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Abstract Systems code is almost universally written in the C programming language
or a variant. C has a very low level of type and memory abstraction and formal
reasoning about C systems code requires a memory model that is able to capture
the semantics of C pointers and types. At the same time, proof-based verification
demands abstraction, in particular from the aliasing and frame problems. In this
paper we present a study in the mechanisation of two proof abstractions for pointer
program verification in the Isabelle/HOL theorem prover, based on a low-level
memory model for C. The language’s type system presents challenges for the multiple
independent typed heaps (Burstall-Bornat) and separation logic proof techniques.
In addition to issues arising from explicit value size/alignment, padding, type-unsafe
casts and pointer address arithmetic, structured types such as C’s arrays and structs
are problematic due to the non-monotonic nature of pointer and lvalue validity
in the presence of the unary &-operator. For example, type-safe updates through
pointers to fields of a struct break the independence of updates across typed heaps
or ∧∗-conjuncts. We provide models and rules that are able to cope with these
language features and types, eschewing common over-simplifications and utilising
expressive shallow embeddings in higher-order logic. Two case studies are provided
that demonstrate the applicability of the mechanised models to real-world systems
code; a working of the standard in-place list reversal example and an overview of the
verification of the L4 microkernel’s memory allocator.
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1 Introduction

Systems code constitutes the lowest layer of the software stack, typically an operating
system, hypervisor, language run-time, real-time executive or the like. The vast ma-
jority of systems code today is implemented in the C [39] programming language
or some variant such as C++ and Objective-C. Higher-level languages, for example
Java or ML, are incompatible with the goals of system implementation due to the
many abstraction breaking requirements, for example zero-copy I/O, address trans-
lation manipulation and control over data structure layout [43].

We would like to have high confidence in the correctness of the implementation
of this foundational aspect of any system and a rigorous approach requires formal
arguments to be made about the behaviour of low-level C source code. This entails
being able to precisely model the syntax of the language and specifications, as well
as the language semantics, and possessing sound proof rules to manipulate these
statements. In addition, as a practical necessity we need to be able to produce a proof
in a timely and economical manner.

Unfortunately, C was not developed with formalisation in mind and it has a low
level of type and memory abstraction—details down to the bit-layout of values,
references and data structures are not opaque and it is easy to violate the C type
system by its cast mechanism and through address arithmetic. C does not have gar-
bage collection and the programmer is responsible for allocation and deallocation of
memory through library calls.

Over the last decade, developments in interactive theorem proving technology
[31, 35] and studies in real-world language mechanisation [20, 21, 32, 34] have paved
the way to verification of actual source code, as the compiler sees it. Previously this
had been only a theoretical possibility and toy problems and simplified languages
were the norm. In this paper we address the challenges and details of both formalising
C’s memory model and types in higher-order logic with the Isabelle theorem proving
system, and present developments of two commonly used proof techniques for
reasoning about pointer programs. We have chosen this emphasis here due to the
critical importance of reasoning about inductively-defined mutable data structures,
such as linked lists and trees, in C systems code verification. For example, most
contemporary operating systems feature thread/process control blocks, scheduler
queues, page tables and more than one kernel memory allocator—non-trivial pointer
linked data structures.

Below we provide an introduction to the aliasing and frame problems that cause
much of the difficulty in reasoning about pointer programs, the Burstall-Bornat and
separation logic proof techniques that tame them and the additional complications
that the C language burdens the verification effort with. We then conclude the intro-
duction with a summary of our contributions and an overview of the rest of the paper.

1.1 C Pointer Program Verification

1.1.1 Aliasing and Frame Problems

For an example of the aliasing problem, consider a program with two pointer
variables int * p and int * q and the following triple:

{| True |} ∗p = 37; ∗q = 42; {| ∗p = ? |}



Formal Verification of C Systems Code 127

We are unable to ascertain the value pointed to by p as it may refer to the same
location as q. We need to state that p = q or p �= q in the pre-condition to be able to
determine the value of ∗p in the post-state. We refer to aliasing between pointers of
the same type in this paper as intra-type aliasing.

The aliasing problem is much worse for inductively-defined data structures, where
it is possible that structural invariants can be violated, and where we need more
sophisticated recursive predicates to stipulate aliasing conditions. These predicates
appear in specifications, invariants and proofs, and their discovery is often a time
consuming trial-and-error process.

The aliasing situation becomes untenable when code is type-unsafe and we are
forced to seek improved methods. If instead we had a variable float * p:

{| True |} ∗p = 3.14; ∗q = 42; {| ∗p = ? |}
then not only do we have to consider aliasing between pointers of different types, but
also the potential for p to be pointing inside the encoding of ∗q and vice versa. We
talk about this phenomenon as inter-type aliasing.

The frame problem is apparent in Hoare triples. While specifications may mention
some state that is affected by the intended behaviour of a program, it is hard to
capture the state that is not changed. In the above example, a client verification that
also dereferences a pointer r, not mentioned in the specification, has no information
on its value after execution of the code fragment. This limits reusability and hence
scalability of verifications.

1.1.2 Burstall-Bornat and Separation Logic

We first consider a simplified semantic model for the heap where we want to be able
to describe the effects of memory accesses and updates through pointer expressions.

A reasonable approach from a descriptive language semantics perspective is to
regard memory simply as a function from some type addr representing addressable
locations to some type value, i.e. addr ⇀ value. This works fine for typeless languages,
while for type-safe languages we can make value a disjoint union of language types,
e.g.:

datatype value = Int int | Float float | IntPtr addr | . . .

The semantics of access and update dereferences are easy to express as they trans-
late to function application and update. Address arithmetic can be modelled by
having addr be an integer type.

It is straightforward to adapt the Hoare logic assignment rule:

{| P[x/v] |} x = v; {| P |}
where P[x/v] indicates that all occurrences of program variable x in assertion P are
replaced with v. To do so, we treat memory as a variable with a function type. If this
variable was called h then the rule would be:

{| h p �= ⊥ ∧ P[h/h(p �→ v)] |} ∗p = v; {| P |}
Since this is the same view of memory as in the previous section, the aliasing and

frame problems described above are present.
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Multiple independently typed heaps, also known as the Burstall-Bornat model,
allow us to rule out the adverse effects of inter-type aliasing for type-safe languages
by having a separate heap variable for each language type in the program’s state
space, e.g. float-heap :: float ptr ⇀ float,1 int-heap :: int ptr ⇀ int, int-ptr-heap ::
int ptr ptr ⇀ int ptr, etc. Updates to one heap do not affect others, and hence we get
that any assertion that is only a function of an int heap is preserved across a float *
update without any additional work needing to be done.

Bornat [7] describes how we can further rule out potential aliasing with structure
or record types in the situation where there is no pointer arithmetic and these types
are second-class, that is their values cannot be dereferenced or assigned directly.
With these restrictions, each field in each structured type can be given its own heap,
as it is impossible for an update to one field to ever affect an access of another field
in the same or different object.

Independently typed heaps only help with inter-type aliasing. A popular approach
to managing the aliasing and frame problems currently is the separation logic of
Reynolds, O’Hearn and others [18, 38]. Separation logic is an extension of Hoare
logic that provides a language and inference rules for specifications and programs
that both concisely allows for the expression of aliasing conditions in assertions and
ensures modularity of specifications.

Separation logic introduces new logical connectives, separation conjunction ∧∗
and implication −→∗. We can now write (p �→ 37 ∧∗ q �→ 42) to mean that in
the heap, the dereferenced p and q map to their respective values and do so in
disjoint regions of the heap. Separation conjunction implicitly includes anti-aliasing
information, making specifications clearer and providing an intuitive way to write
inductive definitions for data structures on the heap. Our earlier example becomes:

{| (p �→ −) ∧∗ (q �→ −) |} ∗p = 37; ∗q = 42; {| (p �→ 37) ∧∗ (q �→ 42) |}
Separation logic extends the usual Hoare logic rules with additional rules to

manage heap assignments and dereferences, and with the frame rule:

{| P |} c {| Q |}
{| P ∧∗ R |} c {| Q ∧∗ R |}

The frame rule allows us to take an arbitrary triple for a pointer program and
globalise it to be used in the proof of a calling procedure. This works because
separation logic forces any heap state that might be shared with the caller to appear
inside P or Q. A separation logic specification then tells the reader what the program
does not do, as well as what it does.

1.1.3 Problematic C Language Features

While both of the above proof abstractions are clearly inspired by low-level impera-
tive languages, there is some additional effort necessary to apply them to C.

The Burstall-Bornat model assumes type-safety but C does not guarantee this and
hence multiple typed heaps are unsound as a fundamental memory model for the

1float ptr, int ptr etc. are a HOL type encoding of the respective C types float *, int *, etc. We formally
introduce the types in Section 3.2.2.
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language. Such a model also does not support language features we require such as
casts and pointer arithmetic. Finally, Bornat’s restrictions do not apply to the lan-
guage as structs are first-class types in C. We see later in this paper how we can
recover an extended Burstall-Bornat model for C in the situation in which we are
operating in the type-safe fragment of the language while still supporting concrete
proofs about unsafe code.

With separation logic there are similar problems with type-unsafe languages. In
particular, there is the problem of skewed sharing [38] related to inter-type aliasing,
which we discuss at the end of Section 7.3. The frame rule also requires special
treatment to be applicable to C programs that use a more relaxed notion of memory
safety than is usually present in other treatments in the literature. Finally, additional
rules are needed to make reasoning about structs feasible.

1.2 Contributions

This paper provides the following contributions:

– A rigorous treatment of the Burstall-Bornat and separation logic proof abstrac-
tions is provided, in a unified framework that demonstrates the soundness of these
techniques and their relationship to the underlying byte-level view of system
memory and each other. We mechanise this treatment in higher-order logic in
the Isabelle theorem prover.

– A type encoding and semantics for C types and objects is developed in
Isabelle/HOL. We treat both standard and implementation defined behaviour
and cope fully with many language features that are often ignored in language
semantics—size, alignment, padding, type-unsafe casts and pointer address arith-
metic, to name a few.

– Limitations in the Burstall-Bornat and separation logic proof abstractions when
structured types appear are exposed, and the models are extended to accom-
modate these types. We show that the earlier models are special cases of the
generalised development and present new features that are available to proofs
about pointer programs with structured types.

– Two case studies are provided—a proof of the standard in-place list reversal
implementation and a summary of a study in the application of the framework to
the verification of a kernel memory allocator for the L4Ka::Pistachio [44] micro-
kernel implementation. This contains unsafe code that exercises our framework
and provides an opportunity to compare the two proof abstractions studied in the
same setting.

1.3 Overview

We briefly introduce the non-standard notation that appears in the paper in the next
section. Following this, we describe our C verification environment and approach
to providing semantics for C. We then examine in some more detail the problem
that C’s structured types pose for proofs about pointer programs and give an in-
depth treatment of the development of the multiple typed heaps and separation logic
proof rules in Isabelle/HOL, including support for proofs about programs featuring
structured types. Finally, the two case studies are provided and we conclude with
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some discussion of the engineering effort in both the verifications and the theory
development.

2 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical nota-
tion. This section introduces further non-standard notation and in particular a few
basic data types along with their primitive operations.

The space of total functions is denoted by ⇒. Type variables are written α, β, etc.
The notation t :: τ means that HOL term t has HOL type τ . The option type

datatype α option = ⊥ | Some α

adjoins a new element ⊥ to a type α. We use α option to model partial functions,
writing 	a
 instead of Some a and α ⇀ β instead of α ⇒ β option. The Some
constructor has an underspecified inverse called the, satisfying the 	x
 = x. Function
update is written f (x := y) where f :: α ⇒ β, x :: α and y :: β and f (x �→ y) stands for
f (x := 	y
). We can also merge two partial functions with f ++ g, defined λx. case
g x of ⊥ ⇒ f x | 	y
 ⇒ 	y
. Domain restriction is f�A where f ::α ⇀ β and (f�A) x =
(if x ∈ A then f x else ⊥).

Implication is denoted by =⇒ and [[ A1; . . . ; An ]] =⇒ A abbreviates A1 =⇒
(. . . =⇒ (An =⇒ A). . . ).

Finite integers are represented by the type α word where α determines the word
length. For succinctness, we use abbreviations like word8 and word32. The functions
IN⇐ and IN⇒ convert α words to and from natural numbers. Arithmetic operations
on bit-vector values are modulo 2n, where n is the word length.

We represent addresses with bit-vectors, and write address intervals as {p..+n},
where p is the base address and n is the size of the interval. Intervals wrap around
the end of the address space. Hoare triples are written 
 {|P|} c {|Q|} where P and Q are
assertions and c a program. In assertions, we use the syntax x́ to refer to the program
variable x in the current state, while σx means x in state σ . Program states can be
bound in assertions by {|σ . P|}.

Isabelle supports axiomatic type classes [49] similar to, but more restrictive than
Haskell’s. The notation α::ring restricts the type variable α to those types that support
the axioms of class ring. Type classes can be reasoned about abstractly, with recourse
just to the defining axioms. Further, a type τ can be shown to belong to a type class
given a proof that the class’s axioms hold in τ . All abstract consequences of the class’s
axioms then follow for τ .

For every Isabelle/HOL type α we can derive a type α itself, consisting of a single
element denoted by TYPE(α). This provides a convenient way to restrict the type of
a term when working with polymorphic definitions.

3 C Verification Framework

Our verification flow begins with C source code written in a syntactic subset of ANSI
C and annotated with pre/post conditions and invariants in the style of Hoare logic.
This undergoes an automated parsing and translation into HOL and from there
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Fig. 1 C verification processes
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a mechanical verification condition generator applies weakest pre-condition rules,
leaving the verifier with a set of HOL proof obligations to discharge.

This verification approach is quite common for imperative languages and Schirmer
[41] has developed a generic verification environment built on Isabelle/HOL for
this purpose. This environment includes a deeply embedded language, called com,
which provides a number of primitive constructs which the language features of
an imperative language can be mapped to, for example sequential, conditional and
While statements. Machine-checked HOL operational semantics, Hoare logics and a
verification condition generator are provided for com in the environment. Our task
is then to translate C syntax to the com language such that the com semantics reflect
the behaviours described in the C standard [1] for a given program.

Figure 1 illustrates the verification process. Below we describe our C subset and
the translation of C expressions and statements to com, focusing on pointer and
memory related aspects that we later build upon.

3.1 Syntax

We base our grammar on Kernighan and Ritchie [19], section A.13, essentially
ANSI C with some restrictions. The philosophy behind the subset is that the idioms
and practises of systems code should be supported while it is acceptable to limit
some constructs that can be replaced with slightly more verbose equivalents where
they unnecessarily complicate the translation to com. Pre/post condition and loop
invariant annotations are expressed as Isabelle/HOL expressions with inline C
comments, e.g. /** /INV: {|σ . P σ |} */.

The most significant restriction is that all expressions are required to be side-
effect free and we then provide several limited forms of expression statements to
produce side effects deterministically. Any C program can in principle be rewritten
to the form described here, with some additional state to hold intermediate results.
This is similar to the approach taken in CIL [30]. Any standard C compiler will
continue to recognise the expression statements below as they are indistinguishable
from cases of the C expression statement. This restriction is motivated by the non-
determinism in the order of expression evaluation inherent in the standard. This in
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turn complicates both the translation and resulting proof obligations. The expression
statement production in our grammar is:

expression_statement =
unary_expression = expression ; |
unary_expression = call_expression ; |
call_expression ; |
unary_expression ++ ; |
unary_expression -- ; |
;

Other limitations of interest in the subset are:

– Programs are assumed to be preprocessed and free of directives removed at this
stage, that is there are no macros present.

