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Abstract

We show how formal speci,cations can be integrated into one of the current pragmatic
object-oriented software development methods. Jacobson’s “object-oriented software engineer-
ing” process is combined with object-oriented algebraic speci,cations by extending object and
interaction diagrams with formal annotations. The speci,cations are based on Meseguer’s rewrit-
ing logic and are written in a meta-level extension of the language Maude by process expressions.
As a result any such diagram can be associated with a formal speci,cation, proof obligations en-
suring invariant properties can be automatically generated, and the re,nement relations between
documents at di2erent abstraction levels can be formally stated and proved. c© 2002 Elsevier
Science B.V. All rights reserved.

Keywords: Integrated formal software engineering; OOSE; Rewriting logic; Maude; Re:ection; Process
algebra

1. Introduction

Current object-oriented software design methods, such as those of Rumbaugh (OMT
[39]), Shlaer-Mellor [40], Jacobson (OOSE [21]), and Booch [6], or the “uni,ed pro-
cess” (UP [20]) use a combination of diagrammatic notations including object and
class diagrams, state transition diagrams, and scenarios to describe software models.
Other, mostly academic, approaches such as Reggio’s entity algebras [37], Meseguer’s
Maude [31], Ehrich’s and Sernadas’s TROLL (see e.g. [18]), or model-oriented speci-
,cation techniques like Z++ or VDM++ (see [26]) propose fully formal descriptions
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for software design speci,cations. Both approaches have their advantages and disad-
vantages: The informal diagrammatic methods are easier to understand and to apply
but they can be ambiguous; due to the di2erent nature of the employed diagrams and
descriptions it is often diOcult to get a comprehensive view of all functional and
dynamic properties of software models. On the other hand, the formal approaches are
more diOcult to learn and require mathematical training; but they provide mathematical
rigour for analysis and prototyping of software designs.
To close partly this gap, we investigate the combination of formal speci,cation tech-

niques with pragmatic software engineering methods and notations. Our speci,cation
techniques are based on Meseguer’s rewriting logic [31] and are written in a meta-level
extension of the object-oriented algebraic speci,cation language Maude [10]. The static
and functional parts of a software system are described by classical algebraic speci-
,cations whereas the dynamic behaviour is modelled by non-deterministic rewriting
of con,gurations of communicating objects; the communication :ow is controlled by
process expressions. These object-oriented algebraic speci,cations are integrated with
Jacobson’s “object-oriented software engineering” (OOSE [21]) process and the vari-
ants of the OOSE modelling notations as de,ned by the “uni,ed modeling language”
(UML [35]). Leaving unchanged the basic method of OOSE, the development pro-
cess of our enhanced “formal object-oriented software engineering” (fOOSE) method
consists of the traditional ,ve phases: requirements analysis, robustness analysis, de-
sign, implementation, and test. However, in the fOOSE method, every diagram can
optionally be re,ned and annotated by formal text. Any annotated diagram can be
semi-automatically translated into a formal speci,cation, i.e., the diagram is automati-
cally translated into an incomplete formal speci,cation which then has to be completed
by hand. Since every fOOSE diagram is thus accompanied by a formal speci,cation,
every document has a formal meaning. In many cases the formal speci,cation generates
proof obligations which give additional means for validating the current design doc-
ument; further proof obligations are generated for the re,nement of descriptions, e.g.
from analysis to design. These proof obligations can serve as the basis for veri,cation,
i.e., proof obligation discharge steps can be interweaved with traditional development
steps. Moreover, due to the choice of the executable speci,cation language Maude
early prototyping is possible during analysis and design. Thus, the combination of al-
gebraic speci,cation with rewriting gives a coherent view of object-oriented design
and implementation. Formal speci,cation techniques complement diagrammatic ones.
The integration of both leads to an improved design and provides new techniques for
prototyping and testing.

1.1. Related work

Several related approaches are known in the literature concerning the chosen speci-
,cation formalism and also the integration of pragmatic software engineering methods
with formal techniques. First, there is a large body of formal approaches for describing
design and requirements of object-oriented systems; for an overview see [16]. Our ap-
proach, based on Meseguer’s rewriting logic and Maude, was inspired by Astesiano’s
SMoLCS approach [3,37] which can be characterised as a combination of algebraic
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speci,cations with transition systems instead of rewriting and which also has been
investigated in the environment of the speci,cation language CASL [2]. Astesiano
was the ,rst author integrating also process expressions in his framework; similarly,
PCF [30] and LOTOS [8] combine process expressions with algebraic speci,cations.
A process algebra for controlling the :ow of messages has also been discussed for
Maude [29]; by using an appropriate extension of the �-calculus Lechner [28] presents
a more abstract approach for describing object-oriented requirements and designs on
top of Maude. The use of more general strategies together with rewriting logic has
been studied for the speci,cation language ELAN [7] as well as for Maude [9].
There are also several approaches for integrating pragmatic software engineering

methods and notations with formal techniques [22]. HuQmann [19] gives a formal
foundation of the structured analysis method SSADM. Coleman’s object-oriented Fu-
sion [12] introduces model annotations and object life-cycle expressions; Cook and
Daniels’ object-oriented Syntropy method [13] is based on Z and state charts. Turn-
ing Fusion and Syntropy into integrated formal software engineering methods, Lano
et al. [27] formalise the notations and introduce explicit proof obligation discharge and
re,nement veri,cation steps into these methods. Similarly, Dodani and Rupp [14] en-
hance the Fusion method by formal speci,cations written in the algebraic speci,cation
language COLD and Achatz and Schulte [1] enhance the semi-formal Fusion notations
by formal annotations in Object-Z and also extend Fusion by validation steps. Naka-
jima and Futatsugi [34] integrate a scenario-based methodology, similar to the OOSE
process, with algebraic speci,cations using the CafeOBJ language and a variant of Z,
but neither address re,nement steps nor proof obligations directly. Lano [26] presents a
formal approach to object-oriented software development based on Z++ and VDM++.
Reggio and Repetto [38] investigate a combination of CASL with state charts as an in-
stance of a more general approach for composing languages in such a way that syntax,
semantics and methodology of the components are preserved [2].
Our novel combination of object-oriented algebraic speci,cation and rewriting logic

techniques, the UML notation, and the OOSE process shows several advantageous
features, technically as well as pragmatically: The Maude language allows for early
rapid prototyping and executability. The UML notation has become the “lingua franca”
of software engineering. The semantics of the UML, though not settled decisively,
has been discussed to some extent; for class and object diagrams see, e.g., Kim and
Carrington [23], for sequence diagrams and interactions SOvergaard [36] and Knapp [25].
The UML also proposes the “Object Constraint Language” (OCL [41]) as a formal,
simple, declarative language for side-conditions on diagrams; however, a formal se-
mantics is under investigation. Finally, the core features of OOSE can be considered
as paradigmatic for other current object-oriented software development methods such
as the UP.

1.2. Synopsis

The paper is organised as follows: Section 2 gives a short introduction to our chosen
speci,cation language Maude. Section 3 describes a Maude meta-level extension with
means for controlling the :ow of messages. In Section 4 we present our enhanced
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development method fOOSE; the details of our method for developing a formal spec-
i,cation out of an informal description of a use case is illustrated by the example
of a recycling machine which is the running example of Jacobson’s book on OOSE.
Section 5 ends with some concluding remarks.

2. Maude

The object-oriented algebraic speci,cation language Maude [10] consists of two parts:
a data type oriented functional part and a state oriented system part. The functional
part is based on membership equational logic [32]; it serves for specifying algebraic
data types by sorts and conditional equations. The system part allows to interpret
algebraically de,ned terms as states and to introduce transition rules on these states; it
is based on rewriting logic [31]. Object-oriented concepts, such as classes, inheritance,
objects, and messages are de,ned by means of the functional and the system part [15].
Moreover, Maude is re:ective: speci,cations can be considered as terms on a meta-
level and may thus be introspected and manipulated.
In the following, we brie:y summarise the main features of Maude by means of

some examples and recapitulate the foundations of Maude speci,cations; for a more
detailed treatment see [10], for basic de,nitions and facts on algebraic speci,cations
in general cf. [42]. The syntax of the sample Maude speci,cations has been beauti,ed
in order to avoid some idiosyncracies of the Maude naming conventions.

2.1. Functional speci:cations

Maude provides two di2erent kinds of functional speci,cations: “modules” and “the-
ories”, that may also be parameterised. A module (keyword fmod ... endfm) contains
an import list (protecting or including), sorts (sort), subsorts (subsort ... <
...), function (op) and variable declarations (var), (conditional) membership axioms
(mb, cmb), and (conditional) equations (eq, ceq), axiomatising data types. Theories
have di2erent keywords (viz. fth ... endfth) but have otherwise the same syntax.
A functional Maude module is executable; its equations are assumed to be Church-
Rosser and terminating. In contrast, a functional Maude theory is not executable; it
gives only a few characteristic properties (“requirements”) the speci,ed data type has
to ful,l.
The following example speci,es a trivial theory TRIV which introduces a single sort

Elt, and a module LIST parameterised by TRIV for the data structure of lists with
elements of sort Elt:

fth TRIV is
sort Elt .

endfth

fmod LIST[X :: TRIV] is
protecting NAT .
protecting BOOL .
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sort List[X] .
subsort Elt.X < List[X] .
op nil : -> List[X] .
op __ : List[X] List[X] -> List[X] [assoc id: nil] .
op length : List[X] -> Nat .
op _in_ : Elt.X List[X] -> Bool .
op _\_ : List[X] Elt.X -> List[X] .
op _<=_ : List[X] List[X] -> Bool .
vars E E’ : Elt.X .
vars L L’ : List[X] .
eq length(nil) = 0 .
eq length(E L) = 1 + length(L) .
eq E in nil = false .
eq E in (E’ L) = (E == E’) or (E in L) .
eq nil \ E = nil .
eq (E L) \ E’ = if (E == E’) then L else (E (L \ E’)) fi .
eq (nil <= L) = true .
eq (E L) <= (E’ L’) = (E in (E’ L’)) and (L <= ((E’ L’) \ E)) .

endfm
A parameterised module can be instantiated by a view from the formal parameter

theory to an actual parameter module, like
view Nat from TRIV to NAT is
sort Elt to Nat .

endv
which allows to use a module expression like LIST[Nat] (see [10,15]).

