
COMP4161: Advanced Topics in Software Verification

−→
Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka

S2/2018

data61.csiro.au

Content

Ü Intro & motivation, getting started [1]

Ü Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

Ü Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, invariants [8b,9]

• (mid-semester break)

• C verification [10]

• CakeML, Isar [11c]

• Concurrency [12]

aa1 due; ba2 due; ca3 due

2 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Last Time on HOL

Ü Defining HOL

Ü Higher Order Abstract Syntax

Ü Deriving proof rules

Ü More automation

3 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Term Rewriting

The Problem

Given a set of equations

l1 = r1
l2 = r2

...
ln = rn

does equation l = r hold?

Applications in:

Ü Mathematics (algebra, group theory, etc)

Ü Functional Programming (model of execution)

Ü Theorem Proving (dealing with equations, simplifying statements)

5 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Term Rewriting: The Idea

use equations as reduction rules

l1 −→ r1
l2 −→ r2

...
ln −→ rn

decide l = r by deciding l
∗←→ r

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Arrow Cheat Sheet

0−→ = {(x , y)|x = y} identity
n+1−→ =

n−→ ◦ −→ n+1 fold composition

+−→ =
⋃

i>0
i−→ transitive closure

∗−→ =
+−→ ∪ 0−→ reflexive transitive closure

=−→ = −→ ∪ 0−→ reflexive closure

−1−→ = {(y , x)|x −→ y} inverse

←− =
−1−→ inverse

←→ = ←− ∪ −→ symmetric closure

+←→ =
⋃

i>0
i←→ transitive symmetric closure

∗←→ =
+←→ ∪ 0←→ reflexive transitive symmetric closure

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How to Decide l
∗←→ r

Same idea as for β: look for n such that l
∗−→ n and r

∗−→ n

Does this always work?
If l

∗−→ n and r
∗−→ n then l

∗←→ r . Ok.
If l

∗←→ r , will there always be a suitable n? No!

Example:
Rules: f x −→ a, g x −→ b, f (g x) −→ b

f x
∗←→ g x because f x −→ a←− f (g x) −→ b ←− g x

But: f x −→ a and g x −→ b and a, b in normal form

Works only for systems with Church-Rosser property:
l
∗←→ r =⇒ ∃n. l ∗−→ n ∧ r

∗−→ n

Fact: −→ is Church-Rosser iff it is confluent.

8 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Confluence

s

x y

t

∗ ∗

∗∗

Problem:
is a given set of reduction rules conflu-
ent?

undecidable

Local Confluence

s

x y

t
∗∗

Fact: local confluence and termination =⇒ confluence

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Termination

−→ is terminating if there are no infinite reduction chains
−→ is normalizing if each element has a normal form
−→ is convergent if it is terminating and confluent

Example:
−→β in λ is not terminating, but confluent
−→β in λ→ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

10 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

When is −→ Terminating?

Basic idea: when each rule application makes terms simpler in
some way.

More formally: −→ is terminating when there is a well founded
order < on terms for which s < t whenever t −→ s
(well founded = no infinite decreasing chains a1 > a2 > . . .)

Example: f (g x) −→ g x , g (f x) −→ f x

This system always terminates. Reduction order:

s <r t iff size(s) < size(t) with
size(s) = number of function symbols in s

À Both rules always decrease size by 1 when applied to any term t

Á <r is well founded, because < is well founded on IN

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Termination in Practice

In practice: often easier to consider just the rewrite rules by
themselves,

rather than their application to an arbitrary term t.
Show for each rule li = ri , that ri < li .

Example:
g x < f (g x) and f x < g (f x)

Requires
u to become smaller whenever any subterm of u is made smaller.
Formally:

Requires < to be monotonic with respect to the structure of
terms:

s < t −→ u[s] < u[t].
True for most orders that don’t treat certain parts of terms as
special cases.

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Example Termination Proof

Problem: Rewrite formulae containing ¬, ∧, ∨ and −→, so that
they don’t contain any implications and ¬ is applied only to
variables and constants.

Rewrite Rules:

Ü Remove implications:

imp: (A −→ B) = (¬A ∨ B)

Ü Push ¬s down past other operators:

notnot: (¬¬P) = P

notand: (¬(A ∧ B)) = (¬A ∨ ¬B)

notor: (¬(A ∨ B)) = (¬A ∧ ¬B)

We show that the rewrite system defined by these rules is
terminating.

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Order on Terms

Each time one of our rules is applied, either:

Ü an implication is removed, or

Ü something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, <r : s <r t iff:

Ü num imps s < num imps t, or

Ü num imps s = num imps t ∧ osize s < osize t.

Let:

Ü s <i t ≡ num imps s < num imps t and

Ü s <n t ≡ osize s < osize t

Then <i and <n are both well-founded orders (since both return
nats).
<r is the lexicographic order over <i and <n. <r is well-founded
since <i and <n are both well-founded.

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Order Decreasing

imp clearly decreases num imps.
osize adds up all non-¬ operators and variables/constants, weights
each one according to its depth within the term.

osize′ c x = 2x

osize′ (¬P) x = osize′ P (x + 1)
osize′ (P ∧ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))
osize′ (P ∨ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))
osize′ (P −→ Q) x = 2x + (osize′ P (x + 1)) + (osize′ Q (x + 1))

osize P = osize′ P 0

The other rules decrease the depth of the things osize counts, so
decrease osize.

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

Ü uses simplification rules

Ü (almost) blindly from left to right

Ü until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Control

Ü Equations turned into simplification rules with [simp] attribute

Ü Adding/deleting equations locally:

apply (simp add: <rules>) and apply (simp del: <rules>)

Ü Using only the specified set of equations:

apply (simp only: <rules>)

17 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo

We have seen today...

Ü Equations and Term Rewriting

Ü Confluence and Termination of reduction systems

Ü Term Rewriting in Isabelle

19 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Exercises

Ü Show, via a pen-and-paper proof, that the osize function is
monotonic with respect to the structure of terms from that example.

20 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