– Pointers to automatic storage are not supported, i.e. the & operator is disallowed
for stack variables. This provides for a simple model of stack variables in the state
space described in Section 3.2.1. Since it is not usual to have automatic storage
linked to mutable inductively-defined data structures, we consider reasoning
about issues such as dangling pointers and pass-by-reference orthogonal to the
focus of this paper.

– No float, function pointer or nested union types.
– switch and goto statements are elided. These statements violate block structure

and their semantics have been treated elsewhere in the literature [45].

Norrish [32, 47] has described formal YACC and LEX grammars for this subset.

3.2 Semantics

The translation targets a mixed deep-shallow embedding, where most statements
in com are deeply embedded but expressions and state transformers for expression
statements are HOL sets and functions. For example, we might translate p = q + 5;
if (p) x = 2; to Seq (Basic (λs. s(| p := q s + 5 |))) (Cond {s. p s �= 0} (Basic (λs. s(| x :=
2 |))) Skip).

Schirmer [41] gives both small- and big-step operational semantics for com. These
are parametrised by the state space and the shallowly embedded expression and
state update functions that operate on the state space. We describe below first the
state space for our embedding and how C’s types are encoded as HOL types, and
then explore aspects of the shallow embedding that relate to the memory model and
reasoning about pointer programs.

3.2.1 State Space

The state for C programs is modelled with a record in the verification environment.
Since we disallow references to stack variables, they can be treated as fields of the
record. The state type is synthesised for each program based on the variable names
and types present.

The heap is also a member field with a function type. It is common in language
semantics to treat the heap or memory as a partial function int ⇀ lang-val, where int
is the type of addresses and lang-val the type of all language values. While greatly
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simplifying the formalisation, this makes several assumptions that are not valid in
our setting:

– Addresses range over an infinite integer type. In C, addresses are constrained by a
finite addressable memory, which affects the semantics of pointer arithmetic and
memory allocation, e.g. ∗(x+1) = y may in fact be a NULL pointer dereference.

– Value representations are atomic. C language types have representations span-
ning multiple locations, and it is possible to have value updates at one location
affect values in other cells. This calls for a semantic model that both captures
values’ storage sizes and reflects these update semantics accurately. E.g. ∗x = 0
xdeadbeef affects not only the byte at location x, but also the bytes at locations
x + 1, x + 2, and x + 3. An additional complication is alignment, a per-type
restriction on address validity. For example, 16-bit short values may be forced
to be stored at even addresses. Expressing alignment conditions in dereferencing
and update semantics requires a constant byte granularity for addressing.

– Heap partiality. Heap partiality is often used in the heap dereferencing semantics
in memory or type-safety checks. Much weaker variants of these properties hold
for C programs and it is not always necessary to introduce them in the dereference
semantics. This is particularly important in making it possible to verify low-
level code that manages details such as the layout of its own address space or
implements the functionality of malloc.

We adopt a view of memory close to that of hardware. In our model, heap
memory state is a total function from addresses, represented by a bit-vector type
corresponding to machine addresses, to bytes, also a bit-vector type. This function is
a field in the state record, treated by the verification environment as a variable. On a
machine with 32-bit addresses and 8-bit bytes the heap memory state will be:

types addr = word32
byte = word8
heap-mem = addr ⇒ byte

3.2.2 Type Encoding

The low-level heap model corresponds to the C programmer’s notion of an un-
derlying byte map, however we do not wish to reason at this level in most proofs,
preferring more abstract typed HOL values. By utilising HOL types we can harness
the theorem prover’s type checking and inference abilities and make use of existing
libraries for the types.

Each language type is assigned a unique type in the theorem prover’s logic and
placed in a type class providing functions to allow heap dereferencing expression
semantics to be defined. The α::c-type class introduces several constants that connect
the low-level byte representation and HOL values for encoded language types. A
relatively simple approach to this would be to define the functions:

to-bytes :: α::c-type ⇒ byte list
from-bytes :: byte list ⇀ α::c-type
size-of :: α::c-type itself ⇒ nat
align-of :: α::c-type itself ⇒ nat

for each language type α. For C’s scalar types, integers can be encoded in the
expected way with bit-vectors, for example the mixed-endian representation in Fig. 2.
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Fig. 2 Mixed-endian integer
encoding
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For pointers a distinct Isabelle pointer type for each C Isabelle type can be obtained
with:

datatype α ptr = Ptr addr

and instantiated as an α::c-type. The α on the left-hand side is a phantom type that
allows the base type to be carried in Isabelle/HOL’s type system, used to constrain
the action of various pointer operators by making use of the type information
associated with the α value. The destructor for the α ptr type is written p&. The
footprint for a pointer p::α::c-type ptr is the set of addressable locations that contain
the byte representation for a value of type α with base p&. In this section, with
respect to the heap-mem state, it is simply an addr set, and can be obtained with
{p&..+size-of TYPE(α)}. Later we consider footprints with heap states that have a
type index component in the address.

Trap representations are caught in the semantics by wrapping the statement
containing a heap dereference expression with a guard predicate checking for a valid
encoding and leading to failure semantics if this is not the case.

C standard and other properties can also be captured with an α::mem-type axi-
omatic type class that further constrains α::c-type:

from-bytes (to-bytes x) = 	x
 [Inv]

|to-bytes (x::α)| = size-of TYPE(α) [Len]

0 < size-of TYPE(α) [SzNZero]

size-of TYPE(α) < |addr| [MaxSize]

align-of TYPE(α) dvd |addr| [Align]

align-of TYPE(α) dvd size-of TYPE(α) [AlignDvdSize]

where the constant |addr| represents the size of the address space, e.g. 232. Pro-
viding the intended semantics of operators such as assignment [1, 6.5.16–3] implies
[Inv]. [Len] gives that object representations have a constant size for all values
[1, 6.2.6.1–4]. The [SzNZero] axiom is stated explicitly in [1, 6.2.6.1–2] and [MaxSize]
is an obvious prerequisite for any type whose value is to be stored in an object.
For tiling in an array, [AlignDvdSize] is needed. Finally, the alignment constraint
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[Align] is added to make pointer arithmetic better behaved and it holds with a
power-of-two alignment restriction which we assume.

By only requiring the above axioms of types representations, instantiations can
include behaviours the C standard considers implementation defined or unspecified.
Proofs can rely on the basic properties independent of the specific instantiations.

The above type encoding does not cope with features of C’s structured types such
as padding bytes and is not suitable as a basis for abstractly reasoning about the
effects of updates through pointers to fields. For this we require a more sophisticated
type encoding which we explore in Section 5.

3.2.3 Expressions

Translation of arithmetic, bit-wise, logical and relational expressions is straight for-
ward, utilising the operators provided in the theorem prover’s bit-vector library with
the occasional guard predicate added to prevent illegal behaviour. Below we discuss
the translation for heap dereferences, pointer arithmetic, sizeof and casts, deferring
struct and array operators to Section 5.

Heap dereferences in expressions, e.g. ∗p + 1 are given a semantics by first lifting
the raw heap state with a polymorphic lift function, e.g. lift s p + 1 where s is the cur-
rent state.

heap-list :: heap-mem ⇒ nat ⇒ addr ⇒ byte list
heap-list h 0 p ≡ []
heap-list h (Suc n) p ≡ h p ·heap-list h n (p + 1)

h-val :: heap-mem ⇒ α :: c-type ptr ⇀ α

h-val h p ≡ from-bytes (heap-list h (size-of TYPE(α)) p&)

lift :: heap-mem ⇒ α :: c-type ptr ⇒ α

lift h ≡ λp. the (h-val h p)

This is a core concept in the expression semantics, as it provides the formal machinery
for splitting values across multiple locations in the heap. lift and h-val are polymor-
phic, with their types inferred from context, e.g. from an applied pointer. A byte list
of the type’s size is retrieved from memory with heap-list and lifted with from-bytes
to the HOL level.

Pointer addition is defined for p::α::c-type ptr as:

Ptr p +p n ≡ Ptr (p + n ∗ IN⇒ (size-of TYPE(α)))

Here the left-hand α supplies the size information.
sizeof is expressed as an application of size-of. When a value is cast between

two non-pointer scalars we use the expected bit-vector conversions subject to the
restrictions and promotion rules in the standard. When casting to or from a pointer,
the underlying address represented in the pointer is exposed. For example, casting
a char * p to a int * translates to λs. Ptr p& (also written λs. ptr-coerce p in this
paper). This relies on implementation behaviour, as the C standard has only weak
requirements for pointer representation, but systems code is typically dependent on
this anyway.
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3.2.4 Guards

com has Guard statements that lead to failure semantics if guard expressions do
not hold. We use these to wrap other statements featuring heap expressions that
require checks for NULL pointer dereferences, trap representations, alignment, etc.
We refer to these expressions as guard predicates routinely in the paper.

Pointer guard predicates creep into the resultant proof obligations, so we have
additional support later for reasoning about them. There is a continuum on the
strength of the predicates possible in our framework, from essentially no checks at
all to enforcing strict standard compliant behaviour. We opt for the following guards
on pointer expressions here:

c-null-guard p ≡ 0 �∈ {p&.. + size-of TYPE(α)}
ptr-aligned p ≡ align-of TYPE(α) dvd N⇐ p&

c-guard (p :: α ptr) ≡ ptr-aligned p ∧ c-null-guard p

3.2.5 Statements

We now give the semantics of statements producing side-effects on the heap.2 This is
achieved with the heap-update state transformer:

heap-update-list :: addr ⇒ byte list ⇒ heap-mem ⇒ heap-mem
heap-update-list p [] h ≡ h
heap-update-list p (x · xs) h ≡ heap-update-list (p + 1) xs (h(p := x))

heap-update :: α :: c-type ptr ⇒ α ⇒ heap-mem ⇒ heap-mem
heap-update p v h ≡ heap-update-list p& (to-bytes v) h

As an example of how the statement and expression translations interact, ∗p = ∗q + 5
is translated to the state transformer λs. heap-update p (lift s q + 5) s.

Lemma 3.1 Heap updates do not affect heap reads providing the regions do not
overlap:

{p..+|v|} ∩ {q..+k} = ∅
heap-list (heap-update-list p v h) k q = heap-list h k q

Proof By induction on k. ��

4 C’s Struct, Union and Array Types

In the C-HOL type encoding of Section 3.2.2, each C type was given a unique
type in the theorem prover and all such types belonged to the α::c-type type class.

2For full details of the expression and statement translation we refer the reader to the author’s
thesis [46].
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C’s aggregate, or structured, types can also be modelled inside the theorem prover
in this manner, e.g. struct types as Isabelle record types.3 Structured types warrant
further investigation, however, as they require additional work behind the scenes to
instantiate and expose limitations in the notion of independently typed heaps.

As an initial technical consideration, each structured type appearing in a program
requires the C translator, implemented as an Isabelle tactic in ML, to perform an
α::mem-type instantiation during state space synthesis, e.g. for struct types:

– A corresponding record declaration.
– Definitions of functions appearing in α::c-type, requiring full structure informa-

tion to appear shallowly at the HOL level.
– Lvalue calculations, requiring the full structure information inside the ML parser,

as well as offset/size/alignment calculations.

Since the translation stage is trusted it is highly desirable to minimise and simplify it.
In our framework the first two steps need to be in the ML, since Isabelle/HOL does
not reflect these aspects of the theorem prover’s runtime. The last step introduces
an unpleasant redundancy. One of the aims of the following development is to elimi-
nate this.

Leaving aside this implementation aspect, we now turn to the fundamental prob-
lem that structured types pose.

Example 4.1 As a running example, consider the following struct declarations:

struct x {
short y;
char z;

};

struct a {
int b;
struct x c;

};

The following triple demonstrates the most significant limitation with existing
pointer proof techniques:

{| ∗p = (| y = 2, z = ′m ′ |) |} p→y = 1; {| ∗p = ? |}
The problem here is that even though the update and dereference are type-safe, and
we do not need to consider aliasing, proof rules based on independently typed heaps
consider this update to be type-unsafe, as any region of memory can only have a
single type, and p and &(p→y) share a common address despite having different
but related types. There is a similar problem for the effect of updates through struct
references on enclosed field pointer values.

3In our implementation of this work, a record package substitute based on Isabelle/HOL’s datatypes
was used to allow for structured C types that introduce a circular type dependency, e.g. a struct x
with a field of type struct x *.
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struct a struct k

struct x

short char int

Fig. 3 Heap update dependencies

Figure 3 demonstrates how this problem manifests itself in the multiple typed
heaps abstraction. Typed heaps have locations in common, and there is an update
dependency given by the arrows between the heaps:

– Updating a field type’s heap may affect typed heaps of enclosing structs, indicated
in the figure by a dashed arrow.

– Updating a struct affects typed heaps of field types (fields-of-fields, etc.), indicated
in the figure by a solid arrow.

– Update effects are no longer simple function update, they involve potentially mul-
tiple field updates and accesses.

In the next three sections we describe a generalised development of the type en-
coding, multiple typed heaps and separation logic based on a deep embedding of
structured type information. By treating type information as a first-class HOL value
we are able to both avoid the instantiation redundancy described above and provide
generic definitions and rules for structured types.

The above discussion focused on structs. There are two distinct situations in which
arrays require treatment. First, when appearing as objects in the heap. Here, array
expressions are given pointer semantics as required by the standard [1, 6.3.2.1–3].
Where arrays appear as members of other objects or as automatic variables, they
must have a constant size4 and are represented using the techniques of Harrison [15].
In this case, array α::c-type definitions and α::mem-type instantiations are similar to
those of structs, as the fixed size allows us to treat each object in the array like a field.
unions are more difficult, however if we forbid their nesting it is conceivable they
could be handled through the type encoding. Cock [12] has developed such support
for tagged unions and bitfields.

5 Structured Type Encoding

The solution proposed in Section 4 requires that structured type meta-data be
available at the HOL level. This needs to include the same information as in

4We elide the special case of flexible array members [1, 6.7.2.1–16].
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Section 3.2.2, for example size and alignment. In addition, a fine grained description
of the value representation encoding and decoding functions, such that it is possible
to extract the functions for specific fields as well as the structure as a whole, is
desirable in the development of the rules in Sections 6 and 7.

5.1 Field Descriptions

At the HOL level, we represent structure objects using potentially nested Isabelle/
HOL records. Each field has access and update functions defined by the record
package, e.g. for struct a represented as HOL record type a-struct, the functions
b::a-struct ⇒ int and b-update::(int ⇒ int) ⇒ a-struct ⇒ a-struct are supplied. Where
possible, it is helpful to use these record functions when reasoning about field
accesses and updates, rather than the more detailed, lower-level view of fields as a
subsequence of the byte-level value representation — the connection between these
two views is explored in Section 6.4. To facilitate this, functions derived from the
corresponding record functions are included in the type meta-data.

