
COMP4161: Advanced Topics in Software Verification

Isar
Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka

S2/2018

data61.csiro.au

Content

Ü Intro & motivation, getting started [1]

Ü Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

Ü Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, invariants [8b,9]

• (mid-semester break)

• C verification [10]

• CakeML, Isar [11c]

• Concurrency [12]

aa1 due; ba2 due; ca3 due

2 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Isar

A Language for Structured Proofs

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

4 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)

apply (cases A)

apply (rule disjI1)

apply (erule impE)

apply assumption

apply assumption

apply (rule disjI2)

apply assumption

apply (rule impI)

apply (erule disjE)

apply assumption

apply (erule notE)

apply assumption

done

or by blast

OK it’s true. But WHY?

5 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Motivation

WHY is this true: (A −→ B) = (B ∨ ¬A) ?

Demo

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Isar

apply scripts What about..

Ü unreadable Ü Elegance?
Ü hard to maintain Ü Explaining deeper insights?
Ü do not scale Ü Large developments?

No structure. Isar!

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)

8 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

Ü proof (<method>) applies method to the stated goal
Ü proof applies a single rule that fits
Ü proof - does nothing to the goal

10 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How do I know what to Assume
and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

Ü proof (rule conjI) changes proof state to
1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

Ü so we need 2 shows: show ”A” and show ”B”

Ü We are allowed to assume A,
because A is in the assumptions of the proof state.

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

The Three Modes of Isar

Ü [prove]:
goal has been stated, proof needs to follow.

Ü [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

Ü [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo

Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof

Ü proof picks an intro rule automatically

Ü conclusion of rule must unify with A ∧ B

Forward reasoning: . . .
assume AB: ”A ∧ B”
from AB have ”. . .” proof

Ü now proof picks an elim rule automatically

Ü triggered by from

Ü first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

Ü first n assumptions of rule must unify with A1 . . . An

Ü conclusion of rule must unify with R

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Moreover and Ultimately

have X1: P1 . . . have P1 . . .
have X2: P2 . . . moreover have P2 . . .
...

...
have Xn: Pn . . . moreover have Pn . . .
from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power
on names X1 . . .Xn

19 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

20 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply (. . .)
...
apply (. . .)
done

21 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Datatypes in Isar

Datatype case distinction

proof (cases term)
case Constructor1
...

next
...
next

case (Constructork ~x)
· · · ~x · · ·

qed

case (Constructori ~x) ≡
fix ~x assume Constructori : ”term = Constructori ~x”

23 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Structural induction for nat

show P n
proof (induct n)

case 0 ≡ let ?case = P 0
. . .
show ?case

next
case (Suc n) ≡ fix n assume Suc: P n
. . . let ?case = P (Suc n)
· · · n · · ·
show ?case

qed

24 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Structural induction: =⇒ and
∧

show ”
∧
x . A n =⇒ P n”

proof (induct n)
case 0 ≡ fix x assume 0: ”A 0”
. . . let ?case = ”P 0”
show ?case

next
case (Suc n) ≡ fix n and x
. . . assume Suc: ”

∧
x . A n =⇒ P n”

· · · n · · · ”A (Suc n)”
. . . let ?case = ”P (Suc n)”
show ?case

qed

25 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo: Datatypes in Isar

Calculational Reasoning

The Goal

Prove:
x · x−1 = 1 using: assoc: (x · y) · z = x · (y · z)

left inv: x−1 · x = 1
left one: 1 · x = x

28 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

The Goal

Prove:
x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1
left one: 1 · x = x

Can we do this in Isabelle?

Ü Simplifier: too eager

Ü Manual: difficult in apply style

Ü Isar: with the methods we know, too verbose

29 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Chains of equations

The Problem

a = b
. . . = c
. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in Isar:

Ü Keywords also and finally to delimit steps

Ü . . . : predefined schematic term variable,
refers to right hand side of last expression

Ü Automatic use of transitivity rules to connect steps

30 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”
have ”. . . = t2” [proof]
also ”t0 = t2”
...

...
also ”t0 = tn−1”
have ”· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof

31 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

More about also

Ü Works for all combinations of =, ≤ and <.

Ü Uses all rules declared as [trans].

Ü To view all combinations: print trans rules

32 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Designing [trans] Rules

have = ”l1 � r1” [proof]
also
have ”. . .� r2” [proof]
also

Anatomy of a [trans] rule:

Ü Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2
Ü More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:

Ü pure transitivity: [[a = b; b = c]] =⇒ a = c

Ü mixed: [[a ≤ b; b < c]] =⇒ a < c

Ü substitution: [[P a; a = b]] =⇒ P b

Ü antisymmetry: [[a < b; b < a]] =⇒ False

Ü monotonicity:
[[a = f b; b < c ;

∧
x y . x < y =⇒ f x < f y]] =⇒ a < f c

33 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo

