the master flip-flop is point X.) Test the operation of the flip-flop
to verify that it operates as outlined for each condition of the truth table.
When operating the flip-flop, note when transitions occur-on the leading
edge (when the clock pulser is depressed) or on the trailing edge (when the
clock pulser is released) of the clock pulse. Test the operation of one of the
built in J-K flip-flops on the COMPUTER LAB to verify that it also operates
according to the truth table in Figure 3.9_ Connect the J, K, and RESET inputs
to rocker switches, the clock input to a pulser switch and the 0 and 1 outputs
to indicator lamps. The RESET overrides all other inputs and puts the flip-flop
in the "0" state. Since RESET .is an inverted input, a LO level enables it a.nd
a H I level disables it.

QUESTIONS '. '.. .. ,' ,v '. '1

10. Are there any indeterminate states in the operation of the j-K flip-flop?
Why?

11. Explain how the flip-flop makes a "0" to "1" transition if the J input is
enabled prior to the clock pulse and the flip-flop is initially in the "0"
condition.

12. Complete the diagram in Figure 3.10 showing the timing of the opera­
tions in the master and slave sections of the J-K flip·flop for the"O"and"(
transition. Assume that the clock pulse is 50 nano seconds (50 x 10-9 sec.)
duration and that each NAND gate requires 15 nano seconds to prop­
agate information from its inputs to its output.

13- Show how the circuit in Figur'e 3.8 could be modified to include a direct
SET and a direct RESET input.

H

CLOCK
INPUT

L

H

POINT X

L

H

"I" OUTPUT

L

I

I

1~30",~ I DELAY
I

I .

Figure 3.10 J-K Flip-Flop Timing

VI J-K SHIFT REGISTER
Frequently a digital signal has to be stored for a given number of clock pulses
and, at the end of that time .. be fed into another circuit in a system. For in­
stance, a component tester on a production line would test a device and
some number of positions later, if the device were defective, eject it. The in­
formation that the device had failed could be fed into a shift register and
each time the device moved one position down the line, the information in
the shift register would shift one position as well. When the defective device
reached the ejector, the shift register would indicate that it was in position
and the ejector would remove it from the production line.

Figure 3.11 is a four-bit J-K shift register which transmits information from
its input to its output after four clock pulses. Assume all flip-flops are initially
in the "0" condition and the rocker switch to the J input of flip-flop A is
providing a HI level. When the first clock pulse occurs, flip·flop A will go to
the "I" condition because its J input will be enabled with a HI level and its
K input will be disabled with a LO level. Flip-flop 8 will remain in the "0"
condition because its J input is disabled with a LO level an.d its K; input is
enabled with a H I level, both ~eyels being pres~nted by the outputs of flip­
flop A. Similarly, flip-flop C will remain in the "0" condition, as will flip-flop

40

D. If the rocker switch Is put In the LO condition before the next clock pulse,
flip-flop A will go to the "0" condition on the following pulse. Flip-flop B will
go to the "l" condition because its J input is enabled by the 1 output of
flip-flop A and its K input is disabled by the 0 output of flip-flop A. Flip-flop
C and flip-flop D will remain in the "0" condition because their K inputs are
enabled with a H I level and their J inputs are disabled with a La level. Suc­
cessive clock pulses will shift the "I" which was initially fed into flip-flop A
on the first clock pulse to flip-flop B, then to flip-flop C, and finally to flip­
flop D. After the five clock· pulses all flip·flops will be back in the "0"
condition.

_ {SHI"tc&.OCICl
1ON.IER

SWITCH
IllSET

Figure 3.11 Four-Bit J-K Shift Register

EXPERIMENT 3.5: 4-81T SHIFT REGISTER
Fllure 3.12 isa truth table for the four-bit shift register. Complete the last
three columns' in the truth table.Construct the shift register Figure 3.11 on
the COMPUTER LAB connecting the flip-flop 1 outputs to lamp indicators,
the serial input to a rocker switch and the shift and RESET inputs to pulser
switches. Test the shift register to verify that it operates as outlined in the
truth table in Figure 3.12.

FLIP-FLOP FLIP-FLOP FLIP-FLOP FLIP-FLOP

A B C D
0 0 0 0
1 0 0 0
0 1 0
0 0
0
0

Figure 3.12 Four-Bit Shift Register Truth Table

. QUESTIONS
14. Complete the timing diagram in Figure 3.13 to show the results obtained

from operating the shift register as outlined above.
15. Explain in detail,how a shift register works. In your explanation describe:

a. How a "1" can propagate down the line
b. Why does a flip-flop in a "I" state with input being fed by a flip-flop

in the "0" state return to the "0" state when a clock pulse is re­
ceived.

41

CLOCK
INPUT

ROCKER
SWITCH

INPUT

-'-OUTPUT
OF F.F.A

-'-OUTPUT
OFF.F.B

·'·OUTPUT
OF F.F. C

-'·OUTPUT
OF F.F. 0

D D D D

r---

Figure 3.13 Four-Bit Shift Register Timing Diagram

SUPPLEMENTARY QUESTIONS

D

16_ The 0 type flip-flop in Figure 3_6 is a simplified version of the flip-flop
and has certain limitations. The most serious limitation is the fact that
when the 0 input changes level while the clock input is still HI, the flip- ,
flop 1 output will follow the level change. 0 type flip-flops used in com~
puters do not have this problem. Whatever level is present at the D
input prior to the clock pulse is transmitted to the 1 output of the flip­
flop on the leading edge of a clock pulse. Further changes on the D
input after the leading edge of the clock pulse has occurred do not
affect the 1 output. Figure 3.14 is a functional block diagram of the
actual 0 type flip-flop used in computers. The direct RESET and the
direct SET inputs are disabled when HI. The Hand l indications marked
on each input and each output of the gates on the flip-flo'p indicate
levels present in the flip-flop when it is in the "0" condition and the 0
input is HI. Explain how a "0" to "I" transition occurs on the leading
edge of a clock pulse. Also explain why the 0 input has no effect on the
flip-flop after the leading edge of the clock pulse has occurred.

42

".

CLOCK o

o INPUT

Figure 3.14 o Type Flip·Flop

17. Explain how the direct SET and the direct RESET work on the 0 type
flip·flop. If a direct RESET signal is present and the D input is HI
when the leading edge of a clock pulse occurs, will the flip-flop go to the
"1" condition?

18. If the RESET is enabled on one of the J-K flip-flops on the COMPUTER
LAB and a J is enabled when a clock pulse passes, what condition re­
sults after the clock pulse? Why?

19. Design and construct the additional circuitry to allow the 4-bit shift
register to recycle any information it contains every four clo<;k pulses.
Also mak~ provision to read a 1 into flip-flop A at any time and reset
all flip-flops. This application of a shift register is known as a ring
counter.

20. Design and construct additional circuitry to allow the 4-bit shift register
to read information into the four flip-flops from four rocker switches
simultaneously. The shift register can be RESET (to put all flip-flops in
the "0" condition) by momentarily enabling the RESET line prior to read­
ing in the information from the switch register.

21. Construct the switch tail ring counter in Figure 3.15 on the COMPUTER
LAB and make a truth table for its operation.

43

Figure 3.15 Switch Tail Ring Counter

44

CHAPTER 4
BOOLEAN ALGEBRA TO GATING NETWORKS

INTRODUCTION

Boolean algebra is a form of algebra designed to deal specifically with two·
state functions. The logic functions presented in previous experiments can be
expressed in Boolean algebraic form. With Boolean, or two-state, algebra,
two·state logic functions can be manipulated in a simple mathematical
fashion rather than with cumbersome logic diagrams or truth tables. In this
experiment the basic Boolean relations and the use of those relations to
simplify Boolean functions will be discussed. Often the complexity of a gating
network can be reduced to obtain reduced cost and greater operating speed.
The following three techniques are used in the reduction process:

1. Reduce the Boolean expression to the simplest form.
2. Make a truth table and search for any simpler correlations that might

not be apparent in the Boolean expression.
3. Design the gating circuit, keeping in mind the capabilities of the gates

available, and search for greater reduction.

Several examples using these three simplification techniques will be devel·
oped and constructed in this experiment.

II BOOLEAN OPERATORS
The standard logic symbols for AND, OR, INVERT, etc. were presented in
Chapter 1. Each symbol has a set of specific relations between input and out·
put conditions. These same logic functions, or operators, can be represented
in Boolean algebraic form. The algebraic signs used to express the logic rela­
tions between Boolean variables are the following:

a) AND: . (dot)
b) OR: + (plus sign)
c) EXCLUSIVE OR: 8 (circled plus sign)
d) NEGATION: - (superscript bar)
d) EQUALITY: - (equivalence sign)

Boolean expressions have several important characteristics which help to
simplify their manipulation. Just as in normal algebra, a Boolean algebraic
expression is composed of variables, constants and operation signs. In.
Boolean algebra, a variable can have only two possible states, 1 or O.
For example, the Boolean variable A can be either 0 or 1, but nothing else.
Similarly, there are only two Boolean constants, 1 and O. As with vari­
ables and constants, an entire Boolean function, or expression, can have
only one of two possible values, 1 or O. For example, the expression
[A + C· (B· C + D)] can represent only one of the two possible states, 1 or
0, depending upon the values of the variables A, B, C and D.

A Boolean function can be uniquely identified by listing the value of the
function ("1" or "0") for each combination of input conditions. Such a listing
is the familiar truth table. A helpful fact to know when preparing a truth table
for a Boolean expression is that, if there are variables in the expression, there
will be 2n rows in the truth table. For example, the expression A + B· C; D
has four variables; therefore, its truth table will have 24 , or 16, rows.

45

Figure 4.1 shows the corresponding symbolic logic function for each of the
five basic Boolean operators. The simplification possible using Boolean sym­
bology is apparent even with these basic operators. The gating symbols are
obviously much more difficult to use and manipulate than the corresponding
Boolean operators.

Truth tables of all the basic Boolean operators are shown in Figures 4.2A
through 4.2E.

A B

0 0
0 1
1 0
1 1

Figure 4.2a

A B

0 0
0 1

1 0

1 1

Figure 4.2b

A

o
o
1

1

B

o
1
o
1

A·B

0
0

~} The AND condition is valid only
when A AND B are both valid

AND Truth Table

A+B

0

~ } the OR condition is valid when
either A OR B or both are valid

1

OR Truth Table

o
1} the EXCLUSIVE OR condition is
1 valid if A OR B but not both are

valid, i.e. if A and B are different
o

Figure 4.2c EXCLUSIVE OR Truth Table

A

o
o
1
1

B

o
1
o
1

A=B

6 The EQUIVALENCE condition
o is valid if A and Bare
1 .r" the same

Figure 4.2d EQUIVALENCE Truth Table

-H--f} NEGATION gives the binary opposite
~ I ~ ~ of a number or function

Figure 4.L~e NEGATION Truth Table

46

FUNC T I C1'N BOOLEAN SYMBOL LOGIC SYMBOL

AND

OR :=D-A
•

B

EXCLUSIVE OR

EOUIVALENCE

NEGATION

Figure 4.1

The basic Boolean operators can be combined to give more complex func­
tions. For example, the AND operator can be combined with NEGATION to
obtain the "not AND" or "NAND" function, i.e.:

A· B = AND function

A· B ==- NAND function

47

Negating each of the variables in an OR function gives a negated input OR
function, i.e.:

A + B == OR function

A. + B == negated input OR function

Combinations of the Boolean operators can be used to give any required logic
function. For example, in Figure 4.3 all the basic gates used to this point are
shown with the equivalent Boolean function.

III BOOLEAN LAWS
There are three basic laws of Boolean algebra:

1) It is commutative, i.e. A+B == B+A
A·B==B·A

2) It is associative, i.e. A+B+C == A + (B+C) == (A+B) +C
A . B . C == A . (B . C) == (A . B) . C

3) It is distributive, i.e. A· (B+C) = A . B+A . C
A+(B· C) == (A+B)· (A+C)

These laws can be proved by truth table techniques as shown in Figure 4.4.
It should be noted that the second part of the distributive law is not valid in
ordinary algebra.

A B C (B· C) A + (B· C) (ATB) (A+C) (A+B) . (A+C)

0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1

11 <=>lJ
1

1 0 1 0 1 1
1 1 0 0 1 1
1 l' 1 1 1 1

Figure 4.4 Truth Table of the Second Part of the Distributive Law

IV BOOLEAN IDENTITIES AND DeMORGAN'S THEOREM
There are nine basic Boolean identities of one variable and one constant
using only AND, OR and INVERT operators. They are the following:

= } 1.- A==A INVERT Identity

2. A·1=A

}
3. A·O=O

4. A·A=A

5. A·A=O

AN D Identities

6. A+l= 1

1
7. A+O=A

8. A+A=A

9. A+A=l

OR Identities

48

lOGIC FUNCTION

NAND

NEGATEO INPUT
OR

AND I NOR

NOR

NEGATED INPUT
AND

INVERTER

LOGIC SYMBOL BOOLEAN EXPRESSION

:=D-.

Figure 4.3

Each of the basic identities can be proved valid using truth table techniques.
Identities 1, 2 and 9 are proved in Figures 4.4a through 4.4c

i - A A-M A A A At A

O~IJO O} I~ 0 1 ~=>G tOt
t ~~ 1 0

=
Figure 4.4a Proof Figure 4.4b Proof Figure 4.4c Proof
of I~ntity # 1 of Identity # 2 of Identity # 3

(A == A) (A· 1 == A) (A+Jt == 1)

49

The basic identities with one variable lead to identities with two or more vari.
abies. To simplify the writing of complex Boolean expressions, the following
convention has been adopted which parallels that of ordinary algebra: A· B
may also be written as AB. Therefore, the identity (A+ B) . (C+D) == A . C +
A' D + B . D can be rewritten as (A+B) (C+D) == AC + AD + BC + BD.

10. A + AB ==A
11. AB + AS == A
12. (A+B) (A+B) = A
13 .. A + AB =A+B
14. (A+lh B = AB
15. AC + AB' + Be = AC + Be
16· (A+B) (B+C) (A+C) == (A+B) (A+C)

The following examples demonstrate how basic one-variable identities and
Boolean algebra laws can be used to prove two-variable identities:

Proof of Identity # 10

A+ AB
take out common factor
~ (I+B) ~ ~ Identity #6. 1 + B = 1

Proof of Identity # 12

(A+B 1 (A+Bl

-AA+AB+BA+~ r+IDENTITY #5. B8-0

~ ---u
-A+AB+BA L.IDENTITY #4. AA-A

=A+A~IDENTITY #9. 8+B-'

==A+A 1]1------IDENTITY #2. A+l-A

=A+AJ -IDENTITY #S. A+A-\

-A

Identities can also be proved by truth table techniques. The method is to de­
termine the value of the function on the left side of the identity for all possi­
ble combinations of conditions of the variables and then to determine the
value of the right side of the equation for all possible combinations. If the identity
is true. both sides will be equivalent for corresponding conditions. The follow­
ing examples (Figures 4.5' and 4.6) demonstrate the truth table method of
proof for identities 14 and 15.

Left Side Right Side

A B 'B A+B B(A+S) A·B

0 0 1 1

~j g '0 1 0 0
<=> 1 0 1 1

1 1 0 1

Figure 4.5 Truth Table of Identity # 14

50

A B C A·C
0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 1 1 1
0 1 1 0 0 0 0 0 <==> 0
1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 1 1
1 1 0 0 1 1 1 1 1
1 1 1 1 1 0 0 1 1

Figure 4.6 Truth Table of Identity # 15

There is another very valuable theorem called De Morgan's Theorem that can
be used to simplify a complex Boolean function. In its most general form,
De Morgan's Theorem states "If, in a Boolean function each + is replaced
by a ., and each . is replaced by a +, and each variable is replaced by its
complement, the result is the complement of the given function." The follow­
ing equations form the essence of De Morgan's Theorem:

1. !. S==A+G
2. A+"S==A.

Repeated application of these equations can be used to simplify complex
Boolean expressions.

The first equation states mathematically the equivalence of the negated input
AND gate and the NOR gate. The second equation states the equivalence of
the negated input OR gate and the NAND gate (Figure 4.7).

Accor~uo De Morgan's Theore":1'
since A· -S- == A+B, these two logiC
gates perform identical functions.

Accordin~to D.!...M2rgan's Theorem,
since A+B == A· B, these two logic
gates perform identical functions.

Figure 4.7 De Morgan's Theorem as Applied to Logic Gates

The above identities, laws and theorems can be used to' simplify Boolean
functions algebraically. They can all be verified using truth table techniques
if desired Other algebraic tools such as multiplying out and factoring can be
used also to reduce a Boolean fUnction without reference to truth tables. or
mapping techniques.

The following example demonstrates how a function can be reduced alge­
braicly:

[A· (A· B)] . (C . D)
The initial function has several negations which can be removed in part by
applying De Morgan's Theorem on th~Jw.o hal~es of the AND expression.

[A· (A· e)] + (C· D)
De Morgan's Theorem can again be applied to the first term in the function to

remove another negation. [A. (~+B)] + (C. D)

51

Identity # 14 can now be applied to the first term in the function to give the
final reduced function:

(A . B) + (C . D)

QUESTIONS
1. Make truth tables for the followins.:.

A· B . C, A+B+C, A(1)B~ and A=S=C.
2. Prove identities 11, 12 and 15 by means of truth tables.
3. Prove identity 14 using the single variable identities and multiplication.

V BOOLEAN FUNCTIONS TO GATING NETWORKS
There is a definite sequence of operations which can be followed to go from
a required logic function to the simplest possible gating network. The first
operation is to translate the logic requirement into a Boolean expression. The
Boolean expression is then simplified to yield a reduced Boolean equation.
Then construct a truth table of the simplified Boolean equation. Correlations
not readily apparent in a Boolean expression can often be found in a truth
table and used to further simplify the Boolean expression. If such correlations
exist, the Boolean expression should be simplified again. The final simplified
version of the Boolean expression should then be translated into a gating net­
work. The gating network again presents possibilities for simplification to
make best use of the particular logic elements available. Finally, the device
should be constructed according to the simplified gating network and tested
to verify that it operates as required by the original Boolean expression. These
techniques are not rigid and a more experienced designer may in some cases
change the order of operations or even skip steps.

A. Boolean Statement
The following example demonstrates translation of a logic requirement into
a Boorean expression: A machine will operate if: "the safety switch is on and
the foremen's key is in position and the operator's hand is not in the stroke
path of the machine and a work piece is in position." Each of the Boolean
variables should be given a name, for example, the safety switch being on
will be called "A," the foreman's key being in pOSition will be called "6," the
operator's hand being in the path of stroke will be called "C," the work piece
being in position will be called "D." The machine-start information will be
called "F." The Boolean expression representing the condition necessary to
start this machine is:

F==A·B·C"·D

QUESTIONS
4. A bowler has three pins left up, A, B, and C. Two of the pins must be

knocked down on the next bowl in order for him to win the game. Define
by means of a Boolean expression all possible ways in which he can win
the game. Also, in a second Boolean expression, define all the ways that
the player can lose the game.

5. There are five factories close together, each one turning off its lights at
a different time. Factory A turns off its lights at 5:30 pm, factory B turns
off its lights at 6:00 pm, factory C turns off its lights at 5:00 pm, factory
o turns off its light at 5:15 pm and factory E turns off its lights at 5:45
pm.

52

Part A: Define a Boolean. function dependent on the condition of the
lights which will be valid in the time interval between 5:15 pm
and 5:45 pm.

Part B: Define a Boolean expression dependent on the condition of the
lights which will be valid from 5:45 pm to 6:00 pm.

Part C: Define one Boolean expression which' will be valid for both the
following time intervals:

5:00 pm to 5:15 pm or
5:45 pm to 6:00 pm

B. Boolean Simplification

Once a Boolean function has been established the first step in translating it
into a gating network is to simplify it using Boolean algebraic techniques. The
identities, laws and theorems presented previously can be used in the sim·
plification process.

QUESTIONS
6. Simplify the following functions using Boolean algebraic techniques:

A) A . fL(B. C) + D] tJ
B) (A . s) + (A + B)
C) (A + AB) + AB
D) (A + B) . (A . B)
E) [(AB + Am + AB] + AB

C. Truth Table Reduction
Even after simplifying an expression with Boolean algebra, the final result
may indicate a logic design which overlooks the obvious. If a truth table is
constructed, often an alternate simpler expression of the function becomes
apparent. A typical example of an application for this method of simplification
would be the function:

F~ABC+ABC+ABC+ABC+AB~+ABC

If a logic circuit were constructed according to the above expression, the logic
network would take the form shown in Figure 4.8 with an AND gate for each
term of the expression and an OR gate for the final output. But if a truth
table were constructed as shown in Figure 4.9, it would become obvious that
there are only two sets of conditions where F = 0 anp it would therefore be
easier to search for conditions where F = 0 rather than where F ~ 1.

The two conditions where F ~ 0 are ABC and ABC. A logiC circuit could
be constructed to search for these two conditions and if they were found, the
function F would equal "zero." The output of the first condition OR the output
of the second condition would be F. To obtain the function F an extra stage
of inversion could be added to the end of the logic circuit as shown in
Figure 4.10.

The variable C can be either "one" or "zero" for F to be "zero." C therefore,
has no effect on the value of the function F and it can be ignored in searching
for the condition F ~ O. The only requirements for F to be "zero" are that
A ~ 1 and B = O. The circuit can be further reduced to the form shown in
Figure 4.11.

53

Figure 4.8

ABC

ABC

ABC

Gating Network for: F = A B ~ + ABC + A B ~ +
ABC+ABC+ABC

54

A

o
o
o
l'
1
1
1

o
1
1
o
o

'1
1

1
o
1
o
1
o
1

1
1
1
o
o
1
1

Figure 4.9 Truth.Jable for: F _ ABC + AS C + ABC +
ABC+ABC+ABC

B c

Figure 4.10 Logic Network to Detect F == 0

A B

I~

Figure 4.11 Simplified Network for F == 0

The rules for this type of simplification are not hard and fast. In general, one
looks for the simplest correlation between the input conditions and the out­
put. In some of the reference texts, listed in the appendix, mapping tech­
niques, such as Karnaugh maps, are described. See the Appendix for a brief
discussion of Karnaugh map simplification.

55

QUESTIONS
7. Make a truth table for the following functions and then rewrite the

functions in reduced Boolean form.

A)

B)
C)

D)

F == (A BCD) + (A BCD) + (A 8 C Q) + (A if C D) + (A BCD) +
_ _ _ _ _ _ (A BCD) + (A 8 C D)

F == (~ ~ ~ J- (A B _ Cl ± (A 8 C)_-+:, (A 8 C) __
F == (A BCD) + (A BCD) + (A B C [) + (A BCD) +

(A BCD) + (A BCD) + (A BCD) + (A BCD) +
(~ ~ f D) + lA B C 01 + jA 8 C Q) _+ (A B 9 D)

F = (A B C) + (A B C) + (A B C) + (A B C) + (A B C) + (A B C)

D. Hardware Considerations

As was shown in Chapter 2, any of the basic Boolean functions can be
constructed using combinations of the NAND and NOR gates available on the
COMPUTER LAB. The first step in the- translation is to express the Boolean
function in terms of AND, OR, and INVERT functions only. The most desira'
ble form of expression is a sum of products. For example:

A @ B == (A . B) + (A . B)

A

B

Figure 4.12 Gating Diagram for: A~B ==(A· B)+(A. B)

This expression can be translated directly into a symbolic gating diagram as
shown in Figure 4.12. The functions used in the diagram in Figure 4.12 are
not directly available on the COMPUTER LAB. However, these functions can
be constructed from available gates as shown in Figure 4.13. Figure 4.14 is
a circuit using functions available on the COMPUTER LAB to perform the
operation of the non·inverting circuit in Figure 4.12. Even though the circuit

=D-- .NO G.T£ --£>

=D--0RG.TE --£>

--{:>o-- INVERTER

~.NOUSING
~N.NOGATE

HI

OR USING
NEG.TEO
INPUT OR

~ . I NVERTER USING

~NANOGATE

Figure 4.13 Logic Functions from Gates Available on COMPUTER LAB

56

,-,-~:."""" .. ":";,,,,

,-------,
I I
I I
I I
I a:: I
I 0 I
I I
I I
I I
L __ ..J

'---I
I I
I I
I I

- I
:r

I
I
I
I

I
I
I
I

L __ --~

i i

i

Figure 4.14 Exclusive OR Using Functions Available on the COMPUTER LAB

57

can now be constructed, it can still be simplified. The first obvious simplifica·
tion possible is removing the two sets of series inverters. Identity # 1 explains
why these inverters can be removed: the double inverse of any function is
that function itself. Therefore, the output of the two inverters is the same as
the input and the inverters are performing no necessary function. The outputs
of the two NAND gates can be connected'directly to the inputs of the
negated input OR gate as shown in Figure 4.15. The NAND and negated in·
put OR gates are generating the AND/OR function or in Boolean symbology,
a sum of products.