Definition 5.1 We can capture abstract record access and update functions for fields
as field descriptions:

record α field-desc = field-access :: α ⇒ byte list ⇒ byte list
field-update :: byte list ⇒ α ⇒ α

These functions provide a connection between the structure’s value as a typed HOL
object and the value of a field in the structure as a byte list. field-access takes an
additional byte list parameter, utilised in the semantics to provide the existing state
of the byte sequence representing the field being described. This allows padding
fields the ability to “pass through” the previous state during an update.5 We similarly
extend the to-bytes type signature in the rest of the paper to support padding fields:

to-bytes :: α::c-type ⇒ byte list ⇒ byte list

Example 5.1 The field description for field b in struct a is:

(|field-access = to-bytes ◦ b,

field-update =
λbs v.

if |bs| = size-of TYPE(word32) then v(|b := from-bytes bs|) else v|)

The update function only has an effect on byte lists of the correct length, a constraint
that runs through later definitions and properties.

5A more conservative, standard compliant approach, would be to use non-determinism or an ora-
cle here.
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5.2 Type Descriptions

Definition 5.2 The type meta-data is captured in a type description with the following
mutually-inductive definitions:

datatype α typ-desc = TypDesc “α typ-struct” typ-name

α typ-struct = TypScalar nat nat α |
TypAggregate (α typ-desc × field-name) list

A type description is a tree, with structures as internal nodes, branches labelled with
field names and leaves corresponding to fields with primitive types. At leaves, size,
alignment and an α are provided. The α is free and can be used to carry primitive type
encoding and decoding functions. Alignment is an exponent, enforcing a power-of-
two restriction structurally. An example type description for struct a is given in Fig. 4.

There is not a one-to-one correspondence between fields in this structure and
those in a C struct, as fields in this definition are also intended to explicitly represent
the padding inserted by the compiler to ensure alignment restrictions are met.

TypDesc (TypAggregate ...) "struct x"

TypDesc (TypScalar 2 1 y_field_desc) "short"

TypDesc (TypScalar 1 0 z_field_desc) "char"

"y"

"z"

TypDesc (TypScalar 4 2 b_field_desc) "int"

TypDesc (TypAggregate ...) "struct a"

"b"

"c"

TypDesc (TypScalar 1 0 pad_desc) "!pad"

"!pad"

Fig. 4 Type description for struct a
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Type descriptions can be specialised in various ways, for example:

types α typ-info = α field-desc typ-desc
typ-uinfo = (byte list ⇒ byte list) typ-desc

The type information, α typ-info, provides the information required to describe the
encoding and decoding of the representation. Exported type information, typ-uinfo,
provide a means of treating language types as first-class values in HOL, di-
vorced from the HOL type to allow direct comparison, and normalising value
representations—this is further explained in Section 5.6. TYPE(α)τ gives the type
information for an α::c-type and TYPE(α)ν provides the exported type information.
Here the subscript operators are functions from α::c-type itself.

Definition 5.3 A field name used to access and update structure fields with the C .
and −> operators can be viewed as a field-name list of .-separated fields leading to a
sub-structure, which we refer to as a qualified field name. A qualified field name may
lead to a field with a primitive or structure type, e.g. [] is the structure itself. Array
members are named by index, e.g. [ ′′--array-37 ′′].

Example 5.2 [], [ ′′b ′′], and [ ′′c ′′, ′′z ′′] are valid qualified field names in
Example 4.1 for struct a, corresponding to the entire structure, b field and nested
z field respectively.

A number of functions can be defined on type descriptions which allow the lifting
and update rules of Section 6.4 and Section 7.6 to be expressed and proven. We
summarise all these and the other key functions defined over type descriptions
introduced in this chapter in Table 1. All functions are backed by primitive recursive
definitions in Isabelle/HOL, however in some definitions below we replace what
constitutes a lengthy and verbose but somewhat trivial HOL term with explanation
and examples.

Definition 5.4 map-td applies the given function f at leaf nodes, modifying the con-
tents of a type description’s leaves while not affecting the structure. f is a function of
the size and alignment at a leaf node but does not modify these values.

Definition 5.5 Type size size-td and alignment align-td are found by summing and
taking the maximum of the leaf node sizes and alignments6 respectively.

Definition 5.6 lookup :: α typ-desc ⇒ qualified-field-name ⇒ nat ⇀ α typ-desc × nat
follows a path f from the root of a type description t and returns a sub-tree and offset
if it exists. We write t�f as an abbreviation for lookup t f 0.

Example 5.3 A lookup on the field c in struct a yields:

TYPE(a-struct)ν � [′′c′′] = 	(TYPE(x-struct)ν, 4)


6This is implied by the C standard with power-of-two alignments.
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Table 1 Type description functions

map-td :: (nat ⇒ nat ⇒ α ⇒ β) ⇒ α typ-desc ⇒ β typ-desc
Transforms leaf α values to β values.
size-td :: α typ-desc ⇒ nat
Type size, e.g. size-td TYPE(a-struct)τ = 8.
align-td :: α typ-desc ⇒ nat
Type alignment exponent, e.g. align-td TYPE(a-struct)τ = 2.
-�- :: α typ-desc ⇒ qualified-field-name ⇀ α typ-desc × nat
The sub-tree and offset from the base of the structure that a valid qualified field name leads to.
td-set :: α typ-desc ⇒ (α typ-desc × nat) set
The set of all sub-trees and their offset from the base of a structure.
access-ti :: α typ-info ⇒ (α ⇒ byte list ⇒ byte list)
Derived field access for the entire structure represented by the type information.
update-ti :: α typ-info ⇒ (byte list ⇒ α ⇒ α)
Derived field update for the entire structure represented by the type information.
export-uinfo :: α typ-info ⇒ typ-uinfo
Export type information (see Section 5.6 for typ-uinfo).
norm-tu :: typ-uinfo ⇒ (byte list ⇒ byte list)
Derived normalisation for the entire structure represented by the exported type information.
-≤- :: α typ-desc ⇒ α typ-desc ⇒ bool
Update dependency order, e.g. TYPE(x-struct)ν ≤ TYPE(a-struct)ν .

A lookup on an invalid field name fails:

TYPE(a-struct)ν � [′′c′′, ′′b ′′] = ⊥

Lemma 5.1 The size of a type description is no smaller than the sum of the size of any
field’s type description and offset:

TYPE(α)τ�f = 	(t, n)

size-td t + n ≤ size-td TYPE(α)τ

Proof By structural induction on the type description. ��

Definition 5.7 A related concept is the type description set, td-set t, of a type de-
scription t where all sub-trees and their offset are returned.

Example 5.4 The type description set for struct x is:

td-set TYPE(x-struct)ν = {(TYPE(x-struct)ν, 0), (TYPE(word16)ν, 0),

(TYPE(word8)ν, 2), (pad-export 1, 3)}

Definition 5.8 The address corresponding to an lvalue expression containing a struc-
ture field access or update can be found with:

&(p→f ) ≡ p& + IN⇒ (snd (the (TYPE(α)ν�f )))
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Lvalue terms appear in the semantics and proof obligations for statements like p−>

f = v;. This definition provides the translation for the . and −> operators for heap
structures.

Example 5.5 The lvalue address for an a-struct ptr dereference on the c field is
given by:

&(p→[′′c ′′]) = p& + IN⇒ (size-of TYPE(word32))

Lemma 5.2 The heap interval footprint of a field is a subset of that of an enclosing
structure:

TYPE(α)τ�f = 	(t, n)

{&(p→f )..+size-td t} ⊆ {p&..+size-of TYPE(α)}

Proof By interval reasoning and Lemma 5.1. ��

Definition 5.9 Access access-ti and update update-ti functions compose their re-
spective primitive leaf functions (from the field descriptions) sequentially to provide
the expected encoding and decoding for an aggregate type. Since a given type infor-
mation may represent an entire structure type or just a field, the access and update
functions generalise the earlier notion of to-bytes and from-bytes for a C type.

Example 5.6 The access function for struct a is given by:

access-ti TYPE(a-struct)τ = λv bs.

to-bytes (b v)

(take (size-of TYPE(word32)) bs) @

to-bytes (c v)

(take (size-of TYPE(x-struct))

(drop (size-of TYPE(word32)) bs))

Definition 5.10 The connection between the HOL typed value, type information,
size, alignment and underlying byte representation can be made through the follow-
ing function definitions:

to-bytes ≡ access-ti TYPE(α)τ

from-bytes bs ≡ update-ti TYPE(α)τ bs arbitrary

size-of TYPE(α) ≡ size-td TYPE(α)τ

align-of TYPE(α) ≡ 2align-td TYPE(α)τ

We write access-ti0 and to-bytes0 when a list of zero bytes with length equal to that
of the type’s size is to be supplied for the padding state. We generalise the constraints
on and properties of α::mem-types in the next section.
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Table 2 α::mem-type axioms size-of TYPE(α) < |addr| [MaxSize]
align-of TYPE(α) dvd size-of TYPE(α) [AlignDvdSize]

TYPE(α)τ � f = 	(s, n)
 → 2align-td s dvd n [AlignField]
|bs|=size-of TYPE(α)

update-ti TYPE(α)τ bs v=update-ti TYPE(α)τ bs w
[Upd]

wf-desc TYPE(α)τ [WFDesc]
wf-size-desc TYPE(α)τ [WFSizeDesc]
wf-field-desc TYPE(α)τ [WFFD]

5.3 Type Constraints

In this section we describe the fundamental properties that need to hold for each
Isabelle/HOL type we use to model a C type. These generalise the α::mem-type
axioms in Section 3.2.2, and we show the earlier properties to follow in Theorem 5.3
at the end of the section.

Definition 5.11 Table 2 gives the constraints on an α::c-type for instantiation in the
α::mem-type axiomatic type class. [MaxSize], [AlignDvdSize] and [AlignField]
give some basic size and alignment related properties. The [MaxSize] and
[AlignDvdSize] conditions are taken directly from Section 3.2.2 and [AlignField]
is implied by the C standard’s requirement that derived field pointers posses the
alignment of their type [1, 6.7.2.1–12].

[Upd] states that the result of an update to the entire structure is independent of
the original value.

Finally, three well-formedness conditions on the type information ensure sensible
values for field names, node sizes and field descriptions. These conditions are detailed
below in Definitions 5.12, 5.13, and 5.15.

Definition 5.12 A type description t is well-formed w.r.t. field names, wf-desc t, when
no node has two or more branches labelled with the same field name.

Definition 5.13 A type description t is well-formed w.r.t. size, wf-size-desc t, when
every node has a non-zero size.

Definition 5.14 A field description d and size n are considered consistent when the
following properties hold:

∀ v bs bs′. [FuFu]
|bs| = |bs′| −→
field-update d bs (field-update d bs′ v) = field-update d bs v

∀ v bs. |bs| = n −→ field-update d (field-access d v bs) v = v [FuFaId]
∀ bs bs′ v v′. [FaFu]

|bs| = n −→
|bs′| = n −→
field-access d (field-update d bs v) bs′ =
field-access d (field-update d bs v′) bs

∀ v bs. |bs| = n −→ |field-access d v bs| = n [FaLen]
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The properties are similar to those already provided by Isabelle’s record package at
the HOL level and can be established automatically. The restriction to byte lists of
size n in these conditions is required as field-access and field-update may only be
well-defined for certain list lengths.

Definition 5.15 Type information t is well-formed w.r.t. field descriptions, wf-
field-desc t, if the field descriptions of all leaf fields are consistent, and for every
pair of distinct leaf fields, s and t, the following properties hold:

∀ v bs bs′.
update-ti s bs (update-ti t bs′ v) = [FuCom]

update-ti t bs′ (update-ti s bs v)

∀ v bs bs′.
|bs| = size-td t −→ [FaFuInd]

|bs′| = size-td s −→
access-ti s (update-ti t bs v) bs′ =
access-ti s v bs′

Again, these are standard commutativity and non-interference properties that we
have at the HOL level and wish to preserve in field descriptions.

We now show that the earlier axioms follow from the generalised axioms pre-
sented in this section.

Theorem 5.3 The α::mem-type axioms from this section imply the remaining axioms
in Section 3.2.2:

|bs| = size-of TYPE(α)

from-bytes (to-bytes x bs) = x
[Inv]

|bs| = size-of TYPE(α)

|to-bytes x bs| = size-of TYPE(α)
[Len]

0 < size-of TYPE(α) [SzNZero]

align-of TYPE(α) dvd |addr| [Align]

Proof For [Inv], we unfold Definition 5.10 and transform the arbitrary to a v using
[Upd]. [WFFD] gives that field descriptions at leaves are consistent, which induc-
tively provides this property for derived field descriptions at internal nodes. The
proof is completed by using [FuFaId] at the root. [Len] follows from Definition 5.10
and [FaLen]. [SzNZero] is implied by [WFSizeDesc]. Finally, for [Align], observe
align-of TYPE(α) < |addr| from [AlignDvdSize], hence the alignment as a power-
of-two divides |addr|, a larger power-of-two. ��
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5.4 Type Installation

The constraints of the previous section require both the construction of suitable
type information and a corresponding α::mem-type instantiation proof for each type
appearing in programs we wish to verify. This can be done entirely at the ML level
during C-HOL translation, by synthesising both the intended HOL term for the type
information directly and a proof on the unfolded definition, but this is fragile and
does not scale well.

An improved approach to type information construction is to do so using combi-
nators that allow the structure to be built up field-wise and for which generic proof
rules can be given. This then reduces the proof effort at the ML level to discharging
simple side-conditions resulting from applying the proof rules from the library,
greatly reducing the complexity of the ML instantiation code and improving the
performance of this step. We use this approach and combinators and corresponding
proof rules have been derived, but we elide for brevity. Details may be found in [46].

At the same time as type class instantiation, some additional rewrites are shown
by the system, and placed in the default simplification set, to allow efficient rewriting
of lookup terms for the new type and to improve the scalability of the instantiation
process. The lookup rewrites are of great import when applying the later UMM or
separation logic rules in this chapter, as � terms appear frequently as side-conditions.

Example 5.7 The following rule for resolving field names beginning with ′′z ′′ is
installed for x-struct:

lookup TYPE(x-struct)τ ( ′′z ′′·fs) m =
lookup (adjust-ti TYPE(word8)τ z (z-update ◦ (λx -. x))) fs
(m + size-of TYPE(word16))

Simplifications for size-td and align-td on the entire structure are also installed.

5.5 Heap Semantics

The translation of Section 3 remains mostly unchanged with the new type encoding,
with the exception of heap-update, which now supplies to-bytes with the existing
heap state underneath the target footprint to facilitate padding field semantics:

heap-update p v h ≡
heap-update-list p& (to-bytes v (heap-list h (size-of TYPE(α)) p&)) h

Structured types introduce a new initialisation concern, where an object may be
partially initialised. This is not directly relevant to the type encoding, as any potential
exception conditions or other undefined behaviour that may result can be treated
separately with guard predicates.

5.6 Representation Normalisation

In later sections, we make frequent use of the concepts of exported type information
and normalisation, which we introduce in this section.
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Type information may be “exported” to remove the α dependency by collapsing
leaf field descriptions to byte list normalisation functions, resulting in a typ-uinfo.
Normalisation is motivated by the observation that padding fields are ignored when
reading structured values from their byte representation. Also, there may exist more
than one byte representation for a value in C, even for primitive types. Export of
the type information also provides us with a means to quantify over and compare
C types.

Example 5.8 Figure 5 demonstrates two example normalisations. The byte lists are
arranged with the least-significant byte at the bottom and the shaded bytes indicate
padding. In the struct a case, the padding field is transformed to zero and the MSB in
the char field is ignored.