2.2. Object-oriented speci:cations

Object-oriented concepts are supported in Maude by means of object-oriented mod-
ules. Extending the features of functional modules, the declaration of an object-oriented
module (omod ... endom) may contain a number of class declarations (class), sub-
class declarations (subclass), message declarations (msg), and (conditional) rewrite
rules (rl, crl). More precisely, object-oriented modules are a special kind of so-
called system modules which only provide the use of equations and rewrite rules;
object-oriented modules can be de,ned in terms of system modules [31,10,15].
The following example speci,es a bounded bu2er of natural numbers:
omod BUFFER is
protecting LIST[Nat] .
class Buffer | contents : List[Nat] .
msg put_in_ : Nat Oid -> Msg .
msg getfrom_replyto_ : Oid Oid -> Msg .
msg to_elt-in_is_ : Oid Oid Nat -> Msg .
op k : -> Nat .
op b : -> Oid .
vars B I : Oid .
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var E : Nat .
var Q : List[Nat] .
crl [put] :
(put E in B)
< B : Buffer | contents : Q > =>
< B : Buffer | contents : E Q >

if length(Q) < k .
rl [get] :
(getfrom B replyto I)
< B : Buffer | contents : Q E > =>
< B : Buffer | contents : Q >
(to I elt-in B is E) .

endom
A class is declared by an identi,er of sort Cid and a list of attributes and their

corresponding sorts. An object is represented by a term comprising a unique object
identi,er of sort Oid, the identi,er for the class the object belongs to, and a set of
attributes with their corresponding values, e.g. < b : Buffer | contents : nil >.
A message is a term of sort Msg, in general consisting of the message’s name, the
identi,ers of the objects the message is addressed to, and, possibly, parameters (in
mix-,x notation), e.g. put 0 in b.
A Maude program makes computational progress by rewriting its global state, called

a con,guration, which is represented as a term of sort Configuration. A con,guration
is a multiset of objects and messages; multiset union is denoted by juxtaposition. A
rewrite rule

crl [l] :
M1 · · · Mm
< O1 : C1 | atts1 > · · · < On : Cn | attsn > =>

< Oi1 : Ci1 | atts′i1 > · · · < Oik : Cik | atts′ik >
< Q1 : D1 | atts′′1 > · · · < Qp : Dp | atts′′p >
M ′
1 · · · M ′

q
if C .

transforms a con,guration into a subsequent con,guration. It accepts messages
M1; : : : ; Mm for some objects O1; : : : ; On under a certain condition C, possibly mod-
i,es or deletes these objects, and may create new objects Q1; : : : ; Qp and messages
M ′
1; : : : ; M

′
q.

2.3. Re=ection

Maude speci,cations are also accessible to manipulation and reasoning in Maude
itself by the re:ective design of the language. The special Maude functional module
META-LEVEL de,nes data structures to hold whole modules as well as single terms,
provides functions to construct new modules and terms or changing existing ones, and
allows for rewriting on these meta-representations.
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For instance, the term

(put 0 in b) < b : Buffer | contents : nil >

of sort Configuration is represented at the meta-level as a term

’__[’put_in_[{’0}’Nat, {’b}’Oid],
’<_:_|_>[{’b}’Oid, {’Buffer}’Buffer,

’contents:_[{’nil}’List[Nat]]]]

of sort Term. Constants are meta-represented as terms by a function { } : Qid Qid
-> Term, where the ,rst quoted identi,er is the name and the second quoted identi,er
the sort of the constant; these terms are atomic. The function [ ] : Qid TermList ->
Term constructs more complex terms.
Functional and system modules (and thus also object-oriented modules) can be rep-

resented at the meta-level as terms of the sorts FModule and Module, respectively,
where FModule is a subsort of Module. Maude provides a special operator up which,
given a name of a module in a Maude speci,cation, yields the meta-level representa-
tion of this module; and, given a name of a module in a Maude speci,cation and a
term of this module, yields the meta-level representation of this term.
Equational reduction and rewriting are re:ected on the meta-level by so-called

descent functions, most importantly

op meta-apply : Module Term
Qid Substitution MachineInt -> ResultPair .

A term meta-apply(M; t; q; �; n) is evaluated as follows [10]: The meta-term t is
converted to its concrete term with respect to the meta-module M and fully reduced
using the equations in the module represented by M ; all rewrite rules of the module
represented by M which carry meta-label q are (partially) instantiated by substitution
� and the resulting rules are matched against the reduced term represented by t; the
,rst n successful matches are discarded and, if there is an (n+ 1)th successful match,
its match is applied, the resulting term is fully reduced using the equations in the
module represented by M , and the meta-level representations of the ,nal term and the
matching substitution are returned as a result pair; if there is no (n + 1)th successful
matching, the result pair { error*, none } is returned.
For example, meta-apply(mod, term, ’put, none, 0), where the meta-term

mod represents the module BUFFER with the constant k instantiated to, say, 5 and
term is the meta-representation of the con,guration (put 0 in b) < b : Buffer |
contents : nil >, as shown above, yields a pair of the meta-term

’<_:_|_>[{’b}’Oid, {’Buffer}’Buffer, ’contents:_[{’0}’Nat]]

with the substitution

(’E <- {’0}’Nat); (’B <- {’b}’Oid); (’Q <- {’nil}’List[Nat]); ...

(where we omit those parts of the substitution that only pertain to the internal Maude
representation of object-oriented modules by system modules).
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2.4. Membership equational theories and rewrite theories

2.4.1. Membership equational theories
Functional Maude modules and theories de,ne equational theories in membership

equational logic [15]. A membership equational theory is given by a pair (�;�) where
� is a membership equational signature and � is a set of membership equational
axioms. A membership equational signature is a triple (K; �; S) with K a set of kinds,
(K; �) a many-kinded signature, and S =(Sk)k∈K a K-kinded set of sorts. An atomic
membership equational formula is either an �-equation t= t′ where the terms t and t′

have both the same kind, or an �-membership assertion t : s, where term t has kind k
and s∈ Sk . An �-membership equational formula is either a conditional membership
equation

t = t′ ⇐ ∧

i
(ui = vi) ∧

∧

j
(wj : sj)

with terms over �, or a conditional membership axiom

t : s⇐ ∧

i
(ui = vi) ∧

∧

j
(wj : sj)

with terms over �.
A membership equational theory (�;�) entails an �-membership equational for-

mula ’, written as (�;�)�’, if ’ can be deduced from � in membership equational
logic [32].

2.4.2. Rewrite theories
Maude system modules, and hence object-oriented modules, de,ne rewrite theo-

ries [15]. A rewrite theory is given by a pair ((�;�); P) where (�;�) is a membership
equational theory with a signature � and a set of membership equational formulas �,
and P is a set of labelled rewrite rules. A rewrite rule

l : t → t′ ⇐ �

is given by a label l, two terms t and t′ such that t and t′ have the same kind, and a
condition � which is a conjunction of atomic membership equational formulas.
For a rewrite theory  =((�;�); P), deduction, i.e. rewriting, takes place according

to rewriting logic de,ned by the following four rules (cf. [31]):
(1) Re:exivity.

[t]→ [t]

(2) Congruence. For each function symbol f : s1 : : : sn→ s in �

[t1]→ [u1]; : : : ; [tn]→ [un]
[f(t1; : : : ; tn)]→ [f(u1; : : : ; un)]
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(3) Replacement. For each rewrite rule l : t→ u⇐� in P

[t1]→ [u1]; : : : ; [tn]→ [un]
[t(t1; : : : ; tn)]→ [u(u1; : : : ; un)]

; if �(t1; : : : ; tn)

(4) Composition.

[t1]→ [t2]; [t2]→ [t3]
[t1]→ [t3]

where [t] denotes the congruence class of term t with respect to �.
A rewrite theory  =((�;�); P) entails a sequent t→ t′, written as  � t→ t′, if

[t]→ [t′] can be obtained from  by ,nite application of the rules (1–4) above. Such
a sequent is called a rewrite; a rewrite step is called a one-step concurrent rewrite if
it can be derived from  by a ,nite number of applications of the rules (1)–(3), with
at least one application of the replacement rule (3); a one-step concurrent rewrite is
called a sequential rewrite if it can be derived with exactly one application of (3).
Every rewrite can be decomposed into an interleaving sequence of sequential rewrites
[31]. A run of  is a ,nite or in,nite sequence

t1 → t2 → t3 → · · ·

of rewrites with  � tk → tk+1 for every k¿1 and, if the sequence terminates with tn,
then  � tn→ tn+1 implies (�;�)� tn= tn+1; such a run is said to start in t1.