A

HI

HI

B

Figure 4.15 Exclusive OR Using NAND Gates

The circuit is now down to the simplest form obtainable using only NAND
gates, but an AND/NOR gate with an inverter could be used to perform the
AND/NOR function in two gates instead of three as shown in Figure 4.16.

A

B

Figure 4.16 Exclusive OR Using AND/NOR and NAND Gates

Prior to inversion, the output of the AND/NOR gate in Figure 4.16 is the
function A = B. This can be confirmed algebraically by examining the truth
table in Figure 2.11. Equality and Exclusive OR functions provide comple·
mentary outputs for the same input conditions. Therefore:

(A - B) = A Et) B

If the final output inverter in Figure 4.16 was removed, the resulting circuit
would detect equality. In order to make best use of the AND/NOR gate in the
Exclusive OR application, the inverting property of the output NOR section of
the gate should be used in the design. To further simplify the circuit, the final
inverter should be removed and, to maintain the same output, complementary
information must be provided to the AND/NOR gate inputs. In the circuit in

58

Figure 4.16 , one of the AND gates is enabled when the Exclusive OR func
tion 'is "1".

To provide complementary information to the input of the AND/NOR gate, the
AND sections of the gate should be enabled when the Exclusive OR function
is "0." If one of the AND gates is enabled, the output NOR gate will be en­
abled to give a LO or "0" output indicating that the Exclusive OR condition
is not present. If neither AND gate of the AND/NOR gate is enabled, the out­
put NOR gate will be disabled to give a "1" or H I output, indicating that
the Exclusive OR is present. The most simplified form of the Exclusive OR
circuit is shown in Figure 4.17_

A

B

Figure 4.17 Final Simplified Exclusive OR Circuit

Reduction techniques used in this example were again not rigorous and relied
on step by step reasoning based o~ a thorough knowledge of the gates avail­
able on the COMPUTER LAB. The simplification using only NAND gates is
relatively straightforward and the circuit presented in Figure 4.15 would be
completely acceptable if the AND/NOR gate were not available. However, the
circuit reductions possible using AND/NOR gates make a search for applica­
tions of this gate an essential part of the design of any system. Before
attempting fo do reduction by using direct circuit simplification it is advisable
to review Chapter 2 to be certain of the operation of each gate.

EXPERIMEfiT 4.1: GATING CIRCUIT SIMPLIFICATION

The following circuits (Figures 4.18-4.21) arethe results of translating
Boolean equations directly into gating networks. Follow the circuits
through gate by gate and determine the Boolean equation for each net­
work. Construct the unsimplified circuit and make a truth table of its
operation; simpHfy the Boolean equations using all the techniques ,men­
tioned in this chapter including Boolesn reduction, truth table reduc­
tion and direct circuit reduction. Reduce the circuit to the minimum
number of gates as indicated under each diagram. Construct each re­
duced circuit and verify that it operates as outlined. in the truth table for
the unsimplified circuits. The indicator lamps can be used to detect logic
levels at various points in the circuit if necessary. Consider the AND/
NOR function as a single gate.

59

OUTPUT

Figure 4.18 2 Gates Minimum

OUTPUT

Figure 4.19 3 Gates Minimum

OUTPUT

Figure 4.20 1 Gate Minimum

OUTPUT

Figure 4.21 2 Gates Minimum

60

VI EQUALITY AND RELATIVE MAGNITUDE DETECTOR
In Chapter 2 an equality detector was built to check when the two switch
registers were equal. If the two numbers were unequal there was no way of
determining which number was the greater. In this experiment a device will
be constructed which will tell not only if two numbers are equal but, if they

. are unequal, which of the two is greater.

When two numbers are unequal the one with the greater value is greater at
the most significant unequal bit. For example, the number A == 11011 is
greater than the number B == 10111 because the 23 bit of number A is greater
than the 23 bit of number B. Since the 23 bit is the most significant inequality
there is no need to examine any less significant bits. As a matter of fact, in
this case if the 22 bit were examined by mistake to determine which number
is greater, 8 would wrongly appear larger than A.

An equality and relative magnitude detector can be built in two sections: the
first section determines if corresponding bits of the two numbers being com­
pared are equal. This circuit is shown in Figure 4.22. The second circuit, as
shown in Figure 4.23, determines which of the two numbers is greater if an
inequality exists. The equality and relative magnitude detector in this experi­
ment will compare two 3·bit binary numbers.

The equality detector section of this circuit will give a "I" or HI on output
o if the 22 bits are equal, if A2 == 82. The equality detector output E will give
a "I" or HI indication if AI == 81. The equality detector output F will give a
Hlor "I" indication if Ao == 80.
The relative magnitude detector section of the circuit shown in Figure 4.23
takes input information from the equality detector. The operation of the refa­
tive magnitude section of the circuit will be studied through an example where
number A == 101 and number 8 == 110. The 22 bits of numbers A and 8 are
equal so the 0 input from the equality detector tothe relative magnitude de­
tector will be HI. The A2 input will be HI, the 82 input will be LO. Therefore
gate 2 will be disabled and its output will be HI.

The E input of the relative magnitude detector section will be receiving a LO
signal from the eq.uality detector because the 21 bits of numbers A and 8 are
not equal. Therefore gate 4 will not be enabled; its output will be H I and give
a H I input to gate 3. Gate 3 wi" give a LO output. Gate1 will be receiving ·HI
information from the 0 input of the relative magnitude detector but both the
AI and the a; inputs wi" be LQ. Therefore gate 1 wyl be disabled and have·
a HI output. The F input from the equality detector will be LO indicating that
the 20 bits of numbers A and 8 are not equal. The Ao and 80 inputs will both
be HI but, because the input to gate 0 is also fed by the LO output of gate 3,
gate 0 wilt not be enabled and its output will therefore be HI. Gate 6 has a HI
input from D and a LO input from E and F. Consequently it will be disabled and
its output will be HI. Since A does not equal 8 the A 8 output is HI. Gate 5
has three HI inputs from gates 0, I, and 2. It is therefore disabled and its
output is LO. Since the A > 8 output is LO, number A is not greater than 8.
Therefore, since A is not greater than 8 and A does not equal 8, 8 must be
greater than A.

The relative magnitude detector section of the circuit has searched for the
first inequality and when that inequality was found, the rest of the relative
magnitude detection circuitry was disabled. The first inequality i,n the example
above occurred at the 21 bit and gate 3 provided a LO output, disabling the
20 relative magnitude detector section of the circuit. The output of gate 3

61

o

At

E

B t

AO

F

BO

HI LO

Figure 4.22 Equality Detector

62

A2 E B 2
0

A2 A2 > B2

82

A, =B,
'A=i

E --e--4---f '----

A, _____ ~
A >8

BI _____ ~
'----

AO = BO
F -----~-----------------------~--~

AO

BO ------L ____ ,

Figure 4.23 Relative Magnitude Detector

63

could be called "equals-so-far" output. In order to perform a check for rela­
tive magnitude, a section of the detector must receive equal-50-far informa­
tion from the next most significant section.

EXPERIMENT 4.2: EQUALITY AND RELATIVE MAGNITUDE DETECTOR
Construct the equality and relative magnitude detector circuit as shown in
Figures 4.22 and 4.23 on the COMPUTER LAB. Connect the A inputs to the
three left-most rocker switches, connect the B inputs to the three right-most
rocker switches starting with the least significant bit on the right of each group
of switches. Test the operation of the circuit by setting a number on switch
register A and recording the output obtained for all eight possible settings
of switch register B. Repeat the procedure for several values of switch regis·
ter A and confirm the circuit operates as outlined above.

QUESTIONS
8. Explain in'detail how the detector works by examining the function of

each gate in the circuit. Recall the method of determining the relative
magnitude of the two numbers mentioned earlier in this chapter. -

9. Write a Boolean equation for the output of each of the gates in -the cir­
cuit in Figure 4.23.

10. How could the A B output circuitry be simplified?
11. Design and construct an extension to the detector to give it three

outputs, A = B, A > B, B > A where the A = B output goes H I when A
is equal to B, the A > B output goes HI when A is greater than Band
the B > A output goes HI when B is greater than A.

12. Design an 8 bit equality and relative magnitude detector using only the
AN9/NOR gate, 2 input NAND gates, 3 input NAND gates, and 4 input
NAND gates.

SUPPLEMENTARY QUESTIONS
13. Make a truth table similar to the one in Figure 3.2 for the three Boolean

variables A, B, and C showing the five Boolean functions operating on all
eight possible combinations of the binary variables.

14. Write the Boolean equation that covers the operation of A > B output of
the three bit equality and relative magnitude detector. The equation will
be of the form: Output == F (Ao, Bo, AI, BI, A2, B2).

15. Make a truth table showing the outputs that would be obtained from a
two-bit equality and relative magnitude detector. Show all sixteen pos­
sible input combinations of the two 2-bit numbers.

16. Assuming 15 x 10-9 seconds propagation delay for each NAND and
AND/NOR gate, determine the delay of the three-bit equality and relative
magnitude detector.

17. With the costs and propagation delays listed below, what reductions in
cost and delay have been accomplished in the simplifications referenced
in question 6.

2-input NAND
3-input NAND
4-input NAND
AND/NOR Gate

$ 9.20
$12.00
$16.00
$16.80

64

15 nsec
15 nsec
15 nsec
15 nsec

INTRODUCTION

CHAPTER 5
BINARY COUNTERS

The word "computer" is taken from the French word meaning "to count."
As might be expected, counters of one form or another are basic subsystems
in a computer. The counters presented in this chapter will use the binary
counting sequence as shown in Figure 5.1. (Also see Appendix.)

23 22 21 20 DECIMAL
000 0

00011
o 0 102
00113
o 1 004
01015
o 1 106
o 1 117
1 000 8
10019
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 ;>1 1 1 15

Figure 5.1

J-K flip-flops can be used in binary counters. The two states of a J-K flip-flop,
a "I" state, and a "0" state, can be used to represent a bit in a binary num­
ber. If the flip-flop is in the "1" state, that bit is a 1. If the flip-flop is in the
"0" state, that bit is a O.

II ASYNCHRONOUS COUNTERS
If both the J and K inputs of the J-K flip-flop are connected to a HI logic
level, the output of the flip-flop changes its state, or complements, every
time a HI to LO level change occurs at its clock input. This is shown in the
clock input and 1 output of flip-flop 0 lines of the timing diagram in Figure 5.2.
The.l output oftheflip-flophas divided the number of pulses at its clock input
by two (i-.e., the 1 output is H I on every other clock pulse). If the clock input
of a second J-K flip-flop were connected to the 1 output of the first, it would
similarly-divide the number of pulses at its clock input by two. The 1 output
of the second flip·flop would have one·half as many pulses as appear at the
1 output of the first flip-flop and one·quarter as many pulses as appear at the
clock input of the first flip·flop. Additional stages could be added to this
device so that each stage would divide the output of the previous stage by
two. Figure 5.2 shows a timing diagram for a 4-stage device of this type.
Note that each successive stage divides the signal present at the output of
the previous stage by two. The circuit for this device is shown in Figure 5.3.
This circuit can divide by sixteen the number of pulses appearing at the
clock input of the first flip-flop, and it can also count in binary.

65

>;1-

CLOCK

HI~
C INPUT OF FF 0

LU

HI

o OUTPUT OF FF I

LO-------'

HI

I OUTPUT OF FF 2·

LO-------------~

FF 0

L
L

HI

, OUTPUT OF FF 3 r-
LO-___ -----JI

Figure 5.2 ~iming Diagram

Suppose all four flip-flops are initially in the "0" state (the 1 output of each
is LO). The trailing edge of the first pulse into the clock input of flip-flop 0
will cause it to complement and go from the "0" to the "1" condition. At
the end of the first pulse, flip-flops 3, 2, and 1 are still in the "0" state and
flip-flop 0 is in the "I" state. The condition of the flip-flops can be written
as 0001.

HI

ClOCK
---""---+--1 C FF 0 C FFt C FF2 C FF 3

o 0

Figure 5.3 Asynchronous Up Counter

When the trailing edge of the second input clock pulse occurs, flip-flop 0
again complements, going from the "I" state to the "0" state. Flip-flop 1
sees the falling level at the output of flip-flop 0 and also complements, going
from the "0" state (initial condition) to the "1" state. The condition of the

66

flip-flops after two clock pulses can be represented by 0010. Flip-flop condi­
tions resulting after the third to fifteenth input clock pulses can be written
as follows; (3) 0011 (4) 0100 (~) 0101 (6) 0110 (7) 0111 (8) 1000 (9) 1001
(10) 1010 (11) 1011 (12) 1100 (13) 1101 (14) 1110 (15) 1111. The counter
is counting in the binary code given in Figure 5.1.

EXPERIMENT 5.1: ASYNCHRONOUS BINARY UP COUNTER

Construct the counter shown in Figure 5.3 on the COMPUTER LAB, connecting
the clock and reset inputs to pulsers and the flip-flop 1 outputs to lamp indi­
cators. Reset all flip-flops by pushing the reset pulser once. Push the Clock
pulser once and record the outputs obtained on a truth table. Continue de­
pressing the clock pulser and recording the output for all 16 possible counts.
Check that the truth table is the same as Figure 5.l.

A clock in a digital system provides a continuous train of HI clock pulses.
Disconnect the clock pulser switch and connect the clock on the COMPUTER
LAB to the input of flip-flop 0; set the clock to run as slowly as possible.
The counter will count continuously in this mode, with the lamps giving a
visible count sequence. Turn the clock control to the right and observe the
counting rate increases.

The name "asynchronous" means that each flip-flop of the counter does not
operate simultaneously. One flip-flop causes the next to complement. This
type of counter is often picturesquely called a "ripple through counter." This
name is particularly apt since information goes through the counter like a
wave from the least significant bit to the most significant bit.

EXPERIMENT 5.2: MODIFIED ASYNCHRONOUS BINARY COUNTER
Modify the counter by connecting the Clock inputs of each bit to the 0 output
of the previous bit as shown in Figure 5.4. Reconnect the clock input of flip­
flop 0 to a pulser. Reset all flip-flops to "0" by pushing the Reset pulser
once. Make a truth table for the operation of the modified counter by reo
cording the counter output after each of 16 clock pulses.

HI

. J

C FF2 C FF'
CLOCK
--+--Ic FFO

o

Figure 5.4 Modified Asynchronous Binary Counter

QUESTIONS
L Describe the operation of the asynchronous binary Up Counter in Figure

5.3 for transitions between the binary numbers 1000 and 1100_
2. What function does the modified counter in Figure 5.4 perform?
3. Design and construct an 8-bit asynchronous binary Up Counter. The RE­

SET circuitry will have to be modified to prevent overloading a gate out­
put with the RESET inputs from 8 flip-flops.

67

4. Connect the J and K inputs of the 20 flip·flop to a rocker switch. Test
the operation of the counter with the switch in the HI position. Test the
operation of the counter with the switch in the LO position. What func­
tion is the switch performing?

III SYNCHRONOUS COUNTERS
The asynchronous, or ripple through, counter had to propagate information
from the least significant to the most significant bit one stage or bit at a
time. A synchronous counter makes all the required changes of state simul­
taneously. For instance, when changing from the binary number 0111 to the
binary number 1000, all bits complement simultaneously. To do the same
numericaltransition,\'/ith theasynchronous counter previouslydescribed, first the
20 input would have to complement, then the 2' bit, then the 22 bit, and
finally the 23 bit, each bit receiving its complement instruction from the
next less significant bit.

A J-K flip-flop will remain in its present state when a clock pulse occurs if
its J and K inputs are both disabled with a LO level. If both the J and K
inputs are enabled with a HI level, the flip-flop will complement on a clock
pulse. The 20 bit flip-flop of a synchronous counter willi have its J and K
inputs continuously enabled with a H I level and it will complement on every
clock pulse as shown in Figure 5.1. The 2' bit complements on clock pulses
when there is a "I" in the 20 bit. The J and K inputs of the 2' bit must be
enabled when the 20 bit is in the "I" con·dition. Similarly, the 22 bit comple­
ments on every clock pulse if there is a "1" in both the 20 bit and the 21
bit. The 22 bit flip-flop must have its J and K inputs enabled when this condi­
tion occurs. The 23 bit must complement on colck pulses when there is a "I"
condition in the 20 , 2', and 22 bits. Its J and K inputs must be enabled when
this condition occurs. In general, as shown in the truth table in Figure 5.1,
a bit will complement on the count following all less significant bits being
a "I". All bits complement simultaneously because of common clock inputs.

EXPERIMENT 5.3: SYNCHRONOUS BINARY UP COUNTER
Figure 5.5 is a four-bit synchronous binary up counter. Construct this circuit on
the COMPUTER LAB connecting the Clock and Reset inputs to pulsers, and the
1 outputs of the flip-flops to lamp indicator::s. Reset the counter to the "0"
condition by depressing the Reset pulser once. Obtain a truth table for the
operation of the counter by depressing the clock pulser 16 times and record­
ing the output after each clock pulse. Verify that the truth table constructed
is identical to the one in Figure 5.1. In order to extend a synchronous binary
up counter of this type, the J and K inputs of successively more significant
bits will have to be enabled when all less significant bits are equal to 1.

QUESTIONS
5. Design and construct the circuitry necessary to add an extra bit to the

counter in Figure 5.5.
6. Design and construct a four-bit synchronous binary down counter. To

down count, a bit will complement on the count following all less sig­
nificant bits being in the "0" condition.

7. Compare the advantages and disadvantages of the two types of counters
constructed to this point.

68

~r~ ,

....
N

U

N
N

u

o

.,

0

a::

x:

o

a:

o

a:

o

N a:

:1:---.-.---1----1

Figure 5.5 Synchronous Binary Up Counter

69

x:
u
9
(.)

IV SYNCHRONOUS UP/DOWN COUNTER
In some applications it is necessary for a counter to be able to count in two
directions, up or down. A synchronous up/down counter has two separate
gating networks. One, to enable it to count up, and another to enable it to
count down. If the up counting gating network is enabled, a flip-flop will
complement when all less significant flip-flops are in the "I" condition as
shown in Figure 5.1. If the down counting gating network is enabled, a flip­
flop will complement when all less significant flip-flops are in the "0" condi-
tion_ .

Figure 5.6 is a synchronous binary Up/ own ounter. Construct the circuit
on the COMPUTER LAB, connecting the Up Enable and Down Enable lines to
rocker switches, the Clock and Reset inputs to pulser switches, and the 1
outputs of the fJip-flops to lamp indicators. Test the circuit in the up counting
mode by enabling the up count line with a HI level and disabling the down
count line with a LO level, reset the counter to zero, then record the output
of the counter after each of 8 successive clock pulses. Test the circuit in the
down count mode by enabling the down count line with a HI level, disabling
the up count line with LO level, reset the counter, and record the output of
the counter after each of 8 successive clock pulses.

QUESTIONS
8. Design a control circuit which will enable the counter to count up when

a rocker switch is in the HI position and will enable it to count down
when the rocker switch is in the LO position.

9. What will happen if a change of direction is made from up to down or
down to up when the clock input is still HI?

10. Show how the up/down counter can be used as a subtractor by resetting
the counter, up counting for 6 pulses, and then down counting for 5
pulses. What binary result is obtained from this operation?

11. What happens if both the up enable and down enable lines of the syn­
chronous up/down counter in Figure 5.6 are simultaneously enabled with
a HI level when a clock pulse occurs? Why?

V MODULO N COUNTERS
Often a counter is required to count to a specific number and stop. Or the
counter may be required to count to a certain number, recycle to 0, and
start· the cOLJnt sequence again. The same basic rule applies to the design
of these counters as it does to the design of normal synchronous binary
counters: detect the state of the counter prior to a clock pulse and selectively
enable the J and K inputs of a flip-flop to cause the desired condition follow­
ing a clock pulse. There are rigorous mapping techniques described in the
reference texts ir:J th~ appendix which can be used to design special counter
circuits. Counter design in this chapter will not be rigorous, but will be a
step-by-step synthesis of the circuit based on a thorough knowledge of gate
and flip-flop functions available on the COMPUTER LAB.

A. Recycling Modulo 6 Counter
A recycling Modulo 6 counter will be used as an example of a recycling
counter. Figure 5.7 shows a truth table for a modulo 6 counter. Note how
the sequence recycles to 000 after reaching its maximum count of 101. The
maximum count of this sequence is equivalent to the decimal number 5.
However the counter is rightly called the Modulo 6 counter because there
are 6 unique states in this count sequence.

70

W
..J
m « z
w
Cl.
~

.'

x

N
N

o

~[r--------------~

o

N ~ n---------+--+--+-.

o
N

o

~ n---------+--+-.

w
..J m « z
w

:.::
Z (,) W

~ 9 (/)
w

(,) ~

Figure 5.6 Synchronous Binary Up/Down Counter

71

DECIMAL 22 (F.F.A.) 21 (F.F.B.) 20 ,<F.F.C.)
0 0 0

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

Figure 5.7 Modulo 6 Counter Truth Table

There is only one transition (fram 101 to 000) where the recycling Modulo 6
count deviates from the binary count sequence. The starting point in the
design of a Modulo 6 counter is therefore a 3-bit binary counter as shown
in Figure 5.8 a. The Modulo 6 counter in Figure 5.8 b operates the same as
the binary counter until the number 101 is reached. At this point the normal
binary counter has the J and K inputs of flip-flops Band C enabled and the
J and K inputs of flip-flop A disabled. The next clock pulse 'therefore causes
the counter to advance to the number O. For a Modulo 6counter,flip-flopC
can make the same transition as in the binary counter, following 101. How­
ever flip-flop B must remain in the ·O·condition and flip-flop A must go to
the "0" condition. Flip-~op B therefore has its J and K inputs enabled with a
H I level when flip-flop C is in the "I" condition and flip-flop A is in the "0"
condition. When the number 101 is reached. flip-flop A is in the "1" condition
and flip-flop B will therefore remain in the "0" condition. Flip-flop A must go
to "0" after the number 101 is reached. Its K input is therefore enabled with
a HI level when flip-flop C is in the "I" condition. Flip-flop A is taken to the
"I" condition on the clock pulse following a 1 in both flip-flop A and flip-flop
B as in the normal binary counter.

c c C 8

o o
I

-1----t-------<~-_+__--_----l
CLOCK

C A

Hi -----____ --______ ----______ .--.:....-J

Figure 5.88 Binary Counter

72

o

C B C C I

J
0 i

CLOCK --+-~~

C "

• K

~I ________ ~ ________________ ~ ________________ -J

Figure 5.Sb Modulo 6 Counter () ~ ~-& ~lro

EXPERIMENT 5.5: SYNCHRONOUS MODULO 6 BINARY COUNTER
Construct the Modulo 6 Counter in Figure 5.8b on the COMPUTER LAB, con­
necting the Clock input to a pulser switch and all 1 outputs of the flip·flops
to lamp indicators. Be sure to disable all flip·flop Reset inputs with a HI
level. This will keep unwanted electrical noise from causing the flip-flops to
act erratically. Make a truth table showing the count sequence obtained by
operating the counter one pulse at a time. Verify that the truth table made is
identical to the one in Figure 5.7.

QUESTIONS
12. Design and construct a Modulo 12 counter by extending the Modulo 6

counter already built. Make a truth table'to show its operation.
13. Design and construct a Modulo 5 counter which will recycle to 0 after

reaching the binary number 100.
14. Extend the Modulo 5 counter to make a Modulo 10 counter.

B. SeH-Stopping Counters
Instead of having a counter recycle after a specific number of counts it is
sometimes necessary to have it stop and wait for an external reset signal.
To make the counter stop, a gating circuit must detect the maximum count
and disable the counter. Question 4 showed how the J and K inputs of the
least significant bit of an asynchronous counter can disable the counter and
cause it not to recognize clock pulses. Figure 5.9 is a self-stopping, asyn­
chronous binary up counter. When this counter reaches the count of 1100,
the NAND gate in the circuit. will detect the ones in the 23 and the 22 bits
and will disable the J and K inputs of the 20 bit and stop the counter. The
counter must be reset before further clock pulses are recognized.

EXPERIMENT 5.6: ASYNCHRONOUS SELF·STOPPING MODULO 13
BINARY COUNTER

Construct the self-stopping modulo 13 asynchronous binary counter on the
COMPUTER LAB and test to see that it operates as outlined.

73

HI HI HI

CLOCK

o o

'. Figur~ 5.9 Self·Stopping Modulo 13 Asynchronous Binary Counter
QUESTIONS
15. Modity the counter in Figure 5.9 to stop at the binary number 1010 in·

stead of 1100.

EXPERIMENT 5.7: VARIABLE MODULUS ASYNCHRONOUS BINARY
UP COUNTER
Figure 5.10 is a self-stooping asynchronous binary up counter, which can
be set to stop at vanous binary numbers. A four-bit switch register will set
the maximum number the counter will reach. If a switch is set LO, the cor­
responding bit in the number will be a 1 at the maximum count. If the switch
is set HI, the corresponding bit in the number witr be a 0 at the maximum
count. When the Reset pulser switch is depressed, the counter will begin
counting to the maximum number indicated on the switch register. When the
Resetpulser is released, the counter will reset to O. Construct the counter in
Figure 5.10 on the COMPUTER LAB, connecting the Clock input to the COM­
PUTER LAB clock (set to run slowly), the Reset input to a pulser switch and
the flip-flop 1 outputs to lamp indicators. Recall that a NOR gate is con­
structed using an AND/NOR gate, not a NAND gate. Test the operation of the
counter by having it count to 3 or 4 different maximum counts.