Definition 5.16 Type information is exported with export-uinfo:

export-uinfo ti ≡
map-td
(λn algn d bs.

if |bs| = n
then field-access d (field-update d bs arbitrary) (replicate n 0)

else [])
ti

We write TYPE(α)ν for export-uinfo TYPE(α)τ .

We can no longer obtain derived access and update functions using access-ti and
update-ti from exported type information. Instead, we can derive a normalisation
function for the entire structure from the leaf normalisation functions.

Fig. 5 Normalisation mapping
to byte list equivalence classes

7::int

{ 3, { 42, 'a' }}::struct a
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Definition 5.17 Normalisation norm-tu for type information is derived by the se-
quential composition of leaf normalisation functions. We write norm-bytes TYPE(α)

for norm-tu (export-uinfo TYPE(α)τ ).

Theorem 5.4 norm-tu applied to exported type information is equivalent to normali-
sation with the access and update functions derived from the type information:

wf-field-desc ti wf-desc ti |bs| = size-td ti

norm-tu (export-uinfo ti) bs = access-ti0 ti (update-ti ti bs arbitrary)

Proof By structural induction on the type information ti. The base case occurs at the
leaves and matches the definitions. For internal nodes, we use the inductive hypothesis
and the commutativity and non-interference properties derivable from [WFFD]. ��

Theorem 5.5 Normalisation does not affect the HOL value of a byte list:

|bs| = size-of TYPE(α)

from-bytes (norm-bytes TYPE(α) bs) = from-bytes bs

Proof From definitions, Theorem 5.4 and Definition 5.14 properties. ��

Theorem 5.6 Field access is equivalent to normalisation of the corresponding frag-
ment of the underlying byte list representation:

TYPE(α)τ�f = 	(t, n)
 |bs| = size-of TYPE(α)

access-ti0 t (from-bytes bs) =
norm-tu (export-uinfo t) (take (size-td t) (drop n bs))

Proof By Theorem 5.4 and:

s�f = 	(t, n)
 |bs| = size-td s |bs ′| = size-td t wf-field-desc s wf-desc s

access-ti t (update-ti s bs v) bs ′ =
access-ti t (update-ti t (take (size-td t) (drop n bs)) arbitrary) bs ′

This auxiliary rule can be shown by structural induction on the type information. ��

6 Unified Memory Model

We now turn to unifying the semantic model in Section 3.2.1 with the abstract view
of memory provided by multiple typed heaps. This yields the ability to express
the semantics of programs that exhibit inter-type aliasing where needed and have
multiple typed heaps as a proof abstraction where the program remains within a
type-safe fragment of C, thus avoiding proof obligations arising from inter-type
aliasing.
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Fig. 6 Previous heap type
description with a valid struct
a pointer

struct a

addr

6.1 Heap Type Description

Inside the type-safe fragment of C, where the majority of code remains, there is
an implicit mapping between memory locations and types, and heap dereferences
respect this mapping. We introduce this mapping as an additional state component,
and refer to it as the heap type description. The heap type description is a ghost
variable, and as such does not influence the semantics of our programs. Since in C
this mapping cannot be extracted from the source code, the program verifier adds
proof annotations that update the heap type description.

The heap type description we describe below is more complicated than one would
naively expect, so we first give a simpler model from earlier work [47] and observe
its limitations as motivation. There we introduced the mapping as:

heap-typ-desc = addr ⇀ typ-tag option

The type typ-tag can be thought of as being equivalent to unit typ-desc. We wrote d,g
|=t p to mean that the pointer p is valid in heap type description d with guard g. The
guard g restricts the validity assertion based on the language’s pointer dereferencing
rules. This is depicted in Fig. 6. In the figure it can be observed that each location in a
valid pointer’s footprint is mapped to the type’s typ-tag and the base is distinguished,
hence the nested option type. This has been shown to be sufficient to recover multiple
typed heaps via rewriting for scalar types.

The problem with this notion of the heap type description for structured types is
that only a single pointer may be valid at any location. This gives rise to the inability
to abstractly reason about updates through pointers to fields. With structured types,
we would like that at the base address a pointer for the structure type and that of the
first field’s type be valid. In general, for valid qualified field names f, we desire a field
monotonicity property, i.e. d,g |=t p =⇒ d,g |=t Ptr &(p→f ).

To accomplish this, we introduce an extended definition for the heap type
description:

types typ-base = bool
typ-slice = nat ⇀ typ-uinfo × typ-base
heap-typ-desc = addr ⇒ bool × typ-slice

Each location maps to a tuple, with the first component a bool indicating whether
there is a value located at the address.7 The second component is a typ-slice,
providing an indexed map to the typ-uinfos that may reside at a particular address.

7This approach is taken in preference to a partial function to aid in partitioning state in Section 7.
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Fig. 7 Extended heap type
description with a valid struct
a pointer Rest of footprint (typ_uinfo)

Encoding base (typ_uinfo)

nat

addr

struct a

struct x
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short

char

padding
p q
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The index for the exported type information of a field type at a particular offset is
calculated from the depth of the tree at the offset, where zero corresponds to the
deepest field type and the highest index to the root type. The typ-base value indicates
whether the location is the base or some other part of a value’s footprint.8

An example of the extended heap type description is provided in Fig. 7. Presence
or absence of a value is not indicated. Each point is a typ-uinfo × bool pair, with the
colour determined by the first component and shape by the second. Here a struct
a, from Example 4.1, footprint extends on the horizontal axis above the footprints
of its members. The vertical axis indicates a position in the typ-slice at the address.
The second half of the a-struct is higher than the first, as the tree is deeper due to
the x-struct changing the depth past this offset. That is, at (p,1), (p+1,1),. . . ,(p+3,1)

we have an entry for the exported type information of a-struct, as the tree has only a
depth of 2 at offsets 0–3, but at offsets 4–7, we have a-struct at (p+4,2),. . . ,(p+7,2),
as the tree is one deeper. An observation about the intuition behind pointer validity
that can be taken from this figure is that it is independent of the presence or absence
of type information from enclosing structured types in the ghost variable. The validity
of the short entry at q requires only the entries at (q,0) and (q+1,0), identical in the
situations where q is a field of a structure or an independent object.

6.1.1 Validity

Validity for a pointer with respect to the heap type description is a core concept in
the following development. So far an informal description of this has been given,
here we define it for the heap type description and explore some related properties.

Definition 6.1 Pointer validity is defined for the heap type description as:

valid-footprint d x t ≡
let n = size-td t
in 0 < n ∧

(∀ y<n. list-map (typ-slice t y) ⊆m snd (d (x + IN⇒ y)) ∧
fst (d (x + IN⇒ y)))

d,g |=t (p::α::c-type ptr) ≡ valid-footprint d p& TYPE(α)ν ∧ g p

8This allows consideration of the potential overlap of values of the same type to be eliminated for
valid pointers.
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where the function list-map::α list ⇒ (nat ⇀ α) converts a list to the expected map
and typ-slice::typ-uinfo ⇒ nat ⇒ (typ-uinfo × typ-base) list takes a vertical slice of
the intended heap footprint from the type description at an offset, e.g.:

typ-slice TYPE(a-struct)ν 4 = [(TYPE(word16)ν, True), (TYPE(x-struct)ν, True),

(TYPE(a-struct)ν, False)]

corresponding to (q,0), (q,1) and (q,2) in Fig. 7 respectively.
The guard g strengthens the assertion to restrict validity based on the language’s

pointer dereferencing rules. For example, alignment can be captured with
d,ptr-aligned |=t p. The stronger assertion is motivated by the need to satisfy
the guard proof obligation generated whenever a pointer is dereferenced—if it is
necessary to establish validity of a pointer p for the purpose of a proof about a code
fragment involving p, it is usual that one or more guard related proof obligations for
p will also need to be discharged.

The use of the map subset operator ⊆m in Definition 6.1 provides monotonicity.

Definition 6.2 Field monotonicity for a guard is defined as:

guard-mono (g::α ptr ⇒ bool) (g ′::β ptr ⇒ bool) ≡
∀ n f p. g p ∧ TYPE(α)ν�f = 	(TYPE(β)ν, n)
 −→ g ′ (Ptr (p& + IN⇒ n))

In normal usage, both arguments are the same polymorphic function, e.g.
guard-mono ptr-aligned ptr-aligned. This allows us to indirectly quantify over types
when using this definition in theorems below.

Theorem 6.1 Validity has field monotonicity:

TYPE(α)τ�f = 	(s, n)
 export-uinfo s = TYPE(β)ν guard-mono g g ′

d,g |=t p −→ d,g ′ |=t Ptr &(p→f )

where p::α ptr and Ptr &(p→f )::β ptr.

Proof Unfold definitions and consider the typ-slice at some offset y in the field. Since
n + y < size-of TYPE(α), from Lemma 5.1, we can infer from p’s validity that the first
component of the tuple at p& + IN⇒ n + IN⇒ y is true and that list-map (typ-slice
TYPE(α)ν (y + n)) ⊆m snd (d (p& + IN⇒ n + IN⇒ y)). The proof is completed with
⊆m transitivity and:

(s, n) ∈ td-set t k < size-td s

typ-slice s k ≤ typ-slice t (n + k)

which can be shown with structural induction on the type description. ��
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6.1.2 Retyping

We now give a retyping function ptr-retyp::α::c-type ptr ⇒ heap-typ-desc ⇒ heap-
typ-desc that updates the heap type description such that the given pointer is valid
and locations outside the pointer’s footprint remain untouched. This is typically used
in a programmer supplied heap type description update annotation. Syntactically,
they are C comments of the form:

/∗∗ AUXUPD: (g, f ) ∗/

where f is an expression that may depend on any program variable or the heap type
description and yields a new heap type description, and g is a guard predicate on the
current state. A guard could require that retypes only affect locations in the existing
domain of the heap type description, providing a form of memory safety on retypes.

Definition 6.3 A region of memory may be retyped such that p::α::c-type ptr is valid:

htd-update-list p [] d ≡ d
htd-update-list p (x · xs) d ≡ htd-update-list (p + 1) xs

(d(p := (True, snd (d p) + +x)))

typ-slices TYPE(α) ≡
map(λn. list-map (typ-slice TYPE(α)ν n)) [0.. < size-of TYPE(α)]
ptr-retyp p ≡ htd-update-list p& (typ-slices TYPE(α))

htd-update-list is similar to heap-update-list, but transforms the heap type descrip-
tion instead of heap memory. The typ-slices gives the slices of the type description
that occur at the offsets corresponding to list indices. ptr-retyp merges the new map
with the existing contents at each updated location. Additional entries in the indexed
map at a location in the heap type description do not affect the validity of the target
pointer, and hence do not require removal.

Lemma 6.2 Inside the retyped region, ptr-retyp (p::α::mem-type ptr) provides the
expected heap type description value:

x ∈ {p&..+size-of TYPE(α)}
ptr-retyp p d x =

(True, snd (d x) ++ list-map (typ-slice TYPE(α)ν (IN⇐ (x − p&))))

Proof By induction on the list. ��

Theorem 6.3 Following retyping, a target pointer p::α::mem-type ptr is valid:

g p

ptr-retyp p d,g |=t p

Proof By unfolding definitions, considering a point in the footprint and Lemma 6.2.
��
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Theorem 6.4 A previously valid pointer q::β::mem-type ptr remains valid across a
retype as long as its footprint and p::α::mem-type ptr’s are disjoint:

d,g |=t q {p&..+size-of TYPE(α)} ∩ {q&..+size-of TYPE(β)} = ∅
ptr-retyp p d,g |=t q

Proof We have x /∈ {p&..+size-of TYPE(α)} =⇒ ptr-retyp p d x = d x by list induction.
The rule then follows by unfolding and application of this fact to show each point in
the footprint remains unchanged. ��

6.2 Lifting

So far, the effect of updates on the lifted heap can only be expressed point-wise; we
can determine that a heap derived with lift at pointer p is not affected by an update
at pointer q if both are valid. We cannot determine that if the float incarnation of the
lifted heap changes, the whole unsigned int incarnation, as a function, is unaffected.

This means that if we had, for instance, a heap invariant or abstraction function for
a linked list structure that only uses the unsigned int * incarnation of the lifted heap,
we would need to prove a separate rule for that abstraction function to show that it
remains unchanged under float updates—even if the abstraction function explicitly
states that all its pointers are valid.

In this section we lift the heap-mem and heap-typ-desc state to a set of typed heap
functions, providing the ability to write assertions and reason about multiple typed
heaps in proofs. This follows a two-stage process, where first the two components
are combined and then transformed into a polymorphic lifting function. The split
facilitates later layering of the separation logic embedding. We describe the stages in
the process here and then the properties of the composed lifting function.

1. The two heap related components are combined into a single function.

Definition 6.4 The first stage, lift-state, results in an intermediate heap-state:

datatype s-heap-index = SIndexVal | SIndexTyp nat
datatype s-heap-value = SValue byte | STyp typ-uinfo × typ-base
types s-addr = addr × s-heap-index

heap-state = s-addr ⇀ s-heap-value

An example of this state is provided in Fig. 8, with an x-struct footprint. This should
be read as with Fig. 7, the vertical axis now the second component of s-addr rather

Fig. 8 Example heap-state

addr

SIndexVal

SIndexTyp 0

SIndexTyp 1

SIndexTyp 2

.....

p

0 0 3 97
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than an index. The rationale for this model is based on the requirements of the
separation logic embedding and is provided in Section 7.1.

Definition 6.5 The function lift-state filters out locations that are False or ⊥ in the
heap type description, depending on the index, removing values that should not affect
the final lifted typed heaps. Equality between lifted heaps is then modulo the heap
type description locations of interest for valid pointers.

lift-state ≡
λ(h, d) (x, y).

case y of SIndexVal ⇒ if fst (d x) then 	SValue (h x)
 else ⊥
| SIndexTyp n ⇒ option-case ⊥ (Some ◦ STyp) (snd (d x) n)

Lifted validity and heap-list are expressed on heap-states with d,g |=s p and
heap-list-s respectively in the obvious way.

2. The second lifting stage results in multiple typed heaps again. We supply a single
polymorphic definition that provides a distinct heap for each language type. The
intended heap type in a specification or proof is implicit—there are usually no
type annotations. Instead the type is discovered from use through Isabelle’s type
inference, based on the phantom pointer type.

Definition 6.6 The lift-typ-heap function, with the type signature α ptr-guard ⇒
heap-state ⇒ (α::c-type ptr ⇀ α), restricts the domain such that the only values
affecting the resultant heap are inside the heap footprint of valid pointers of the
corresponding type. It also converts appropriately sized byte lists at the address of
valid pointers to typed values:

lift-typ-heap g s ≡
(Some ◦ from-bytes ◦ heap-list-s s (size-of TYPE(α)) ◦
ptr-val)�{p | s,g |=s p}

This is equivalent to the following definition, which is sometimes easier to reason
about:

lift-typ-heap g s ≡
λp. if s,g |=s p then 	from-bytes (heap-list-s s (size-of TYPE(α)) p&)


else ⊥

Definition 6.7 The two stages, shown in Fig. 9, are combined with liftτ :

liftτ g ≡ lift-typ-heap g ◦ lift-state

Like lift, liftτ is polymorphic and returns a heap abstraction of type α ṫyp-heap =
α ptr ⇀ α. The program text itself can continue to use the functions lift and
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Fig. 9 Two-stage lifting
heap_mem

heap_typ_desc

a_struct ptr  a-struct

nat

addr

lift_state

addrSIndexVal
SIndexTyp 0
SIndexTyp 1
SIndexTyp 2

.....

x_struct ptr  x-struct

int ptr  int

short ptr  short

char ptr  char

lift_typ_heap

heap-update, while pre/post conditions and invariants use the stronger liftτ to make
more precise statements.