2.4.3. Re=ection
Rewriting logic is re:ective [9]: There is a ,nitely presented rewrite theory Y= ((�;

�); P), i.e., �, �, and P are all ,nite, such that any pair of a ,nitely represented
rewrite theory  and a  -term t can be represented as an Y-term 〈 V ; Vt 〉 and

 � t → t′ if ; and only if Y � 〈 V ; Vt〉 → 〈 V ; t′〉:

3. Object theories and process control

The re:ective capabilities of the Maude language suggest to separate declaratively:
logic, i.e. the rewrite rules, and control, i.e. the order of rewrite rule applications, in
Maude speci,cations [11].
We introduce a small control language that is based on process algebra [5] and that

allows to monitor the messages that are consumed and produced by rule applications
and thus allows to describe admissible rewrite runs. This simple control is mainly suited
for object-oriented Maude speci,cations that only use :at con,gurations of objects and
messages, that is, objects and messages do not contain further con,gurations; such
Maude speci,cations de,ne so-called object theories [33].
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3.1. Object theories

An object theory is a rewrite theory  =((�;�); P) satisfying the following con-
ditions: The signature � is an object signature, i.e., it contains a distinguished sort
C of con,gurations and a distinguished sort G of messages such that G is a sub-
sort of C; con,gurations are equipped with a constant ∅ :→C and a binary operation
−− :C ×C→C (written as juxtaposition); no other operation in � takes elements of
sort C as arguments; and for any set X of variables, con,gurations form a free multiset
under the operation −− with neutral element ∅ in the free algebra over X [32]. The
rewrite rules P all have the form l : z→ z′ ⇐�, where � is a conjunction of atomic
membership equational formulas, z; z′ :C, z �= ∅, and z and z′ contain no variables of
sort C.
Let  =((�;�); P) be an object theory with con,guration sort C and message sort

G and let M be the set of function symbols with co-arity G. For two con,gurations c
and c′ in C and a sequential rewrite  � c→ c′ we write

 � c ?I !O→ c′

if I is the multiset of message function symbols in M that occur in c but not in c′,
and O is the multiset of message function symbols in M that occur in c′ but not in c.
More generally, for a non-sequential rewrite  � c→ c′ we write

 � c ?I !O→ c′

if there is a sequence c=c0; c1; : : : ; cn; cn+1=c′ of con,gurations in C such that ci→ci+1
is a sequential rewrite and  � ci ?Ii !Oi−→ ci+1 for 06i6n and the multiset union of all Ii
is I and the multiset union of all Oi is O.
Informally, I denotes the messages that are consumed in this rule application and

O denotes the messages that are produced. For example, the speci,cation BUFFER
in Section 2.2 de,nes an object theory with con,guration sort Configuration and
message sort Msg. Thus, we have

BUFFER � (put 0 in b) < b : Buffer | contents : nil >
?put in−−−−−→

< b : Buffer | contents : 0 >;

BUFFER � (getfrom b replyto i) < b : Buffer | contents : 0 >
?getfrom replyto !to elt-in is−−−−−−−−−−−−−−−−−−−−−−→

< b : Buffer | contents : nil > (to i elt-in b is 0)

A run of an object theory  =((�;�); P) with con,guration sort C, message sort G,
and M the set of functional symbols with co-arity G is a ,nite or in,nite sequence

c1
A1→ c2

A2→· · ·
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Table 1
Operational semantics of processes

o
√ ;

p1
√
; p2

√
p1;p2

√ ;
p1

√
p1 + p2

√ ;
p2

√
p1 + p2

√ ;
p1

√
; p2

√
p1‖p2

√ ;
p∗√

�
�→ o

;
p1

�→p′
1

p1;p2
�→p′

1;p2
;

p1
√
; p2

�→p′
2

p1;p2
�→p′

2

;
p

�→p′

p∗ �→p′;p∗

p1
�→p′

1

p1 + p2
�→p′

1

;
p2

�→p′
2

p1 + p2
�→p′

2

p1
�→p′

1

p1‖p2 �→p′
1‖p2

;
p2

�→p′
2

p1‖p2 �→p1‖p′
2

where the multisets Ak consist of symbols ?m and !m with m∈M and  �ck ?Ik !Ok−→ ck+1
with Ik the multiset of all message symbols m such that ?m occurs in Ak and Ok the
multiset of all message symbols m such that !m occurs in Ak and, if the sequence
terminates with cn, then  � cn→ cn+1 implies (�;�)� cn= cn+1.

3.2. Process control

A process control expression for an object theory de,nes constraints on the messages
that have to be produced and consumed in all runs of the object theory.
Let  =((�;�); P) be an object theory with message sort G and let M be the set of

function symbols with co-arity G. An action for  is a symbol of the form ?m or !m
with m∈M , meaning that some message m has to be consumed or to be produced. A
process for  is either a constant o denoting the successfully terminated process, or a
constant ( for deadlock, or an action, or a composite process. A composite process may
be formed by sequential composition, nondeterministic choice, parallel composition, or
iteration of processes. The abstract syntax of processes over a set of message symbols
M is given by

Act ::= ?M | !M
Pr ::= o | ( | Act | Pr ; Pr | Pr + Pr | Pr ‖ Pr | Pr∗

where ∗ has highest precedence followed by ; ; ‖, and +.
The operational semantics of processes is inductively de,ned in Table 1 (see e.g.

[4]): Processes that may terminate immediately are captured by a predicate
√
: Pr, writ-

ten in post,x notation. A process p accepts a single atom � and results thereby in a
process p′ if p

�→p′ is derivable from the axioms and rules of the operational seman-
tics of processes. Note that the rules for parallel composition induce an interleaving
approach to concurrency.
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More generally, a trace of a process p is a sequence of actions �1; �2; : : : such that
p

�1−→p2; p2
�2−→p3, etc. holds for some processes pk . We say that a process p accepts

a multiset of actions A thereby resulting in a process p′, written as p A→p′, if p
�1−→p2,

p2
�2−→p3; : : : ; pn−1

�n−→p′, for some processes p2; : : : ; pn−1 and some actions �1; : : : ; �n
such that the multiset of these actions is A.
With the help of processes we can on the one hand, constrain the set of possible

runs of a Maude module de,ning an object theory; on the other hand, processes may
trigger certain actions:

De�nition 1. An object theory with control Z= ( ;p; q0) is an object theory  =((�;
�); P), with con,guration sort C and message sort G, together with a process de,nition
p for  , and an initial con,guration q0.

The object theory with control Z= ( ;p; q0) entails a run q0
A0−→ q1

A1−→· · ·, written
as Z� q0 A0−→ q1

A1−→· · ·, if q0 A0−→ q1
A1−→· · · is a run of  and there are processes pk

with p0 =p such that pk
Ai−→pk+1 for all k.

For instance, the object theory  de,ned by the module BUFFER in Section 2.2
de,nes an object theory with control if equipped with process

?put in ∗; ?getfrom replyto ; !to elt-in is

and initial con,guration

< b : Buffer | contents : nil >
(put 0 in b) (put 1 in b) (put 2 in b)
(getfrom b replyto i)

3.3. Maude implementation

Object theories with control can be implemented in Maude by re:ection. First of all,
the operational semantics of processes may be captured by

fmod ACTION is
including QID .
sort Action .

op act : Qid -> Action .
endfm

view Action from TRIV to ACTION is
sort Elt to Action .

endv

mod PROCESS is
protecting SET[Action] . - sets of actions
protecting BAG[Action] . - multisets of actions
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op nil : -> Process .
op deadlock : -> Process .
op _;_ : Process Process -> Process .
op _+_ : Process Process -> Process .
op _|_ : Process Process -> Process .
op _* : Process -> Process .

op terminates : Process -> Bool .
op hd : Process -> Set[Action] .
op tl : Action Process -> Process .

op accept : Bag[Action] Process -> Process .

...
endm

where the operation terminates of PROCESS corresponds to
√
, hd computes all ac-

tions accepted by a process, tl yields the resulting process after accepting an action,
and accept returns the resulting process after accepting a multiset of actions in an
arbitrary order.
Thus, a general meta-rewrite engine may be de,ned that, given a Maude object-

oriented module inducing an object theory (meta-represented by a Module term), a
control process (of sort Process), and an initial con,guration (meta-represented by
a term of sort Term), computes all pairs of meta-con,gurations and processes such
that a meta-con,guration of a resulting pair is obtained by rewriting the initial meta-
con,guration (using meta-apply) according to the control process and no rewrite rule
of the object-oriented module is applicable:

fth MOD-CONTROL is
including META-LEVEL .
protecting PROCESS .

op mod : -> Module .
op control : -> Process .
op term : -> Term .

endfth

fmod ENGINE[M :: MOD-CONTROL] is
protecting SET[Qid] . - sets of quoted identi,ers
protecting SET[Pair[Term, Process]] .