QUESTIONS
16_ Explain the operation of the variable self-stopping counter in Figure 5.10.

SUPPLEMENTARY QUESTIONS:
17. Figure 5.11 is a variable modulus recycling synchronous binary up

counter. The use of the modulus selecting switches is identical to that
of the self-stopping asynchronous binary up counter. The difference be­
tween the counter in Figure 5.11 and the one in Figure 5.10 is that the
recycling counter will count to the maximum count indicated on the
switches and recycle to 0 whereas the self-stopping counter counts to a
maximum number and stops. Construct the counter in Figure 5.11 on
the COMPUTER LAB, connecting the Clock input to a pulser switch and
the flip-flop 1 outputs to lamp indicators.

18. The average propagation delay for a NAND gate is 15 nano-seconds,
and for a J-K flip-flop 35 nano-seconds after the trailing edge of a 50
nano-second clock pulse. With these three facts in mind, make a timing
diagram showing the transitions occurring in a synchronous up counter
such as the one in Figure 5.5 in counting the numbers 0011 to 1000.
Use the sameiormat as in Figure 5.12 .

. 19. Make a timing diagram similar "to the one in question 18 for an asynch­
ronous counter for the same numerical transitions. What problems could
occur if the outputs of the four-bit asynchronous counter were sampled
40 nano-seconds after the trailing edge of a clock pulse?

74

Figure 5.10

~
(/)

N
N

o
~

~
(/)

-N

0
~ .,

,.,
N

N
N

U

o
N

o

0

lie

o

o

Self Stoppin~ Asynchronous BiLla? Up Co~er/ ./

w,,~ .vQA'''Q-~~ ~~
75

i ~ 9
o

~I

Figure 5.11 Recycling Modulo N Synchronous Binary Up Counter

76

.... ...
VI ...
IE

CLOCK

0 0 0
I

HI I
J6K INPUT I FF 0

-l ~35nS

I
t OUTPUT

FF 0

J 6 K INPUT

fF t ------------~--------~------~~--------

t OUTPUT I
FF· t --------------~-----J-.-----

l ~30nS

J a. INPUT I
FF 2 ---------------------------------~.------

/

Figure 5.12 Synchronous Binary Up Counter Timing Diagram

77

NOTE: Propagation delay of an asynchronous counter can be demon­
strated visually using a dual trace oscilloscope to look at the output of
the first and fourth flip-flops while operating the counter at high clock
repetition rates.

20. How much time must be allowed for a change of counting direction in
the Synchronous Up/Down Counter described earlier in this chapter?
Assume the same propagation delays as given in question 18.

21. Design and construct a self-stopping, synchronous four-bit binarY up
counter which will stop on a number selected by a four-bit rocker switch
register.

78

BINARY ADDITION

CHAPTER 6
SERIAL ADDITION

Addition in the binary number system follows the same type of rules as deci·
mal addition. There are four basic rules for addition of two binary numbers;

A B SUM CARRY
0 0 -0- --0-

0 1 1 0
1 0 1 0
1 1 0 1

In the more general case there are two digits plus a carry digit from the next
less significant addition to add together; Figure 6.1 shows addition of three
digits with the resultant sum and carry information. The subscript N indicates
information pertaining to the 2N addition.

RULE NO. CARRYN AN BIT BN BIT SUMN CARRYN+I
1 0 0 0 0 0
2 0 0 1 1 0
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 0
6 1 0 1 0 1
7 1 1 0 0 1
8 1 1 1 1 1

Figure 6.1 Binary Addition Truth Table

The subscript N + 1 under the carry indicates the information carried from the
2N addition to the 2N+1 addition. The following addition example indicates
how the truth table can be applied: .

NUMBER A 0 1 0 1 1 1 0 0
NUMBER B 0 0 1 1 1 0 1 0
SUM 1 0 0 1 0 1 1 0

RULE APPLIED to " ~ 00 o::t (Y') C\I P"4

(REFER TO FIG. 6.1) LLJ LLJ LLJ LLJ I.iJ lLJ I.iJ I.iJ
...J ..J ..J ..J ..J ..J ..J ..J
::> ::> ::> ::> :::> :::> :::> :::>
0:: c::: 0:: 0:: c::: 0:: 0:: 0::

II SERIAL ADDITION
The addition process when done manually is serial. That is to say it is done
in a step-by-step fashion performing the least significant part of the addition
first and then progressively the more significant parts. For instance, in adding
the binary numbers 101 and 100, the first step would be to add the digits
weighted 2° to get a sum of 1, then add the digits weighted 21 to get a sum
of 0, and finally add the digits weighted 22 to get 0 and 1 to carry. The addi·
tion is done serially, starting at the least significant digit. Following the same

79

process a serial adder could be made using a system such as the one in
Figure 6.2.

The rectangular blocks which store number A, number B, and the sum are
shift registers such as the one constructed in Chapter 3. Two binary num­
bers can be read into registers A and B. Each register will simultaneously
shift all its information one position to the right upon receipt of a shift in­
struction. The adder performs an addition on one bit at a time as information
appears at the output of registers ~ and B. The adder performs exactly the
same functions as is outlined in the truth table in Figure 6.1 producing sum
and carry information. The "Sum" register will read whatever information is
at its serial input into the I position when a shift pulse is received. When a
shift pulse is received by the carry flip-flop it will go to the state dictated by
the adder carry output.

To use the adder, numbers would be read into registers A and B and five shift
pulses would occur. After the first shift pulse, the sum of the 20 addition
would appear in position I of the "Sum" register and the carry element would
contain the information indicated in the Carry N+I column of the truth table
in Figure 6.1. After the second shift pulse the sum of the 21 addition would
appear in position I of the "Sum" register, the sum of the 20 addition would
have shifted to position II, and the carry flip flop would contain the informa­
tion to be stored for the next addition (22). At the end of five shift pulses the
"Sum" register would contain the sum of number A plus number B. If the
sum is greater than 5 bits the carry will be "I" at the end of the addition. If
number A and number 8 are both 4-bit numbers overflow of the sum never
occurs.

A more economical design for a serial adder is shown in Figure 6.3; it uses
one of the shift registers for two purposes. The upper register labeled accu­
mulator stores one of the numbers to be added and as well as at theendofthe
addition will contain the sum of the numbers initially in the incident and
accumulator registers. The incident register accepts numbers from an outside
source. This type of adder has the advantage of being able to add more than
two numbers together by accumulating the sum from successive additions. A
three bit serial adder of this type can be built on the COMPUTER LAB as
shown in Figure 6.4.

Flip-flops Ao, AI and A2 are the incident register. Flip-flops Bo, BI and B2 are
the accumulator register. Carry information is stored in flip-flop C_ Gates 1
through 7 perform the adder function and provide sum information for flip­
flop B2 in the accumulator and carry information for the carry flip-flop C.

80

NUMBER "A"

SHIFT

SHIFT

SHIFT DIRECTION

SHIFT --4....-----.....

Figure 6.2 Serial Adder Function Diagram

SHIFT

Figure 6.3 Simplified Serial Adder

81

RESEI

I

* I

NE~TEEN~A=8L=E~ ______________ ~~~ ____________________ ~
CLOC~

REAOEN~A~8~LE~ ________________ ~

*This inverter is constructed using two And/Nor Gates with all 8 inputs connected to
the reset pulser. One gate drives the reset inputs of Az. A,. Ao and the other gate drives
the reset inputs of B2. B,. Bo and the carry flip flop.

Figure 6.4 Serial Adder

PULSERS

[ill I
t t ... g

=
d

LAMP REGISTER

00000000
t f f t t f t

ROC~ER SWITCHES

I I I I 1'1 I I
t t t t t

N N ~ 1!li ~Ii N

Figure 6.5 Serial Adder Switch and Lamp Usage

82

EXPERIMENT 6.1: SERIAL ADDER
Construct the serial adder in Figure 6.4 on the COMPUTER LAB. A convenient
configuration for lamps and switches is shown in figure 6.5. The lamp indica­
tor inputs are driven by the "I" outputs of the flip~flops (these lines are not
included in figure 6.4). The RESET, READ ENABLE, and NEGATE ENABLE in­
puts are rocker switches; the clock input is a pulser switch. The disabled
position for all the rocker switches is HI (upper side of rocker depressed).

The adder is used as follows:
1. Clear the incident and accumulator registers and the carry flip-flop by a

momentary LO reset signal from the RESET rocker switch. Restore the
output of the RESET switch to HI.

2. Make sure that the NEGATE ENABLE switch is in the HI position.
3. Read a number into the incident register by setting the input switch

register to the desired number and the READ ENABLE switch LO and
then pulsing the clock pulser switch once. A "1" will be read into each
flip-flop in the incident register that has its corresponding rocker switch
in the LO position. for example to read in 101, the 20 and 22 inputs
would be LO and the 2' input would be HI. Restore all switches to the
H I position after read in.

4. Pulsing the clock pulser switch three times' will shift the number from
the incident register to the accumulator register by adding the incident
number to the D's initially in the accumulator.

5. Read a second number into the incident register by the method outlined
in step 3.

6. Pulse the clock pulser switch three times to add the numbers in the in­
cident and accumulator registers. The sum will appear in the accumula­
tor register after the addition.

7. Additional numbers can be added to the sum appearing in the accumu­
lator by repeating steps five and six for as many times as there are
numbers to add.

Perform the following four additions to test the adder. follow the steps out­
lined above and record the output obtained on the lamps after each step in
the addition.

Test Additions:
1 100

010

110

QUESTIONS

2 001
001

010

3 101
011

1000

4 011
011

110

1. Explain in detail how read-in from the' switch register to the incident
register takes place.

2. Explain the operation of the incident and accumulator registers as shift
registers.

3. Why does the incident register fill with O's· as the information which
was initially in it shifts out?

4. The adder circuit (gates 1 to 7) detects conditions giving a sum of 1 (see
the truth table Figure 6.1). This information is fed back to the J and K
inputs of flip-flop B2 to cause it to go to the"l"condition on the next
clock pulse if the sum is 1 or conversely to go to a"O"if the sum is O.
Design an alternate adder system that detects conditions giving a sum
of 0 showing also the method of feeding into the J and K inputs of
flip-flop 82.

83

5. What conditions cause the carry flip-flop to go to a "I"? What conditions
cause the carry flip-flop to go to "O"?

6. Why must the carry flip-flop be reset when the incident and accumulator
registers are reset? What happens if a "1" is resident in the carry flip­
flop when an addition is begun?

7. How can the adder be extended to eight bits? What change would have
to be made in the operating procedure for an eight-bit adder?

III BINARY SUBTRACtiON

A set of rules can be developed for binary subtraction similar to those out­
lined for binary addition in Figure 6.1. Serial binary subtraction can be per­
formed on a device similar to the adder in Figure 6.4; it would be designed to
operate according to the truth table for binary subtraction. However, there is
a simpler way to perform a subtraction using addition techniques. If number
8 must be subtracted from number A, number 8 can be made negative and
added to number A Le.A-B == A + (-B).

One method of negating a number uses two's complement arithmetic in
which negation is accomplished by complementing each bit of a binary num­
ber and incrementing or adding 1 to the result. The complement of a number
is obtained by changing all the l's to O's and all the O's to l's. To increment,
simply add 1.

-00101
Complement each bit: 11010
Increment: +00001
Equals: 11011

Sincethesign''bit is 1 (llOIl),the number is negative. 11011 == -00101

When dealing with binary numbers in two's complement notation. the left­
most bit of the number always indicates the sign of that number and is
therefore called the sign bit. If the sign bit is I, the number is negative and
if the sign bit is 0 the number is positive. The absolute value of a negative
number can be obtained by negating that number.

The serial adder in Figure 6.4 can contain two two-bit numbers plus one sign
. bit for each number.

Taking an example of 3 - 2 will demonstrate how two's complement sub­
traction is performed. The binary number 2 is 010. - 2 in two's complement
is 110. Adding 011 (3) plus 110 (- 2) is equivalent to 3 minus 2. Any carry
information at the end of the addition is ignored.

0-113
+ 11 11 0 -2

o 0 1 1
FINAL CARRY IGNORED

EXPERIMENT 6.2: SUBTRACTION USING THE SERIAL ADDER
The serial adder has provision for negating the number in the incident regis­
ter by causing each bit to complement and setting the carry flip-flop to the
"I" state. To do this, take the NEGATE ENABLE switch LO and pulse the
clock pulser switch once. Thus the subtraction 3 - 2 could be performed as

84

follows: read in 3, shift 3 to the accumulator; read in 2, negate 2, and then
add (-2) to 3. Perform the following subtractions on the serial adder:

A 3 - 2, B 3 -1, C 3 - 0, D 2 - 3

Record the results obtained at each step in each subtraction, noting espe­
cially what condition the carry flip-flop goes to when a number is negated.

QUESTIONS
8. Explain in detail how a number in the incident register of the serial adder

is negated. Use the number 2 as an example.
9. Explain how the adder can be used to determine the absolute value of a

two's complement negative number. Use 110 as an example (110 is
a negative number because the sign bit is 1) and test your method using
the serial adder.

10. Why can the three-bit adder not be used to subtract 3-bit numbers?

EXPERIMENT 6_3: MULTIPLICATION USING THE SERIAL ADDER
A simple way to do multiplication is to perform successive additions and
accumulate a sum. For instance 2 x 3 is equivalent to 2 + 2 + 2. These ad­
ditions could be performed on a serial adder by reading in and adding 2 three
times. The incident register can be modified so that it becomes a ring coun­
ter and a number initially read into it recirculates in the register and returns
to the initial condition after three shift pulses. Modify the serial adder as
shown in Figure 6.6. Read in the number 010, disable the READ ENABLE
switch by making it HI. Pulse the clock pulser 9 times to perform three
successive additions. The accumulator should contain the number 110 and
the incident register should still contain 010. The multiplication method is not
generally used in computers because it is extremely slow.

QUESTIONS
11. Explain in detail the operation of the incident register with the configura­

tion shown in Figure 6.6.
12. What happens when 5 successive additions of the binary number 010

are attempted? Why?

SUPPLEMENTARY QUESTIONS

13. Make a truth table for binary subtraction similar to the addition truth
table in Figure 6.1. The sum column becomes a difference column and
the carry column becomes a borrow column.

14. Design a subtractor circuit to subtract the accumulator from the incident
register. The carry flip-flop in the adder will of course be equivalent to a
borrow flip-flop in the subtractor.

15. How could division be accomplished using a serial adder?

85

20 SWITCH

2' SWITCH

22 SWITCH

CLOCK

NEGATE ENABLE

RESET

TO ADDER

TO ADOER

Figure 6.6

86

INTRODUCTION

CHAPTER 7
PARALLEL ADDITION

A serial adder is easily expandable and inexpensive, but it is extremely slow
for large numbers. If there are two 32-bit numbers to add, the addition must
be performed in 32 steps, allowing the adder time to settle between steps. A
parallel adder on the other hand can perform the same addition in one or two
steps by adding all 32 bits of the number simultaneously.

Since the adder circuitry must be duplicated for each bit in a parallel adder,
cost becomes a significant factor in the design. One of the compromises that
can be made in the interest of economy is to do additions in two steps in­
stead of in one. Both one and two step adders will be constructed in this
experiment.

II TWO STEP PARALLEL ADDER
As with the serial adder the parallel adder has two registers, an incident regis­
ter which takes a number from the outside and an accumulator register which
stores the accumulated sum. Figure 7.1 is a general block diagram showing
the organization of a parallel adder. The two step parallel adder has further
control of the individual adder elements which allows the half-add and carry
steps to be executed independently. The half-add operation is an addition of
corresponding bits of two binary numbers neglecting carry information·. Half­
add causes each bit in the accumulator register to complement when the
corresponding bit in the incident register is 1. Figure 7.2 is a truth table
showing all possible conditions for corresponding bits in the incident and
accumulator registers before the half-add operation and also in the accumu­
lator atter half-add.

r - - -- - - - - - - - - - - - - - - - -,
ACCUfllUUITOR REGISTER

I
I
I 2 3 22 21 2°

--t
J

I -'
I I

23 22 21 2°

I
I

L_ INCIDENT REGISTER __ J - - - - - - - - - - -
Figure 7_1 Parallel Adder

87

BEFORE HALF·ADD AFTER HALF·ADD

INCIDENT BIT ACCUMULATOR BIT ACCUMULATOR BIT

o
o
1
1

o
1
o
1

Figure 7.2 Half Addition in a Parallel Adder

o
1
1
o

After half·add operation the carry operation is performed. The carry operation
... complements each bit in the accumulator which receives a carry of 1 from

the next less significant bit. A bit is left unchanged if a carry of 0 is brought
forward from the next less significant bit. Figure 7.3 is a truth table showing
all eight possible combinations of information that can exist with the carry
and corresponding bits of the accumulator and incident registers.

1 2 3 4 5 6

Bit N In Bit N In Bit N In Carry To Sum In Carry To
Incident Accumulator Accumulator Bit N Bit N Of Bit N + 1
Register Before Half After Half Accumulator

Add Add After Carry

0 0 0 0 0 0
1 0 1 0 1 0
0 1 1 0 1 0
1 1 0 0 0 1
0 0 0 1 1 0
1 0 I I 0 I
0 I I 1 0 1
1 1 0 1 I 1

Figure 7.3 Parallel Adder Operation Truth Table

Columns I and 2 indicate possible conditions of bits in the incident and
accumulator registers prior to half-add. Column 3 indicates the accumulator
condition after the half-add. Column 4 indicates the carry information avail­
able to Bit N from Bit N·I after half-add. Column 6 indicates the carry in­
formation Bit N must generate for Bit N + 1 by examining the carry from
Bit N-I, the incident bit, and the accumulator bit (columns 1, 3 & 4) after
half-add. Column 5 is the sum of the incident bit plus the accumulator bit
plus the carry bit which must appear in the accumulator after the carry
operation.

88

r-------l

o

= =) CARRY FR<l'" BIT N-t

~o

BIT N INCIDENT
REGISTER

--+-------~--------+---~----_+--H~FAOOENULE

------------~------------~---_+--CM~ENA~E

---+------------------ ~~~~~~R ENULE

L _______ J
Figure 7.4 Two Step Parallel Adder

Figure 7.4 is one bit of a two step parallel adder. The accumulator bit is a
flip-flop and the incident bit is provided by a switch (or a flip-flop). HALF
ADD ENABLE and CARRY ENABLE lines are enabled by a HI level and dis­
abled by a LO level. COMPLEMENT ACCUMULATOR ENABLE is enabled by
a LO level and disabled by a HI level. An enabled function will be executed
on the clock pulse following thEt enable level. Only one line can be enabled at
a time and the enable information must remain during the clock pulse which
executes the function enabled. Resetting is caused, as before, by a momen­
tary LO signal on the RESET line. The incident bit is "I" if the switch is
in the HI position and conversely is "0" if the switch is in the LO position.
Read-in to the accumulator register can be accomplished by resetting, then
half-adding the desired number from the incident register.

QUESTIONS
1. Explain in detail how the half-add function takes place in the adder in

Figure 7.4:

A if the incident bit is 1
B if the incident bit is 0

89

2. . Write a Boolean equation to indicate the operation of the carry circuitry
in Figure 7.4.

EXPERIMENT 7.1: PARALLEL ADDER
Figure 7.5 is a three·bit parallel adder. Constr:uct the circuit on the COM­
PUTER LAB using the switches and lamps as shown in Figure 7.6. The adder
is used as shown in figure 7.6.Lamps are connected to the 1 output of flip­
flops.

90
o '"

9-
o '"

NOTE:·lnput A should be connected to a HI level unless it is being used for subtraction.

Figure 7.5 Three-Bit Parallel Adder

90

RESET ---.

o
22 ...-.. 0 } ACCUMULATOR .

2 t . ----. 0 INDICATION

20 ---+ 0 ~ . C o J

o
CARRV ENABLE ---e. o

HALF-ADD ENABLE ---e. o

Figure 7.6 Lamp And' Switch Usage For Parallel Adder

1. Depress the RESET pulser once to cle~r the accumulator.
2. Set a number on the incident register. Recall that a "I" is HI (upper

side of rocker switch depressed) and a "0" is LO. The binary number
101 would be set in by a HI on the 20 and 22 inputs and a LO on the
21 input.

3. Read the number into the accumulator by putting the HALF-ADD EN­
ABLE switch in the HI positiolJ and depressing the clock pulser once.
Make sure that the other two function enabling switches are in the dis­
able position (LO) before pulsing the clock switch.

4. Set the second number to be added into the switch register.
5. Half·add by putting the HALF·ADD ENABLE switch in the HI position

and depressing the clock pulser once. Again be sure that half-add is the
only function enabled when the clock pulser is depressed_ After half add­
ing return the HALF-ADD ENABLE switch to the LO position.

6. Carry by putting the CARRY ENABLE switch in the HI position and de­
pressing the clock pulser once. Carry must be the only function enabled
when the clock pulse occurs. The sum will now appear in the accumula­
tor.

1. More numbers can be added to the sum in the accumulator by repeating
steps 4 through 6 for as many times as there are numbers to add.

91

Test the adder by performing the following four additions by the method out­
lined on page 91.

A 100 B 001
010 001
110 oro

'QUESTIONS

C 011
011
no

D 101
011

1005

3. The serial adder in Chapter 6 had a carry flip-flop which was use­
ful for determining if the accumUlator had. overflowed (i.e. the final sum
was larger than the capacity of the accumulator). The adder in Figure 7.5
has no provision for overflow and is consequently incapable of doing
additions such as D of the set of test additions. Design and construct
an overflow circuit using one of the spare J-K flip-flops.

4. How much time is required to perform a three-bit addition after two of
the numbers are present in the incident and accumulator registers? Keep
in mind that after the carry is enabled, carry information must have time
to propagate from the least significant to the most significant bit (e.g.
adding 001 plus 111, carry propagates from the 20 addition to the 22
addition). How long would a 32-bit addition take? Assuming,:

-15 ns delay per NAND gate
-35 ns propagation delay for J-K flip-flops (after trailing edge

of clock pulse)
-50 ns clock pulse width

5. What is the purpose of the inverters in the COMPLEMENT AC ENABLE
and RESET lines? (AC is short for accumulator).

III SUBTRACTION USING THE TWO STEP PARALLEL ADDER

EXPERIMENT 7.2: TWO'S COMPLEMENT SUBTRACTION
Two's complement subtraction ca'n be performed by complementing the accu­
mulator and incrementing using the carry input (A) to the 20 flip-flop. When
the COMPLEMENT AC ENABLE switch is in the H I position a clock pulse will
complement the information in the accumulator regardless of the state of the
incident register. Incrementing can be achieved by providing a LO level at
point A when the carry takes place. '

QUESTIONS
6. Negating a number by the techniquJ!s described above is rather awkward

as there are two steps which have to be performed at separate times.
Design and construct a control circuit that will do the following:

A Accept a start 'instruction when the accumulator is complemented and
remember that instruction.

B When the carry is enabled after a start instruction a LO level will be pre­
sented at point A (the carry input to the 20 bit).

C When the clock pulse is received to execute the carry instruction, the
control wiJI reset and await another start instruction.

When the control circuit is added, the COMPLEMENT ENABLE becomes
NEGATE ENABLE. Make sure the added control doesn't interfere with the

addition function of the adder.
7. Explain how the adder can now be used to determine the absolute value

of a neg~tive number in two's complement form.

92

EXPERIMENT 7.3: ONE'S COMPLEMENT SUBTRACnON
There is a second method of negating a binary number using one's comple­
ment arithmetic. To negate a number in one's complement the only operation
required is to complement each bit in that number.

- 01001 == + 10110

The first bit in a one's complement binary number is, as in two's comple­
ment, a sign bit. A sign bit of 1 indicates a negative number and a sign bit
of 0 indicates a positive number. A one's complement subtraction has one
extra step called end around carry which increments the final answer if any
carry information is left over from the sign bit addition. The following ex­
ample demonstrates one's complement subtraction.

3
-2

1

QUESTIONS

011
-010 A) Negate

B) Add
C) End Around

Carry

011
+101

000

+ 1
001

8. Design and construct the additional circuitry necessary to perform end
around carry on the parallel adder.

9. What restriction must be put on additions in a parallel adder with the
end around carry facility?

Perform the following test subtractions with the parallel adder using one's \ .
complement subtraction:

A 3 - 2, B 3 - 1, C 3 - 0, D 2 - 3

QUESTIONS
10. Describe a method of subtracting the incident number from the number

in the accumulator. •
11. Which system of subtraction do y.ou consider to be the better, one's

complement or two's complement? In your answer discuss the relative
advantages and disadvantages of both systems from mathematical and
circuit design points of view.