Theorem 6.5 An alternative definition of liftτ that provides a connection with lift is:

liftτ g (h, d) ≡ λp. if d,g |=t p then 	h-val h p
 else ⊥

Proof Expand liftτ and the alternate definition for lift-typ-heap, letting s = lift-state
(h, d). ��

Corollary Existence of a typed heap mapping at p implies validity:

liftτ g (h, d) p = 	x

d,g |=t p
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Theorem 6.6 A mapping in a heap lifted from the intermediate heap state implies the
existence of a mapping for all valid fields at the corresponding offset in the field type’s
lifted heap, with a value derived using the field access function:

TYPE(α)τ�f = 	(t, n)

lift-typ-heap g s p = 	v
 export-uinfo t = TYPE(β)ν guard-mono g g ′

lift-typ-heap g ′ s (Ptr &(p→f )) = 	from-bytes (access-ti0 t v)


where p::α::mem-type ptr and Ptr &(p→f )::β::mem-type ptr.

Proof Theorem 6.1 provides field monotonicity for validity. It is left for us to show
that from-bytes (heap-list-s s (size-of TYPE(β)) &(p→f )) = from-bytes (access-ti0
t (from-bytes (heap-list-s s (size-of TYPE(α)) p&))). This can be achieved with
Theorems 5.6 and 5.5. ��

Corollary The property in Theorem 6.6 also applies with liftτ :

TYPE(α)τ�f = 	(t, n)

liftτ g s p = 	v
 export-uinfo t = TYPE(β)ν guard-mono g g ′

liftτ g ′ s (Ptr &(p→f )) = 	from-bytes (access-ti0 t v)


6.3 Update Dependency Order

At the end of Section 4 it was clear that the effects of heap updates on typed heaps
depended on the structural relationship between types. In this section we formalise
this notion, allowing update rules in the next section to distinguish between cases of
this relation.

Definition 6.8 An order can be defined on type descriptions that expresses the
update dependency between heaps::

s ≤ t ≡ ∃ n. (s, n) ∈ td-set t

This can be lifted to a predicate on α::c-type itself and β::c-type itself :

TYPE(α) ≤τ TYPE(β) ≡ TYPE(α)ν ≤ TYPE(β)ν

Example 6.1 Using the running example, it can be easily observed that TYPE
(x-struct) <τ TYPE(a-struct) and TYPE(word32) <τ TYPE(a-struct). An update to
an a-struct will always affect the lifted int heap, but an update of an x-struct will only
sometimes affect the lifted a-struct heap.

Theorem 6.7 ≤ is a partial order:

s ≤ s
s ≤ t t ≤ s

s = t

s ≤ t t ≤ u

s ≤ u
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Proof Reflexivity is trivial. Antisymmetry can be shown with (s, n) ∈ td-set-offset
t m =⇒ size s = size t ∧ s = t ∧ n = m ∨ size s < size t, by structural induction.
Transitivity is given by (s, n) ∈ td-set-offset t m =⇒ td-set-offset s n ⊆ td-set-offset t
m, also derivable by structural induction. ��

6.4 Generalised Rewrites

In this section we develop the key rewrites that allow lift terms to be translated to liftτ
terms and the effects of updates on lifted typed heaps to be evaluated. First we deal
with lift terms with Theorem 6.8 and then present some auxiliary definitions and then
the key theorems for heap-updates, Theorems 6.10 and 6.12. These theorems have
the form of conditional rewrites, but require some additional support to be efficiently
applicable, so are followed by this detail.

Theorem 6.8 The value of lift at valid pointers is equivalent to the value at the same
location in the corresponding typed heap:

d,g |=t p

lift h p = the (liftτ g (h, d) p)

Proof Follows from Theorem 6.5 and the definition of lift. ��

Definition 6.9 A list of names of all fields matching an exported type information
can be obtained with field-names :: α typ-info ⇒ typ-uinfo ⇒ qualified-field-name
list. E.g. field-names TYPE(a-struct)τ TYPE(word16)ν = [[ ′′c ′′, ′′y ′′]].

Definition 6.10 From td-set, a predicate may be derived that checks whether a given
pointer p::α ptr is to a field of a structured type with base q::β ptr:

field-of p q ≡ (TYPE(α)ν, IN⇐ (p& − q&)) ∈ td-set TYPE(β)ν

Definition 6.11 From lookup, functions may be derived that provide the first and
second components of the result for a valid qualified field name:

field-typ TYPE(α) n ≡ fst (the (TYPE(α)τ � n))

field-offset TYPE(α) n ≡ snd (the (TYPE(α)ν � n))

Lemma 6.9 Updates to the heap function at a valid α ptr p do not affect h-val at distinct
valid β ptr locations q:

d,g |=t p d,g ′ |=t q ¬ TYPE(α) <τ TYPE(β) ¬ field-of q p

h-val (heap-update p v h) q = h-val h q
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Proof Starting with Lemma 3.1, we can then apply the h-val and heap-update defi-
nitions as well as

d,g |=t p d,g ′ |=t q ¬ TYPE(β) <τ TYPE(α) ¬ field-of p q

{p&..+size-of TYPE(α)} ∩ {q&..+size-of TYPE(β)} = ∅

to give a complete proof. ��

We now give the rule for β heaps when an α update occurs and TYPE(α) ≤τ

TYPE(β). The intuition here is that locations that are not the base of valid β

pointers or where the α ptr does not correspond to a field of β are unaffected.
When the update pointer does correspond to a field of β, we traverse the α fields
of the enclosing β, looking for a field offset that matches the difference between the
enclosing pointer base and p. When found, the field’s update function is applied.

Theorem 6.10 The lifted β heap following an update of a valid α ptr p, where α is a
sub-type of β is given by:

d,g ′ |=t p TYPE(α) ≤τ TYPE(β)

liftτ g (heap-update p v h, d) = super-field-update p v (liftτ g (h, d))

where

super-field-update p v s ≡
λq. if field-of p q

then case s q of ⊥ ⇒ ⊥
| 	w
 ⇒

	update-value (field-names TYPE(β)τ TYPE(α)ν) v w
(IN⇐ (p& − q&))


else s q

update-value [] v w x ≡ w

update-value ( f · f s) v w x ≡ if x = field-offset TYPE(β) f
then update-ti (field-typ TYPE(β) f )(to-bytes0 v) w

else update-value f s v w x

Proof Equality of the two heaps can be shown with extensionality and unfolding of
super-field-update, letting the pointer be called q. Expand liftτ terms with Theorem
6.5 and it is easy to see that locations without valid β ptrs remain unchanged as
⊥. Locations corresponding to valid pointers can be shown to contain values that
are equivalent by case splitting on whether the update pointer p is a field of the
value at q.

When field-of p q, on the LHS the representation of the raw updated heap value at
q may be considered to consist of 3 parts, those bytes before p& − q&, those following,
corresponding to the representation of v, and those remaining. The from-bytes
inside the liftτ gives rise to an update-ti term on the LHS, which can then be seen
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to be the same as the original value, obtained from the byte representation with
from-bytes/update-ti, after an update-ti with v’s representation, using the rule:

t�f = 	(s, n)
 wf-field-desc t wf-desc t |bs| = size-td t |v| = size-td s

update-ti t (take n bs @ v @ drop (n + |v|) bs) w =
update-ti s v (update-ti t bs w)

obtained by structural induction and list fragment reasoning. On the RHS, the term
update-value can be transformed to the same form—this can be shown by induction
on the list of field names supplied to update-value.

If ¬ field-of p q then there is a further case split on TYPE(α)ν = TYPE(β)ν . If
the types are the same then the treatment is similar to Lemma 6.9. Otherwise, we
can show

d,g |=t p d,g ′ |=t q ¬ TYPE(β) <τ TYPE(α) ¬ field-of p q

{p&..+size-of TYPE(α)} ∩ {q&..+size-of TYPE(β)} = ∅

using the following rules:

valid-footprint d p s valid-footprint d q t ¬ t < s

p ∈ {q..+size-td t} −→ (s, IN⇐ (p − q)) ∈ td-set t

valid-footprint d p s valid-footprint d q t ¬ t < s

q /∈ {p..+size-td s} ∨ p = q

and Lemma 3.1. ��

While Theorem 6.10 gives a conditional rewrite that allows an update to be lifted
to the typed heap level of Section 6.2, making use of the updated typed heap could
involve unfolding this complex definition in general. However, additional rewrites
can be given for well-behaved updates.

Theorem 6.11 For a valid qualified field name f, a super-field-update for a pointer
Ptr (&(p→f ))::α::mem-type ptr, where p::β::mem-type ptr can be reduced to the field
update obtained from the type information:

TYPE(β)τ�f = 	(s, n)
 liftτ g h p = 	w
 TYPE(α)ν = export-uinfo s

super-field-update (Ptr &(p→f )) v (liftτ g h) =
liftτ g h(p �→ update-ti s (to-bytes0 v) w)

Proof field-of (Ptr &(p→f )) p holds from the assumption that f is a valid qual-
ified field name. Again, applying extensionality and unfolding the definition of
super-field-update, letting the pointer be called q, gives two cases to consider when
the pointers are valid.

When p = q, the LHS can be reduced to the intended field update as in the proof
of Theorem 6.10. In the case when p �= q, then ¬ field-of (Ptr &(p→f )) q, since p and
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q are valid pointers of the same type and hence may not overlap. This then leaves
both the LHS and RHS heaps at q unchanged. ��

As detailed in Section 5.4, the lookup side-condition can be resolved without having
to unfold the type information definition using field specific rewrites installed during
type information construction at the ML level. The update-ti is also rewritten to an
Isabelle/HOL record field update function.

Example 6.2 For a safe update at the next field for a struct:

liftτ g s p = 	w

super-field-update (Ptr &(p→[′′next ′′])) v (liftτ g s)

= liftτ g s(p �→ w(|next := v|))

A rewrite can also be given for the two remaining cases, where TYPE(β) <τ

TYPE(α) or TYPE(α) ⊥τ TYPE(β). This may involve no updates if the types are
disjoint, or several updates of the β heap when α has multiple fields of type β. The
heap update function sub-field-update takes a list of all such fields and applies an
update at each.

Theorem 6.12 The lifted β heap following an update of a valid α ptr p, where α is not
a sub-type of β is given by:

d,g ′ |=t p ¬ TYPE(α) <τ TYPE(β)

liftτ g (heap-update p v h, d) =
sub-field-update (field-names TYPE(α)τ TYPE(β)ν) p v (liftτ g (h, d))

where

sub-field-update [] p v s ≡ s
sub-field-update( f · f s) p v s ≡ (lets′ = sub-field-update f s p v s

in s′(Ptr & (p → f ) �→
from-bytes
(access-ti0

(field-typ TYPE(α) f ) v))) �dom s

Proof This can be proven by induction on the list of field names. To do this we first
strengthen the induction hypothesis:

d,g ′ |=t p
¬ TYPE(α) <τ TYPE(β) set fs ⊆ set (field-names TYPE(α)τ TYPE(β)ν)

K = U − (field-ptrs p (field-names TYPE(α)τ TYPE(β)ν) − field-ptrs p fs)

liftτ g (heap-update p v h, d)�K = sub-field-update fs p v (liftτ g (h, d))�K

where

field-ptrs p fs ≡ {Ptr &(p→f ) | f ∈ set fs}
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The heaps are again compared pointwise, but with the mask K hiding those β ptrs
affected by the update yet not present in the field names supplied to sub-field-update.

In the base case, where fs = [], we can use Lemma 6.9 to give equality of the values
at unmasked locations with valid pointers. The field-of condition is discharged by K
covering all relevant fields.

In the inductive case, where fs = y·ys, we can perform a case split on both
Ptr &(p→y) ∈ dom (liftτ g (h, d)) and q = Ptr &(p→y), where q is the point being
considered with extensionality:

– When Ptr &(p→y) ∈ dom (liftτ g (h, d)) ∧ q = Ptr &(p→y)—the update at this
location needs to be shown to be equivalent to that given by sub-field-update.
This is done by simplifying the RHS update for y with:

TYPE(α)τ�f = 	(s, n)
 bs = to-bytes v (heap-list h (size-of TYPE(α)) p&)

access-ti0 s v = norm-tu (export-uinfo s) (take (size-td s) (drop n bs))

and the LHS with:

n + x ≤ |v| ∧ |v| < |addr|
heap-list (heap-update-list p v h) n (p + IN⇒ x) = take n (drop x v)

Since the comparison after unfolding the liftτ is at the typed level, after applying
from-bytes, Theorem 5.5 can be used to complete this case.

– When Ptr &(p→y) ∈ dom (liftτ g (h, d)) ∧ q �= Ptr &(p→y)—we can use the
inductive hypothesis.

– When Ptr &(p→y) /∈ dom (liftτ g (h, d)) ∧ q = Ptr &(p→y)—then q is not
in the domain of the LHS and the domain restriction in the inductive case of
sub-field-update removes this from the domain of the RHS.

– When Ptr &(p→y) /∈ dom (liftτ g (h, d)) ∧ q �= Ptr &(p→y)—we can use the
inductive hypothesis. ��

A sub-field-update version of Theorem 6.11 is not as easy to state, as the β heap
will be updated at multiple locations.

6.5 Non-interference

The results of the previous section can be specialised to obtain a set of conditional
rewrites that provide independently typed heaps when the update and heap types
are not related by the update dependency order. When both types are the same, an
update can be lifted to a simple function update.

Theorem 6.13 The rewrites for an update to a lifted typed heap through a valid pointer
of the same type, or a disjoint type are:

d,g |=t p

liftτ g (heap-update p v h, d) = liftτ g (h, d)(p �→ v)

d,g ′ |=t p TYPE(α)ν ⊥t TYPE(β)ν

liftτ g (heap-update p v h, d) = liftτ g (h, d)
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Fig. 10 Lifted heap updates
when the heap is of the
same type

λs. s(p :=  v  )

lif
t τ

lif
t τ

heap_update p v

Proof By Theorem 6.12 and reducing the field-names term with field-names ti
(export-uinfo ti) = [[]] and TYPE(α)ν ⊥t TYPE(β)ν =⇒ field-names TYPE(β)τ
TYPE(α)ν = [], respectively. ��

The connection between levels and updates is illustrated in Figs. 10 and 11.
Bornat [7] describes multiple independent heaps based on distinct field names.

Updates through a pointer dereference to a specific field only affect that heap. This
does not work directly in the presence of the &(p→f ) operator, first-class struct types,
pointer casts and address arithmetic. However, the following can be shown:

Theorem 6.14 When the base pointers are of the same type β, and neither of the field
names is a prefix of the other, updates through an α pointer derived from one field do
not affect a value in the γ lifted heap at the other:

d,g ′ |=t p d,g ′′ |=t q TYPE(β)τ�f = 	(s, m)
 TYPE(β)τ�f ′ = 	(t, n)

size-td s = size-of TYPE(α) size-td t = size-of TYPE(γ ) ¬ f ≤ f ′ ¬ f ′ ≤ f

liftτ g (heap-update (Ptr &(p→f )) v h, d) (Ptr &(q→f ′)) =
liftτ g (h, d) (Ptr &(q→f ′))

Fig. 11 Lifted heap updates
when the heap is of a
disjoint type

id

lif
t τ

lif
t τ

heap_update p v
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Proof Unfold definitions and then use Lemma 3.1. Disjointness of the two field
heap footprints can be found by case splitting on p& = q&. If they match then
field disjointness is given by structural induction on the common type description.
Otherwise, the two valid pointers have disjoint footprints, field footprints derived
from the pointers will be subsets of the base pointer footprints and hence disjoint.