- sets of pairs of terms and processes
...

op getLabels : Module -> Set[Qid] .
- labels of rewrite rules in a module

...
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op inoutMsg : Term Term -> Bag[Action] .
- messages consumed and produced

...

op allRewrites : Set[Pair[Term, Process]] ->
Set[Pair[Term, Process]] .

op allRewrites : Pair[Term, Process] Set[Pair[Term, Process]] ->
Set[Pair[Term, Process]] .

op allRewrites : Term Process -> Set[Pair[Term, Process]] .
op allRewrites : Set[Qid] Term Process ->

Set[Pair[Term, Process]] .
op allRewrites : Qid Set[Qid] Term Process MachineInt ->

Set[Pair[Term, Process]] .

var P : Process .
var QS : Set[Qid] .
var N : MachineInt .
var TP : Pair[Term, Process] .
var TPS : Set[Pair[Term, Process]] .

eq allRewrites(TPS) =
if (TPS == empty)
then empty
else allRewrites(choose(TPS), TPS) fi .

eq allRewrites(TP, TPS) =
allRewrites(fst(TP), snd(TP)) union
allRewrites(TPS \ { TP }) .

eq allRewrites(T, P) = allRewrites(getLabels(mod), T, P) .
eq allRewrites(QS, T, P) =

if (QS == empty)
then empty
else allRewrites(choose(QS), QS, T, P, 0) fi .

eq allRewrites(Q, QS, T, P, N) =
if (fst(meta-apply(mod, T, Q, none, N)) == error*)
then allRewrites(QS \ { Q }, T, P)
else (if (accept(

inoutMsg(T, fst(meta-apply(mod, T, Q, none, N))),
P) == deadlock)

then allRewrites(Q, QS, T, P, N + 1)
else { < fst(meta-apply(mod, T, Q, none, N)),

accept(inoutMsg(T,
fst(meta-apply(mod, T, Q, none, N))), P) > }

union allRewrites(Q, QS, T, P, N + 1) fi) fi .

op accepting : -> Set[Pair[Term, Process]] .
op accepting : Set[Pair[Term, Process]] ->

Set[Pair[Term, Process]] .
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eq accepting =
accepting({ < meta-reduce(mod, term), control > }) .

eq accepting(TPS) =
if (TPS == empty)
then empty
else union(final(TPS),

accepting(allRewrites(reduce(TPS)))) fi .

...
endfm

The function allRewrites on Set[Pair[Term, Process]] repeatedly chooses some
pair TP of a meta-con,guration term and its adhering process, tries to apply all rewrite
rules to this meta-con,guration term (getLabels(mod)) and checks whether such a
rewrite rule is currently allowed by the control process (accept(...)); if a rewrite rule
succeeds for a given meta-con,guration term and its process the rewritten term and the
changed process are added to the current set of pairs of meta-con,guration terms and
processes (union). The function accepting returns all ,nal pairs of con,gurations
and processes (final(...)) from the meta-term term with respect to the module
mod (meta-reduce(...)) and the process term control, removing all those pairs
con,gurations and processes that are deadlocked (reduce(...)).
This general engine is instantiated as follows: Given an object-oriented Maude mod-

ule M , a control module speci,es the initial con,guration and the control process:

omod M-CONTROL is
protecting M .
protecting PROCESS .

op initial : -> Configuration .
eq initial = ... .

op control : -> Process .
eq control = ... .

endom

The control module is transferred to the meta-level that can be used as the actual
parameter for the engine:

mod META-M-CONTROL is
including META-LEVEL .
protecting M-CONTROL .

op mod : -> Module .
eq mod = up(M-CONTROL) .
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op term : -> Term .
eq term = up(M-CONTROL, initial) .

endm

view M-CONTROL from MOD-CONTROL to META-M-CONTROL is
op mod to mod .
op term to term .
op control to control .

endv

Finally, all accepting rewrite sequences can be calculated by

reduce-in ENGINE[M-CONTROL] : accepting .

The complete Maude speci,cation can be found in [24].

3.4. Re:nement

The principal notion for expressing the correctness of a system wrt. its requirements
is the notion of re,nement. Object theories with control may be re,ned both at the
level of object theories and at the control level.
Processes are re,ned by substituting complex processes for actions:

De�nition 2. Let p and p′ be processes over the message symbols M and M ′, re-
spectively, and let A be the actions of p. The process p′ is a process re,nement of p
if there is a function ) :A→Pr such that every trace of )∗(p) is a trace of p′ where
)∗ is the homomorphic extension of ) to processes.

A re,nement of object theories with control is based on a process re,nement and
an abstraction relation of the underlying object theories: Let  =((�;�); P) and  ′=
((�′; �′); P′) be object theories. A surjective, partial function * from the con,gurations
of the object theory  ′ to the con,gurations of  is an abstraction from  ′ to  if it
respects �′ and �, i.e., if u′= v′ with respect to �′ then *(u′)� *(v′) with respect to
� (where c� c′ means that if c is de,ned then c′ is also de,ned and both are equal,
and vice versa).

De�nition 3. Let Z= ( ;p; q0) and Z′=( ′; p′; q′0) be object theories with control.
Then Z′ is an object control re,nement of Z if p′ is a process re,nement of p, and
there is an abstraction * from  ′ to  with *(q0)= q′0 such that the following holds:

(1) For every run Z� q0 A1−→ q1
A2−→· · · there is a run Z′ � q′0

A′1−→ q′1
A′2−→· · · and a

strictly increasing sequence (ki)i¿1 of natural numbers with k1 = 0 such that *(q′ki)
= qi.

(2) For every run Z′ � q′0
A′1−→ q′1

A′2−→· · · there is a run Z� q0 A1−→ q1
A2−→· · · and a

strictly increasing sequence (ki)i¿1 of natural numbers with k1 = 0 such that *(q′ki)
= qi.
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Thus an object theory with control Z is re,ned into an object theory with control Z′

if every run of Z′ can be abstracted into a run of Z such that the messages consumed
and produced during such a run in Z′ weakly correspond to the messages consumed
and produced during the abstracted run in Z, and vice versa, thus establishing a weak
form of bisimulation between Z and Z′.

4. fOOSE

We extend Jacobson’s OOSE software development process and its diagrammatic
modelling techniques by formal speci,cations and formal proof steps, based on object
theories with control. This extended method will be called fOOSE (“formal object-
oriented software engineering”).

4.1. OOSE

The OOSE development process [21] consists of ,ve phases: requirements analysis,
robustness analysis, design, implementation, and test (see Fig. 1).
The requirements analysis, also called use case analysis, serves to establish a re-

quirements document which describes the functionality of the intended system in tex-
tual form. A use case is a sequence of transactions performed by actors (outside the
system) and objects (of the system). During the robustness analysis the use cases are
re,ned and the objects are classi,ed in three categories: interaction, control, and entity
objects. In the design phase, a system design is derived from the analysis objects and
the objects of reuse libraries. The design is implemented during the implementation
phase and ,nally, during the test phase, the implementation is tested with respect to
the use case description.
Use cases are a particular feature which distinguishes OOSE from other development

methods. Use cases have the advantage of providing a requirements document which is
the basis for testing and which can serve as a reference during the whole development;
a use case analysis step has also been integrated into the UP [20].

4.2. fOOSE extensions

As with all semiformal approaches, the most prominent problem of OOSE is that
testing can be performed only at a very late stage of development; another problem is

class ...
    extends {
  ...

}

Requirements
analysis

TestImplementationDesignRobustness
analysis

ok

ok

fail

Fig. 1. Development phases of OOSE.
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{ ... }

{ ... }

A customer
...

omod ...
  class ...
  ...
  rl ...
endom

class ...
    extends {
  ...
}

Theorem ...

Informal
description

Object model

Interaction
diagram

Formal
specification

Implementation

Validation of
proof obligations

Fig. 2. Construction and use of formal speci,cations.

the fact that many important requirement and design details can neither be expressed
by (the current) diagrams nor can they be well described by informal text.
In our enhanced “formal object-oriented software engineering” (fOOSE) method we

provide means to overcome these de,ciencies without changing the basic method. The
enhanced development process consists of the same phases. However, the models pro-
duced in each phase are accompanied by formal speci,cations and we add formal val-
idation steps. Technically, we use UML notation for the OOSE diagrams [35]; these
diagrams can optionally be annotated by formal text. Any annotated diagram can be
translated semi-automatically into a formal Maude speci,cation, i.e., the diagram is au-
tomatically translated into an incomplete Maude speci,cation which then has to be com-
pleted by hand. Additionally, the annotations automatically generate proof obligations.
In the sequel, we propose the following method for fOOSE developers for construct-

ing a formal Maude speci,cation from an informal use case description (see Fig. 2).
First, for any given informal description the fOOSE developer has to produce a semi-
formal description consisting of an object model and an interaction diagram in the
usual OOSE style. The object model is used for describing the attributes and states
of objects and generalisation and association relationships, the interaction diagram de-
scribes the :ow of the messages the objects exchange. Note that, in contrast to OOSE,
interaction diagrams are also used in the analysis phases, and not only in the design
phase; we believe that interaction diagrams are useful for illustrating the interactions
of the objects also at abstract levels. Second, the object model has to be enhanced
with invariants, and the interaction diagram has to be extended by constraints on the
messages. These enhanced diagrams on the one hand give rise to functional speci,-
cations of occurring data types; on the other hand the enhanced object model directly
translates into a Maude speci,cation and the enhanced interaction diagram yields an
incomplete Maude speci,cation and a process control. The translation of both diagrams
yields, after completion, a Maude speci,cation with control together with some proof
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obligations generated from the formal annotations which have to be discharged by the
fOOSE developer.
Any re,ned speci,cation is constructed in the same way. Moreover, for relating the

re,ned “concrete” speci,cation to the more abstract speci,cation the fOOSE developer
has to give the relationship between the “abstract” and the “concrete” speci,cations as
an object control re,nement. This generates proof obligations which have to be veri,ed
to guarantee the correctness of the re,nement. Moreover, object control re,nements
provide the information for tracing the relationship between use case descriptions and
the corresponding Maude speci,cations. The induced proof obligations are the basis
for verifying the correctness of designs and implementations.
We illustrate our fOOSE method for developing and re,ning a formal speci,cation

from an informal use case description by the example of a recycling machine which
is the running example of Jacobson’s book on OOSE [21]. We show the speci,cation
and re,nement activities for the recycling machine example at the level of requirements
analysis and robustness analysis in Sections 4.3 and 4.5.