EXPERIMENT 7.4: ONE STEP PARALLEL ADDITION
Single step parallel addition is used in computer applications where speed is
of prime importance. The single step parallel adder performs an addition in
one clock pulse and is therefore in most cases twice as fast as a comparable
length two step parallel adder. Figure 7.7 is one bit of a single step parallel
adder. Construct the one bit of the adder on the COMPUTER LAB connecting
the CN+I output and flip-flop 1 output to lamp drivers. Connect the AN and
eN inputs to rocker switches and the clock input to a pulser switch. The carry
lines, CN and C N+I and the AN input are in the "1" condition if HI, and are
in the "0" condition if LO. Verify that the circuit operates as an adder by
checking the CN+ 1 output for all 8 possible initial conditions and also check·
ing the sum left in the flip-flop after a clock pulse for all 8 possible initial
conditions.

93

•

•

o

CN+! OUTPUT

BN C t----+--------- ClOCK

HI

AN
'----- INPUT

Figure 7.7 One Step Parallel Adder

QUESTIONS
12. How much time must be allowed for a 12-bit one step parallel adder to

settle before the add clock pulse can occur? What rate could additions
be performed at in a 12-bit one step adder? Assuming:
A. NAND and AND/NOR gates propagate information in 15 ns.
B. J-K flip-flops propagate 35 ns qfter the clock pulse trailing edge.
C. Clock pulses are 50 ns.wide.

13. Define the op~ration of the adder by determining what Boolean functions
are generated by the adder for CN+1 and for the J and K inputs of the
flip-flop.

SUPPLEMENTARY QUESTIONS
14. Design and construct a one-bit, one step parallel subtractor to subtract

the incident number from the accumulator number.
15. Design an alternate circuit for a one step parallel adder not using AND/

NOR gates. What is the minimum number of NAND gates possible?

94

CHAPTER 8

BINARY CODED DECIMAL OPERATIONS

INTRODUCTION
All the electronic circuits, studied to this point, worked with two states or
'conditions and were therefore used to perform operations using binary or two­
state arithmetic. Decimal arithmetic is more common and more widely used
and it is therefore often advantageous to be able to encode a decimal number
into a binary form, operate on it in binary form in a computer and then de­
code it back into decimal form.

There are a variety of codes available to do this. The relative merits and dis­
advantages of the various codes will be discussed in Chai~ter 9. Figure
8.1 gives the count sequences for 6 of the more common BCD (binary coded
decimal) codes. Each of the codes in figure 8.1 uses 4 bits to encode one
decimal digit. Four bits must be used to encode the ten unique states of the
decimal number system. In this experiment, counters for 4 of the codes will
be built and methods for addition and subtraction will be shown.

DECIMAL
o
1
2
3
4
5
6
7
8
9

DECIMAL

o
1
2
3
4
5
6
7
8
9

II BCD COUNTERS

8421
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
5421
0000
0001
0010
0011
0100
1000
1001
1010
1011
1100

Figure 8.1

EXPERIMENT 8.1: THE 8421 COUNTER

EXCESS 3
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
5311
0000
0001
0011
0100
0101
1000
1001
1011
1100
1101

2421
0000
0001
0010
0011
0100
1011
1100
1101
1110
1111

74(-2)(-1)
0000
0111
0110
0101
0100
1010
1001
1000
1111
1110

The 8421 code follows the binary count sequence up to the binary number
1001 and then recycles to 0000. The basis of the 8421 counter is therefore a
binary counter which has a breakpoint in its count sequence at 1001. Figure
8.2 is a synchronous 8421 BCD up counter. Construct it on the COMPUTER
LAB. Connect the 1 outputs of the flip-flops to lamp indicators and the

95

clock and reset inputs to a pulser switch. Test it by advancing the counter
one pulse at a time and recording the output after each pulse to verify that
it has the same count sequence as indicated in Figure 8.1.

QUESTIONS

1. Describe how the counter in Figure 8.2 operates noting in particular how
the transition from 1001 to 0000 takes place.

2. Construct a second 8421 decade and design and construct a circuit to
advance it on each clock pulse following the number 1001 being in the
first 8421 decade. Make sure both decades operate synchronously.

3. Design and construct an asynchronous 8421 up counter and an asyn.
chronous decade cascading circuit.

EXPERIMENT 8.2: THE EXCESS 3 COUNTER
The Excess 3 code also follows the binary sequence and has only one break·
point. An Excess 3 number is formed by adding 3 to the binary representation
of the number to be encoded, thereforp no weight can be assigned to each
bit. Figure 8.3 is a synchronous Excess 3 up counter. Construct it on the
COMPUTER LAB connecting flip-flop 1 outputs to lamp indicators and the
clock and reset inputs to pulsers. Test the counter by advancing it one pulse
at a time recording the output after each pulse.

QUESTIONS
4. Explain how the Excess 3 counter operates noting especially how the

1100 to 0011 transition occurs_
5. Simplify the circuit in Figure 8.3 by removing two redundant gates.
6. Design a circuit to synchronously cascade a second Excess :3 decade.
7. Design and construct a synchronous Excess 3 down counte~.

EXPERIMENT 8.3: THE 2421 COUNTER
The 2421 code again follows the binary sequence with one breakpoint at the
code number 0100 (decimal 4). Each position in the 2421 code has a numeri­
cal weight and the decimal value of a 2421 number can therefore be de­
termined by summing the weights of each bit which is a 1. Figure 8.4 is a
2421 synchronous up counter. Construct it on the COMPUTER LAB connect­
ing 1 outputs from flip-flops to lamp indicators and the clock and reset in­
puts to pulser switches. Test the operation of the counter by advancing it
one pulse at a time and recording the output after each pulse.

QUESTIONS
8. Simplify the 2421 counter by removing two redundant gates from the

circuit.
9. Design and construct a two decade asynchronous 2421 up counter.

10. How soon after the last clock pulse can an accurate read-out be ob­
tained from the two decade asynchronous 2421 counter?

EXPERIMENT 8.4: THE 5421 COUNTER
The 5421 code follows the binary sequence with two breakpoints, one be­
tween 0100 and 1000 and another between 1100 and 0000. Surprisingly, the

- 5421 counter is the simplest BCD counter to construct. Figure 8.5 is a syn­
chronous 5421 up counter. Construct it on the COMPUTER LAB connecting
flip-flop 1 outputs to lamp indicators and the clock and reset inputs to pulsers.
Test the counter by operating it one pulse at a time and recording the output
obtained after each pulse.

96

o
",

N 0::0----...,

o

N 0:: £">o-+--t---..

o

~ 0:: D------1f---..

u ~

Figure 8.2 Synchronous 8421 BCD Counter

97

Figure 8.3 Synchronous Excess 3 Code Up Counter

98

Figure 8.4 2421 BCD Counter

99

o

~ ~ £>----------~

.: 0

or ~D_+--+__+--..

o

N ~ ~_+--_+---.

o

U :Ie

~ 0_+--_+---"

g
..J
U

I­
W
In
W
Ill::

Figure 8.5 5421 BCD Counter

100

QUESTIONS
11. Explain how the counter operates, in particular how transitions are made

at the two break points.
12. Design and construct a synchronous 5421 up/down counter.

III BCD ADDITION

Because of the binary format most BCD codes can be added in a' binary
adder. If necessary a correction factor can be added after the binary addition.
For instance two decimal digits in 8421 code could be added in binary fashion
and if the sum of the two digits weregreater than 9 a correction factor of 6
would be added to that decade, e.g.:

A. 5
+3
8'"

B. 8
+7
15

0101 Less than 9 no correction factor necessary
+0011

1000

1000
0111
1111
0110 Add correction factor
0101

0001 Ca rry to 10 I decade

Excess 3 addition is also performed in binary fashion. If the decade sum is
less than 9 a correction factor of -3 is subtracted, and if the sum is greater
than 9 a correction factor of +3 is added, e.g.:

A. 5 1000
+3 0110
8" 1110

-0011 Correction factor -3
1011

8 0011 1011
B. +7 0011 1010

15 0111 0101
-0011 +0011 Correction factors

0100 1000

EXPERIMENT 8.5: SERIAL BCD ADDITION (SUPPLEMENTARY)
Figure 8.6 is a five-bit serial adder which could be used to add two binary
coded decimal digits. The correction detect circuit indicates whether or not
the sum of the two decimal digits added is greater than 9 and thereby what
form of correction is required. The adder design is the same in Figure 8.6 as
the serial adder in Experiment 6.1. Construct a five bit serial adder on two
COMPUTER LABs wiring the incident register on one COMPUTER LAB and
the remainder of the circuit on the other.

When using two or more COMPUTER LABs together establish a common
ground by connecting a ground wire from one COMPUTER LAB to another
using the ground terminals at the bottom corners of the patchboards. If
more than two COMPUTER LABs are used for a complex circuit, connect all
ground lines out from one central patchboard, to avoid ground loops.

101

TO LAMP
INDICATOR

~

INCIDENT REGISTER

ACCUMULATOR REGISTER

I---

1 ~ ~-

DECADE CARRY
DETECT

-
ADDER

CARRY
FLIP FLOP

Figure 8.6 Single Decade BCD Serial Adder

If two COMPUTER LABs are not available, use one of the rocker switches
and an inverter to simulate the output of the last flip·flop of the incident
register. Change the switch after each clock pulse to the condition that would
have been present at the output of the incident register at that time. For
example, if the number to be added is 00101, initially the switch presents a

1 to the adder,- after the first clock pulse it is changed to a 0, after the
second clock pulse it is changed to ai, after the third to a 0 , and so on.

QUESTIONS
13. Design and construct a decade carry detect circuit for 8421 additions to

determine if a correction factor must be added.
14. Perform the following 8421 additions, recording the results before and

after adding the correction factor. Does your decade carry detect circuit
detect sums over 9?

7
+2

5
+1

8
+6

9
+8

When does carry to the next most significant decade occur?
15. Design and construct a decade carry detect circuit for Excess 3 additions

to determine which correction factor must be added, +3 or -3.
16. Perform the following Excess 3 additions recording the results before and

after adding the correction factor.

102

Does your decade carry detect circuit detect sums over 91
When does carry to the next most significant decade occur?

7
+2

5
+1

PARALLEL BCD ADDITION

8
+6

9
+8

Parallel addition can be performed using Excess 3 code in a normal binary
parallel adder such as the one in Chapter 7. One extra flip-flop per
decade is required to determine when a carry occurs from one decade to an­
other. If a carry occurs the sum of the two decimal digits was greater than
9 and a correction factor of +3 should be added and if no carry occurs the
sum is less than 9 and a correction factor of -3 should be added. Figure 8.7
is a functional block diagram of an Excess 3 parallel adder. The four-bit adder
sections of the circuit can be one or two step adders.

DECADE CARRY DETECT

~

10' DECAOE n 100 ~ECADE
r---------~A~--------~, ~ r~--------~A~--------~

Figure 8.7 Two Decade Excess 3 Parallel Adder

QUESTIONS
17. Design a circuit which would detect an interdecade carry in a two step

adder like the one in Chapter 7.
18. Design a single step two decade Excess 3 parallel adder.

IV BCD SU BTRACTION
Binary coded decimal numbers can be subtracted using 9's or 10's comple­
ment arithmetic in the same way as l's and 2's complement is used for
binary arithmetic. The 9's complement of a decimal number is made by sub­
tracting each digit individually from 9; i.e., -028 <==> 971 (9's complement

103

form). Just as a l's or 2's complement binary number has a sign bit, a 9's
or 10's complement decimal number has a sign digit.

If the sign digit is 9 the number is negative. If the sign digit is 0, the
number is positive. The rules for 9's complement decimal addition are identi·
cal to those for l's complement binary addition, namely: add and then end
around carry. For example, to subtract 28 from 35, the 9's complement
arithmetic would be as follows:

035 035 9's complement subtraction
-028-~Negate ~+971

006
end around carry 1

007
10's complement decimal subtraction is analogous to 2's complement binary
subtraction. The 10's complement negative of a number is determined by
subtracting each digit from 9 and then incrementing the number obtained.
As with 2's complement any carry left from the most significant digit addi­
tion is discarded.

SUPPLEMENTARY QUESTIONS
19. Perform the following decimal subtractions using:

a) 9's complement technique and .
b) 10's complement technique

A. 045
-032

B. 089
-036

c. 031
-025

20. Write the number 46 in Excess 3 notation. Determine the 9's comple·
ment form of -46 and write -46 in Excess 3, 9's complement form
without the sign digit. What rule can be made for negating an Excess
3 eoded number by 9's complement arithmetic?

21. Write the number 30 and the 10's complement representation of ·-30 in
Excess 3 form. What rule can be made for negating an Excess 3 number
using 10's complement arithmetic?

22. Design a single decade Excess 3 parallel adder with provision for negate
ing the number in the accumulator to do 9's complement subtraction.
Be sure to include an end around carry facility in your .design.

23. Why is the 8421 code not suitable for parallel addition techniques?
24. Negate the numbers 46 and 30 using:

a) 10's complement arithmetic with 8421 code
b) 9's complement arithmetic with 8421 code.
Which code is more convenient for BCD arithmetic operations 8421 or
Excess 3?

104

CHAPTER 9
CODE CONVERSION AND DECODING

INTRODUCTION
In the preceding experiment so many different types of codes have been in­
troduced that the question, "why such a variety of codes?" might arise. Many
of the .codes in use today have been developed for very good reasons, like
combatting noise in intercomputer communications or accommodating more
keys on a teletype keyboard, but others are surviving more through habit than
anything else. This experiment covers most of the important codes in use
today and their relative merits will be discussed in the light of current tech­
nology.

For purposes of discussion, codes will be grouped into three main classifica­
tions: decimal, reflective codes, error-detecting codes and miscellaneous
codes.

II DECIMAL CODES
To build a decimal computer with 2'state devices, it is necessary to encode
each decimal digit with binary bits. Four binary bits are needed. Although
only 10 of the 16 permutations possible with the 4-bit BCD decade will be
used, all are available. The number of codes that can be generated is calcu­
lated as follows:

16 X 15 X 14 X 13 X 12 X 11 X 10 X 9 X 8 X 7= ~~! = 2.9 X 1010

The choice of a code is obviously important. Desirable features of a code are:
ease in performing arithmetic operations,economy of storage space, economy
of gating operations, error detection and correction, and simplicity.

The 8421 code is commonly referred to Simply as binary·coded decimal be­
cause the weights of the positions are the same as in the binary number
system. Arithmetic operations are easily performed using the same basic
method as in binary since the number sequence is the same.

However, the 8421 code is only one of almost thirty billion possibilities. Logic
designers have experimented with some of the others to see if they would be·
useful. Only six of them are used to any extent at all, and these six are listed
in the table below.

Decimal 8421 Excess 3 2421 Decimal 5421 5311 74-2-1
0 0000 0011 0000 0 0000 0000 0000
1 0001 0100 0001 1 0001 0001 0111
2 0010 0101 0010 2 0010 0011 0110
3 0011 0110 0011 3 0011 0100 0101
4 0100 0111 0100 4 0100 0101 0100
5 0101 1000 1011 5 1000 1000 1010
6 0110 1001 1100 6 1001 1001 1001
7 0111 1010 1101 7 1010 1011 1000
8 1000 1011 1110 8 1011 1100 1111
9 1001 1100 1111 9 1100 1101 1110

Figure 9.1

105

In the Excess 3 code, a decimal digit 0 is represented by the binary equivalent
of the digit D plus 3. The Excess 3 code is not a weighted code, but since it
follows the same number sequence as binary, it is useful in arithmetic opera­
tions. Addition is facilitated since the need for a correction factor is easily
detected and easily implemented. Because it is self-complementing, the Ex­
cess 3 code is also useful in subtraction.

The 2421 is a self-complementing weighted code which is commonly em­
ployed in counting systems. Other examples of 4-bit weighted codes include
the 5421, and the 74-2-1 code.

In this discussion, only three will be compared in detail: the 8421, the 2421,
and the Excess 3. It will be seen that one is superior to the other two in
specific operation such as addition or subtraction, but for another operation
such as digital-to-analog conversion, it is inferior to one or both of the others.
Figure 9.2 is a diagramatic illustration of the arithmetic properties of the
various codes. Here the sixteen possible states of a four-bit counter are
represented around the perimeter of a circle. Circular representation is used
to emphasize the fact that a four-bit binary counter resets itself to 0 on a
sixteenth pulse, and that a pure binary code is therefore cyclic in behavior.

Figure 9.2 Pictorial representation of the essential characteristics
of 8421, 2421, and Excess-3 codes.

The three codes under discussion are represented as segments of the circle,
and it will be seen that each of them covers only ten of the sixteen possible
positions of the rim of the circle. The main purpose of this discussion will be
to show that the positions taken by these segments reveal a great deal about
the properties of each of the three codes. As a corollary to this statement, the
properties of other decimal codes may be studied by examining their posi­
tions on the circle. The 8421 code uses the first ten states and discards the
last six. The Excess 3 code uses the middle ten states and discards three on
either end. The 2421 uses the first five and the last five and leaves the middle
six unused. All three codes use ten sequential states. In most cases codes
using broken segments are difficult to maneuver in even simple logical ele-

106

ments because of the need to build additional gating to skip over the unused
segments. This, then,is the first obvious factor to consider in selecting a code.

The next property to consider is the symmetry of the code in comparison with
the symmetry of the binary code. The binary code may be considered as be­
ing symmetrical about the 15-0 transition point, in that numbers on one
side of the circle are "one's" complements of numbers directly opposite. It
will be seen that both the Excess 3 and the 2421 codes are symmetrical about
this transition while the 8421 code is not. It is also interesting to note that
the first two -are self-complementing while the latter is not. That is to say, if
all of the bits in a number in either of these two codes are complemented, the
"nine's" complement of the decimal number is obtained. This simplifies sub­
traction in decimal arithmetic just as thc"one's" complementation simplifies
subtraction in binary arithmetic_

A. Counting
In counting applications, all three codes are about equally efficient. The
counter must be so constructed that, over ten of its sixteen states, it behaves
like a binary counter; it must have built-in gating to skip over the six unused
states. If the code is made up of several broken segments of the circle, then
several sets of gates would normally be required to skip over the unused seg­
ments.

8. Arithmetic Operations
The symmetrical code groups (Excess 3 and 2421) have another feature that
is not quite so apparent at first. If they are added in an ordinary binary adder,
the proper carry will always be generated. That is to say, the four-bit register
will always pass through the 1111 to 0000 transition when the sum exceeds
nine. Of course, the number that remains in the adder mayor may not be the
right sum (i.e., it may require a correction term). Nevertheless, the generation
of the carry at the right time is very important. The correction necessary then
becomes very simple, particularly with the Excess 3 code. In this case, there
are only two possibilities:

1. If two numbers are represented as A + 3 and B + 3 (as they are in the
Excess 3 code), the sum will be A + B + 6 if the sum is less than
nine. The sum should be A + B + 3, to be the correct Excess 3 nota­
tion. Therefore, three must be subtracted from the result in order to get
the proper Excess 3 code representation.

2. If the sum is greater than nine, A + B + 6 will cancel out the six un­
used states in the code leaving only A + B. In this case, it is necessary
to add three in order to return to the Excess 3 representation.

ThiS" means that the detection of a carry is all that is necessary to determine
which correction is necessary. It turns out that the necessary circuitry to per­
form these steps is extremely simple as was demonstrated in Chapter

8. The 8421 code is more difficult to manipulate in a binary adder. The
result of the addition will be correct if the sum is less than nine, but six must
be added when the sum is greater than nine. This ifiilolves only one correc­
tion, but it is more difficult to tell when a correction should take place. Also,
the carry may not occur until the correction takes place, which means that
each decade must be corrected separately.

Since binary addition is the basis of many arithmetic operations (e.g. multi­
plication by successive addition), it can be safely stated that the Excess 3
code is the most efficient for general arithmetic manipulations.

107

C. Up/[)own Counting

As expected the self-complementing codes are simpler to use than the 8421
code in up/down counting. With the latter type, special gating is required to
make the counter skip over the six unused states.

D. Digital-To-Analog Conversion

AlthougJ1 up to this point in the discussion the Excess 3 code appears to be
efficient for most applications, it does have one serious disadvantage in that
it is not a weighted code. This makes it inconvenient for performing digital-to­
analog conversions. The 2421 code, on the other hand, has nine as the sum
of its weights. Since nine is the maximum number in a single decimal digit,
a digital-analog resistivt:! summing network will produce a maximum output
voltage equal to the value of the reference voltage. The 8421 code makes
use of only 10/16ths of a digital-to-analog converter since it can use only the
first ten states of a four-bit binary sequence.

The 2421 code has another interesting feature. The six unused states also
give valid representations of decimal numbers. (The unused segment extends
up to, but not beyond"ten.) This fact is worth remembering if an 8421 code
number is to be converted to an analog signal in a O-A converter set to read
2421 code. The 2421 weighted resistor network will still recognize the six
states not used in the 2421 code. Thus, the 8421 code will need only to be
modified in the representation of the decimal numbers eight and nine.

E. Summary Comments On Decimal Codes

The above discussion is not intended as an exhaustive comparison of all
possible decimal codes. It does, however, reveal that for most operations the
Excess 3 code has definite advantages over the other two discussed. Despite
this, more frequent use is being made of the 8421 code in day-to-day logic
design. The main reason for this is probably the fact that it can be more
easily remembered than any of the others. Nevertheless, a knowledge of other
code groups may often help to simplify the circuitry required to perform any
given function.

III REFLECTIVE CODES

The binary sequence which has been used in the earlier experiments suffers
from a number of shortcomings in complex control systems. If readout is reo
quired on the fly, for example, for a shaft angle digitizer, confusion could
arise at the transition from binary 7 to binary 8. If the most significant bit
changed slightly before the three least significant bits, the output would
briefly indicate- 15, a highly erroneous number. To eliminate such catastrophic
errors, it is necessary to have a type of code where no more than one bit
changes in going between two successive numbers. Such a code is shown in
the table below. It is referred to as the Gray binary code.

108

Reflected
Binary

Decimal Binary (Gray)
0 00000 00000
1 00001 00001
2 00010 00011
3 00011 00010
4 00100 00110
5 00101 00111
6 00110 00101
7 00111 00100
8 01000 01100
9 01001 01101

10 01010 01111
11 01011 01110
12 01100 01010
13 01101 01011
14 01110 01001
15 01111 01000
16 10000 11000
17 10001 11001
18 10010 11011
19 10011 11010
20 10100 11110

Figure 9.3

In going from one' piece of equipment to another, it is frequently necessary
to change code. Code changes may be done whether in a parallel fashion or
a serial fashion. The choice depends on whether speed or cost is more im­
portant and also on the form that the input or output data must take. A gray­
to-binary converter of the parallel type is illustrated at the end of this chapter.

IV ERROR·DETECTING CODES
Although this chapter does not include an experiment dealing with error-de­
tecting codes, they are brought to the attention of the student here because
he may be faced with the task of converting such codes into some other
code.

The Simplest type of error-detecting code is an ordinary binary (or BCD) code
with a parity bit added. In Chapter 2, it was illustrated how to generate and
add a parity bit to a binary pattern.

Other more elaborate codes are also ,in use. They all have one characteristic
in common, and that is that they use extra bits to detect and in some cases
correct errors.

The Hamming code is one which ,permits not only error-detection, but error­
correction as well. Check bits are distributed throughout a number in such a
way as to provide parity checks on various bit pOSitions. To correct an error,
the parity checks are made in order, and the results of these checks are
arranged in a binary pattern with the least significant bit corresponding to the
first check output. The number which turns up in this binary pattern is the
number of the bit that is in error_ The Hamming code uses at least three
redundant bits for single BCD digit error detection and at least four for
double error detection.

109

V MISCELLANEOUS CODES

So far, we have seen that in addition to the pure binary and the pure BCD
codes, there are many modified codes which are intended for specific ap­
plications. These applications were related to error detection and error pre­
vention. In addition, there is a family of codes which has been developed
specifically for the communications industry.

With the ever-increasing need for computers to "talk" to one another over
telephone and telegraph facilities, and to a wide variety of electromechanical
devices, it has become apparent that all equipment must be able to generate
and accept the same code. This common code is called the ASCII code (for
American Standard Code for Information Interchange). It is an eight-bit code
that is capable of representing all of t.he common alphanumeric characters.
It is interesting to recall that at one time, the 5-bit Teletype code was in
wide use; but it suffered from the limitation that it required a keyboard that
had fewer keys than standard office typewriters. The eight-bit ASCII code of
today gives a typist essentially the same keyboard as is found on a standard
office typewriter. The TWX data communications system uses the 8-bitASCII
code, and computer systems make wide use of this facility for remote access
terminals.

VI CONVERTERS

With such an abundance of codes available, it is often convenient to convert
from one code to another to use the particular advantages of each code. For
instance, when accepting an analog signal input, the 2421 code is convenient
for the analog-to-digital conversion circuitry, and then if arithmetic operations
must be performed on that digitized input, the Excess 3 code is more con­
venient. Therefore in this particular example a code converter to go from
2421 code to Excess 3 code would be useful. In experiments to follow, de­
signs will be shown for several code converters which accept a number, then,
on a convert instruction, change the number from an initial code to a second
code.