��

7 Structured Separation Logic

We now have a proof technique that tames inter-type aliasing for C pointer programs
that feature structured types. However, the problem of intra-type aliasing remains.
Separation logic provides an approach in which anti-aliasing information, needed to
reason about intra-type aliasing, may be expressed implicitly in assertions, potentially
simplifying specifications and proofs. A significant feature of this assertion language
is that it offers a general and scalable solution to the frame problem.

In this section we describe a shallow embedding of separation logic based on the
unified memory model with specific support for structured types. Utilising the HOL
encoding of C types, the heap type description and typed heap lifting functions, an
embedding of separation logic is described that is able to express assertions about
C variables and pointers, rather than the usual typeless and memory-safe languages
targeted in the literature.

We first describe the heap state model and shallow embedding, where the focus
is on the singleton heap assertion p �→g v, and several variants, as other definitions
and properties are mostly standard. The singleton heap assertion has new properties
of interest for structured types. In particular, we are able to decompose singleton
mapping assertions to reason independently about field mapping assertions. The
section concludes with an approach to proof obligation lifting to the separation logic
level, analogous to the connection made in Sections 6.4 and 6.5.

7.1 Domain

Separation assertions are modelled as predicates on heap-states, applied in assertions
of the verification environment to the result of the first lifting stage of Section 6.2. For
example, a loop invariant with the separation assertion P is written {| P (lift-state H) |},
which we abbreviate as {|Psep|}.

The rationale for the specific choice of domain is that it allows for more expressive
separation assertions than are possible with simpler models. A first attempt at
defining the domain might herald addr ⇀ typ-uinfo list × byte. Unfortunately, this
does not allow for two assertions separated by ∧∗ to refer to distinct type information
levels at the same address, necessary to provide flexible rules for retyping and
unfolding. Spatial separation can be based on a more sophisticated domain than just
memory addresses, in our case we can conceive of also owning type information
levels at memory locations. Hence we have a two-dimensional address space in
heap-states, with the first component providing the physical address and the second
the type index.

Example 7.1 Ignoring padding, we would expect that (p �→ (| y = 3, z = ′r ′ |)) =
(Ptr (&(p→[′′y ′′])) �→ 3) ∧∗ (Ptr (&(p→[′′z ′′])) �→ ′r ′) ∧∗ typ-outline p, where
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typ-outline p contains the root type information for the enclosing structure. By
adding a type level index to the domain of the heap-state we are able to write
typ-outline p separate to (Ptr (&(p→[′′y ′′])) �→ 3) and hence reason about the y field
independently.

7.2 Shallow Embedding

We give the definitions of the core separation logic assertions and connectives in our
embedding below.

Definition 7.1 As in the development of Reynolds [38] there is an empty heap-state
predicate:

� = (λs. s = empty)

The definition of the singleton heap assertion is more involved in our embedding
as we need to consider the pointer’s footprint in the intermediate heap state in order
to restrict the domain.

Definition 7.2 The s-footprint::α::c-type ptr ⇒ s-addr set gives a set of addresses
inside a pointer’s heap-state footprint:

s-footprint-untyped p t ≡
{(p + IN⇒ x, SIndexVal) | x < size-td t} ∪
{(p + IN⇒ x, SIndexTyp n) | x < size-td t ∧ n < |typ-slice t x|}

s-footprint (p::α ptr) ≡ s-footprint-untyped p& TYPE(α)ν

Definition 7.3 p �→g v asserts that the heap contains exactly one mapping matching
the guard g, at the location given by pointer p to value v:

p �→g v ≡
λs. lift-typ-heap g s p = 	v
 ∧ dom s = s-footprint p ∧ wf-heap-val s

The guard is an addition to the usual p �→ v and serves the same purpose as in
Definition 6.1, i.e. strengthening the assertion to aid in discharging guard proof
obligations and thereby making the treatment of guards in the framework generic.
wf-heap-val states that the type, SValue or STyp, of a value in the heap-state, if
present, matches the type of the index, SIndexVal or SIndexTyp respectively.

Definition 7.4 We introduce a new predicate that captures validity at the separation
logic level:

g 
s p ≡ λs. s,g |=s p ∧ dom s = s-footprint p
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Definition 7.5 There are two significant separation connectives, conjunction and
implication:

s0 ⊥ s1 ≡ dom s0 ∩ dom s1 = ∅
s0 + + s1 ≡ λx. case s1 x of ⊥ ⇒ s0 x | 	y
 ⇒ 	y

P ∧∗ Q ≡ λs. ∃ s0 s1. s0 ⊥ s1 ∧ s = s1 + + s0 ∧ P s0 ∧ Q s1

P −→∗ Q ≡ λs. ∀ s′. s ⊥ s′ ∧ P s′ −→ Q (s + + s′)

The definitions are standard, with the intuition behind separation conjunction that
(P ∧∗ Q) s asserts that s can be partitioned into two subheaps such that P holds on
one subheap and Q on the other. The utility of separation implication is easiest to
understand in context in Section 7.6.

Some additional mapping assertions are common:

sep-true ≡ λs. True

p �→g − ≡ λs. ∃v. (p �→g v) s

p ↪→g v ≡ p �→g v ∧∗ sep-true

p ↪→g − ≡ λs. ∃x. (p ↪→g x) s

7.3 Properties

The standard commutative, associative and distributive properties apply to the
connectives, and we have formalised pure, intuitionistic, domain and strictly exact
assertions and their properties [38]. Unlike other developments, the singleton heap
assertion is not strictly exact, as there can be more than one byte encoding of the
heap for which p �→g v holds.

Some of the properties, and others derived from them, are routinely used in
verification proofs and have been added to the default simplification set. Those added
to the simplification set tend to be quite specific and direct, e.g. (p �→g v) s =⇒
(p ↪→g v) s, and are not intended to be part of any lengthy sequence of rewrites, as
separation logic proofs tend to follow a more rule-oriented approach. The exception
to this is the ∧∗ commutative and associative rewrites, that are completed with a
derived left-commutative rule to provide a permutative rewrite set for normalising
expressions involving this connective.

Since this is a shallow embedding, HOL connectives, quantifiers, and constants
can be freely mixed with the separation connectives, for example λs. P s ∧ (∃ x. (p ↪→
fib x) s ∧ x ∈ X) ∧ (Q ∧∗ list-sum X) s.

A key feature of this embedding is that it avoids the problem of skewed shar-
ing [38]. This is essentially the problem of inter-type aliasing in separation logic,
where for example λs. (p ↪→ u) s ∧ (q ↪→ v) s describes not only heaps where
p = q ∧ u = v or p �= q and the pointer footprints are distinct, but also the possibilities
where p and q point into each other’s encoding. An approach where a ghost variable
like the heap type description is introduced was suggested as a future direction for
separation logic by Reynolds. The embedding given in this chapter has developed
this as a machine-checked formalisation.

Another notable gain from the development presented here is the harnessing
of Isabelle’s type inference to avoid explicit type annotations in assertions. Since
language types are assigned Isabelle types and pointer types are derived from these,
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asserting that p �→ v, where p is a program variable, automatically constrains the type
of v. The alternative of having to write p �→unsigned int v is somewhat cumbersome and
contributes little to the readability of specifications.

7.4 Frame Rule

The separation frame rule [50] is often seen as the key to the scalability of the sepa-
ration logic approach to verification. It allows for deriving a global specification from
a local specification of a program’s behaviour, with an arbitrary conjoined separation
assertion on a part of the heap preserved by the program. That is, one can verify a
function working in one region of the heap and then utilise its specification in the
context of a function operating on a superset of the region.

The frame rule has the form:


 {|Psep|} c {|Qsep|}

 {|(P ∧∗ R)sep|} c {|(Q ∧∗ R)sep|}

Unfortunately, such a general rule cannot be expressed in a shallow embedding
since:

– The state-space type is program dependent. This is a less serious problem as we
can make further use of type classes to capture all state spaces.

– c is an arbitrary program in the underlying verification framework for which this
rule may not be true. Since there are no restrictions on heap updates other than
those imposed by the guard mechanism, the following triple holds:

{| �sep |} ∗p = 0; {| �sep |}
However, after applying the frame rule with R = ṕ �→ v, the triple below
does not:

{| (� ∧∗ (ṕ �→ v))sep |} ∗p = 0; {| (� ∧∗ (ṕ �→ v))sep |}
The problem here is that the frame rule depends on a specific notion of memory
safety. In other developments of separation logic, it is a requirement that heap
locations can only be modified if they are described in the pre-condition of the
specification. This is backed by a semantic restriction on updates, where the state
includes information on which parts of the heap are acceptable to update. In C we
have a much weaker notion of memory safety and only require that heap accesses
occur in some region of memory, e.g. the heap or stack.

It is however possible to prove this rule for specific programs and state-spaces.
To achieve this, when the frame rule needs to be applied, we requires programs to
provide a stronger form of memory safety based on the heap type description. Such
programs generate a guard failure if either:

– The program modifies the heap state or heap type description outside of the initial
domain of the heap type description.

– The program depends on the heap type description outside this domain in any
expression. The program is still free to depend on the heap memory state outside
the domain of the heap type description.
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These conditions are not met by the normal output of the C translation stage,
since guards are only generated to prevent undefined behaviour as the C seman-
tics understands it. Here the verifier optionally enables additional memory safety
guard generation, and consequently imposes a slightly higher proof effort, to gain a
property—if the frame rule is not required in a verification, the framework allows
these guards to be suppressed.

We use the following predicate to capture the above restrictions in guards on heap
updates and in /∗∗ AUXUPD: ... ∗/ annotations.

Definition 7.6 A pointer p::α::c-type ptr is safe w.r.t. a heap type description d if its
footprint is a subset of the domain of d:

ptr-safe p d ≡
s-footprint p
⊆ {(x, SIndexVal) | fst (d x)} ∪ {(x, SIndexTyp n) | snd (d x) n �= ⊥}

Subject to some involved technical considerations detailed in [46], the frame rule
can then be expressed for programs c with a state space in α::heap-state-type with a
rule similar to:


 {|Psep|} c {|Qsep|} mem-safe c


 {|(P ∧∗ R)sep|} c {|(Q ∧∗ R)sep|}
The mem-safe c assumption asserts the above memory safety requirement is met

for the whole program, and can be discharged automatically through rewriting for
programs featuring the appropriate ptr-safe guards on heap and heap type descrip-
tion updates.

7.5 Unfolding

Inside a proof it may be necessary or helpful to extract the mapping assertions of
individual fields from a mapping assertion for a structured value. For example, a
function call that has field references as parameters, with a specification unaware
of the enclosing structure, will have a proof obligation demanding this. The field
monotonicity given in Theorem 6.6 hints at this being possible with Definition 7.3,
and in this section we provide the rules to accomplish this.

Example 7.1 gives a “complete” unfolding of the outer structure for a value. This
is generally not all that useful, for two reasons. First, when the structure contains
padding fields they need to also be expanded as mapping assertions, since padding
has no special treatment other than at type information construction time. These
clutter the proof state and do not aid in advancing towards the goal. The same
applies to fields that do not need to be unfolded for a proof. The second problem
with this approach is that later in a proof one might want to take fields that have
been updated and independently reasoned about after unfolding, and fold them back
together to resume reasoning at the granularity of the structured value. While it is not
too difficult to do a complete unfolding with rewriting, this is harder in the opposite
direction.

To avoid these problems, instead of complete unfolding we give rules to unfold
and fold individual, potentially nested, fields. To do so, we make use of a new
separation predicate, called a masked mapping assertion, that allows us to express
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the existence of a structured mapping assertion sans a set of fields that have been
extracted through unfolding. Defining masked mapping requires first several auxil-
iary definitions.

Definition 7.7 The concept of the singleton state is useful in the following:

singleton p v ≡
lift-state (heap-update p v (λx. 0), ptr-retyp p (λx. (False, empty)))

This is the state whose only valid mapping has the footprint of p and byte encoding
of v. It can be shown that d,g |=t p =⇒ (p �→g v) (singleton p v h d).

Lemma 7.1 The domain of a singleton state is given by:

dom (singleton p v) = s-footprint p

Proof Examining the lift-state definition, the domain is determined by the heap type
description. Lemma 6.2 gives the existence of mappings inside the footprint, and the
absence of mappings outside can be shown with a complementary lemma derivable
from definitions. ��

Definition 7.8 The set of all valid qualified field names for a type is given by:

fields TYPE(α) ≡ {f | TYPE(α)τ�f �= ⊥}

Definition 7.9 The footprint for a set of qualified field names for a type α, with re-
spect to a base pointer p::α ptr, is given by:

fs-footprint p F ≡⋃ {s-footprint-untyped (p& + IN⇒ (field-offset TYPE(α) f ))
(export-uinfo (field-typ TYPE(α) f )) | f ∈ F}

Lemma 7.2 The footprint for a subset of valid qualified field names for a type α is a
subset of a base pointer p::α ptr’s footprint:

F ⊆ fields TYPE(α)

fs-footprint p F ⊆ s-footprint p

Proof Each field can be shown to be contained by s-footprint p with the following,
derivable directly from definitions:

TYPE(α)τ�f = 	(s, n)

s-footprint-untyped &(p→f ) (export-uinfo s) ⊆ s-footprint p

��
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Definition 7.10 p �→g
F v asserts that the heap contains exactly one mapping matching

the guard g, at the location given by pointer p::α ptr to value v, with the set of valid
fields F masked:

p �→g
F v ≡

λs. lift-typ-heap g (singleton p v ++ s) p = 	v
 ∧
F ⊆ fields TYPE(α) ∧
dom s = s-footprint p − fs-footprint p F ∧ wf-heap-val s

The footprint of this assertion excludes the masked fields, and the lifted value has the
expected value for the masked fields supplied by singleton.

Example 7.2 Figure 12 gives a state where p �→g
{[ ′′c ′′, ′ ′y ′ ′]} v holds.

Theorem 7.3 A masked mapping assertion with an empty set of fields is equivalent to
a singleton mapping assertion:

p �→g v = p �→g
∅ v

Proof From the definitions, F = ∅ hence fs-footprint p F = ∅. s then covers the
domain of singleton p v as a result of Lemma 7.1, giving singleton p v ++ s = s. ��

From a masked mapping assertion, a valid field may be extracted, providing the
qualified field name is not in a prefix relation with any member of F. Intuitively this is
reasonable, as if the field is inside another that has already been extracted or covers
the same footprint then it will not be possible to partition the state of the masked
mapping assertion as required for unfolding.

Example 7.3 The [ ′′c ′′, ′′y ′′] field can be independently extracted when [ ′′b ′′] is
masked, but not if [ ′′c ′′] is masked.