4.3. Requirements analysis

The informal description of the recycling machine consists of three use cases: “re-
turning items”, “generate daily report”, and “change item”. The use case “returning
items” can be described in a slightly simpli,ed form as follows:

“A customer returns several items (such as cans or bottles) to the
recycling machine: Descriptions of these items are stored and the
daily total of the returned items of all customers is increased: The
customer gets a receipt for all items he has returned: The receipt
contains a list of the returned items as well as the total return
sum”:

4.3.1. Object and interaction diagrams
We develop a ,rst abstract representation of this use case with the help of an object

diagram that describes the objects of the problem domain together with their attributes
and relationships, and of an interaction diagram that describes the :ow of exchanged
messages.
The use case is modelled as an interactive system consisting of a single object

with name RM (see Fig. 3 on the left) and the customer as an actor. The object RM
represents the recycling machine and has two attributes storing the daily total and the
current items. The interaction diagram (Fig. 3 on the right) shows (abstractly) the
interaction between the customer and the recycling machine. The customer sends a
return message containing a list of returned concrete items. The recycling machine
prints a receipt with the list of (descriptions of) the returned items as well as the total
return sum (in Euro).
More generally, an object model consists of several objects, represented by circles,

with their attributes, represented by lines from circles to rectangles, and the relationships
between the objects, represented by arrows. Objects are labelled with their name and
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RM current

total

Bag[Item]

Bag[Item]

: RM

return(cib)

print(ib, s)

Fig. 3. Object model and interaction diagram of the recycling machine.

attributes with their corresponding name on the line and the sort of the attribute below
the rectangle. Generalisations of objects are represented by a dotted arrow from the
heir to the parent; (bidirectional) associations of objects are represented by solid line
arrows (with two heads). (For an example see Fig. 5(a); note that we use the OOSE
name “objects” for object diagram entities.)
An interaction diagram consists of several objects represented by vertical lines and

messages represented by horizontal arrows. Objects are labelled with the object name
and messages with their name and variable names for their arguments. Each message
arrow leads from the sender object to the receiving object; ,lled arrow heads repre-
sent synchronous messages, i.e., the sender waits until the message has been received,
whereas half-stick arrow heads represent asynchronous messages, i.e., the sender does
not wait. Activations of objects by incoming messages are represented by rectangles.
Progress in time is represented by a time axis from top to bottom: a message below
another should be handled later in time. Moreover, an abstract algorithm, like loops,
can be given on the left-hand side of the diagram for describing the control :ow. (For
an example, see Fig. 6.)
Object and interaction diagrams give an abstract view of the informal description.

But several important relationships which will be expressed by the formal speci,cations
are not represented. For example in the use case “return items” there is a connection
between the current list and the daily total; moreover, the printed items are descriptions
of the returned items. The formal speci,cation will be able to express these semantic
dependencies. It will also be used to ,x the basic data types.

4.3.2. Enhanced diagrams
The second fOOSE step consists of two activities: the extension of the object models

by invariants and the extension of the interaction diagrams by message constraints.
An invariant is a relation between the attributes of an object or between the objects

of a con,guration which has to be preserved during system execution. We extend an
object diagram with formal invariants by adding an annotation.
For example, the attributes total and current of the recycling machine have to

satisfy the property that all items of current have also to be in total (see Fig. 4 to
the left).
Interaction diagrams are re,ned in order to express semantic relationships of the

parameters of the messages. We add the parameter sorts of messages and state the re-
lationships between the parameters in an additional annotation: any message expression
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RM current

total

Bag[Item]

Bag[Item]

{ current <= total }

{ ib = description(cib) and s = amount(ib) }

: RM

return(cib : Bag[CItem])

print(ib : Bag[Item], s : Euro)

Fig. 4. Object model with invariant and re,ned interaction diagram of the recycling machine.

m(v1; : : : ; vn) is replaced by an expression m(v1 : s1; ...; vn : sn) where v1; : : : ; vn are
variables of sorts s1; : : : ; sn. The annotation is a conjunction of equations of the form
t1 = u1 and : : : and tk = uk such that tj and uj are terms containing only (free) variables
of messages in the interaction diagram.
For example, the message expressions return(cib) and print(ib, s) of the inter-

action diagram in Fig. 3 are replaced by return(cib : Bag[CItem]) and
print(l : Bag[Item], s : Euro). The intended meaning of the message constraint
annotation ib = description(cib) and s = amount(ib) is that ib is the multiset of
descriptions of the elements of cib and that s is the sum of the prices of ib (see
Fig. 4 on the right).

4.3.3. Functional speci:cations
For any data type occurring in the enhanced diagrams a functional Maude speci,ca-

tion has to be constructed, either by reusing prede,ned modules from a speci,cation
library such as NAT, LIST, or BAG, or by designing a completely new speci,cation.
In particular, these speci,cations provide a formal meaning for the annotations of the
enhanced diagrams.
The following new speci,cation of items introduces two sorts CItem and Item

denoting the “concrete” items of the customer and the descriptions of these items. The
operation desc yields the description of a concrete item whereas the operation price
computes the price whose value will be given in Euro.

fmod CITEM is
sort CItem .
op bottle : -> CItem .
endfm
fmod ITEM is
protecting CITEM .
protecting EURO . - currency speci,cation
sort Item .
op price : Item -> Euro .
op desc : CItem -> Item .
eq price(desc(bottle)) = 10 E .
endfm
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The functional speci,cation for multisets (bags) of items and concrete items has to
contain a suitable axiomatisation of the multiset containment <= for items, a function
description that extends desc to multisets, and a function amount yielding the total
sum of a multiset of items. We may assume that a parameterised speci,cation BAG
exists as a library component.

fmod ITEMS is
protecting BAG[CItem] .
protecting BAG[Item] .

op description : Bag[CItem] -> Bag[Item] .
op amount : Bag[Item] -> Euro .

var I : Item .
var C : CItem .
var Ib : Bag[Item] .
var Cb : Bag[CItem] .

eq description(empty) = empty .
eq description(C Cb) = desc(Cb) description(Cb) .
eq amount(empty) = 0 E .
eq amount(I Ib) = price(I) + amount(Ib) .

endfm

4.3.4. Construction of a formal speci:cation
In this step, we show how a Maude speci,cation and a control process can be

constructed semi-automatically from the enhanced diagrams for a use case; the spec-
i,cation and the process de,ne an object theory with control which is executable in
Maude (see Section 3). The object model automatically generates class declarations; by
combining the object model with the interaction diagram a set of (incomplete) rewrite
rules can be constructed automatically which after completion (by hand) de,ne the
dynamic behaviour of the use case.
The automatic part of the construction is as follows:

• The object model induces a set of Maude class declarations:
◦ Each object with name C, with attributes a1; : : : ; am of types s1; : : : ; sm, and with
associated objects named C1; : : : ; Cn becomes a class declaration

class C | a1 : s1, : : :, am : sm, C1 : Oid, : : :, Cn : Oid .

◦ Each inheritance relation from an object named D to an object named C corre-
sponds to a subclass declaration

subclass D < C .

• The interaction diagram induces a set of message declarations:
◦ Each message m(v1:s1,: : :,vn:sn) from some object to another object of the in-
teraction diagram becomes a message declaration

msg m : Oid s1 : : : sn Oid -> Msg .
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The ,rst argument of message m indicates the sender object, the last argument
the target object.

◦ Each message m(v1:s1,: : :,vn:sn) from the actor to some object of the interaction
diagram becomes a message declaration

msg m : s1 : : : sn Oid -> Msg :

◦ Each message m(v1 : s1; ...; vn : sn) from some object to the actor of the interaction
diagram becomes a message declaration

msg m : Oid s1 : : : sn -> Msg :

• Both diagrams generate rule skeletons:
◦ For any message m(v1 : s1; ...; vn : sn) from an object C to an object D of the
interaction diagram: Let a1; : : : ; ak be the attributes of C with corresponding sorts
s1; : : : ; sk , let C1; : : : ; Cl be the objects associated to C; let m1; : : : ; mp be the out-
going messages from C to objects Ct1 ; : : : ; Ctp (which have to be in {C1; : : : ; Cl})
and m′

1; : : : ; m
′
q the outgoing messages from C to the actor of the same ac-

tivation block below m. Then we obtain the following skeleton of a rewrite
rule:

crl [m] :
m(O’, v1, : : :, vn, O)
< O : C | a1 : V1, : : :, ak : Vk, C1 : O1, : : :, Cl : Ol > =>

< O : C | a1 : ?, : : :, ak : ?, C1 : ?, : : :, Cl : ? >
m1(O, ?, : : :, ?, Ot1) : : : mp(O, ?, : : :, ?, Otp)
m′
1(?, : : :, ?) : : : m′

q(?, : : :, ?)
if ? .

where O, O’, O1; : : : Ol, and Ot1 ; : : : ; Otp are Maude variables of sort Oid and V1; : : : ; Vk
are variables of sorts s1; : : : ; sk , respectively. If any of the messages above is sent to
or received from the actor the receiver or sender object identi,er is omitted.