The method of design for code converters of this type is to first of all de­
termine what initial code conditions have to be detected and, once those con­
ditions have been detected, what final state should be enabled in the con­
verter when the convert clock pulse occurs. The converter must be able to
accept a number by means of a parallel transfer of information from a source.
The conversion is done on the clock pulse following the receipt of informa­
tion and the converted information must be cleared prior to accepting another
number for conversion.

EXPERIMENT 9.1: THE 2421 TO 8421 CONVERTER
Figure 9.4a shows the initial BCP code which will enter the converter and
beside it the final BCD code required after conversion. If the decimal equiva­
lent of 0 through 4 exists in the converter, the 2421 and 8421 representations
are identical and therefore no change is required when the convert instruction
occurs. The representations of the numbers 5 through 9 are not identical in
both codes and the converter must therefore detect the presence of anyone
of these numbers in 2421 code and convert the 2421 representation to 8421
representation.

110

DE.CIMAL 2421 CODE 8421 CODE

D C B A D C B A
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 1 1
4 0 1 0 0 0 1 0 0
5 1 - 0 1 1 0 1 0 1
6 1 1 0 0 0 1 1 0
7 1 1 0 1 0 1 1 1
8 1 1 1 0 1 0 0 0
9 1 1 1 1 1 0 0 1

Figure 9.4a

DECIMAL IDENTIFY BY CHANGE TO

5 C=O, D= 1 C= 1, B=O, D=O

6 { B= 1, D=O
B=O, D==1

7 B==I, D==O

8 { B=O, c=o
8=1, C=I, D==1

9 B=O, c=o
Figure 9.4b

To detect that 5 is present in 2421 form it is sufficient to be sure that bit
D is a 1 and bit C is a '0 . When the number 5 is detected the converter
must cause the following changes to go from 2421 to 8421 representation:
bit B becomes 0, bit C becomes 1, bit D becomes O. In converting the num­
bers 6 and 7 from 2421 to 8421 the same changes are required (D becomes
0, and B becomes 1); therefore only bits D and B must be examined to
identify when 6 or 7 is present in 2421 code. Similarly 8 and 9 require the
same changes in going from 2421 code to 8421 code so only bits B, C and 0
must be examined to identify the two numbers. Figure 9.5 is a 2421 to 8421
converter. Construct it on the COMPUTER LAB connecting the A, B, C and D
inputs to rocker switches (starting with D on the left). The clock and reset
inputs are pulser switches anp all the flip·flop 1 outputs should be con­
nected to lamp indicators (start with flip-flop D on the left).
To operate the converter, first clear the register by depressing the reset
pulser once. Read-in is accomplished by setting all inputs which are to be

1 LO and all inputs which are to be 0 HI and then pulsing the clock
pulser switch once. A number will have been read into the register and will be
present in 2421 code. All the input switches must be disabled by putting
them in the HI position. The next clock converts the number from 2421 code
to 8421 code. Convert the following numbers from 2421 to 8421 code using
the method outlined above:

0001, 0011, 1011, 1101, 1111.

QUESTIONS
1. Describe the function of gates E, F and G by explaining

(a) what each gate detects and
(b) what each gate does.

111

~
Figure 9.5 2421 - 8421 Converter

112

o
l: 0 ..J

o

i 9
o

o
..J

o

9
o

2. Why are gates E and F only two-input gates?
3. Describe in detail how a 2421 number is read into the register.

EXPERIMENT 9.2: THE 5421 TO 8421 CONVERTER
The 5421 to 8421 converter is more complex because each of 5, 6, 7, 8 and
9 must be separately detected and separately converted. Figure 9.6a shows
corresponding states of the 5421 and 8421 codes. Figure 9.6b shows the
methods of identifying each of the 5421 states representing the decimal
numbers 5 through 9 and the changes which must be made when those
numbers are detected. The converter to perform the functions indicated in
figure 9.6b is shown in figure 9.7.

DECIMAL 5421 CODE 8421 CODE
0 C B A 0 C B A

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 1 1
4 0 1 0 0 0 1 0 0
5 1 0 0 0 0 1 0 1
6 1 0 0 1 0 1 1 0
7 1 0 1 0 0 1 1 1
8 1 0 1 1 1 0 0 0
9 1 1 0 0 1 0 0 1

Figure 9.6a

IDENTIFY BY CHANGE TO
5 A= B=C=O, 0= 1 A= 1, C= 1,0==0
6 A= 1, B=O, D== 1 A == 0, B == 1, C == 1, 0 = 0
7 A = 0, B == 1, 0 == 1 A== 1, C= 1,0==0
8 A=l, 8=1, 0=1 A==O, B=O
9 C=l, D=1 A=I,C=O

Figure-9.6b

Construct the converter on the COMPUTER LAB connecting inputs and out­
puts in the same manner as was done for the 2421 to 8421 C011verter. The
operation of 5421·8421 converter is identical to the 2421·8421 model.
Convert the following numbers from 5421 code to 8421 code using the con­
verter;

0010,0100,1001,1011,1100

QUESTIONS
4. Describe the functions of gates E through I under the following head·

ings:
(a) gate detects
(b) output enables

5. Why must all input switches be in the HI condition prior to the convert
clock pulse?

6. Design an Excess 3 to 8421 code converter.
7. Design an 8421 to 2421 code converter.

113

I I I

I
r---l

f: 0
0 :~}-

~ hi-I--

I
I

1
I

f: 00 :~~

r'
~ 4

~ I
I: om :~~

I
f--f- ~

L. 1
~: oC :~~ ----

Ie c lID moo
~

figure 9.7 5421· 8421 Converter

114

%

l

')

.~

'" ~ i

')

o
oJ

o

~
o

~
o

~
o

EXPERIMENT 9.3: GRAY TO BINARY CONVERTER
As was mentioned earlier in this experiment, gray code or reflected binary is
useful in control applications because there is only one bit transition to incre­
ment or decrement by 1. However arithmetic operations are more easily done
in normal binary code; consequently, there is often a requirement to convert
one to another. Figure 9.8a shows four bits of regular binary code and cor­
responding numbers in gray code. The general conversion rule in going from
gray to binary is:

Bit N. (1) = [Bit N. (0)] + [Bit N + 1 (1)].

In other words the 2N bit will be a 1 after the conversion either if bit N in
gray code werea 1 before the conversion or if the 2N+1 bit will be a 1 after the
conversion. A bracketed (0) refers to conditions prior to conversion and a
bracketed (1) refers to conditions after conversion.

The following conversion' example demonstrates how the conversion rule can
be applied to convert the gray code number 1010 to binary code:

~Jr~)T~)~~)
Gray Code

Binary Code

DECIMAL GRAY BINARY
A B C D A B C 0

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 1 0 0 1 0
3 0 0 1 0 0 0 1 1
4 0 1 1 0 0 1 0 0
5 0 1 1 1 0 1 b 1
6 0 1 0 1 0 1 1 0
7 0 1 0 0 0 1 1 1
8 1 1 0 0 1 0 0 0
9 1 1 0 1 1 0 0 1

10 1 1 1 1 1 0 1 0
11 1 1 1 0 1 0 1 1
12 1 0 1 0 1 1 0 0
13 1 0 1 1 1 1 0 1
14 1 0 0 1 1 1 1 0
15 1 0 0 0 1 1 1 1

Figure 9.8a

A (1) == A (0)
B (1) == B (0) ED A (1) == B (0) E9 A (0)
C (I) == C (0) * B (I) ==C (O) ED [B (0) E9 A (0)]
D (1) == D (0) C (1) == D (0) E9 {C (0) ED [B (0) E9 A (On}

Figure 9.Sb

Construct the gray to binary converter on the COMPUTER LAB. Switch inputs
A through D should be connected to rocker switches starting with A at the.
left. Lamp indi.cators should be connected to the 1 outputs of flip-flops. The
reset and clock inputs are driven by pulser switches. The operating sequence
is the same as that for the 2421 to 8421 converter illustrated on page Ill.

115

Figure 9.9 Gray To Binary Converter

116

o
...J

o 0

o
...J

o

o
...J

o

o
...J

o

Test the converter by converting the following gray code numbers into binary
and noting the results.

0011, 0110, 0101, 1100, 1101, 1111, 1010, 1000.

QUESTIONS
8. What Boolean functions do gates E, F, and G detect?
9. How much time, after the gray code number has been read into the

register, must be allowed for the circuitry to settle prior to receiving a
convert clock pulse?

SUPPLEMENTARY QUESTIONS
10. Define a general equation to convert a binary number into a gray num·

ber.
11. Design and construct a binary to gray converter.

VII BINARY TO BCD CONVERSION

Sometimes for decoding purposes it is necessary to convert a pure binary
number into a binary coded decimal ~umber.

The most common way of accomplishing this conversion is to put the binary
number in a down counter and count down to;' zero while simultaneously
counting up from zero in a BCD counter. When : zero is reached in a binary
down counter the BCD up counter will be the BCD equivalent of the original
binary number.

SUPPLEMENTARY QUESTIONS
12. Make a block diagram of a system which could perform a binary to 8421

BCD conversion. Outline briefly in words what each of the functional
blocks in your diagram would do and how they might be constructed.

117

CHAPTER 10

SYSTEM CONSIDERATIONS

INTRODUCTION

The subsystems constructed to this point are still a long way from operating
anything like a computer. To add a number using the parallel adder in Ex­
periment 7.1 required several manually controlled steps to perform a single
addition. In the time one addition could be performed on the two step parallel
adder, a small boy with a pencil could do 3 or 4 equally complex additions.
The speed limitation of the adder is not imposed by the execution time of the
device (measured in nanoseconds) but rather by the operating time of the
person using that device (measured in seconds). Thus if human operation
can be excluded from the requirement of the adder there will be a reduction
of up to 5 orders of magnitude in the add time.

To remove human control operations from a control sequence a new device
must be added to the system or subsystem, namely the control. The control
must be capable of executing all the instructions in sequence which were
previously initiated from outside.

In controlling subsystems and bringing different subsystem functions together
into a system, consideration has to be given to the timing or synchronizing of
signals coming into a control device. Synchronizers built into a system Clssure
that signals will be brought into an operation at the correct time.

If a system has proper control and synchronizing circuitry built in there are
still limits to the operating speed imposed by propagation delays which are
inherent in the devices used. In this experiment methods for control and
synchronizing will be discussed and built and ways of determining maximum
system frequency will be shown.

II CONTROL
Each system or subsystem control will be unique but there is a definite
method which can be applied to control design which is helpful in most cases_
As was mentioned befpre.the purpose of a control is to generate an operating
sequence for a subsystem or system which causes a series of operations to
commence when the control 'is instructed to start. The first design require­
ment is to decide exactly what that operating sequence is. For instance for
the two step adder in Experiment 7.1 the operating sequence is:

L ENABLE HALF ADD, DISABLE CARRY
2. ALLOW CLOCK PU LSE TO PASS
3. ENABLE CARRY, DISABLE HALF ADD
4. ALLOW CLOCK PULSE TO PASS
5. STOP. (DISABLE HALF ADD AND CARRY)

Figure 10.1 is the two step parallel adder. A control unit to operate this adder
would have to control both the HALF ADD ENABLE and CARRY ENABLE
inputs in order to perform additions. The clock input can be connected per­
manently to a clock line as the adder does not perform any function unless
one of the enable inputs is asserted.

119

Now that the operating sequence has been defined and the.controlling inputs
• have been found it is helpful to draw a timing diagram which shows what

levels must be present on the controlling lines to give the desired operating
sequence. Figure 10.2 is a timing diagram showing the required control in­
formation along with the time at which the two steps of the addition take
place.

CLOCK

HALF ADD
ENABLE

CARRY
ENABLE

n

Ow
O~
~::>
11.0
..Jw
~~

+ n n

Figure 10.2 Adder Control Timing

° w
~~
a:~
~)(ow

+

D r

The basis of most controls is a counter of some form or another which, in
conjunction with the clock, generates the required control sequence and then
stops. In this particular case a two-bit asynchronous counter will give four
unique states which will be a sufficient basis for the control. The counter
must count only to the binary number 11 and stop. Figure 10,3 is a counter
which will start counting clock pulses after being reset to 0 and when it
reaches 11 the NAND gate feeding back to the J and K inputs of the first
flip-flop will disable the counter and further clock pulses will be ignored. The
control sequence in Figure 10.2 can be generated by detecting the 01 condi­
tion in the counter to assert the HALF ADD ENABLE line and detecting the
10 condition to assert the CARRY ENABLE line. Gates A and B detect the
01 and 10 conditions respectively and provide control to the adder. In sum­
mary, the design method for a control is as follows:

1. Itemize the steps required to control the device.
2. Make a timing diagram showing the sequence of logic levels which has

to be generated by the control.
3. Design a sequence generator or control to give the output indicated by

the timing diagram.

120

RESET

CLOCK

Jo2~
-L

R Ifi "T\ 22 C
00·
c: 0 K o K
"""' t"D
P
-4

.... ~
t"D

I\) t"D m I L-...d ~ 1I1L-...d ~ 1I1L-d J-----+-J II 14--- A (HI\
;:+

iJ
~
~
[
»

I I 1 I
•

1 I •
HALF ADD ENABLE 0.

0.

~ CARRY ENABLE

COMPLEMENT
AC ENABLE

~HI
22 0- LO 2' 0- LO 20 0- LO

NOTE: AndlNor Gates must be used as In·
t---------, verters to construct the adder. To use

an AndlNor Gate as an Inverter con­
nect all of its inputs in common.

HI

CLOCK

R

R£SET

ISTART! NOTE: Use AND/NOR gates as inverters.

Figure 10.3 2 Step Parallel Adder Control

EXPERIMENT 10.1: PARALLEL ADDER CONTROL
Construct the parallel adder and control on the COMPUTER LAB, wiring the
adder inputs and outputs as indicated in Chapter 7 (with the exception
of CLOCK, HALF ADD ENABLE and CARRY ENABLE·). Construct the
adder control and connect it to the adder. The RESET (start) input to
the control is connected to a pulser. Connect the clock inputs of both the
adder and its control to the clock output on the COMPUTER LAB and set the
clock to operate at its slowest speed. The operating sequence of the con·
trolled adder will now be:

1. Clear the accumulator by depressing the adder RESET pulser once.
2. Set a number into the incident switch register.
3. Read the number in by depressing the control RESET (start) pulser

once.
4. Set a second number into the input switch register.
5. Add the incident number to the accumulator by depressing the control

RESET (start) pulser once.

With the clock set at its lowest speed it is possible to see the half add and
carry operations taking place. Test the adder and its control by performing
the following additions:

A. 011
001
100

QUEsnONS

B. 010
101
m

1. Explain in detail how the control works.

C. all
011
no

2. Why is the 00 condition of the control counter not used for a control
operation?

SUPPLEMENTARY QUESTIONS
3. /lS was mentioned in Chapter 7 an adder can be used to multiply

by performing a number of additions. Design an extension for the control
to perform a selected number of successive additions.

122

4. . In some cases it is necessary to transfer information in parallel from a
multiple bit source to a shift register and then shift information out
serially from the register. A typical application for this type of register
is to read several bits of information from a computer and then shift it
out serially to go down a line to another computer or read-out device.
Design a four-bit register and control to:

a) Read 4 bits of information simultaJleously.
b) Shift out the 4 bits serially on the next 4 clock pulses.

III SYNCH.RONIZING

If a control receives a signal at the wrong time the result can be an error. For
example, suppose the adder control received a second start instruction just
after the half add occurred. The number in the accumulator would most likely
be in error because the carry operation would not have been completed prior
to the second start instruction. Thus it is necessary to synchronize the start
instruction with the operation of the adder.

The synchronous Up/Down Counter in Chapter 5 is another example of
a device requiring synchronization. If both its UP ENABLE and DOWN EN­
ABLE lines are held in the HI condition, the counter will complement every
clock pulse and possibly end up in an erroneous state. This condition can be
avoided by having only one direction line which will cause the counter to
count up when HI and count down when lO such as in Figure 10.4. With
single line direction assertion, the counter will work perfectly well until a
change of direction occurs when the clock pulse is HI. In this case the state
of the counter following the clock pulse trailing edge is not certain. The
change of direction on the up and down enable lines must therefore be syn­
chronized with the operation of the clock.

EXPERIMENT 10.2: SYNCHRONIZERS

A J-K flip·flop is ideally suited for synchronizing with the clock because its
output transitions take place after the trailing edge of the clock pulse regard­
~ess of when the conditioning J and K inputs change state. Figure 10.5 shows
how a J-K flip-flop can be used to control direction and to synchronize the
counter so that transitions do not occur on the up enable and down enable
lines when the.clock input is HI.

This particular synchronizer assures that level changes on the enable lines
occur at the correct times. Other synchronizers direct clock pulses down one
line or another dependent on the state of a flip-flop or in other cases receive
a pulse and cause a change to occur at some later time in synchronism with
the clock etc. Like a control, each individual synchronizer has to be tailored
to a particular system. Construct the circuit shown in Figure 10.5.

QUESTIONS
5. Design and construct an Up/Down Counter similar to the one in Figure

10.5 but which will accept two separate pulse inputs to change direction.
That is, a pulse on the count up line will insure that after the following
clock pulse the counter will change direction and then count up. And
conversely a pulse on the count down line will insure that after the next
clock pulse, the counter will change direction and then count down. An
R-S flip-flop might be used in this application (Chapter 3).

123

Figure 10.4 Synchronous Up/Down Counter

124

Figure 10.5 Controlled Synchronous Up/Down Counter

125

6. Design a synchronizer for the two step adder and control to insure that
a second start instruction is not recognized until the adder has com­
pleted its cycle.

7. Design a synchronizer to direct clock pulses to one of two counters de­
pendent on whether a counter # 1 or counter # 2 control pulse was re­
ceived last. Be sure that the synchronizer will not permit split pulses to
get through to either counter.

IV SYSTEM FREQUENCY
Because the circuits used on the COMPUTER LAB are so fast, the fact that
they do take time to transmit information is often overlooked. With careful
design, logic configurations can be used at speeds of 10 megacycles and
higher, but there are limits. A timing diagram of the longest logic chain is the
most useful tool in determining a system operating frequency. Sufficient time
must be allowed from the trailing edge of a clock pulse to the leading edge
of the next clock pulse for information to propagate down the longest logic
chain and settle.

Figure 10.6 is a self-stopping asynchronous up counter that will count to the
number 2N and stop. The longest logic chain in this particular case is the
chain of flip·flops. Each flip-flop is looking at the output of the previous one
and therefore there is a delay of 35 nanoseconds per flip-flop. In order to in·
hibit counting the counter must do the transition from 01 111 to 100
........ , ... 0000, making the 2N bit a 1 and disabling the J and K Inputs of flip~
flop 2°. The propagation delay of the counter as a whole is thus 35 (N + 1)
ns as shown in Figure 10.7. The time between the trailing edge of one clock
pulse to the leading edge of the next must therefore be 35 (N + 1) nanosec·
onds. If the clock pulses are closer together, there is a good chance that the
counter will not inhibit quickly enough to stop at the number 2N but will over­
shoot and carry on to the nUmber 2N + 1.

EXPERIMENT 10.3: MAXIMUM FREQUENCY
Construct an 8-bit counter similar to the one in Figure 10.6 on the COM,
PUTER LAB. Connect the RESET input to a pulser and the CLOCK input to
the COMPUTER LAB clock. Connect all flip,flop outputs to lamps. When
the reset pulser is depressed and held down.the counter will count up to 27
and stop. Operate the counter with the clock set to a fairly slow speed and
verify that it performs as outlined. Disconnect the jumper from the clock
range selector and turn the clock variable control to its fastest position and
retest the counter.

QUESTIONS
8. Does the counter operate identically at HI and 1.0 clock repetition rates?

Why?
9. How fast can the counter be operated? What is the average delay per

flip,flop?
10. Draw a timing diagram for the longest logic chain in the two step parallel

adder with control (which was constructed in this experiment). What is
the maximum frequency of operation for this device, assuming 50 nano,
second clock pulses?

11. How fast can the synchronous Up/Down Counter (constructed in this ex,
periment) be operated? Do not forget that in some cases the counter
may have to change direction in the time between two clock pulses.

126

o

Figure 10.6 Asynchronous Self·Stopping UP Counter

I

3 .. 140M

I 3 .. ITS ..

I 'g .. 3~N(N+lln •
I

Figure 10.7 Flip-Flop "I" Output Propagation Delays

127

APPENDIX A

CHECKOUT PROCEDURES
Most fauity circuit op'erations result from loose patchcords, incorrect patch­
cord wiring, improper student logic designs, or other such errors that are easy
to remedy. Therefore, before concluding that the COMPUTER LAB unit needs
repair, please identify the specific fault and then consult the following trouble­
shooting guide. .

If none of the suggested remedies correct the fault, then:

1. Obtain a Return Authorization Number (RA#) from Module Marketing
Service, Digital Equipment Corporation, Maynard, Massachusetts, by
calling (617) 897-5111.

2. Ship the COMPUTER LAB prepaid insured to:

Digital Equipment Corporation
COMPUTER LAB Repair Center
146 Main Street
Maynard, Massachusetts 01754

3. On the shipping container, list your NAME, RETURN ADDRESS and RE·
TURN AUTHORIZATION NUMBER.

4. If the COMPUTER LAB is NOT on warranty, enclose a check or Money
Order for $35.00 payable to "Digital Equipment Corporation" or enclose
a Purchase Order. The normal warranty period is 90 days. Consult the
Warranty Agreement for exact terms and conditions.

5. DIGITAL will repair the unit and return it postpaid.

FAULT CAUSE REMEDY

Unit completely No power input. -Plug into 120 VAC receptacle.
inoperative. -Turn power switch on.

. Wiring error. -Check wiring .

Damaged power -Check HI terminal for + 2.8V
supply. to ground

Intermittent Loose connections. -Connect any free wires.
failure. -Push in loose pin connectors.

Gate fan-out -Parallel gates to obtain higher
exceeded. fan-out.

Sectional failure Incomplete wiring. -All gates used should have at
of a circuit. least one connection on each

input and output.
-If no connectio'n is present,

check circuit for completeness.

Wiring error. -Check for sectional errors in
wiring.

-Check that two outputs are not
wired in parallel.

Gate fan-out -Parallel gates to obtain higher
!exceeded. fan-out.

129

FAULT

HI terminal
does not supply
HI level.

Rocker switch
will not supply
HI level.

Lamp will
not light.

Pulser switch
will not supply
HI level.

Clock
inoperative.

CAUSE

HI terminal or
rocker switch output
connected to ground
or another output.

Rocker switch output
or H I terminal
connected to gnd
or another terminal

Incorrectly wired
circuit.

Bulb failure.

Pulser output
connected to
another switch or
logic output.

Clock output
connected to
another logic or
switch output.

Clock coarse range
selector wrongly
connected.

2-input NAND Wiring error.
gate inoperative.

Gate failure.

130

REMEDY

-Check wiring to be sure no
connection is made from HI
terminal or switch output to
any other outputs.

-Check wiring to be sure no con­
nection is made from a switch
output or a HI terminal to
any other output terminal.

-Check wiring.

-Test lamp by removing input
wires from circuit and connect­
ing lamp input to HI (lamp
should light). If it still fails re­
move the switch panel cover
and replace bulb with one of
the spares supplied.
Note: Bulbs should be replaced
with an exact replacement bulb
DEC # 12-5591.

-Check the pulser output con­
nections.

-Check clock output wiring.

-Check clock coarse range wir­
ing.

-Check wiring especially for
other outputs connected in
parallel.

-Check for disconnected inputs

-Test to determine failure by con­
necting gate inputs to switches
and gate outputs to lamp driv­
ers to verify the following truth
table:

A B Output

LO
LO
HI
HI

LO
HI
LO
HI

HI
HI
HI
LO

FAULT CAUSE REMEDY

3-input NAND Wiring error. -Check wiring (especially gate
gate inoperative. output).

-Check for disconnected inputs.

Gate failure. -Disconnect gate from circuit
and connect inputs to rocker
switches and the output to a
lamp to perform the following
test:

A 8 C Output

LO LO LO HI
LO LO HI HI
LO HI LO HI
LO HI HI HI
HI LO LO HI
HI LO HI HI
HI HI LO HI
HI HI HI LO

4-input NAND Wiring error. -Check wiring, especially output
gate inoperative. connections to be sure no con-

nection is made to another out-
put.

-Check for disconnected inputs.

Gate failure. -Disconnect gate from circuit
and connect inputs to rocker
switches and output to lamp
driver. Test to see that all con-
ditions in the truth table are
valid.

A 8 C D Output

LO LO LO LO HI
LO LO LO HI HI
LO LO HI LO HI
LO LO HI HI HI
LO HI LO LO HI
LO HI LO HI HI
LO HI HI LO HI
LO HI HI HI HI
HI LO LO LO HI
HI LO LO HI HI
HI LO HI LO HI
HI LO HI HI HI
HI HI LO LO HI
HI HI LO HI HI

"' ;-11 HI HI LO HI
HI HI HI HI LO

131

FAULT CAUSE REMEDY

AND/NOR gate Wiring error. -Check wiring, especially output
inoperative. connections to be sure no con·

nection is made to another out-
put.