Fig. 12 Example heap-state for
a masked mapping assertion

SIndexVal
addr

SIndexTyp 0

SIndexTyp 1

SIndexTyp 2
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Definition 7.11 A qualified field name is said to be disjoint from a set of qualified
field names with:

disjoint-fn f F ≡ ∀ f ′∈F. ¬ f ≤ f ′ ∧ ¬ f ′ ≤ f

where ≤ is the list prefix order.

Lemma 7.4 A field disjoint from a set of valid qualified field names has a footprint
disjoint from the set’s footprint:

disjoint-fn f F F ⊆ fields TYPE(α) TYPE(α)τ�f = 	(t, n)

fs-footprint p F ∩ fs-footprint p {f } = ∅

Proof For each field in the set, the following rule derivable by structural induction
on the type information gives disjointness:

lookup t f m = 	(d, n)
 lookup t f ′ m = 	(d ′, n ′)

¬ f ≤ f ′ ∧ ¬ f ′ ≤ f wf-field-desc t wf-desc t size-td t < |addr|

{IN⇒ n..+size-td d} ∩ {IN⇒ n ′..+size-td d ′} = ∅
��

The unfolding and folding rules can now be given.

Theorem 7.5 A valid disjoint field may be unfolded from a masked mapping assertion
with:

TYPE(α)τ�f = 	(t, n)

disjoint-fn f F guard-mono g g ′ export-uinfo t = TYPE(β)ν

p �→g
F v = p �→g

({f } ∪ F) v ∧∗ Ptr &(p→f ) �→g
′ from-bytes (access-ti0 t v)

where p::α::mem-type ptr and Ptr &(p→f )::β::mem-type ptr.

Proof Equality of the LHS and RHS assertions can be shown with extensionality,
letting the heap-state be s.

First we show that if the LHS holds on s then the RHS also holds on s. The state
can be partitioned as two states s�(dom s − fs-footprint p {f }) and s�fs-footprint p {f }. The
singleton mapping assertion can then be shown to hold on its partitioned state with:

TYPE(α)τ�f = 	(t, n)

disjoint-fn f F guard-mono g g ′ export-uinfo t = TYPE(β)ν (p �→g

F v) s

(Ptr &(p→f ) �→g
′ from-bytes (access-ti0 t v)) (s�fs-footprint p {f })
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which is a result of Theorem 6.6 and fs-footprint p {f } ⊆ dom s, from Lemma 7.2 and
Lemma 7.4. The masked mapping assertion on the RHS, with f now included in the
set of masked fields, then holds on the remaining state:

(p �→g
F v) s TYPE(α)τ�f = 	(t, n)


(p �→g
({f } ∪ F) v) (s�(dom s − fs-footprint p {f }))

This can be seen by observing that validity at p is preserved by the domain restriction,
since p is valid in the singleton p v ++ s from the assumption, where dom s =
s-footprint p − fs-footprint p F, with:

singleton p v ++ s�(s-footprint p − fs-footprint p F − fs-footprint p {f })
= singleton p v ++ s ++ singleton p v�fs-footprint p {f }

and [[s,g |=s p; t,g ′ |=s p]] =⇒ s ++ t�X,g |=s p. The contents of the heap may change
as a result of the domain restriction though, as the singleton state supplies normalised
value representations for removed fields in the map addition. To show the lifted
value remains v, we utilise the approach in the proof of Theorem 6.10, where the
underlying representation is split into three components, the field f ’s representation
and the segments before and after. The map addition of the heap state covering the
field’s footprint, singleton p v�fs-footprint p {f } is then an update-ti t on v with f ’s byte
representation in singleton p v�fs-footprint p {f }. That this does not modify v can be
seen with [FuFaId] and:

TYPE(α)τ�f = 	(t, n)

heap-list-s (singleton p v�fs-footprint p {f }) (size-td t) &(p→f ) = access-ti0 t v

In the other direction we demonstrate that the LHS holds on s, given this for the
RHS. Now the separation conjunction gives the partitioning of the heaps. The non-
trivial part of the proof is again to show equivalence of lifted values at p. To do so
we split the heap representation into three segments as before and hence have the
singleton map assertion for f providing a field update on the lifted value. The proof
is then completed with the aid of the field description consistency conditions. ��

Corollary A mapping assertion for a valid qualified field name can be derived from a
singleton heap assertion with:

(p �→g v) s
TYPE(α)τ�f = 	(d, n)
 export-uinfo d = TYPE(β)ν guard-mono g g ′

(Ptr &(p→f ) ↪→g
′ from-bytes (access-ti0 d v)) s

where p::α::mem-type ptr and Ptr &(p→f )::β::mem-type ptr.
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Theorem 7.6 A valid disjoint field may be folded into a masked mapping assertion
with:

TYPE(α)τ�f = 	(t, n)

f ∈ F disjoint-fn f (F − {f }) guard-mono g g ′ export-uinfo t = TYPE(β)ν

p �→g
F v ∧∗ Ptr &(p→f ) �→g

′ w = p �→g
(F − {f }) update-ti t (to-bytes0 w) v

where p::α::mem-type ptr and Ptr &(p→f )::β::mem-type ptr.

Proof Theorem 7.5 can be applied to the RHS. The two singleton mapping assertions
for f then cancel out, leaving us to establish:

TYPE(α)τ�f = 	(t, n)

f ∈ F disjoint-fn f (F − {f }) guard-mono g g ′ export-uinfo t = TYPE(β)ν

p �→g
F v = p �→g

F update-ti t (to-bytes0 w) v

The v value on the RHS can be expanded as update-ti t (to-bytes0 (from-bytes
(access-ti0 t v))) v with the field consistency conditions. The proof is completed by
expanding definitions, the field consistency conditions and on the RHS:

∧
s. from-bytes

(heap-list-s (singleton p (update-ti t (to-bytes0 w) v) ++ s)
(size-of TYPE(α)) p&) =

update-ti t (to-bytes0 w)

(from-bytes (heap-list-s (singleton p v ++ s) (size-of TYPE(α)) p&))

This can be seen by reducing the map addition to a field update as in the unfolding
proof. ��

Example 7.4 The y field of an x-struct can be unfolded as:

p �→ptr-aligned (|y = 3, z = 65|) = Ptr & (p → [′′y′′]) �→ptr-aligned 3 ∧∗

p �→ptr-aligned
{[′′ y′′]}(|y = 3, z = 65|)

Later, after an update to y setting it to the value 1, it can be folded back to the struc-
tured value to give the expected update:

Ptr & (p → [′′y′′]) �→ptr-aligned 1 ∧∗ = p �→ptr-aligned (|y = 1, z = 65|)
p �→ptr-aligned

{[′′ y′′]}(|y = 3, z = 65|)

The masked mapping assertion is a constructive approach to unfolding. It may
seem that separation implication could offer a simpler approach, where masked fields
could be placed in the premise. Unfortunately it has not been our experience that this
is the case. Separation implication leaves us with a non-domain exact predicate, and
even if a dedicated predicate for non-constructive masking is used, problems arise
due to singleton mapping not being strictly exact, which leads us to rely on properties
of the singleton mapping assertion and with proofs no simpler than the above.
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7.6 Lifting Proof Obligations

The verification condition generator applies weakest pre-condition rules to transform
Hoare triples to HOL goals that can then be solved by applying theorem prover
tactics. In Section 6.4 rewrites were given that could automatically lift the raw heap
component of these proof obligations, and in this section rules are provided that
allow the low-level applications of lift and heap-update in assertions to be expressed
in terms of a separation predicate on the original state. This is desirable as reasoning
can then use the derived rules for separation logic, whereas the alternative of un-
folding the definitions and working with accesses and updates to the underlying heap
state produces a massively more complex goal and proof.

The approach taken here is quite different to the usual separation Hoare logic
proof technique employed in the literature, where a new Hoare logic is developed
based on separation logic and individual rules are applied at the Hoare logic level.
The advantage of our approach is two-fold; we avoid having to manually apply Hoare
rules, a task easily automated, and we can take advantage of an existing verification
framework and condition generator. On the other hand, there is the disadvantage
that applying the rules in this section requires the program verifier to understand the
relationship between components of the HOL goals and the original program, since
this structure is lost during verification condition generation, and some additional
work must be done to transform the proof obligations to the correct form.

Theorem 7.7 lift and heap-update are connected to separation mapping assertions
through the following rules:

(p ↪→g v) (lift-state (h, d))

lift h p = v

∃ v. (p �→g v ∧∗ (p �→g v −→∗ P v)) (lift-state (h, d))

P (lift h p) (lift-state (h, d))

(g 
s p ∧∗ (p �→g v −→∗ P)) (lift-state (h, d))

P (lift-state (heap-update p v h, d))

(g 
s p ∧∗ R) (lift-state (h, d))

(p �→g v ∧∗ R) (lift-state (heap-update p v h, d))

Proof The lift rules can essentially be derived using definitions and Theorem 6.8.
For the heap-update rules, we partition the heap into two disjoint subheaps with

the separation conjunction—the subheap with footprint matching p and the rest of
the heap. The latter is preserved by the heap-update and the former component is
transformed such that p �→g v holds. ��

These rules are analogous to the backwards and global reasoning Hoare logic
mutation rules [38]. The latter provides a weakest pre-condition style rule that will
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match any separation assertion, while the former may be used on goal assertions that
can be manipulated into the matching form.

Theorem 7.8 For updates of a Ptr &(p→f )::α::mem-type ptr corresponding to a field
of p::β::mem-type ptr, where we have a singleton mapping assertion for p, we can use:

(p �→g u ∧∗ R) (lift-state (h, d)) TYPE(β)τ�f = 	(t, n)

export-uinfo t = TYPE(α)ν w = update-ti t (to-bytes0 v) u

(p �→g w ∧∗ R) (lift-state (heap-update (Ptr &(p→f )) v h, d))

Proof Convert to a masked mapping assertion with Theorem 7.3. Unfold f with
Theorem 7.5. Apply the heap-update rule of Theorem 7.7 and fold f back in with
Theorem 7.6. The proof is complete by returning to a singleton mapping assertion
with Theorem 7.3 again. At various points it is necessary to simplify with the field
description consistency conditions. ��

Theorem 7.8 can be applied in goals in similar situations to Theorem 6.10 and
Theorem 6.11.

8 Case Study: In-Place List Reversal

We now look at a case study in the application of the proof rules for separation logic.
This is the standard in-place list reversal example from the literature, which features
a linked inductively-defined data structure, abstraction predicate in specifications,

Table 3 reverse_struct specification and definition
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iteration, and pointer updates, i.e. the features that create non-trivial aliasing condi-
tions. Mehta and Nipkow [26] mechanise the same example in their more abstract
setting.

The source code and specification are provided in Table 3. Here a struct type
is used to represent nodes. The specification contains a list abstraction predicate,
defined:

list [] i ≡ λs. i = NULL ∧ � s
list(x · xs) i ≡ λs.i �= NULL ∧

(∃ j. item j = x ∧ (i �→g j ∧∗ list xs (next j)) s)

Theorem 8.1 reverse_struct implements its specification.

Proof After running the verification condition generation, we are left with the 3
resulting proof obligations arising from the while Hoare logic rule with the invariant:

{|∃ xs ys. (list xs ṕtr ∧∗ list ys ĺast)sep ∧ rev zs = rev xs @ ys|}
The Pre =⇒ Inv and Inv ⇒ Post conditions are trivial. After existential instantia-

tion and simplification, the loop invariant preservation proof requires we show:

1.
∧

zs a b last ptr ys list j.
[[ptr �= NULL; rev zs = rev list @ item j·ys;
(ptr �→g j ∧∗ list list (next j) ∧∗ list ys last)
(lift-state (a, b))]]

=⇒ (ptr �→g j(|next := last|) ∧∗
list ys last ∧∗ list list (lift a (Ptr &(ptr→[′′next ′′]))))
(lift-state (heap-update (Ptr &(ptr→[′′next ′′])) last a, b))

This follows from Theorem 7.8. The first side-condition may be discharged with
Theorem 7.7 and Theorem 7.5, eliminating the lift. The other side-conditions are
discharged by rewriting, using the rules of Section 5.4. ��

An interesting point in the proof is when we have to show:

1.
∧

zs a b last ptr ys list j.
[[ptr �= NULL; rev zs = rev list @ item j·ys;
(ptr �→g j ∧∗ list list (next j) ∧∗ list ys last)
(lift-state (a, b))]]

=⇒ j(|next := last|) = update-ti
(adjust-ti TYPE(node ptr)τ next
(next-update ◦ (λx -. x)))

(to-bytes0 last) j

Here, applying the reverse definition of from-bytes and the α::mem-type axioms lifts
the RHS to the HOL record level to simplify for the goal.

Compared to an earlier in-place list reversal example [47], the proof script was
about the same structure and size, 67 lines. We can then see that for this example,
the sophisticated machinery of the previous sections does not unduly burden a veri-
fication that remains in the type-safe fragment of C.
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9 Case Study: L4 Kernel Memory Allocator

The previous case study provided a taste for the proof process, but the verification
was relatively simple. In this section we present a case study in the application of our
models to the verification of real-world C systems code derived from an implementa-
tion of the L4 [24] microkernel. Not only does this provide an opportunity to validate
the models against realistic code, but it also allows us to compare and contrast the
multiple typed heaps and separation logic abstractions in practice.

The kernel implementation we target is L4Ka::Pistachio [44]. Pistachio is a mostly
C++ implementation, with a small amount of architecture and platform dependent
assembler, of the L4 X.2 API [22] and has been ported to many architectures
(x86, ARM, Alpha, MIPS, Itanium, PowerPC) without sacrificing high performance.
While Pistachio is implemented in C++, no essential use of C++ features is made
apart from using classes to structure the code and we are able to extract out what
amounts to C for this study.

A brief overview of this case study has previously appeared in [47]. In the fol-
lowing we provide a more detailed treatment, built on the developments in this
paper, which, while being similar in use to the earlier model for this example, have
the additional support for structured types.

9.1 Kernel Memory Management

To support L4’s abstractions, Pistachio requires heap-allocated storage for dynamic
kernel data structures like page tables and thread control blocks. At the kernel level,
the usual C library functions for this task, malloc and free, are not available yet and
have to be provided internally. This presents an ideal target for the memory models
we have developed so far as the implementation of a memory allocator will have both
safe and unsafe C expressions.

Three functions define the interface of the kernel memory allocator:

void init(void *start, void *end);
void *alloc(word_t size);
void free(void *address, word_t size);

init takes a contiguous region of memory and sets this as the free pool. This should
be aligned and sized a multiple of the allocator’s “chunk” size KMC, which we take
as 1KB. alloc returns an aligned pointer to a block of memory of the requested size
if available, otherwise NULL. If the size is less than 1KB, it is rounded up to the
kilobyte. The alignment is that of the request size if it is a power-of-two. The final
function, free, allows allocated memory to be returned to the free pool. The given
size should be that of the original request size. This is different to the standard C
library’s allocator which tracks the size of allocated memory for each block.

9.2 Implementation Data Structure and Code

Figure 13 depicts the internal data structure that is used to manage memory. It is
a NULL-terminated, singly-linked list of chunks of memory of a fixed size KMC.
A single global variable word_t ∗kfree_list provides a pointer to the start of the
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kfree_list

KMC

NULL

........................................ ........

Fig. 13 Management data structure of the L4 memory allocator

free list. Rather than storing the meta-information apart from the free memory, for
efficiency, the first 4 bytes of each free memory block are used to point to the next
one. The blocks are often, but not always, adjacent in memory, and are ordered by
base address. This has the effect of reducing fragmentation.