• The interaction diagram de,nes a control process:
◦ For each object, the names of incoming asynchronous messages m form actions
?m, the names of outgoing asynchronous messages m form actions !m, and the
names of outgoing synchronous messages form a process !m ; ?m. Each activation
block of an object for an incoming asynchronous message forms a sequential
process of the action for the incoming message and the parallel composition of
its activated message processes; each activation block of an object for an incoming
synchronous message forms a parallel process of its outgoing message processes.
For each object these activation block processes are composed sequentially from
top to bottom; if an activation block is part of a loop, the translated activation
block is surrounded by an iteration. These object behaviours are composed in
parallel.

◦ For the actor, the names of incoming asynchronous messages form actions ?m,
the names of outgoing messages m form actions !m. The message processes are
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composed sequentially; if a message is part of a loop, the corresponding message
process is surrounded by an iteration. The resulting actor process is composed in
parallel with the object behaviours.

For our example, the diagrams of Fig. 4 induce the following class declaration:

class RM | total : Bag[Item]; current : Bag[Item] .

and the following message declarations:

msg return : Bag[CItem] Oid -> Msg .

msg print : Oid Bag[Item] Euro -> Msg .

In particular, the actor of a use case, as being external, is assumed to be anonymous.
The rule skeleton expresses that if the object < O : C| : : : > receives a message m

it sends the messages m1; : : : ; mp. The question marks ? on the right hand side of the
rule indicate that the resulting state of < O : C | : : : > is not expressed directly in the
diagram; therefore the new values of the attributes have to be added by hand, based
on the object invariants. Similarly, the actual parameters of the outgoing messages are
not given explicitly, but have to be inferred by the message constraints. The question
mark in the if-clause states that the condition is possibly under-speci,ed.
For example, the diagrams of Fig. 4 induce the following skeleton:

crl [return] :
return(cib, Rm)
< Rm : RM | total : V1, current : V2 > =>
< Rm : RM | total : ?, current : ? >
print(Rm, ?, ?)

if ? :

In order to obtain a complete rule, the question marks have to be ,lled in with appro-
priate values: The parameters for the print message may be inferred immediately from
the enhanced diagram annotation: description(cib) and amount
(description(cib)). The new state of the object < Rm : RM | : : : > after rewrit-
ing has to satisfy the object invariant current <= total for RM; each completion
generates a proof obligation (see Section 4.4). A possible new value for total is
description(cib) V1, for current we may choose description(cib); however,
also description(cib) V1 for total and description(cib) V2 for current, or
V1 and V2, respectively, would be possible, though not desired, since current should
represent the currently returned items by a single customer and total the daily total
of all returned items. Finally, the condition of the rewrite rule may be chosen as true,
and thus be omitted.
This completion leads to the following Maude module for the use case “return items”:

omod RRM is
protecting ITEMS .

class RM | total : Bag[Item], current : Bag[Item] .
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msg return : Bag[CItem] Oid -> Msg .
msg print : Oid Bag[Item] Euro -> Msg .

var Rm : Oid .
var cib : Bag[CItem] .
vars V1 V2 : Bag[Item] .

rl [return] :
return(cib, Rm)
< Rm : RM | total : V1, current : V2 > =>
< Rm : RM | total : description(cib) V1,

current : description(cib) >
print(Rm, description(cib), amount(description(cib))) .

endom

The process control interprets the vertical axis as time: the messages have to occur at
one object in the de,ned order. The di2erent objects may act in parallel, controlled by
this protocol.
In the example, the interaction diagram de,nes the following control process

!return ; ?print ‖ ?return ; !print

A use case may be tested by providing a speci,cation for the actor and a suitable initial
con,guration containing the actor and the set of cooperating objects of the interaction
diagram. The test speci,cation can be directly simulated in Maude (see Section 3.3).
A possible test speci,cation for the use case “return items” is as follows:

omod RRM-CONTROL is
including RRM .

class User | items : Bag[CItem], rm : Oid .

var U : Oid .
var Rm : Oid .
var Cb : Bag[CItem] .
var Ib : Bag[Item] .
var S : Euro .

crl [returning]:
< U : User | items : Cb, rm : Rm > =>
< U : User | items:empty, rm : Rm >
return(Cb, Rm)

if Cb =/= empty .
rl [receipt] :
print(Rm, Ib, S)
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< U : User | items : empty, rm : Rm > =>
< U : User | items : empty, rm : Rm > .

op u : -> Oid .
op rm : -> Oid .
op initial : -> Configuration .
eq initial = < u : User | items : icb, rm : rm >

< rm : RM | total : itb, current : empty > .

op control : -> Process .
eq control = (act(’!return) ; act(’?print))

| (act(’?return) ; act(’!print)) .
endom

where icb is a multiset of concrete items and itb is a multiset of items.
Choosing icb= bottle bottle bottle and itb= empty the Maude engine for

object theories with control of Section 3.3 produces

rewrites: 2498 in 540ms cpu (550ms real) (4625 rewrites/second)
reduce in ENGINE [ RRM-CONTROL ] : accepting :
result Set[Pair[Term, Process]] :
< < rm : RM | current : desc(bottle) desc(bottle) desc(bottle),

total : desc(bottle) desc(bottle) desc(bottle) >
< u : User | rm : rm, items : empty > ,
empty >

where the overlined term represents actual meta-term output.
The complete, executable Maude speci,cation can be found in [24].

4.4. Proof obligations

An invariant I for an object C of an enhanced object model has to be satis,ed by
all instances of C and of its heirs. As a consequence an invariant generates a proof
obligation on the rewrite rules that have been generated from an enhanced interaction
diagram and which have been completed by hand: Every rule of the form

crl [m] :
m( : : : )
< O : D | a1 : V1, : : : , ak : Vk, C1 : O1, : : : , Cl : Ol > =>
< O : D | a1 : t1, : : : , ak : tk, C1 : o1, : : : , Cl : ol >
: : :
if �
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where D is C or any of its subclasses has to satisfy the correctness condition

I{a1 �→ t1; : : : ; ak �→ tk ; C1 �→ o1; : : : ; Cl �→ ol} ⇐

(� ∧ I){a1 �→ V1; : : : ; ak �→ Vk ; C1 �→ O1; : : : ; Cl �→ Ol}
where ’{: : :} means simultaneous substitution.
In our example, the completed rule with label return from the use case “return

items” induces the correctness condition

(description(cib)) <= (description(cib) V1)⇐ V2 <= V1

Obviously, the multiset containment M <= M M’ holds for all multisets M and M’; in
this case the preconditions are irrelevant.

4.5. Robustness analysis

In the second phase of OOSE, called “robustness analysis”, the sample use case
“return items” is re,ned in two aspects: Instead of returning all items at the same
time, the customer returns the items one by one; he has to press a button to request a
receipt; the machine itself is decomposed into several objects.
For simplicity of presentation, we omit the object and interaction diagrams as con-

structed by the original OOSE method; instead, we directly present the enhanced fOOSE
diagrams.

4.5.1. Enhanced diagrams
The object model of the requirements analysis is re,ned and the resulting objects

are classi,ed in three categories: interface, control and entity objects. Interface objects
build the interface between the actors (at the system boundary) and the system, the
entity objects represent the (storable) data used by the system, and the control objects
are responsible for the exchange of information between the interface and the entity
objects.
In the object model, interface objects are represented by hooked circles, control

objects by circles with an arrow, and entity objects by underlined circles. For conve-
nience, object models are given in two parts, one showing the attributes of the objects
and the other showing the relationships between the objects.
The recycling machine is represented by ,ve objects: the interface object Customer

Panel, a control object Receiver, and the entity objects Current, DayTotal, and
DepositItem. The objects CustomerPanel and Receiver communicate the data con-
cerning the returned items, the Receiver uses Current and DayTotal for storing and
computing the list of current items and the daily total. The object DepositItem stands
for all kinds of returned items; in particular the object Bottle is modelled as its heir
(see Fig. 5(a)).
These objects have the following attributes (see Fig. 5(b)): CustomerPanel and

Receiver have no attributes; DepositItem has a name and a price, Bottle has
additionally a height and a width; Current has a list of deposit items and a sum as
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String
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Receiver

Bottle

DepositItemsum

(a)

(b)

Fig. 5. Object model of the robustness analysis of the recycling machine: (a) generalisations and associations;
(b) attributes and invariants.

attributes; and DayTotal has a list of deposit items. Note that the choice of lists as
storage structure for Current and DayTotal accounts for the fact that the customer
returns his items one by one.
The attributes of Current satisfy the invariant that the stored sum is the sum of the

prices of the items of the stored list.
The interaction diagram has to take into account these object model re,nements.