-Check for disconnected inputs.

Gate failure. -Disconnect gate from circuit
and connect inputs to rocker
switches and output to lamp

,driver. Test to see that all con-
ditions in the truth table are
valid.

A 8 C D Output

LO LO LO LO HI
LO LO LO HI HI
LO LO HI LO HI
LO LO HI HI LO
LO HI LO LO HI
LO HI LO HI HI
LO HI HI LO HI
LO HI HI HI LO
HI LO LO LO HI
HI LO LO HI HI
HI LO HI LO HI
HI LO HI HI LO
HI HI LO LO LO
HI HI LO HI LO
HI HI HI LO LO
HI HI HI HI LO

132

FAULT CAUSE REMEDY

J-K flip·flop Wiring error. -J-K or R input not connected.
inoperative. -lor 0 output connected to an-

other output.

I ncorrect use of -Connect Clock to pulser or
Clock input (clock COMPUTER LAB clock.
connected to
rocker. switch).

J-K Flip-Flop failure. -Test the flip-flop according to
the procedure in Figure 1 to de-
termine failure. ~

Before Clock Pulse After Clock Pulse

1 Output 0 Output J K 1 Output o Output

LO HI LO LO LO HI
LO HI LO HI LO HI
LO HI HI LO HI LO
LO HI HI HI HI LO
HI LO LO LO HI LO
HI LO LO HI LO HI
HI LO HI LO HI LO
HI LO HI HI LO HI

*1. When performing the above test, the RESET input should be connected
to a H I logic level.

2. To test the RESET input, connect it to a LO logic level. The flip-flop 0
output should remain H I and the 1 output LO for all J and K input
conditions.

HI

laO

10 PULSER SW. -------1

HI

laO
HI

LO 0

Figure 1 J-K Flip-Flop Failure Test

133

APPENDIX B

KARNAUGH MAPPING

A Karnaugh Map is a simple visual representation of a 2-state function and is
used to obtain a simplified Boolean expression from a truth table. To make a
Karnaugh Map, a Boolean function must first be io a "sum of products" form.
In most cases, functions will have to be simplified through truth tables to
obtain this format. Examples of truth table simplification are shown 'in Figures
4.6 and 4.7 of Chapter 4. As a general rule, the basic variables (A, B, C, etc.)
of a Boolean function are made into columns of the truth table. These vari­
ables are then combined into the successive levels of terms until finally the
function itself is made into a column of the truth table. The following example
(Figure 1) illustrates how a complex example can be reduced to a sum of
products by a truth table. The function F is valid for all input combinations
which give F a value of 1. The last column in the truth table indicates that
the function F = A· B· C . 15 + A. B . C· D + A· B . C . 0 + A· B . C·O +
A· B . C ·15. This sum of products form of expression is now suitable for plot­
ting on a Karnaugh Map.

There are 16 possible conditions for any 2-state function with four variables.
Each one of the combinations of input variables is called a "minterm." The
function will have a value of 1 or 0 for each minterm. The truth table
will give the value of each minterm of the function. A Karnaugh Map takes
information from a truth table and organizes it in visual grouping of minterms

,for easier simplification of the function.

F= A· {[(B + C).D]';:}

A B C 0 B+C (B + C)· 0 [(B + C) . 0] . A [(B + C) . 0] . A F

0 0 0 0 0 0 0 1 1 (1)
0 0 0 1 0 0 0 1 1(2)
0 0 1 0 1 0 0 1 1 (3)
o~ 0 1 1 1 1 1 0 0
0 1 0 0 1 0 0 1 1 (4)
0 1 0 1 1 1 1 0 0
0 1 1 '0 1 0 0 1 1 (5)
0 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 1 0
1 0 1 0 1 0 0 1 0
1 0 1 1 1 1 0 1 0
1 1 0 0 1 0 0 1 0
1 1 0 1 1 1 0 1 0
1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 0 1 0

F=:J:lI'e'li + AI~D + 'AI co + ABeD + ABeD
(1) (2) (3) (4) (5)

Figure 1

A Karnaugh' Map of the truth table in Figure 1 will indicate the value of each
of the 16 minterms for the function F. A convenient way to do this is with a
table 4 squares by 4 squares, where each square uniquely represents one
minterm.

135

On the Karnaugh Map there is one square for each minterm.

3 variables produce 8 squares
4 variables produce 16 squares
5 variables produce 32 squares

(Mapping over 5 variables becomes cumbersome)

The map is laid out to produce easy recognition of terms that differ only in
the barred and unbarred state of one variable. As an example, if P== abc +
abc, the two terms differ only because one term contains c and the other c.
This relationship is called an adjacency, and by application of the distributive
law can be simplified to abo

F==abc + abc
== ab (c + c)
==ab

This adjacency is readily seen on the Karnaugh Map. A diagram for a 3 vari­
able map is illustrated below. Each column on the map represents

Rows

(AB) (AB) (AB) (AB)
A8 00 01 11 10

o Columns

a specific value of A and B. Each row represents a specific value of C. The
first bit in each number group to the right of AS (column digits) indicates
the value of A for a particular column.

0= not function

1= true function

The upper row contains minterms with C valued O. The lower row contains
minterms with C valued 1.

A diagram for variables abc is shown below. A term is illustrated by placing
a one in an appropriate square.

A8 00 01 11 10

c~I~I:I~I~1
A diagram for variables abc is shown below.

Combining the two maps readily shows the adjacency and produces a two
variable term ab, since c and c is common to the adjacency.
Therefore, abc + abc == abo The circle represents the simplified term. (Term
cannot contain c == c.)

136

Adjacency = abo

A diagram used to plot four variables is shown below. The number to the
right of. AB represent all possible combinations of AB.

~B 00 01 11 10

00 leell iBeD ABeD ABeD

01 AeCD ABCD ABCD ABeD

" ABeD ABCD ABCD ABCD

10 ABCD ABCD ABCD ABCD

The numbers to the right of CD represent all·possible combinations of CD. All
minterms are plotted above.

RULES

In order to simplify any expression, the following rules should be followed.

1. Make as large a grouping of adjacent minterms as possible. (Grouping
must contain a number of minterms which is an even power of 2. i.e. 2,
4, 8, 16, etc.) ,. 00 01

cI> 0 0

01 0 0

11 0 0

to 0 0

t 1

~

1

1

1

10

'T'
1

1

1

r---8 SQUARE
ADJACENCY

2. Overlapping groups is desirable to reduce the expression to its simptest
form.

CD
~"oooo

10 0 0 0 0

G> ~
ACD+AC5+A~D=~5+AC

137

3. A function may be defined by grouping all the minterms valued 1. (Or
by grouping all the minterms valued 0 and negating.) ,. 00 01 f 1 10

00 0 0 0 ~

CO
01 , , 1 1 ~

-----+
"

1 1 1 1

10 1 1 1 1p:l

4. Determine external adjacencies by "folding" the map so that the outer
sides touch or the top and bottom touch.

CD
11 10

, (i)

~ ·11

10 0

CD ~
ACO+ACP+ABC+ABCD PLOTTED BECOMES=AD+BC

Referring baCk to Figure 1. F == ABCD + ABCD +ABCD + ABCP + ABCD is
plotted an simplified as follows:

co
----. 11

A map for five variables is illustrated below:

138

11 10

o 0

o 0

o 0

o 0

APPENDIX C
THE TRANSISTOR-TRANSISTOR LOGIC NAND GATE

The same basic electronic configuration is used throughout the logic functions
on the Computer Lab. In this section the operation of that configuration will
be studied and the methods used to make more complex gates examined.

Figure 1 is the basic two input NAND gate schematic diagram. The circuit is
divided into 3 major sections, the multiple emitter input, the phase splitter
and the totem pole output circuit. The two diode model of a transistor shown
in Figure 2 will be used in the analysis of the circuit. A forward biased silicon
junction (i.e. diode) gives a voltage drop of about 0.75 volts and a saturated
silicon transistor has a collector emitter voltage of 0.4 volts average. These
two figures will be used throughout the following discussion.

With either input at the LO logic level (0.OV-0.8V) the multiple emitter input
transistor will be ON with its base residing at about 0.75 + 0.4 == 1.15 volts.
The three diode string consisting of Q.'s base collector diode, Q2'S base emit­
ter diode, and Q4'S base emitter diode will have only 1.15 volts across it and
will therefore be conducting only leakage currents (0.75 + 0.75 + 0.75 ==
2.25 volts required for forward bias). With no current flowing into the base
emitter junction of Q2, the transistor will be OFF and its collector emitter
voltage is allowed to rise. Similarly with no current flowing in the base emitter
diode of Q4 the transistor is OFF and its collector emitter voltage is allowed
to rise. When both Q2 and Q4 are OFF, Q3 is freed to pull the output voltage to
a HI level. The voltage levels present in the circuit with one or more LO in­
puts is shown in Figure 4.

If both inputs are HI (2.4-3.6 volts) the head of the three diode string will re­
.side at about 2.25 volts and there will be a current path from the 4K base
resistor on the input transistor through the diode st[ing to ground as shown
in Figure 5. With current flowing in the base emitter junctions of both Q2 and
Q4, both transistors will be turned ON. Q3 is held OFF whenever Q! is ON. The
output is dr.iven LO (0.OV-0.4V) by transistor Q4. The voltage levels present in
in the circuit with both inputs HI and are shown in Figure 6.

MULTIPLE INPUT GATES, THE AND/NOR GATE
More inputs are added to a NAND gate by increasing the; number of emitters
on the multiple emitter input transistor. The AND/NOR gate circuit has an
extra input transistor and phase splitter transistor. The phase spUtter of the
extra section is connected in parallel with the basic NAND phase splitter as
shown in Figure 7.

LOADING AND DRIVE CAPABILITIES
To take an input to ground (logical LO) requires a source capable of sinking
1.6 rna. (In calculating this figure recall that the 4K input resistor has a
tolerance of 30%.) To take an input to + 3 volts (logical HI) requires a
source capable of delivering 40 ILa. This combination of drive requirements
is called a unit load. Each gate output is capable of driving 10 unit loads, or
in other words each output has a fan-out of 10.

LOGIC LEVELS AND NOISE MARGIN
A gate input will recognize 0.0 volts to 0.8 volts as logical LO and 2.0 volts
to 3.6 volts will be recognized as a logical HI. An output is between 0.0 volts
and 0.4 volts in the logical LO condition. The logical H I output condition is

139

between 2.4 volts and 3.6 volts. Figure 7 shows diagrammatically the accept­
able transistor,transistor logic levels. The worst case noise margin is 400
millivolts that is, an output wOl,Jld have to make at least a 400 millivolt excur­
sion to cause an input which is connected to it to go into the indetermined
voltage region. For instance if an output were at 0.4 'volts (worst case logical
La) there would have to be a + 400 mv swing in voltage to cause inputs
connected to it to go into their indetermined region.

r------.----........ ------'- +~v

4K 16K

03

INPUT A ----"t. 02

.------ OUTPUT

INPUT B -------'
04

IK

~---~------G~

MULTIPLE
EMITTER

INPUT

PHASE
SPLITTER

TOTEM
POLE

OUTPUT

Figure 1 TIL NAND Gate Schematic Diagram

~"""_OR __ --(>I>

~""'" ~
COLLECTOR

BASE

. EMITTER

Figure 2 Two Diode Model For Transistor

+5V

CURRENT

,... - _PA.!H_ - - - - - -, 028E Q48E
INPUT A __ HCl-_=~_O 7_~...,V 0"'-' #-;.-' --01-----.,PI----.

I
INPUT 8 «LOW) I L _________ ..J

Figure 3 Diode Equivalent NAND Gate Circuit,One Input La

140

INPUT A
HIGH

INPUT B
LOWIO.4VI

4K

MULTIPLE
EMITTER

INPUT

+5V

1.6K 130 ...

OJ

3.5V
OUTPUT

04

L----------4-------------G~

PHASE
SPUTTER

TOTEM
POLE

OUTPUT

Figure 4 TTL NAND Gate Schematic Diagram,One Input LO

+SV

4K

INPUT B:.;Hc..;:IGH"'-#-___

Figure 5 Diode Equivalent NAND Gate Circuit,Both Inputs HI

INPUT A
HIGH (2.4Vl

INPUT 8
HIGH (Z.4Vl

.------------.----------~------------ +5V

4K

2.25V

MULTIPLE
EMITTER

• INPUT

1.6K

"SV

02 i04V

IK

PHASE
SPLITTER

O.75V

13011.

TOTEM
POLE

OUTPUT

03

04

04V
OUTPUT

GROUNO

Figure 6 TTL NAND Gate Schematic Diagram"Both Inputs HI

141

+5V

4~ 16K nOA

03

INPUT A

OUTPUT

INPUT B
04

GROUND

INPUT C

INPUT 0

Figure 7 AND/NOR Gate Circuit

IIID£TERMINED REGION

Figure 8 Logic Levels

142

OUTPUT CONNECTIONS
When outputs are mistakenly connected to outputs, indetermined levels often
result because the transistor-transistor logical output circuit is a low imped­
ance in both the logical La and logical H I condition. Other forms of logic (e.g.
diode-transistor logic) have a low impedance output in the LO condition and
a high impedance output in the HI condition. Because of the varying output
impedance in the two states, outputs can be paralleled in these forms of logic
to give what is called the wired OR function. This cannot be done with the
transistor-transistor logic on the COMPUTER LAB; outputs must be connected
only to inputs.

143

144

INTRODUCTION

APPENDIX D

THE COMPUTER

The modern digital computer is very similar to the standard desk calculator
with one very basic difference: the computer performs long chains of opera­
tions without human intervention. The computer can also make certain
logical "yes" or "no" decisions and change its future actions as a result. The
chain of instructions which tells the computer hQw to solve a particular prob­
lem is called a "program." Preparing the list of operating instructions for the
computer is called "programming," and the people who do this, "program­
mers."

The computer is a machine that has to be taught step by step exactly what
to do. It can do only one step at a time, but it does each step at such a great
speed that it appears as if the computer were doing an entire large scale
operation at once. For example, the DIGITAL PDP-8/S computer can add two
numbers in 36 microseconds-that is, in 36 one-millionths of a second. At
this speed, it can perform almost 28,000 additions in one second. An even
faster computer, the DIGITAL PDP-B/I, requires only 3 microseconds to per­
form one addition. It can perform over 300,000 additions in one second.

The computer can remember both facts and instructions. This stored informa­
tion can be brought into use in a very small fraction of a second and~ unlike
the human memory, the computer never forgets. Jt can instantly remember
every fact it has been told. Because of its speed and memory, the computer
can provide great accuracy by solving problems the long and most accurate
way.

The computer has two prime capabilities that let it work automatically: it can
remember a set of instructions and it can perform these instructions in proper
order without outside direction_ A computer operator need only feed instruc­
tions and data into the computer. The computer works automatically, step by
step, solving the problem.

II PARTS OF A COMPUTER
The working parts of the computer can be grouped into five major categories:
A), input devices; B), arithmetic or calculation unit; C), memory or storage
devices; D), output devices; and E), control unit.

A) Input Devices
Input devices supply the computer witl1 basic data and also give the instruc­
tions or program that tell it what to do with the basic data. Information can
be fed into the computer by a variety of means. The slowest method is manu­
ally setting a series of switches. Each switch has a certain meaning to the
computer. A faster method is by the use of punched cards. Each hole in the
card has a certain meaning to the computer as either a fact or an instruction
that tells the computer what to do with a fact. A faster method still is with
magnetic tape, similar to the tape used in tape recorders. The computer
senses information on the tape and interprets this as facts or operating in­
structions. A still faster method is through dataphone or an electronic hookup
from one computer directly to another.

145

8) Arithmetic Unit
The computer's calculating or arithmetic unit operates on the same principle
as an adding machine. It can take two numbers and add, subtract, multiply
or divide them.

C) Memory
The computer has a memory in which it stores both the data needed to solve
a problem and instructions that tell it how to manipulate the data.

D) Output Devices
After the computer has finished a set of instructions and arrived at a solution,
it uses various output devices to bring this information to the outside world.
These devices are very similar to the input mechanisms described earlier.
Output information can be punched on cards; it can be displayed by patterns
of lights; it can be recorded on magnetic tape or printed on paper. The in­
formation can also be transferred from one computer to another via data­
phone or it can be displayed on an oscilloscope, a device very similar to a
television.

E) Control Unit
All of the elements of a modern electronic computer must work in a definite
series of operations. The input and outputdevices must function at the proper
time; the arithmetic unit must operate when the proper numbers are in it; and
the storage or memory element must transfer information in and out in the proper
sequence. All this is controlled by the computer's central processor or control
unit. The operating instructions held in memory tell the central control unit
the order in which the various parts of the computer must operate and what
they must do. The unit then coordinates all parts of the computer so that
events happen in the proper sequence and at the right time.

This is neither as powerful nor as mysterious as it may sound, for the control
unit only does exactly what it is told to do. Numerically encoded instructions
which are stored in the memory can be sent to the control unit to direct it to
carry out certain basic operations. The control unit is designed to "decode"
each number sent to it and to begin a chain of events designated by that
number. For example, the instruction code number 700la might start a count­
ing operation in an arithmetic unit. When one chain of events has been com­
pleted, the control unit is ready to receive another number from the memory
and to begin the chain of events designated by that number and so on.'

Relatively few of the instructions which the control unit can interpret are actu­
ally built into the computer but there are built-in instructions which make it
possible, when combined in the proper sequence, to form any specific chain of
operations which possibly could have been built in. This remarkable circum­
stance gives the computer its versatility. This type of computer-one that
stores its own instructions and provides the means of creating an indefinite
array of operating sequences-is called a general purpose computer. It is the
set of instructions, or program, that states the procedure the computer is to
follow in solving the problem at hand. The program is a large series of opera­
tions composed of many simpler operations, namely the basic ones provided
in the computer's repertoire. In using the computer to solve a problem, the
operator's task is primarily one of writing an effective program based ulti­
mately on the simple operations the computer ~'knows" how to do.

146

III WHAT A COMPUTER DOES
A computer can work automatically because it can remember instructions as
well as facts. The computer's memory is divided into a number of addresses
or locations. A group of digits is stored at each address and each group is
handled by the computer as a unit. This unit is generally called a "word."
Each memory address is numbered and the information at the address is then
referred to by that number. For example, address [500] could contain the
number 7,025 or address [18] could contain an operating instruction. The
memory words can be either data or operating instructions, either of which
can be stored at any memory address. Operating instructions are stored in
the computer as a group of digits.

To illustrate how the various parts of a computer operate, think of one being
used to solve the algebraic equation "y == a + b" where a == 2 and b == 3.
The instructions the computer will need are ERASE, ADD, STORE, PRINT, and
STOP. ERASE tells the computer to remove all previous numbers from the
Arithmetic Unit and start at zero. ADD instructs it to take a number stored in
a memory location and add it to whatever number is in the Arithmetic Unit.
The STORE instruction takes the number currently in the Arithmetic Unit and
stores it in a specific memory location. At the PRINT command, the computer
will print out the information it is holding in the specified memory location.
STOP tells the computer that it has finished a set of commands and should
return ready to FETCH the instruction at location [1] and wait for further
instructions.

For solving y == a + b, the computer will need nine memory locations, as
shown in Figure 1, with the first six holding operating instructions, location
[7] holding the value of a, location [8] holding the value of b and location
[9] holding the final answer, or the value of y.

ADDRESS

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

CONTENTS

ERASE

ADD [7]

ADD [8]

STORE [9]

PRINT [9]

STOP

2

3

0

y=a+b
where
a==2
b==3

Figure 1 Memory Addresses and Contents Before Program Starts

There are two parts to every computer command: the FETCH instruction and
. the EXECUTE instruction. During the first part of each command, the Central

Control Unit goes to the next memory address and 'fetches' the instruction.
In the second part of the command, the Control Unit 'executes' the instruc·
tion it received.

147

For example, in Figure 2A, the Control Unit fetches the instruction ERASE
from memory ad<jress [1]. It then executes the mstruction as in Figure 38 by
erasing the previous contents of the Arithmetic Unit, in this case 108.

MEMORY

[1] ERASE I- ARITHMETIC UNIT

[2] ADD [7]
108

[3] ADD [8]

[4] STORE [9] CONTROL UNIT

[5] PRINT [9]

[6] STOP L...+ ERASE

[7] 2

[8] 3

[9] 0

Figure 2A Fetch Instruction

MEMORY

[1] ERASE ARITHMETIC UNIT

[2] ADD [7]
o

[3] ADD [8]
4-

[4] STORE [9]
I

CONTROL UNIT Co~trol
[5] PRINT [9] I

[6] STOP ERASE

[7] 2

[8] 3

[9] 0

Figure 28 Execute Instruction

The Control Unit then moves to the next address location (Figure 3A) where
it first fetches the instruction ADD [7] telling it to add the contents of address
[7] to the number in the Arithmetic Unit (0) and it then executes the instruc­
tion (Figure 38).

148

. -.
MEMORY

[1] ERASE ARITHMETIC UNIT

[2] ADD [7] I---
o

[3] ADD [8]

[4] STORE [9] CONTROL UNIT

[5] PRINT [9]

[6] STOP
.. -, ADD [7]

[7] 2

[8] 3

[9] 0

Figure 3A Fetch Instruction

MEMORY

[1] ERASE ARITHMETIC UNIT

[2] ADD [7] ...
[3] ADD [8]

P' 2+0==2

[4] STORE [9] CONTROL UNIT

[5] PRINT [9] e
[6] STOP ~-~-

0
1 ADD [7]

0
[7] 2 ~.

[8] 3

[9] 0

Figure 3B Execute Instructio,n

The next command, illustrated in Figures4A and4B, tells the computer to ~dd
the contents of address [8] to the number in the Arithmetic Unit. The unit
now holds the value of a + b.

149

MEMORY

[1] ERASE ARITHMETIC UNIT

[2] ADD [7]
2

[3] ADD [8] n [4] STORE [9]
CONTROL UNIT

ADD [8]
[5] PRINT [9]

[6] STOP

[7] 2

[8] 3

[9] 0

Figure 4A Fetch Instruction

MEMORY

[1] ERASE ARITHMETIC UNIT

[2] ADD [7] 3+2==5
[3] ADD [8]

[4J STORE [9] "0
~-~.-

[5] PRINT [9] 0
u

CONTROL UNIT

·1 ADD [8]

[6] STOP

[7] 2

[8] 3 ~

[9] 0

Figure 48 Execute Instruction

The computer has now solved the equation y == a + b for the value of y
where a == 2 and b =: 3. The next task is to get this information out of the
computer. Figures 5A and 58 illustrate one method of doing this. The Control
Uni,t reads the contents of Memory Address [4] and is instructed to take the
information in the Arithmetic Unit and store it in Memory Address [9], erasing
any information already in [9].

150

MEMORY

[1] ERASE ARITHMETIC UNIT

[2] ADD [7]

1 t 5
[3] ADD [8]

CONTROL UNIT
[4] STORE [9]

~ .J STORE [9] J
[5] PRINT [9]

[6] STOP

[7] 2

[8] 3

[9] 0

Figure 5A Fetch Instruction

MEMORY
)

[1] ERASE ARITHMETIC UNIT

[2] ADD [7] I 5 J [3] ADD [8] 1
CONTROL UNIT

[4] STORE [9] ""6

I ~- ~--I STORE [9]
[5] PRINT [9] u
[6] STOP

[7] 2

[8] 3

[9] 5 ~ -

Figure 58 Execute Instruction

The next instruction (Figures 6A and 68) tell the computer to print out the
information stored in Memory Address [9].

151

MEMORY

[1] ERASE ARITHMETIC UNIT

[2] ADD [7]
5

[3] ADD [8]

[4] STORE [9] ..
[5] PRINT [9] ~

..
CONTROL UNIT

PRINT 19]

[6] STOP

[7] 2

[8] 3

[9] 5

Figure 6A Fetch Instruction

MEMORY
ARITHMETIC UNIT

[1] ERASE

[2] ADD [7] 5

[3] ADD [8] CONTROL UNIT

[4] STORE [9] ,---.-, PRINT [9]

[5] PRINT [9] I
I

[6] STOP Control
I

[7] 2 ~
[8] 3

..
~

..
[9] 5

PRINTER

5

Figure 6B Execute Instruction

After executing the instruction held in memory address [5], the control unit
advances to address [6] where it is told to stop, return to [1] and await a new
start command. The contents of each memory address remain unchanged
and new values for a and b will have to be read into addresses [7] and [8]
before the control unit is started again. When told to start, the computer will
go through the sequence of instructions, again solving the equation y == a + b
for the values of a and b. The values of a and b could be changed by manu·
ally "keying" n"ew numbers into [7] and [8] or instructions could be added to
the program wh.ich would allow the computer to accept new values for a and
b from various input devices. (See figures 7 A and 7 B)

152

MEMORY

[1] ERASE ARITHMETIC UNIT

[2] ADD [7]

I I 5
[3] ADD [8]

CONTROL UNIT
[4] STORE [9]

rl STOP I [5] PRINT [9]

[6] STOP

[7] 2

[8] 3

[9] 5 -
Figure 7 A Fetch Instruction

1. Computer Halts
2. Returns to Address 1
3. Waits for NewV~lues for a and b
4. Waits for Start Command

Figure 7B Exeq.te Instruction

IV· PROGRAMMING
In solving any problem, the computer cannot operate until it has been given
a detailed set of instructions-the program. It can only follow instructions
step by step until the task is finished. The computer functions this way for
any problem it is given, whether simply adding a column of numbers or
solving the complex formulae expressing planetary motion.