Table 4 alloc definition
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Table 5 init definition

The C source code for alloc, init and free is given in Tables 4, 5 and 6 respectively.
The source code is mostly platform independent, with the platform dependency in
the parameters supplied to init. However, the code is also not strictly conforming
either, with assumptions made about the interchangeability of pointers and integers
in the casting and pointer arithmetic. No structured types feature in the source, the
aspects of the models related to bridging the gap between semantics for unsafe code
and abstract models for safe code are instead stressed by the verification.

9.3 Specifications

We now give in detail the separation logic specification for alloc. We refer the reader
to [46] for the typed heaps treatment and other function specifications, skipping them
here for brevity. The main difference between the two is in the amount of detail
related to aliasing invariants and frame properties, with the separation logic specifi-
cation superior on both counts.

For the specification of alloc, we first need to define the abstract behaviour. For
this, we are not interested in the list structure itself, but only in the set of chunks in
the free pool:

alloc p n F ≡ F − chunks p (p& + (n − KMC))

Table 6 free definition
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The function chunks q y in the definition above refers to a set of locations starting
with pointer q, ending with address y, that consists of base addresses of adjacent
memory chunks:

chunks q y ≡
{x | q& ≤ x ∧ x ≤ y ∧ (∃ n≥0. ZZ⇐ x = ZZ⇐ q& + n ∗ ZZ⇐ KMC)}

To make subtraction better behaved we map our bit-vectors to the integers rather
than natural numbers in this definition and extend the IN syntax to ZZ.

The separation logic version of the abstraction predicate is the following:

list p r [] ≡ λs. p = r ∧ � s
list p r (x · xs) ≡ λs. (p = Ptr x ∧ p �= r) ∧

(∃ q. (block p q ∧∗ list q r xs) s)
sep-cut x y ≡ λs. dom s = {(x, y) | x ∈ {p.. + n}}
block p q ≡ λs. KMC udvd p& ∧ (p ↪→ q&) s ∧ sep-cut p& KMC s
free-set p q F ≡ λs. ∃ xs. list p q xs s ∧ F = set xs
free-set-h p r F ≡ λs. ∃ q. (ptr-coerce p �→ q& ∧∗ free-set q r F) s

In addition to performing data abstraction, free-set asserts ownership over the entire
footprint of each chunk through the block predicate.

The separation logic specification of alloc is then given by:

∀ F σ . 
 {|σ . (free-set-h kfree-list-addr NULL F)sep ∧
KMC udvd max śize KMC|}

álloc-ret :== alloc( śize)
{|( álloc-ret �= NULL −→

size-aligned álloc-ret (max σsize KMC) ∧
álloc-ret& ≤ álloc-ret& + max σsize KMC − KMC ∧
chunks álloc-ret
( álloc-ret& + (max σsize KMC − KMC))

⊆ F ∧
(free-set-h kfree-list-addr NULL
(alloc álloc-ret (max σsize KMC) F) ∧∗
zero álloc-ret (max σsize KMC))sep) ∧

( álloc-ret = NULL −→
(free-set-h kfree-list-addr NULL F)sep)|}

The pre-condition requires that the free list rooted at kfree-list-addr describe some
set of free memory chunks F and that the effective requested size be aligned with
KMC. Alignment is expressed using the non-overflowing version of divisibility on
finite integers with udvd.

In the post-condition there are two cases. If we have run out of memory, álloc-
ret = NULL, we say that F does not change and by the frame rule it can be derived
that nothing else in the heap changes either. In the success case, álloc-ret �= NULL, we
state that the new set of free memory chunks is the same as that given by evaluating



180 H. Tuch

the abstract function alloc. Additionally, we explicitly say that the memory returned
is a separate, contiguous block of the right size, filled with zero words:

zero p ≡ zero-block (ptr-coerce p) (N⇐ (n div 4))

zero-block p 0 ≡ �
zero-block p (Suc n) ≡ (p +p N⇒) n) �→ 0 ∧∗ zero-block p n

The zero conjunct can be directly used by client code operating on the freshly
allocated memory. All other memory is implicitly left unchanged by alloc. The
returned memory is guaranteed to be aligned to the effective request size, if a power-
of-two, by:

size-aligned p n ≡ (∃ k. n = 2k) −→ n udvd p&

9.4 Invariants

In this section we describe the loop invariants that were used to structure the
verification. These provide the key proof steps and insight into how the allocator
works. We again focus our attention on alloc here and present the separation logic
invariants.

The outer loop invariant is:

{|(∃ G H. (ṕrev = ptr-coerce kfree-list-addr ∨ ṕrev& ∈ G) ∧
(free-set-h kfree-list-addr ćurr G ∧∗
free-set ćurr NULL H)sep ∧

F = G ∪ H) ∧
(free-set-h kfree-list-addr NULL F)sep ∧
H = σH ∧
śize = max σsize KMC ∧ KMC udvd śize ∧ (ṕrev ↪→ ćurr&)sep|}

The pointer curr partitions the free list during the traversal. While the heap may be
modified inside the loop body, if this occurs a return is always performed, so at the
point where the invariant must hold, the heap state is never modified. The rest of the
invariant mostly just carries information from the pre-condition.

Inside the outer loop, in the first inner loop, the situation is more tricky:

{| ćurr& ≤ ćurr& + (´i − 1) ∗ KMC ∧
(∃ G H. (ṕrev = ptr-coerce kfree-list-addr ∨ ṕrev& ∈ G) ∧

(free-set-h kfree-list-addr ćurr G ∧∗
free-set ćurr t́mp
(chunks ćurr ( ćurr& + (´i − 1) ∗ KMC)) ∧∗
free-set t́mp NULL H)sep ∧

F = G ∪ chunks ćurr ( ćurr& + (´i − 1) ∗ KMC) ∪ H) ∧
(free-set-h kfree-list-addr NULL F)sep ∧
H = σH ∧
śize = max σsize KMC ∧
KMC udvd śize ∧
1 ≤ ´i ∧
´i ≤ śize div KMC ∧
ćurr �= NULL ∧ size-aligned ćurr śize ∧ (ṕrev ↪→ ćurr&)sep|}
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NULL

............................................ ........

curr tmp

candidate
allocation block

kfree_list_addr

Fig. 14 Partition of free list

Now the free list is partitioned three ways—the fragment up to curr, the candidate
allocation block between curr and tmp and the rest of the list. This is illustrated
in Fig. 14. We also ensure the candidate block does not wrap around the address
space, carry some information from the pre-condition and establish size-aligned as
we have passed the alignment test prior to entering the loop. Still, the heap remains
unmodified at this point.

If the test for a suitably sized block in this first inner loop fails then we can show
the outer loop invariant is implied by the inner loop invariant. If it succeeds then the
block will be de-linked from the list structure, zeroed, and returned to the user. The
second inner loop witnesses the zeroing and its invariant is:

{| ćurr& ≤ ćurr& + ( śize − KMC) ∧
(free-set-h kfree-list-addr NULL
(alloc (ptr-coerce ćurr) (max σsize KMC) F) ∧∗
sep-cut ( ćurr& + ´i ∗ 4) ( śize − ´i ∗ 4) ∧∗
zero-block ćurr (IN⇐ ´i))sep ∧

chunks ćurr ( ćurr& + (max σsize KMC − KMC)) ⊆ F ∧
śize = max σsize KMC ∧
KMC udvd śize ∧
KMC udvd ćurr& ∧
´i ≤ śize div 4 ∧ size-aligned ćurr śize ∧ ćurr �= NULL|}

When we enter the loop, the heap is partitioned such that the free-set-h conjunct
describes the post-allocation free list state. The remainder of the heap is partitioned
by the offset into the allocated block given by the loop counter i. The loop gradually
retypes the allocated block as it zeroes it with a ptr-retyp ( ćurr +p í) annotation in
the body. When the loop condition fails, i.e. ¬ i < ( size / sizeof (word_t)), the post-
condition is implied.

9.5 Results

With the invariants in place, the proof obligations post-VCG can be discharged. For
this study we wrote mostly tactic-style proofs. Table 7 lists the size of each proof
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Table 7 Proof script sizes Theory LoP

Shared (all) 1,400
Shared (multiple typed heaps) 330
Shared (separation logic) 688
alloc (multiple typed heaps) 581 (387)
alloc (separation logic) 975 (660)
free (multiple typed heaps) 924 (403)
free (separation logic) 736 (550)

script. For the specific code verification theories, in parenthesis we give the size of
the main proof.

This case study corresponds to 136 lines of code in the original Pistachio source
and 62 lines of code after configuring and preprocessing.9 The functions are not very
large, but the fact that the originals contain close to 40% tracing and debugging
code indicates that they were not easy to get right. We did not find any clear bugs
in the code during verification, which is encouraging for a system with several years
of deployment. There are however some subtleties that the specifications expose and
would be useful for a kernel developer to be aware of.

The separation logic proofs tended to be lengthier and more verbose, but not more
difficult. Many of the proof steps were somewhat mechanical. At the leaves of the
proofs we typically had some problem involving bit-vector arithmetic and intervals,
reasoning about chunks, extracting mapping assertions from under a separation
conjunction, massaging a separation assertion into the desired form or some property
of the data abstraction predicates.

Even though the proofs were time consuming, requiring several person months
simultaneously with the original separation logic embedding, we managed to prove
some strong functional properties of some tricky low-level code. It should be noted
that we chose alloc and free because they constitute a challenging case for this frame-
work. While there are some type-safe accesses, e.g. the free list traversal and update,
there are many pointer accesses that are unsafe and require additional reasoning,
such as the first loop in free or the alignment test. Our framework provides both a
means of coping with the unsafe parts and abstraction inside the safe fragment. In
other pointer program verification developments in the literature this is impossible
or leads to unsoundness if applied naïvely, here it is merely more work than usual.
Once the allocator verification is completed, client code does not need to go to the
same level of detail to use the pre/post conditions provided. The complexity is hence
hidden.

Even small verifications such as this benefit from separation logic. While we did
not use the frame rule, the stronger data abstraction predicates and specifications
that are natural in this approach proved beneficial.

9We only count function body sizes here.
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10 Related Work

The earliest work in pointer program verification focused on type-safe or typeless
languages and most work at this time was through pen-and-paper formalisation.
Cartwright and Oppen [11], Morris [28], Bijlsma [5] and Burstall [8] are examples
of this. More recently, Bornat [7] revisited the work of Morris and Burstall, and
produced a mechanised proof in the Jape editor of a number of examples including
the Schorr-Waite graph marking algorithm. A similar mechanisation and study has
been performed by Mehta and Nipkow [26] in Isabelle/HOL. The Caduceus tool [13]
also uses the Burstall-Bornat model and Moy [29] extends this to cope with some
well-behaved cases of unions and type casts. Cock [12] has recently developed
support for tagged unions and bitfields with predictable layout in our framework,
utilising a generative approach for both the C code and lifting theorems.

Leroy and Blazy [23] have a memory model in the Coq theorem prover for C that
is aimed at compiler verification. It contains a far more thorough approach to C’s
memory than we consider in this paper, including the modelling of stack variables,
but has in-built allocation primitives and is faithful to the C standard, making it not
as suitable for offending systems code. In addition, verifying functional properties of
C pointer programs requires higher-level models than those needed for reasoning
about semantics and compiler transformations, e.g. Burstall-Bornat or separation
logic, which are the focus of our work.

Norrish [32] and Hohmuth et al. [17] provide mechanised C/C++ semantics in
HOL and PVS respectively, which include low-level memory models, and provide
the basis for our approach in Section 3.2.2. Our HOL type encoding has similarities
to Blume’s [6] encoding of the C type system in ML that utilises phantom typing to
express pointer types and operators for the purpose of a foreign-function interface.

Separation logic was also inspired by Burstall’s work, and has been developed
in the papers of Reynolds [37, 38], O’Hearn [33], Yang [50], Ishtiaq [18] and
Calcagno [10]. This has since been mechanised for simple languages in Isabelle/HOL
by Weber [48], Preoteasa [36] in PVS based on a predicate transformer semantics
and Marti et al. [25] in Coq for a version of C without dealing with its types. Tuch
et al. [47] gave the first treatment of separation logic that unified the byte-level and
logical views of memory in Isabelle/HOL. Appel and Blazy [2] later gave a mecha-
nised separation logic for a C intermediate language in Coq with the strict standard’s
memory view.

Algorithmic techniques attract a lot of attention today. The main relevant ap-
proaches are software model checking, static analysis and separation logic deci-
sion procedures. C language software model checkers [42] include SLAM [3] and
BLAST [16], which have had success in checking safety properties such as correct
API use in device drivers. Similarly, Hallem et al. [14] use static analyses to find
bugs in system code. More sophisticated abstract domains are used in shape analy-
ses [27, 40], which can show some structural invariants, such as the absence of
loops in linked lists. Separation logic decision procedures [4] can also show similar
properties. At this point in time, these techniques tend to be specialised for limited
language fragments or data structures, but there are promising developments that
may improve this situation [9].

Most closely related to our case study in Section 9 is the successful verification of
the kernel memory allocator from the teaching-oriented Topsy operating system by
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Marti et al. [25] in Coq. The major difference is the heavy use of pointer arithmetic
and casting in L4’s memory allocator that we are able to handle confidently and
conveniently due to our more detailed semantic model and type encoding.

11 Conclusion

In this paper we developed mechanised proof techniques for C, built on a low-
level view of underlying memory and capable of managing the aliasing and frame
problems. We have extended the existing models for reasoning about pointer pro-
grams to cope fully with C’s type system, including support for structured types, and
provided solutions to the technical issues that arise when reasoning about C programs
in higher-order logic. In addition, two case studies were given that demonstrate the
utility of the derived proof rules.

In addition to the verification proofs discussed in the case studies, the aspects of
the C verification framework related to the memory model and proof abstractions
came to a total of 18,728 lines of proof (including some initial explorations without
support for structured types).

The technical details of the models in Isabelle/HOL are lengthy, and some con-
cepts seem intuitively obvious and unnecessary in their formal treatment. However,
the mechanisation has the advantage of giving a high degree of trust in the soundness
of the system that is unattainable in pen-and-paper formalisations and the user of
the system is shielded from much of the implementation detail. It is easy to miss
side-conditions such as alignment when reasoning about pointer programs and it
is precisely this kind of detail that makes pointer program correctness in type-
unsafe languages, even informally, a more difficult problem than general software
correctness.

We benefited greatly from the maturity of tools and libraries in our work.
Schirmer’s verification environment clocks in at 27,400 LoP [41], the bit-vector
libraries at 8,300 LoP and basic HOL libraries at around 35,000 LoP. Clearly if we had
to engage in the development of these components it would not have been practical
to carry out our developments and case study. It is hoped that the implementation in
this paper will in turn provide a basis for further layering and allow later research to
reap the benefits of these models.

Future work includes providing support for well-behaved unsafe operations, e.g.
struct pointer casting in the case of physical subtyping, development of Isabelle
tactics for separation logic proofs and integration with automated tools and decision
procedures. While it has been shown that verification proofs for C systems code are
practical in our framework, routine application will demand that the more mundane
aspects of the verification proofs have greater automation. An interesting use of
the framework presented in this paper, along these lines, might be to develop a
sound theory for algorithmic techniques, even when not used directly in a theorem
prover environment—presently most papers in this area either make liberal use of
axiomatised theories and/or “pen and paper” proofs.
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