From the informal use case description we derive two kinds of messages which are
sent from the actor, i.e. the customer, to the CustomerPanel: a return message for
returning a single concrete item and a receipt message for requesting a receipt. Each
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s : Euro)
s1 : Euro)

s2 : Euro)

: CustomerPanel : Receiver : Current : DayTotal

{ i = desc(ci) and j = i and k = i and 
s = amount(l) and l1 = l and l2 = l1 and s1 = s and s2 = s1 }

receipt()

new(i : Item)

printreceipt()
get()

conc(j : Item)

to(l : List[Item],

add(k : Item)

send(l1 : List[Item],

*

print(l2 : List[Item],

return(ci : CItem)

ack()

Fig. 6. Re,ned interaction diagram of the robustness analysis of the recycling machine.

of these messages begins a new activity of the customer panel. On the other hand, the
customer panel sends an acknowledgement and a print message to the actor.
After receiving a return message carrying a concrete item, the customer panel sends

a message, say new, with the description of the concrete item to the receiver. Then
the receiver forwards this information to Current and DayTotal by two messages,
called conc and add respectively; the end of such a return process is acknowledged
by a message ack. In the third activity the CustomerPanel sends a printreceipt
request to the Receiver which in turn sends a standard get message to Current.
After getting the answer, the Receiver forwards this answer to the CustomerPanel
by a message called send, which prints the result.
From this text, a conventional OOSE interaction diagram is derived and, in the

next step, enhanced by inserting sorts for the parameters of messages and by stating
semantic properties of the parameters (see Fig. 6). In particular, the diagram shows
that the description i of a returned item ci is not changed and that the amount of the
print message is compatible with the prices of the returned items.

4.5.2. Functional speci:cations
We have chosen a more concrete representation of deposit items. The enhanced

object and interaction diagrams suggest to model this representation as a functional
data type, since deposit items may be identi,ed by value:

fmod DEPOSITITEM is
protecting CITEM .
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protecting METER . - measurements
protecting EURO .

sort DepositItem .
sort Bottle .
subsort Bottle < DepositItem .

op name : DepositItem -> Qid . - simple strings
op price : DepositItem -> Euro .
op height : Bottle -> Meter .
op width : Bottle -> Meter .
op desc : CItem -> DepositItem .

eq name(desc(bottle)) = ’Bottle .
eq price(desc(bottle)) = 10 E .
eq height(desc(bottle)) = 290 MM .
eq width(desc(bottle)) = 85 MM .

endfm

view DepositItem from TRIV to DEPOSITITEM is
sort Elt to DepositItem .

endv

fmod DEPOSITITEMS is
protecting LIST[DepositItem] .

op amount : List[DepositItem] -> Euro .

var I : DepositItem .
var Ib : List[DepositItem] .

eq amount(nil) = 0 E
eq amount(I Ib) = price(I) + amount(Ib) .

endfm

4.5.3. Construction of a formal speci:cation
By the general procedure in Section 4.3.4, from the enhanced object diagram auto-

matically six classes are generated: CustomerPanel; Receiver; Current, DayTotal,
and DepositItem and Bottle, which, as explained above, we have replaced by data
types:

class CustomerPanel | rc : Oid .
class Receiver | cp : Oid, cur : Oid, dt : Oid .
class Current | list : List[DepositItem], sum : Euro,

rc : Oid, cp : Oid .
class DayTotal | list : List[DepositItem] .

(where we slightly changed the names for the associated attributes).
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The enhanced interaction diagram automatically generates eleven message declara-
tions:

msg return : CItem Oid -> Msg .
msg new : Oid DepositItem Oid -> Msg .
msg conc : Oid DepositItem Oid -> Msg .
...
msg send : Oid List[DepositItem] Euro Oid -> Msg .
msg print : Oid List[DepositItem] Euro -> Msg .

Additionally, we obtain the following rule skeletons (where we slightly change the
automatically generated variable names):

crl [return] :
return(Ci, Cp)
< Cp : CustomerPanel | rc : Rc > =>
< Cp : CustomerPanel | rc : ? >
new(Cp, ?, Rc)

if ? .
crl [new] :
new(Cp, I, Rc)
< Rc : Receiver | cp : Cp, cur : Cur, dt : Dt > =>
< Rc : Receiver | cp : ?, cur : ?, dt : ? >
conc(Rc, ?, Cur)
add(Rc, ?, Dt)
ack

if ? .
crl [conc] :
conc(Rc, I, Cur)
< Cur : Current | list : L, sum : S, rc : Rc’, cp : Cp > =>
< Cur : Current | list : ?, sum : ?, rc : ?, cp : ? >

if ? .
...
crl [send] :
send(Rc, L, S, Cp)
< Cp : CustomerPanel | rc : Rc > =>
< Cp : CustomerPanel | rc : ? >
print(Cp, ?, ?)

if ? .

In order to obtain full rules, on the one hand we add state changes and preconditions.
This completion generates proof obligations stating that the completed rules preserve
the object invariants. On the other hand we add values for the message parameters
which are guided by the annotations of the enhanced interaction diagram.

rl [return] :
return(Ci, Cp)
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< Cp : CustomerPanel | rc : Rc > =>
< Cp : CustomerPanel | rc : Rc >
new(Cp, desc(Ci), Rc) .

rl [new] :
new(Cp, I, Rc)
< Rc : Receiver | cp : Cp, cur : Cur, dt : Dt > =>
< Rc : Receiver | cp : Cp, cur : Cur, dt : Dt >
conc(Rc, I, Cur)
add(Rc, I, Dt)
ack .

rl [conc] :
conc(Rc, I, Cur)
< Cur : Current | list : L, sum : S, rc : Rc, cp : Cp > =>
< Cur : Current | list : I L, sum : price(I) + S,

rc : Rc, cp : Cp > .
...
rl [send] :
send(Rc, L, S, Cp)
< Cp : CustomerPanel | rc : Rc > =>
< Cp : CustomerPanel | rc : Rc >
print(Cp, L, S) .

All preconditions can be chosen to be true; the proof obligations justifying our choices
are treated below. The full speci,cation can be found in Appendix A.
The behaviour of the interaction diagram is represented by the following control

process:

((!return ; ?ack)∗ ; !receipt ; ?print)
‖ ((?return ; !new ; ?new)∗ ; ?receipt ; !printreceipt ; ?send ; !print)
‖ (((!add ; ?add) ‖ (!conc ; ?conc) ‖ !ack)∗;
?printreceipt ; !get ; ?to ; !send)

‖ (?get ; !to)

We provide a suitable test environment by specifying the actor and giving an initial
con,guration:

omod ARM-CONTROL is
including ARM .
protecting LIST[CItem] .
protecting PROCESS .

class User | items : List[CItem], receipt : Bool, cp : Oid .

vars U Cp : Oid .
var C : CItem .
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var Cl : List[CItem] .
var Ib : List[DepositItem] .
var S : Euro .

rl [returning] :
< U : User | items : C Cl, cp : Cp > =>
< U : User | items : Cl, cp : Cp >
return(C, Cp) .

rl [ack] :
ack
< U : User | > =>
< U : User | > .

rl [request] :
< U : User | items : nil, receipt : false, cp : Cp > =>
< U : User | items : nil, receipt : true, cp : Cp >
receipt(Cp) .

rl [receipt] :
print(Cp, Ib, S)
< U : User | items : nil, cp : Cp > =>
< U : User | items : nil, cp : Cp > .

op u : -> Oid .
op cp : -> Oid .
op rc : -> Oid .
op cur : -> Oid .
op dt : -> Oid .
op initial : -> Configuration .
eq initial =
< u : User | items : icl, cp : cp >
< cp : CustomerPanel | rc : rc >
< rc : Receiver | cp : cp, cur : cur, dt : dt >
< cur : Current | list : nil, sum : 0 E, rc : rc, cp : cp >
< dt : DayTotal | list : itl > .

op control : -> Process .
eq control =

((act(’!return) ; act(’?ack)) * ;
act(’!receipt) ; act(’?print))

| ((act(’?return) ; act(’!new) ; act(’?new)) * ;
act(’?receipt) ; act(’!printreceipt) ; act(’?send) ;

act(’!print))
| (((act(’!add) ; act(’?add)) |

(act(’!conc) ; act(’?conc)) | act(’!ack)) * ;
act(’?printreceipt) ; act(’!get) ; act(’?to) ;

act(’!send))
| (act(’?get) ; act(’!to)) .

endom

where icl is a list of concrete items and itl is a list of deposit items.
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Choosing icb= bottle bottle bottle and itb= empty the Maude engine for ob-
ject theories with control of Section 3:3 produces

rewrites: 1053762 in 50220ms cpu (52080ms real)
(20982 rewrites/second)

reduce in ENGINE [ ARM-CONTROL ] : accepting .
result Set[Pair[Term,Process]] :
< < rc : Receiver | dt : dt, cur : cur, cp : cp >
< cp : CustomerPanel | rc : rc >
< cur : Current | rc : rc, cp : cp,

sum : 0 E, list : nil >
< dt : DayTotal | list : desc(bottle) desc(bottle)

desc(bottle) >
< u : User | cp : cp, items : nil, receipt : true >,
empty >

The complete, executable Maude speci,cation can be found in [24].