Before writing a program, the problem must first be completely analyzed and
divided into its simplest components. One method for doing this is to con­
struct a flow chart of the problem-a diagram showing each part of the total
problem in its proper relationship to every other part. To actually work within
a computer, each part of a normal flow chart usually is broken down into
many smaller instructions. One part might require 35 or more individual steps
within the computer.

The flow chart illustrated in Figure 8 shows the steps involved in packing
oranges into a crate. This program is slightly more complicated than the
example explained previously, for it requir.es the computer to make a deci­
sion., The boxes in the chart represent work to be done and the diamond rep­
resents a choice the computer must make. As each orange is packed into
the crate, the Arithmetic Unit is increased by 1. The computer then asks if the
number held in the Arithmetic Unit is equal to, or less than, 100. If it is equal
to 100, the program proceeds forward, oranges are no longer added, the
crate 'is packed, the Arithmetic Unit returns to zero, a new crate is brought
into position and the program starts over again. If the count has not yet
reached 100, the program flows to the left, adding additional oranges until
the count does total 100.

153

Figure 8 Flow Chart

The action of skipping part of the program or choosing which of two sets of
instructions to follow is called "branching." The computer decides which to
follow by asking whether the count is equal to zero. It makes a simple yes/rio
decision. .

However, even in making decisions, the computer is simply following instruc­
tions. It is the programmer who originally wrote the program who had to de­
cide when a decision was needed and what data would determine which
choice is taken. Once the program has been detailed in a flow chart and re­
. solved into simple operations, operating instructions are written telling the
computer how to handle each task.

The computer, however, does not understand English: the instructions must
be written in a binary code, intelligible to the computer. The computer only
understands and operates upon a code composed of l's and O's. The first
experiment in the COMPUTER LAB Workbook explains what the binary code is
and how it operates. The programmer, however, does not have to write his

154

program directly in binary code because special "symbolic languages" which
closely resemble English are available. The program is written in a symbolic
language which is automatically converted into binary by the computer. For
example, by typing in the symbol for "ADO," the computer will automatically
translate ADO into the correct machine (binary) instruction, which might be
1001001. The computer can automatically translate because someone previ­
ously had w~itten a speCial program called an "Assembler" which tells the
computer how to translate symbolic languages into its own machine language.
Once the symbolic progra"1 has been converted to binary, it moves as elec­
tronic impulses into the computer's memory.

V HOW A COMPUTER OPERATES
Inside the computer are thousands of wires connecting the different parts of
the computer just as telephone lines crisscross the country from one end to
the other, connecting every telephone with every other telephone. Also,
within the computer are thousands of electronic devices that function as
switches which can be opened or closed to form a direct line between two
specific parts of the machine. When the computer reaches an instruction that
tells it, for instance, "ADD the contents .of address [200]," the electronic
switches set a direct line between address [200] and the Arithmetic Unit. When
the line is complete, electronic pulses--each conveying one bit of information
-move from the memory location to the Arithmetic Unit. Because these
pulses follow one another, they are often caJled a "pulse train." This action is
very similar to the operation of the telephone network. When the number is
dialed, the dial converts the number to a series of electronic pulses. These
pulses move a set of mechanical switches called relays which set up a direct
line between two telephones. Although the telephone system consists of
millions of telephones and millions of interconnected wires, a completed
telephone call connects just two telephones.

The completed connections are called circuits. In the computer, different cir·
cuits perform many types of operations. They may transfer numbers out of
an address in the computer's memory and deposit them in the arithmetic
unit. Then another series of circuits will cause this unit to add. Finally, cir­
cuits may send informati~n out of the computer perhaps by punching holes
in cards or paper tape. The computer operates on a series of electronic
pulses. It is because the electronic switches can open and close so rapidly
moving pulses through the machine at rates up to one billion per second that
the computer has such fantastic speed.

155

APPENDIX E
GLOSSARY OF TERMS

ACCUMULATOR-An accumulator register is one used to store the sum of
an 'addition in a binary adder.

ANALOG-A signal which is continuously variable and unlike a digital signal
does not have discrete levels.

AND/NOR GATE-The AND/NOR Gate is a single logic element whose opera­
tion can be interpreted by 2 AND gates with outputs feeding into a NOR gate.
Since this is a single logic element no access is provided for the internal logic
elements (i.e. no connection is provided at the output of the AND gates).

,
ASYNCHRONOUS-An asvnchronous device is one which does not have all
e em vice nnerating: at tHe same bme. tor example, an asyn·

ronCfus coun er oes no have a I 5 0 e counter operating simultane­
ously.lThe information which causes a bit to complement in an asynchronous
counter must ripple through all less significant bits. r -
BINARY-The binary number system is one which has only two states. "0"
and "I" are the two binary digits.

BINARY CODED DECIMAL-Four or more bits of binary information can be
used to encode one decimal digit. When a decimal digit is encoded in this way
it is called a Binary Coded Decimal (BCD).

BIT-The words "binary digit" are often abbreviated to BIT.

CARRY-In performing binary additions one bit of information often· has to be
carried from one section of the addition to the next most significant section.
This bit of information is called a "carry bit." The carry flip-flop in a serial
adder stores the carry information of one addition and presents it to the next
most significant addition.

CLOCK-The clock in a digital system is used to provide a continuous train
of pulses. The clock on the COMPUTER LAB provides pulses which are 50
nanoseconds wide and whose repetition rate can be varied from less than 1
pulse per second to more than 10 x 106 pulses per second.

CLOCKED R·S FLlp·FLOP-The clocked R·S flip·flop has two conditioning in­
puts which control the state to which the flip·flop will go at the arrival of the
clock pulse. If the S (Set) input is enabled, the flip·flop goes to the "I" con­
dition when clocked. If the R (Reset) input is enabled, the flip·flop goes to
the "0" condition when clocked. The clock pulse is required to change the
state of the flip·flop.

COMPARATOR-A comparator is a device used to determine if two bits of
information are equal.

COMPLEMENT-The complement of a variable or function is the binary oppo­
site of that variable or function. If a variable or function is 1, its complement
will be O. If a variab'e or fundion is 0, its complement wilt be 1. The com­
plement of 011010 is 100101.

156

CONTROL-The control in a digital system is a device used to provide a
sequence of levels and/or pulses which will cause a 'system or subsystem
to carry out a sequence of operations.

COUNTER-The counter is a device which will maintain a continuous record
of the number of pulses which it has received at its input. The output of the
counter indicates the sum of the number of input pulses.

D-TYPE FLiP-FLOP-A D-type flip-flop will propagate whatever information is
at its D (data) conditioning input prior to the clock pulse, to the 1 output on
the leading edge of a clock pulse.

DECODER-A decoder is a device used to convert information from a coded
form into a more usable form (i.e., binary-to-decimal decoder).

DIGIT-A digit is one character in a number. There are 10 digits in the deci­
mal number system. There are two digits in the binary number system.

ENABLE-A gate is enabled if its input conditions result in a specified output.
The specified output varies for different gating functions. For instance, an
AND gate is enabled when its output is HI and the NAND gate is enabled
when its output is LO. Sub-systems described in. later experiments have
function enabling inputs which allow operations to be executed on a clock
pulse after the function enabling input is enabled with the correct logic level.

ENCODER-An encoder is a device which takes information in one code and
encodes it into another (e.g., the decimal to binary encoder).

END AROUND CARRY-The end around carry operation adds the carried in­
formation from the left-most bit to the results of the right-most addition. End
around carry is used for l's complement and 9's complement arithmetic.

EXCLUSIVE OR-The Exclusive OR function is valid, or its value is 1, if one
and only one of the input variables is present. The Exclusive OR applied to
two variables is present or 1, if the 2 binary input variables are different. The
Exclusive OR applied to 2 input variables is often also called half-add.

FAN-OUT-The fan-out of an output is a number which indicates the number
of the unit loads an output can drive.

FLiP-FLOP-A flip-flop is a storage device which can be used to retain one
bit of information. A flip-flop can be in the" 1" state or'the "0" state. In the
"I" state, its 1 output presents a HI level and its 0 output presents a LO
level. In the "0" state, its 1 output presents a LO level and its 0 output
presents a HI level.

FUNCTION-A relationship is a function if, and only if, for every combination
of input conditions there is one unique output. (E.g., the AND function will be
valid or present if all the input variables examined are valid).

GATE-A gate is a device whose operation can be defined by a binary logic
function. Electronic gates are provided on the COMPUTER LAB. However,
gates can be constructed using other types of devices (hydraulic, mechanical,
etc.).

GRAY CODE-The Gray code is the reflective binary counting code which
changes only one bit at a time when incrementing or decrementing by 1.

157

GROUND--Ground is the reference or base level from which all voitages are
measlJred on the COMPUTER LAB. The ground terminals on the patch panel
are to be used only for inter-connection of two or more COMPUTER LABS for
large logic circuits.

HALF-ADD-The half-add operation is performed first in doing a two·s,tep
binary addition. It adds corresponding bits in two binary numbers ignoring
any carry information.

HI-HI is used throughout this Workbook as an abbreviation for the logic
level HIGH. The corresponding voltage range for a HI level is 2.4 volts to 3.6
volts.

INCIDENT-The Incident Register in an adder is used to accept numbers
from the outside world.

INVERT-To invert a function or variable is to change the value of that
function or variable to a 0 if it is 1, or to a 1 if it is O.

INVERTER-An Inverter is a device which performs the invert operation. It
will present at its output the inverse or complement of the information at its
input.

J-K FLIP-FLOP-A J-K flip-flop has two conditioning inputs and one clock in­
put. If both conditioning inputs are disabled prior to a clock pulse, the flip­
flop will remain in its present condition when a clock pulse occurs. If the J
input is enabled (HI) and the K input is disabled (LO), the flip-flop will go to
the 1 condition on a clock pulse. If the K input is enabled, and the J input is
disabled, the flip-flop will go to the 0 condition on a clock .pulse. If both the
J and K inputs are enabled prior to a clock pulse, the flip-flop will comple­
ment or go to the opposite state on a clock pulse. The J-K flip-flops used on
the COMPUTER LAB are master-slave devices and, therefore, perform transi­
tions on the trailing edge of a HI clock pulse.

LEADING EDGE-The leading edge of a pulse is defined as that edge or
transition which occurs first. (i.e., the leading edge of a HIGH pulse is the
LO to HI transition.)

LEVEL-A level is a voltage which remains constant for a long time. There
are two possible levels in the COMPUTER LAB: H I or LO.

LO-LO is used throughout this Workbook as an abbreviation for the logic
level LOW. The corresponding voltage range for a LO level is 0.0 volts to 0.4
volts:

LOGIC-Logic is a form of mathematics based upon two-state truth tables.
Electronic logic uses two-state gates and flip-flops to perform decision making
functions.

MASTER-SLAVE-A master-slave flip-flop is one which contains two flip-flops,
a master flip-flop and a slave flip-flop. A master flip-flop receives its informa­
tion on the leading edge of a clock pulse and the slave or output flip-flop re­
ceives its information on the trailing edge of the pulse.

MODULU5--The modulus of a counter describes the number of distinct
states which that counter has. (e.g., the modulo 10 counter has a modulus of
10 and therefore has 10 distinct states).

158

MODULO N COUNTER-A modulo N counter has N unique states.

NAND GATE-A NAND gate is enabled when both its inputs are present or
HI. When a NAND gate is enabled, its output is LO. The term NAND is a con­
traction of the two words NOT AND.

NEGATE-To negate a binary function or variable is to change the value of
that function or variable to 1 if it is 0, or to ° if it is 1. The symbol for nega­
tion is superscript bar (-).

NEGATED INPUT OR GATE-A negated input OR gate is enabled if one input
or the other or both are LO. When enabled, the output of the gate is HI. A
t-4AND gate is identical to a negated input OR gate in function. The difference
between a NAND gate and a negated input OR gate is merely in the way that I

the operation of that gate is interpreted.

NINE'S COMPLEMENT-Nine's Complement arithmetic provides a method of
negating a decimal number so that subtraction can be performed using addi­
tion techniques. The 9's complement negation of a number is obtained by
subtracting each decimal digit individually from 9. In performing a 9's com­
plement addition, end around carry must be used.

NOR GATE-A NOR gate is enabled when one or more of its inputs are en­
abled or H I. When enabled, the output of a NOR gate is LO. The word NOR is
a contraction of the two words NOT OR.

OCTAL-The octal number system is one which has 8 distinct digits-namely,
0,1,2,3,4,5,6,7.

ONE'S COMPLEMENT-One's Complement arithmetic provides a method of
negating a binary number so that binary subtraction can be performed using
addition techniques. To obtain the l's complement of a binary number, all
bits in that number must be complemented. In performing l's complement
addition, end around carry must be used. .

PARALLEL ADDITION-Parallel Addition operates on each set of correspond­
ing digits simultaneously in the addition of two numbers.

PARITY-Parity is a method by which binary numbers can be checked for
accuracy. An extra bit, called a parity bit, is added to numbers !n systems
using parity. If even parity is used, the sum of all l's in a number and its
corresponding parity bit is always even. If odd parity is used, the sum of l's
in a number and its corresponding parity bit is always odd.

PROPAGATION DELAY-The propagation delay of an electronic digital device
is the time which is required to transfer information from its input to its
output. .

PULSE-A pulse is a voltage which goes from one level to another, remains
there for a short time and then returns to the original level. A HI pulse is
one which goes from LO to H I for a short time and then returns to LO. A LO
pulse is one which goes from H I to LO for a short time and then returns to
HI.

PULSE WIDTH-The width of a pulse is defined as the length of time for
which the pulse voltage is at the second, or transient, level.

159

RECYCLING MODULO N COUNTER-A recycling modulo N counter is one
which has N distinct states and which counts to a maximum number and reo
cycles, on the next input pulse, to its minimum number.

REFLECTIVE CODES-Reflective counting codes are codes which appear to
be the mirror image of normal counting codes. Their most useful property is
that only one digit changes at a time in incrementing or decrementing by 1.
The reflective binary code is called the GRAY code.

RESET-If a Reset input to a flip-flop is enabled, the flip-flop will go to the
""condition. .

RING COUNTER-A ring counter is a device capable of storing several bits
of information. A ring counter will accept shift instructions which will shift all
the information one position at a time. If information is shifting left in a regis­
ter, the value of the left-most bit will shift into the right-most bit of the reg-
1ster. Similarly, if the ring counter is shifting right, the value of the right-most
bit will shift into the left· most bit in the register. The information wi" reeycta -.- _
in a ring counter every N shift pulses where N is the number of bits in the
ring counter. A SWITCH TAIL RING COUNTER will contain the complement
of the information it initially contained after N clock pulses and it will contain
the same information as it started with initially after 2N clock pulses.

R~S FliP-FLOP-The R-S flip-flop has two inputs, a Set input and a Reset in·
put. If the Set input is enabled (HI), the flip-flop goes to the "I" condition. If
the Reset input is enabled (HI), the flip-flop goes to the "0" condition.

SELF-STOPPING MODULO N COUNTER-A self·stopping modulo N. counter
has N distinct states and will stop when it reaches a predetermined maximum
number. It will not accept further count pulses until it is reset to a number
less than the maximum number.

SERIAL ADDER-A serial ad'der is one which performs additions in a series of
steps. The least significant addition is performed first and progressively more
significant additions are performed until finally the sum of the two numbers
is obtained.

SET INPUT-When the Set input to a flip·flop is enabled, the flip-flop goes to
the "I" condition.

SHIFT REGISTER-A shift register can contain several bits of information.
When a shift instruction is received, all the information in that register is
shifted one position. '

SIGN BIT-When using complementary arithmetic, the left·most bit jn a
number is called the sign bit. If the sign bit is a I, the number is negative. If
the sign bit is a 0, the number is positive.

SYNCHRONIZE-To synchronize a level or a pulse is to make sure that that
level or pulse is presented to a system or subsystem at the correct time.

SYNCHRONOUS-A synchronous device or . subsystem is one which has all
changes occurring simultaneously. For instance, a synchronous counter is one
which has all required bit changes taking place at the same time. \

160

'TEN'S COMPLEMENT-Ten's Complement arithmetic is used to perform deci­
mal subtractions using addition techniques. The 10's complement negative
of a number is obtained by subtracting each digit in the number individually
from 9 and adding 1 to the result.

TRAILING EDGE-The trailing edge of a pulse is that edge or transition which
occurs last. The trailing edge of a H I clock pulse is the H I to LO transition.

TWO'S COMPLEMENT-Two's Complement is a form of binary arithmetic
which is used to perform binary subtractions using addition techniques. The
2's complement negative of a binary number is obtained by complementing
each bit in that binary number and adding 1 to the result.

UNIT LOAD-All COMPUTER LAB inputs impose a load on the outputs driving
them. A unit load requires 1.6 ma at ground and + 40 fJ.a at + 3 volts. The
load imposed upon an output by an input can be defined as a number of
unit loads.

161

162

APPENDIX F

DECIMAL EQUIVALENTS OF BINARY NUMBERS TO 28

Ci
E
'2
c
o 00000000
1 00000001
2 00000010
3 00000011
4 00000100
5 00000101
6 00000110
7 00000111
8 00001000
9 00001001

10 00001010
11 00001011
12 00001100
13- 00001101
14 00001110
15 00001111
16 00010000
17 00010001
18 00010010
19 00010011
20 00010100
21 00010101
22 00010110
23 00010111
24 00011000
25 00011001
26 00011010
27 00011011
28 00011100
29 00011101
30 00011110
31 00011111
32 00100000
33 00100001
34 00100010
35 00100011
36 00100100
37 00100101
38 00100110
39 00100111
40 00101000
41 00101001
42 00101010
43 00101011
44 00101100

~
E
'u
Q)

c
45 00101101
46 00101110
47 00101111
48 00110000
49 00110001
50 00110010
51 00110011
52 00110100
53 00110101
54 00110110
55 00110111
56 00111000
57 00111001
58 00111010
59 00111011
60 00111100
61 00111101
62 00111110
63 00111111
64 01000000
65 01000001
66 01000010
67 01000011
68 01000100
69 01000101
70 01000110
71 01000111
72 01001000
73 01001001
74 01001010
75 01001011
76 01001100
77 01001101
78 01001110
79 01001111
80 01010000
81 01010001
82 01010010
83 01010011
84 01010100
85 01010101
86 01010110
87 01010111
88 01011000
89 01011001

~
E
'u
Q)

c
90 01011010 .
91 01011011
92 01011100
93 01011101
94 01011110
95 01011111
96 01100000
97 01100001
98 01100010
99 01100011

100 01100100
101 01100101
102 01100110
103 01100111
104 01101000
105 01101001
106 01101010
107 01101011
108 01101100
109 01101101
110 01101110
111 01101111
112 01110000
113 01110001
114 01110010
115 01110011
116 01110100
117 01110101
118 01110110
119 01110111
120 01111000
121 01111001
122 01111010
123 01111011
124 01111100
125 01111101
126 01111110
127 01111111
128 10000000
129 10000001
130 10000010
131 10000011
132 10000100
133 10000101
134 10000110

163

Ci
E ~
'2 ~
c iii

135 10000111
136 10001000
137 10001001
138 10001010
139 10001011
140 10001100
141 10001101
142 10001110
143 10001111
144 10010000
145 10010001
146 10010010
147 10010011
148 10010100
149 10010101
150 10010110
151 10010111
152 10011000
153 10011001
154 10011010
155 10011011
156 10011100
157 10011101
158 10011110
159 10011111
160 10100000
161 10100001
162 10100010
163 10100011
164 10100100
165 10100101
166 10100110
167 10100111
168 10101000
169 10101001
170 10101010
171 10101011
172 10101100
173 10101101
174 10101110
175 10101111
176 10110000
177 10110001
178 10110010
179 10110011

· DECIMAL EQUIVALENTS OF BINARY NUMBERS TO 28

'i 'i 'i 'i
E ~ E ~ E ~ E ~ "u «I "u «I "u «I "2 «I
Q) r:::: Q) r:::: Q) r:::: r::::
C iD c iD c iD c iD

180 10110100 199 11000111 218 11011010 237 11101101
181 10110101 200 11001000 219 11011011 238 11101110
182 10110110 201 11001001 220 11011100 239 11101111
183 10110111 202 11001010 221 11011101 240 11110000
184 10111000 203 11001011 222 11011110 241 11110001
185 10111001 204 11001100 223 11011111 242 11110010
186 10111010 205 11001101 224 11100000 243 11110011
187 10111011 206 11001110 225 11100001 244 11110100
188 10111100 207 11001111 226 11100010 245 11110101
189 10111101 208 11010000 227 11100011 246 11110110
190 10111110 209 11010001 228 11100100 247 11110111
191 10111111 210 11010010 229 11100101 248 11111000
192 11000000 211 11010011 230 11100110 249 11111001
193 11000001 212 11010100 231 11100111 250 11111010
194 11000010 213 11010101 232 11101000 251 11111011
195 11 0000 11 214 11010110 233 11101001 252 11111100
196 11000100 215 11010111 234 11101010 253 11111101
197 11000101 216 11011000 235 11101011 254 11111110
198 11000110 217 11011001 236 11101100 255 11111111

164

n
2 n

0
2
4
8

16
32
64

128
256
'H2

I 024 10
2 OC8 11
4 OM 12
8 192 13

16384 14
32 768 15
65 536 16

131 072 17
262 144 18
524 2. 19

I OC8 576 20
2 097 IS? 21
4 194 304 22
8 388 608 23

16 777 216 24
33 5!>4 432 25
67 lOB 864 26

134 217 728 27
268 435 4!>6 28
536 810 912 29

I 073 141 824 30
il 147 483 648 31
4 294 967 il96 32
8 !>89 934 592 33

17 179 869 184 34
34 359 138 368 35
68 119 416 136 36

137 438 953 4n 37
274 877 906 944 38
!>49 155 813 888 39

I 099 511 621 716 40
2 199 023 255 552 41
4 398 OC6 511 104 42
8 796 093 022 208 43

17 592 186 044 416 44
35 184 372 088 832 4~

70 368 744 177 664 46
140 737 488 355 328 47
281 474 976 71 0 6!>6 48
562 949 953 421 312 49

I 125 899 906 842 624 ~

2 251 799 813 685 248 51
4 503 599 627 310 496 52
9 007 199 254 740 992 53

18 014 398 509 481 984 54
36 028 197 018 963 968 55

. 72 057 594 037 927 936 50;
144 115 188 07~ 855 87~ 51
288 230 376 151 711 74-<1 ~8

516 460 152 303 423 488 59
1 1 '12 921 !i')4 606 846 976 60
} 305 843 009 213 693 9~.' 61
4 611 b86 018 427 387 904 62
9 223 312 036 854 715 808 63

18 446 744 073 709 551 616 &4
36 893 48R 147 419 103 2.1) 6~

73 786 976 294 838 206 4&4 b6
147 573 951 589 676 41l 928 67
295 14' 9US 179 357 82" 856 68
!"l90 .19') 810 3~l8 705651 71,'l 69

I 180 ~91 620 717 411 303 414
}]61 183 .'41 4.J4 8?~ 606 848 II
., 1.):' ·~66 ·;87 869 6-l'l }13 '690 I;'

APPENDIX G
THE POWERS OF 2

-n
2
1.0
0.5
0.25
0,125
00625
0,031 25
0,015 625
0.007 812 5
0,003 906 25
0001 953 125
0,000 976 562 5
0.000 488 281 25
0,0lI0 244 140 1125
0,000 122 070 312 5
0000 061 03!> 156 25
0,000 030 511 578 125
0000 015 258 789 062 5
0.000 007 629 394 531 25
0,000 003 814 697 265 625
0000 001 907 348 632 812 5
0,000 000 953 674 316 406 25
0,000 000 416 837 158 203 125
0,000 000 238 418 579 101 !>62 5
0.000 000 119 209 289 5SO 781 25
0,000 000 059 604 644 775 390 625
0,000 000 029 802 322 387 695 312 5
0,000 000 014 901 161 193 847 6!>6 25
0.000 000 007 4SO 580 596 923 828 125
0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0,000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 906 25
0000 000 000 lib 415 321 826 934 814 453 125
0000 000 000 058 207 660 913 467 407 226 !>62 5
0000 000 000 029 103 830 4!>6 733 703 613 281 2S
0000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 215 951 614 183 425 903 320 312 5
0000 000 000 003 637 978 807 091 712 951 660 156 25
0000 000 000 001 818 989 403 !>4S 856 475 830 078 125
0,000 000 000 000 909 494 101 172 928 237 915 039 062 5
0,000 000 000 000 4!>4 741 3SO 886 464 118 957 519 531 25
0000 000 000 000 227 373 615 443 232 059 478 159 765 625
0,000 000 000 000 113 686 831 721 616 029 739 379 882 812 5
0.000 000 000 000 0!>6 843 418 860 808 014 869 689 941 406 25
0.000 000 000 000 028 42 I 709 430 40C 001 434 844 970 70J 125
0000 000 000 000 014 210 854 715 202 003 711 422 485 351 !>62 5
0,000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 2S
0,000 000 000 000 003 552 713 678 800 500 929 355 621 331 890 625
0.000 000 000 000 001 776 356 839 400 2SO 464 677 810 668 945 312 5
0.000 000 000 000 000 888 178419 700 125 232 338 905 334 472 656 25
0,000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
0000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
0000 000 000 000 000 111 022 30? 462 51~ 654 042 363 166 809 082 031 25
0.000 000 000 000 000 055 511 I~I }31 257 877 021 181 583 404 !>41 015 625
0000 000 000 000 000 on 155 515 615 628 913 510 590 791 702 270 5v7 812 ~
0000 Q(ln 000 (JOO ()()() 013 817 787 807 814 456 755 295 395 851 135 253 906 25
0000 000 000 000 000 006 938 893 903 907 278 377 647 697 925 567 626 953 1~5

0000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
0000 000 000 000 000 001 734 723 475 97b 807 094 411 924 481 391 906 738 281 25
0000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
0000 000 oon 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
0000 noo 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 15625
0000000 000 00f) 000 000 108 420 217 248 SSO 4-<13 400 745 280 086 994 171 142578125
0000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 91 289 062 5
0000 000 000 (JOO 000 000 027 lOS 054 312 137 610 850 186 320 021 748 ~2 785 644 531 25
0000 000 000 000 000 000 013 552 577 156 068 805 425 093 160 010 874 271 392 822 265 625
0,000 000 000 000 000 000 006 776 ?63 578 034 402 712 546 580 005 437 135 696 411 132 812 5
0000 000 OOll aoo 000 000 003 388131 789017201356 273 290 002718567848205566 406 25
0000 ()()(l 000 000 ()(~) (0) 001 694 06~ 894 ',08 600 (,78 136 645 001 359 283 974 102 783 203 125
0000 000 000 000 (jon 00<> 000 847 03? 947 254 JOO 339068 322 500 679 &41 962 051 391 601 567 5
0000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25
0000 OOil 000 (JO() 000 000 000 211 758 ?36 813 ~75 084 767 080 625 169 910 490 512 841 900 390 625

165

APPENDIX H
RECOMMENDED TEXTS I

The following texts can be used to supplement the material presented in the
COMPUTER LAB Workbook. The texts stress different aspects of computer
technology and present information on a number of educational levels. By
using these texts, or others, in conjunction with the COMPUTER LAB and
workbook, the instructor can easily tailor the emphasis and complexity of his
course.

Arnold, B. H., logic and Boolean Algebra, Englewood Cliffs: Prentic~·Hall

Bartee, T. C., Digital Computer Fundamentals, New York: McGraw-Hili

Flores, I., Computer Design, Englewood Cliffs: Prentice·Hall
Computer logic, Englewood Cliffs: Prentice·Hall

Gillie, A. C., Binary Arithmetic and Boolean Algebra, New York: McGraw-Hili

Harris, J. N., Digital Transistor Circuits, New York: John Wiley & Sons

Hurley, R. B., Transistor logic Circuits, New York: John Wiley & Sons

Jacobwitz, H., Computer Arithmetic, New York: Hayden

Kintner, P. M., Electronic Digital Techniques, New York: McGraw·Hill

lytel, A., Computer Mathematics, Indianapolis: Bobbs-Merrill

Mandl, M., Fundamentals of Electronic Computers, Englewood Cliffs: Prentice­
Hall

Millman, J.and Taub, J., Pulse, Digital and Switching Waveforms, New York:
McGraw-Hili

Nashelsky, Digital Computer Theory, New York: John Wiley & Sons

Transistor Fundamentals Volume 1 thru 4 Indianapolis:
Howard W. Sams Publisher 1968

Computer Basics Volume 3 thru 6 Indianapolis: Howard W. Sams

Publisher 1968

Barron R.C. and Piccirilli Digital logic and Computer Operations McGraw Hill

166

APPENDIX I
COMPUTER LAB HARDWARE SPECIFICATIONS

GENERAL SPECIFICATIONS
1. Size-16lh" x 12112" X 314" (cases are stackable).
2. Finish-Simulated teak.
3. Power Requirements-H500: 50 or 60 cps, 105 to 120 VAC; H500A: 50

or 60 cps, 210 to 240 VAC.
4. Power Switch-On Variable Clock Control.

II ELECTRONIC LOGIC SPECIFICATIONS
1. Functions Available:

8 J-k Flip-Flops (Master-Slave type)
8 2-lnput NAND Gates
6 3-lnput NAND Gates
4 4-lnput NAND Gates
4 AND/NOR Gates

2. Type of Circuits:
Transistor-Transistor Logic Integrated Circuits

3. Logic Levels:
HI-+ 3 volts nominal (+ 2.4 to + 3.6 volts)
LO--Ground nominal (0.0 to + 0.4 volts)
Internal Supply Voltage: + 5 volts (not available on patch panel)

4. Input Loading:
Unit Load: 1.6 rna at GND. +-40 p,a at + 3 volts.
Gate inputs and Flip-Flop J & K inputs present one unit load each.
Flip-Flop Clock and Reset inputs present two unit loads each.
Lamp Indicator inputs present five unit loads each.

5. Output Drive:
The Fan-Out of an output indicates the number of units loads that out­
put can drive:
Logic outputs on the patch panel have a fan-out of 10.
Rocker Switches, Pulsers, the Clock, and HI terminals have a fan-out
of 30.

III CONTROL AND INDICATOR SPECIFICATIONS
1. Functions Available:

8 Rocker Switch logic level generators
3 Pulser Switches
B Lamp Indicators
1 Variable Frequency Clock

2. Rocker Switches:
Give HI output when upper side of switch is depressed.
Give LO output when lower side of switch is depressed.
Fan out: 30.

3. Pulser Switches:
Normally provide a LO output.
HI output when depressed, remain HI until released.
Fan-out: 30.
Built-in switch filters.

167

4. Lamp Indicators:
Normally OFF when no input.
ON when corresponding input HI.
OFF when corresponding input La.
Load: 5 unit loads.

5. Clock:
Repetition rate: less than 1 pulse per second to more than 10 x 106

pulses per second.
Pulse width: 50 nanoseconds nominal.
Fan-out: 30 .

•

168

APPENDIX J

COMPUTER LAB WARRANTY

The COMPUTER LAB is warranted against original defects in material and
workmanship under normal use and service at the voltage marked thereon.
This warranty shall remain in effect for a period of 90 days after receipt of
COMPUTER LAB by the retail buyer. This agreement applies only within the
United States and Puerto Rico.

All COMPUTER LABS must be returned prepaid to Digital Equipment Corpora­
tion. Transportation charges covering the return of the repaired COMPUTER
LAB shall be paid by DEC. DEC will select the carrier, but by so doing, will not
thereby assume any liability in connection with the shipment, nor shall the
carrier be in any way construed to be the agent of DEC.
Please ship all units to:

Digital Equipment Corporation
COMPUTER LAB Repair Center
146 Main Street
Maynard, Massachusetts 01754

No COMPUTER LAB will be accepted for credit or exchange without the prior
written approval of DEC, plus proper Return Authorization Number (DEC
RA#).

The above warranty is contingent upon proper use in the application for which
the COMPUTER LAB was intended and does not cover COMPUTER LABS
which have been modified without DEC's prior written approval, or which have
been subjected to unusual physical or electrical stress, or. on which the
original identification marks have been removed or altered. These warranties
will not apply: if adjustment, repair, or parts replacement is required because
of accident, neglect, misuse, failure of electric power, air conditioning, hu­
midity control, transportation, or causes other than ordinary use.

Please read the instructions on the use and care of the COMPUTER LAB
carefully because damage caused by failure to follow instructions is not cov­
ered by this warranty. N.o responsibility will be assumed for damage resulting
-from the use of other than DEC replacement parts.

The COMPUTER LAB Warranty shall be in effect only if the retail buyer mails
the COMPUTER LAB Warranty Information Card to DEC, Maynard, within ten
days'of receipt of COMPUTER LAB.

EXCEPT FOR THE EXPRESS WARRANTY STATED ABOVE, DEC DISCLAIMS ALL
WARRANTIES INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS; and the above stated express warranty is in lieu of all obliga­
tions or liabilities on the part of DEC for damages, including but not limited
to, consequential damages arising out of or in connection with the use or
performance of the COMPUTER LAB.

169

APPENDIX K

L~C ELEMENT TRUTH TABLES

A Two Input NAND Gate

• Three Input NAND Gate

~~T
EQUAL

i=£>-l
C Four Input NAND a.te

:~TPUT
'C \ o '

EQUAL

~V-J

170

TRUTH TABLE
FROM PAGE 131

TRUTH TABLE
FROM .PAGE 131

D AND/NOR Gate

A

1

c

o

AI~ .. NOR

C8~"
EOUAL

/
AS ~.NEG.INPUT
C8~

E Pace 47 Fllure 4.1 Exclusive OR

A-----...... --.r-.......
·1 - ,----+---1...._-'

171

TRUTH TAILE
FROM PAGE t32

.D---AC81

TRUTH TABLE 4.2.C
PAGE 46

F Page 47 Figure 4.1 Equivalence

A TRUTH TABLE 4.2.0

B---------<.---L_~

G J - K Flip Flop

J 1

C

K 0
R

r

172

PAGE 46

TRUTH TABLE
FROM PAGE 133

....

.....
w

DESCRIPTION MODEL NUMBER UNIT 'COST

COMPUTER LAB SETS

Set contains COMPUTER LAB "916"
Patchcord Assortment and B-350
COMPUTER LAB Workbook.

H-500
50-60 Hz

105-120 VAC
H-500-A

50-60 Hz
210-240 VAC

STANDARD PATCHCORD ASSORTMENTS

Bundle of Taper-Pin Patchcords
(107 of Assorted Lengths) 916

COMPUTER LAB TEACHERS' GUIDE

8lh" x 11" size; lies flat when opened.

$375.00

$ 30.00

$ 5.00

ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE

=Q!~~=Q!
;g:;g:Sc>!~~

H.... HI...H
0-0 0-0 0-0

;g:.;g: 3m ~ ~

=tt~=tt ~~~
- Pi 0-" IWITCH ClU11IU1'S

Q Q Q 0 P P 0-<) 0-<) 0-00-0 0-00-<) 0-0 0-0 0-0 0-0 0-0 0-0
"', \.. ", T ClUTI'UTS

, •• ... ~\. /:" LAllI .. I..uTS
.0 o-oo-o~o-oo-oo-oo-oo-o

o

t I •

ftULSI

@@@@@@@@

•

@@@@@@@@

, I S

PUl.SC

•

I I •
~ .

@)@)@)@)@)@)@)@)

.. "'------------"'"

~., ~' ~' ~' c. c c C

Ie It 0
.. lit lit lit

~~~SDt~ 
M.... MI8M ...... 
0-0 ()o() 0-0 

I I • 

PULK 

@@@@@@)@@ 



~.~3D13D1.~ 

=Q!::=Q! ={t::={t 
",QQ OpR FI I CM>'m.-o I CM>CM>~~CM)CM> 

..... ':~, /::" ourM'S ..... ...,q 
.e 0-00-00-00-00-00-00-00-0 

o @@@@@@@@ 

, I • 

N.. 



I·. 

DIGITAL EQUIPMENT CORPORATION ~DmDDmD WORLD-WIDE SALES AND SERVICE 

MAIN OFFICE AND PLANT 
1.fiB Meln Street, Maynard, Mus.ehus.tt.s. U.S.A. 01754· re/ephone: From Metropolitan Botton: 646-8600· Elsewher.: (fJI7}4197-5U' 

TWX: 110-347-0212 Cable; DIGITAL MAYN r.l ... : 9+8457 

NORTHEAST 
REGIONAl OFFICE 
15 lunda Street. Waltham. Massachusetts 02154 
Telephone, (617}81l1-103l/1D33 TWX· 710-324-11919 
WALTHAM 
IS lunda Street. Waltham. t..1a .. achU8t!!ltta02154 
Tolophono, (617)-8111-11310/6315 TWX· 710-324-!1919 
CAMBRIDGE/BOSTON 
_ Main Street. Cambridge. Mees8chusetts 02139 
Teleptlone: (817}--491-813l TWX: 710-320-1167 

ROCHESTER 
13) Aliena Creek Aoad. Roch.ster, New York 1-4618 
Telephone: (1181-461-1700 TWX· 710-599·3211 

CONNECTICUT 
1 Pre.tlge Drive, Meriden. Conn 06450 
Telephone: (203}-237-844117488 TWX: 710·461-0054 

MID-ATLANTIC - SOUTHEAST 
REGIONAL OFFICE, 
U.S. Route I, Princeton, New Jersey 06540 
Telephone: (fK8)-452.29«) TWX 510-685-2338 

NEW YORK 
9S Cedar lane, Englewood, New Jetsey 07631 
Tol"""one, (201~871-_. (212}SQ4-I19SS. (212)-736-04<7 
TWX: 71().991·9nl 

NEW JERSEY 
1258 Route 48, Panlppany, New Jersey 07054 
Telephone: (201)·33&-3300 TWX: 710-987--8319 

PRINCETON 
u.s. Rout.1 
Princeton, New leney (Il54O 

Telephone' (eo9) 452·2940 TWX: 51()..685.2338 

LONG ISLAND 
1919 Middle Country Road 
Centereech. Lt.. New York 11120 
rolepho"., (516)-585-5410/5413 TWX 510-228-6505 

PHILADflPHlA 
Station Square Thr .. , Paoli, PennsylvanIa 19301 
Telephone: (215)-&47·04900/4410 Telex: 510-8f18.8395 

WASHINGTON 
Executive Building 
8811 Kenilworth Ave .• AlVerdale, Maryland 20840 
TelephOl'1.· (3)'}-779-1800/752-8797 TWX: 710-826-9662 

OURHAM/CHAPEL HILL 
2704 Chap.1 HIli Boulevard 
Durhem, North Carolina 27707 
Telephone: (919~3347 TWX· 51().Q27..(912 

CANADA 
Dlglt.1 Equipment of Canade, ltd 

CANADIAN HEADQUARTERS 
150 Roaamond Street, C.leton Place, Ontario 
Telephone: (613}-257-2f515 TWX· 610-561-1651 

OTTAWA 
120 Holland Stre.1. Ottawa 3, Ontario 
Telephone: (413)-725-2193 TWX· 610-5$2-8907 

TORONTO 
230 lakeshore Road E .. t. Port Credit, Ontario 
T.,.phon.: (418}-278-8111 TWX: 510-492-4X16 

MONTREAl 
8I7S Cote de U.aae Road 
Dorval. Quebec:, Caneda 760 
Tel.phon.: 514-838-9393 TWX: 610-422-4124 

EDMONTON 
5S31 -103 Street 
Edmonton, Alberla. Canada 
Telephone, (003)-<434-9333 TWX, 610-1131-2248 
VANCOUVER 
Digital Equipment of Canada, Ltd 
22IQWeat 12th Avenue 
Vancouver 9, Brltlah Columbia, Canada 
r.,.ph .... , (8JC}736-581e TWX 610-929-2006 

SOUTH AMERICA 
COASIN S.A 
Vlrr.)' del Plno 4071 auen08 Alrea, Argentina 
Telephone: 52-3185 Telex: 012-2284 

EUROPEAN HEADQUARTERS 
Digltltl Equipment Corporation International-Europe 
81 Route De L'A!,. 
1227 Carouge 1 Geneve, Switzerland 
Telephone: 42 79 50/58/59 rele .. : 22 683 

GERMANY 
Dloltal Equipment GmbH 

COLOGNE 
5 Koeln, 8Iamerck.tra ... 7. Weat Germany 
Telephone: 52 21 81 Telex· ~2269 
Telegram: Flip Chip Koeln 

FRANKFURT 
AMFt)f'IihauaS-7 
8078 Neu·l .. nburg-Gravenbruch. Germany 
Talephone: 08102-5526/5529 

UNITED STATES 
MID-ATLANTIC - SOUTHEAST (cont.) 
ORLANDO 
Suite 232,EI99O Lek. Ellenor Drive, Orlando, Fla. 328)9 

Tolophone, (:Il5~651-~ TWX, 610-1I!iC).0111O 
ATLANTA 
2815 Cleerview Place, Suite 100. 
Atlanta, Georgia Xl340 
Telephone (404)-458-3133/313413135 TWX: B10-7S7-4223 

KNOXVILLE 
5731 Lyon. View Pike. S W., Knoxville. Tenn. 37919 
Telephone: (615)-588·6571 TWX:810-583-0123 

CENTRAL 
REGIONAL OFFICE 
1850 Frontage Road. Northbrook, IIIlnola60062 
Telephone· (312)-498-2500 TWX: 910-686-0655 

PJTTSBURGH 
0400 Penn Center Boulevard 
Plusburgh. Pennsyllll!lnil!l 15235 
Telephone: (412)-243-BSOO TWX: 710-797·3557 

CHICAGO 
1850 Frontage Aoad. Northbrook, ililnolsElOO62 
Telephone: (312)-498-2500 TWX: 910-888-0655 

ANN ARBOR 
2:Jl Huron View Boulevltd. Ann Arbor, Michigan 48100 
Telephone: (313)-761·1150 TWK 610-2'23-0053 

INDIANAPOLIS 
21 Beachway Drivl!I - Suitl!l G 
Indlanapoha,lndlana-46224 
Telephone: (317}243-8341 TWX: 810.341-3438 

MINNEAPOLIS 
Suite 111. EIJ30 Cedar Avenue South. 
Mlnneapolla. Mlnneaota 55420 
Telephone: (612)-884-4092 TWX: 910--578-2818 
CLEVELAND 
Park Hill Bldg, 3511)4 Euclid Aile 
Willoughby, OhiO 44094 
Telephone·{216)-946·8484 TW)(:810-427-2ElCEI 

ST. LOUIS 
SUite 110, 115 Progresa Pky., Maryland Height., 
Missouri 63043 
Telephone (314)-872-7520 TWX: 910·764-0831 

DAYTON 
3101 Kettering Blvd. Dayton. OhiO 45439 
Telephone·(513)-299-7377 TWX 810·459-1676 

MILWAUKEE 
Suite 107, 2825 N. Mayfair Rd., Milwaukee, Wis. 53222 
Telephone: (414}-"S3-3400 TWX: 910--262-1199 

INTERNATIONAL 
GERMANY (coni.) 
MUNICH 
8 Muenchen 13,Walienateinplatz2,Getmsny 
Telephone: 081'-35B011-15 Telex: 811-35-8).11 

HANOVER 
Dlgilal EqUipment Corporatu;m GmbH 
3 Hannover, Germeny, Podbielakl.traa .. 102 
Telephone: 0511-69-70-95 Tele .. : 922-952 

ENGLAND 
Digital Equipment Co. Ltd 

READING 
8 Te .. a Road. Reeding, Berkehire, England 
Telephone 0734-583833/4/5/6 Te18;11: 84327 

MANCHESTER 
6 Upper Precinct, Wonl.y 
Mencheater, England M25AZ 
Telephone: 061-190-8411 Telex. 668686 

LONDON 
Bilton Houae. Uxbridge Aold, Ealing, London W.5. 
Telephone 01-579-2761 relex: 22371 

FRANCE 
EqulpementDigital 

PARIS 
:rJ.7 Rue de Charenton, 75Parla 12£)."':. France 
Telephone: 344-76-07 Tele;ll: 21339 

BENELUX 
THE HAGUE 
Digital Equipment N.V. 
Sir Winston Churchillaan310 
Rijswijk (Z-H), Netherl.nda 
Telephone:70-995I-60 Telex:32533 

BRUSSELS 
Digital Equipment N.V.S.A 
108 Aue D'ATlon 
1()40BrulI8ela, Belgium Telephone:02-1392S8 

SWEDEN 
Digital Equipment Akliebolag 

STOCKHOLM 
Vretenvagen 2. S-171 54 So Ina, Sweden 
Telephone: 981390 Telex: 170 50 
Cable: Digital Stockholm 

CENTRAL(cont.) 
DALLAS 
8855 North Stemmonll Freeway 
D8I1a.,Texae7~7 
Telephone: (21"~ TWX: 910-881-4000 

HOUSTON 
3417 Milam Street, Suite A. Houston, Texae 77002 
Telephone: (713)-524-2981 TWX: 91o.a11-1151 

WEST 
REGIONAL OFFICE 
560 San Antonio Road. Palo Alto, California 943011 
Telephone: (.'5}326-5840 TWX: 91D-373-1288 

ANAHEIM 
801 E Ball Road, Anaheim, California 9280S 
Te'ephone: (714)-776-8932/8730 TWX: 910-591-1188 

WEST LOS ANGELES 
1510 Cotner Avenue. Loa Angelea. California 90025 
Telephone: (213}--479-3791/4318 TWX; 91~342'" 

SAN FRANCISCO 
560 San Antonio Aoad, Palo Alto. California 943J8 
Telephone: (415)-~56«I TWX: 91()'373--1268 

OAKlAND 
7850 Edgewater Drive 
Oakland,Californi.~1 

Telephone: (415)-635-.5453/7830 TWX· 91()'366-7238 

AlBUQUERQUE 
8303 Indian School Road, N.E 
Albuquerque. N.M. 87110 
Telephone: (505}-296-S411/5428 
DENVER 
2:1)5 South Colorado Blvd., Suite #5 
Denver, Colorado 81222 
Te-Iephone: (303)-7S7-3332/7&l-1658/758-1659 
TWX, 910-931-2650 
SEATTLE 
1521 lX\th N.E., Bellewe, Walhington98005 
Telephone: (206}-454-«J68/455-5404 TWX: 910-443-2308 

SALT LAKE CITY 
431 South 3rd eaa •. S.II Lake City, Utah 84111 
relephone:(801)-328-9838 TWX:9'()..925.5834 
PHOENIX 
307 E. Southern Ave., Tempe, Arizona 85281 
Telephon.: (802)-967-1618 TWX: 910-9fi0...te91 

PORTLAND 
13015 Southwest Pacific Highway, Tigard, Ore. 97223 
Telephon.: (503)-639-8632/8864 TWX: 91Q..458.8792 

SWITZERLAND 
Olg"al EqUipment Corporation S.A. 
GENEVA 
81 Route De L'Alre 
1227Carouge /Oeneya, Switzerland 
Telephon.: 42 79 50/58/59 Telex: 22 88S 

ZURICH 
Fre'gutstra .. e26, 8002 Zurich, Switzerland 
Telephone. (51)3157623 

ITALY 
Digital Equlpm.nt S.p.A 

MilAN 
Corso aarlbaldl, ., 20121 ~llano, Italy 
Telephone: 872 748. 812 894, 872 31M lelex: 33815 

AUSTRALIA 
Digital Equipment Australia Ply. ltd. 
SYDNEY 
15 Alexander St., Crows Neet, N.S.W. 2Oe6. Australle 
Telephone: 439-2586 Telex: AA207«J 
Cable: Dlgllal, Sydney 
MELBOURNE 
60 Park Street. South Melbourne. Victoria, 3205 
Telephone: ea-6142 Telex: AA30700 
WESTERN AUSTRALIA 
643 Murray Street 
Weet Perth, Weltern AUltrallae005 
Telephone.21-4993 relex: A.A921«J 

BRISBANE 
139 M.ri .... al. Street, South Brllbane 
Queensland, AuatreUa 4101 
T.'ephone: 44047 Telex: AA4061S 

JAPAN 
TOKYO 
Rlkol Trading Co., Ltd. (oole. only) 
KOlato-Kalkan Bldg. 
No. 18-14. Nlahltlhlmbatlhl '-choma 
Minato-Ku, Tokyo. Japan 
Telephone: !5815248 Telex: 781-42(8 

Digital Equlpmttnt Corporation Internatlonel 
Kowa Building No. 17. Second Floor 
2-7 Nlahl-Azabu l-Chorne 
Minato-Ku. Tokyo, Japan 
Telephone: 404-588418 Telex: TK.e428 



The DIGITAL COMPUTER LAB is a complete classroom laboratory 
fo r teach ing computer fundamentals : digital logic , binary arithmetic 
and Boolean algebra. The COMPUTER LAB Workbook provides step­
by-step instructions in digital logic princ iples. Each step is followed 
by wiring a logic design on the COMPUTER LAB front panel and 
then testing it. The course is composed of ten chapters divided into 
46 individua l experiments, i llustrat ing the full range of digital logic 
and computer fundamentals. 

PRINTED IN U.S.A. 1000 Rev 1-4/69 