4.5.4. Proof obligations
The invariant of Current automatically generates the following proof obligations

for the completed rules with labels conc and get:

price(I) + S = amount(I L) ⇐ S = amount(L)
S = amount(L) ⇐ S = amount(L)

The ,rst proof obligation is discharged by using the de,nition of amount in DEPOSIT-
ITEMS, while the second proof obligation is trivial.
It remains to discharge the proof obligation that the speci,cation of the robustness

analysis step is a re,nement of the speci,cation of the requirements analysis.
When instantiating icl in ARM-CONTROL by some non-empty list of concrete items

and itl by some list of deposit items such that icl <= itl; and instantiating icb of
RRM-CONTROL by a multiset of concrete items representing the instantiation of icl and
itb by a multiset of items representing the instantiation of itl, the object theory with con-
trol Z′=(((�′; �′); P′); p′; q′0), de,ned by ARM-CONTROL, its control process control,
and its instantiated initial con,guration initial, in fact is an object control re,nement
of the object theory with control Z= (((�;�); P); p; q0), de,ned by RRM-CONTROL, its
control process control and its instantiated initial con,guration initial.
Indeed, p′ is a process re,nement of p by choosing the re,nement function

)(!return) = (!return ; ?ack)∗ ; !receipt
)(?return) = (?return ; !new ; ?new)∗

||((!add ; ?add)||(!conc ; ?conc) || !ack)∗
)(!print) = ?receipt ; ?printreceipt ; !get ; ?to ; !send ; !print
)(?print) = ?print

Moreover, note that the object RM of the requirements analysis is represented in the
robustness analysis by the four objects CustomerPanel, Receiver, Current, and
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DayTotal, i.e., each instance of RM is replaced by one instance of each of the mentioned
objects. We may thus de,ne an abstraction function * from  ′ to  in the following
way: Let {|−|}c be a function that converts lists of concrete items into multisets of
concrete items and let {|−|}i be a function that converts lists of deposit items into
multisets of items. Let C be a con,guration of  ′ of the form

c = < u : User | items : cl; cp : cp >
< cp : CustomerPanel | rc : rc >
< rc : Receiver | cp : cp, cur : cur, dt : dt >
< cur : Current | list : l; sum : s; rc : rc >
< dt : DayTotal | list : dl > c′

If c does not contain any messages and (�′; �′)� cl �= nil and (�′; �′)� l= nil, we
de,ne

*(c) = < u : User | items : {|cl|}c; rm : rm >
< rm : RM | total : {|dl|}i; current : empty >

If c does not contain any messages and (�′; �′)� cl= nil and (�′; �′)� l= nil, we
de,ne

*(c) = < u : User | items : empty, rm : rm >
< rm : RM | total : {|dl|}i; current : {|icl|}i >

If c contains some message but no print message, we de,ne

*(c) = < u : User | items : empty, rm : rm >
< rm : RM | total : {|idl|}i; current : empty >
return({|icl|}c; rm)

If c contains a print message, we de,ne

*(c) = < u : User | items : empty, rm : rm >
< rm : RM | total : {|dl|}i; current : empty >
print(rm, {|l|}i; s)

We leave * unde,ned for all other con,gurations of (�′; �′).
The ,rst clause for * abstracts all con,gurations of Z′ in which the customer has

not yet started returning his items to the recycling machine; in particular the initial
con,guration q′0 of Z

′ is abstracted into the initial con,guration q0 of Z. The second
clause for * abstracts all con,gurations of Z′ in which the customer has returned all his
items and has received the receipt. The third clause for * delays sending the return
message in Z. Finally, the fourth clause for * synchronises the print messages of Z′

and Z.
Since every trace of p′ induced by a run of Z′ is of the form

!return; : : : ; !ack; !return; : : : ; !receipt; : : : ; !print; ?print
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and hence corresponds to a trace

!return; ?return; !receipt; : : : ; !print; ?print

of p induced by a run of Z, we have

Fact 4. The robustness analysis speci:cation of this section is an object control re-
:nement of the requirements speci:cation of Section 4:3.

5. Concluding remarks

We presented an extension of OOSE by formal speci,cations which has several
advantages:
• The formal meaning of diagrams provides possibilities for prototyping and generates
systematically proof obligations that can be used for validation purposes.

• The re,nement relation gives the information for tracing the relationships between
use case descriptions and the corresponding design and implementation code, and
the generated proof obligations form the basis for the veri,cation of the correctness
of designs and implementations.

• The operational nature of our speci,cation formalism allows early simulation and
rapid prototyping.

• Traditional OOSE development can be used in parallel with fOOSE since all OOSE
diagrams and development steps are valid in fOOSE.
However, there remain several open problems and issues. Our formal annotations of

the interaction diagrams cover only iteration statements; means to deal with conditional
and exception statements should be added as well. Interaction diagrams as in Jacob-
son’s OOSE are inherently sequential, since the whole OOSE method is designed for
the development of sequential systems. When aiming at the description of distributed
concurrent systems, we would also need means for describing the concurrent behaviour
in our diagrams, not only in interaction diagrams but also in other kinds of behavioural
diagrams. Another problem is that our notion of re,nement is de,ned at the level of
speci,cations. For software engineers it would be easier if we could also de,ne a
re,nement relation at the level of diagrams which ensures the validity of an object
control re,nement.
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Appendix Complete Maude speci�cation

fmod EURO is
protecting MACHINE-INT .
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sort Euro .

op _E : MachineInt -> Euro .
op _+_ : Euro Euro -> Euro [assoc comm] .

vars X Y : MachineInt .

eq (X E) + (Y E) = (X + Y) E .
endfm

fmod METER is
protecting MACHINE-INT .

sort Meter .

op _MM : MachineInt -> Meter .
endfm

fmod CITEM is
sort CItem .

op bottle : -> CItem .
endfm

view CItem from TRIV to CITEM is
sort Elt to CItem .

endv

fmod DEPOSITITEM is
protecting QID .
protecting CITEM .
protecting METER .
protecting EURO .

sort DepositItem .
sort Bottle .
subsort Bottle < DepositItem .

op name : DepositItem -> Qid .
op price : DepositItem -> Euro .
op height : Bottle -> Meter .
op width : Bottle -> Meter .
op desc : CItem -> DepositItem .
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eq name(desc(bottle)) = ’Bottle .
eq price(desc(bottle)) = 10 E .
eq height(desc(bottle)) = 290 MM .
eq width(desc(bottle)) = 85 MM .

endfm

view DepositItem from TRIV to DEPOSITITEM is
sort Elt to DepositItem .

endv

fmod DEPOSITITEMS is
protecting LIST[DepositItem] .

op amount : List[DepositItem] -> Euro .

var I : DepositItem .
var Ib : List[DepositItem] .

eq amount(nil) = 0 E
eq amount(I Ib) = price(I) + amount(Ib) .

endfm

omod ARM is
protecting LIST[DepositItem] .

class CustomerPanel | rc : Oid .
class Receiver | cp : Oid, cur : Oid, dt : Oid .
class Current | list : List[DepositItem], sum : Euro,

rc : Oid, cp : Oid .
class DayTotal | list : List[DepositItem] .

msg return : CItem Oid -> Msg .
msg new : Oid DepositItem Oid -> Msg .
msg add : Oid DepositItem Oid -> Msg .
msg conc : Oid DepositItem Oid -> Msg .
msg ack : -> Msg .
msg receipt : Oid -> Msg .
msg printreceipt : Oid Oid -> Msg .
msg get : Oid Oid -> Msg .
msg to : Oid List[DepositItem] Euro Oid -> Msg .
msg send : Oid List[DepositItem] Euro Oid -> Msg .
msg print : Oid List[DepositItem] Euro -> Msg .

vars Cp Rc Cur Dt : Oid .
var Ci : CItem .
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var I : DepositItem .
var L : List[DepositItem] .
var S : Euro .

rl [return] :
return(Ci, Cp)
< Cp : CustomerPanel | rc : Rc > =>
< Cp : CustomerPanel | rc : Rc >
new(Cp, desc(Ci), Rc) .

rl [new] :
new(Cp, I, Rc)
< Rc : Receiver | cp : Cp, cur : Cur, dt : Dt > =>
< Rc : Receiver | cp : Cp, sum : S, cur : Cur, dt : Dt >
conc(Rc, I, Cur)
add(Rc, I, Dt)
ack .

rl [conc] :
conc(Rc, I, Cur)
< Cur : Current | list : L, sum : S, rc : Rc, dt : Dt > =>
< Cur : Current | list : I L, sum : price(I) + S,

rc : Rc, dt : Dt > .
rl [add] :
add(Rc, I, Dt)
< Dt : DayTotal | list : L > =>
< Dt : DayTotal | list : I L > .

rl [receipt] :
receipt(Cp)
< Cp : CustomerPanel | rc : Rc > =>
< Cp : CustomerPanel | rc : Rc >
printreceipt(Cp, Rc) .

rl [printreceipt] :
printreceipt(Cp, Rc)
< Rc : Receiver | cp : Cp, cur : Cur, dt : Dt > =>
< Rc : Receiver | cp : Cp, cur : Cur, dt : Dt >
get(Rc, Cur) .

rl [get] :
get(Rc, Cur)
< Cur : Current | list : L, sum : S, rc : Rc, dt : Dt > =>
< Cur : Current | list : nil, sum : 0 E, rc : Rc, dt : Dt >
to(Cur, L, S, Rc) .

rl [to] :
to(Cur, L, S, Rc)
< Rc : Receiver | cp : Cp, cur : Cur, dt : Dt > =>
< Rc : Receiver | cp : Cp, cur : Cur, dt : Dt >
send(Rc, L, S, Cp) .
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rl [send] :
send(Rc, L, S, Cp)
< Cp : CustomerPanel | rc : Rc > =>
< Cp : CustomerPanel | rc : Rc >
print(Cp, L, S) .

endom
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