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Content

Ü Intro & motivation, getting started [1]

Ü Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

Ü Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, invariants [8b,9]

• (mid-semester break)

• C verification [10]

• CakeML, Isar [11c ]

• Concurrency [12]

aa1 due; ba2 due; ca3 due
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Isar

A Language for Structured Proofs



Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?
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Motivation

Is this true: (A −→ B) = (B ∨ ¬A) ?

YES!

apply (rule iffI)

apply (cases A)

apply (rule disjI1)

apply (erule impE)

apply assumption

apply assumption

apply (rule disjI2)

apply assumption

apply (rule impI)

apply (erule disjE)

apply assumption

apply (erule notE)

apply assumption

done

or by blast

OK it’s true. But WHY?
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Motivation

WHY is this true: (A −→ B) = (B ∨ ¬A) ?

Demo
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Isar

apply scripts What about..

Ü unreadable Ü Elegance?
Ü hard to maintain Ü Explaining deeper insights?
Ü do not scale Ü Large developments?

No structure. Isar!
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A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes/shows in lemma statements)
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Isar core syntax

proof = proof [method] statement∗ qed
| by method

method = (simp . . . ) | (blast . . . ) | (rule . . . ) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula
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proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

Ü proof (<method>) applies method to the stated goal
Ü proof applies a single rule that fits
Ü proof - does nothing to the goal
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How do I know what to Assume
and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧ B”
proof (rule conjI)

Ü proof (rule conjI) changes proof state to
1. [[A;B]] =⇒ A
2. [[A;B]] =⇒ B

Ü so we need 2 shows: show ”A” and show ”B”

Ü We are allowed to assume A,
because A is in the assumptions of the proof state.
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The Three Modes of Isar

Ü [prove]:
goal has been stated, proof needs to follow.

Ü [state]:
proof block has opened or subgoal has been proved,
new from statement, goal statement or assumptions can follow.

Ü [chain]:
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧ B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .
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Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”
proof -

have A: ”x + 1 = Suc x” by simp
have B: ”1 + x = Suc x” by simp
show ”x + 1 = 1 + x” by (simp only: A B)

qed
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Demo



Backward and Forward

Backward reasoning: . . . have ”A ∧ B” proof

Ü proof picks an intro rule automatically

Ü conclusion of rule must unify with A ∧ B

Forward reasoning: . . .
assume AB: ”A ∧ B”
from AB have ”. . .” proof

Ü now proof picks an elim rule automatically

Ü triggered by from

Ü first assumption of rule must unify with AB

General case: from A1 . . . An have R proof

Ü first n assumptions of rule must unify with A1 . . . An

Ü conclusion of rule must unify with R
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Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property
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Demo



Fancy Abbreviations

this = the previous fact proved or assumed

then = from this
thus = then show

hence = then have
with A1 . . .An = from A1 . . .An this

?thesis = the last enclosing goal statement
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Moreover and Ultimately

have X1: P1 . . . have P1 . . .
have X2: P2 . . . moreover have P2 . . .
...

...
have Xn: Pn . . . moreover have Pn . . .
from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power
on names X1 . . .Xn
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General Case Distinctions

show formula
proof -

have P1 ∨ P2 ∨ P3 <proof>
moreover { assume P1 . . . have ?thesis <proof> }
moreover { assume P2 . . . have ?thesis <proof> }
moreover { assume P3 . . . have ?thesis <proof> }
ultimately show ?thesis by blast

qed
{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P
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Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply (. . . )
...
apply (. . . )
done
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Datatypes in Isar



Datatype case distinction

proof (cases term)
case Constructor1
...

next
...
next

case (Constructork ~x)
· · · ~x · · ·

qed

case (Constructori ~x) ≡
fix ~x assume Constructori : ”term = Constructori ~x”
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Structural induction for nat

show P n
proof (induct n)

case 0 ≡ let ?case = P 0
. . .
show ?case

next
case (Suc n) ≡ fix n assume Suc: P n
. . . let ?case = P (Suc n)
· · · n · · ·
show ?case

qed
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Structural induction: =⇒ and
∧

show ”
∧
x . A n =⇒ P n”

proof (induct n)
case 0 ≡ fix x assume 0: ”A 0”
. . . let ?case = ”P 0”
show ?case

next
case (Suc n) ≡ fix n and x
. . . assume Suc: ”

∧
x . A n =⇒ P n”

· · · n · · · ”A (Suc n)”
. . . let ?case = ”P (Suc n)”
show ?case

qed
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Demo: Datatypes in Isar



Calculational Reasoning



The Goal

Prove:
x · x−1 = 1 using: assoc: (x · y) · z = x · (y · z)

left inv: x−1 · x = 1
left one: 1 · x = x
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The Goal

Prove:
x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1 · x−1 · x · x−1

. . . = (x−1)−1 · (x−1 · x) · x−1

. . . = (x−1)−1 · 1 · x−1

. . . = (x−1)−1 · (1 · x−1)

. . . = (x−1)−1 · x−1

. . . = 1

assoc: (x · y) · z = x · (y · z)
left inv: x−1 · x = 1
left one: 1 · x = x

Can we do this in Isabelle?

Ü Simplifier: too eager

Ü Manual: difficult in apply style

Ü Isar: with the methods we know, too verbose
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Chains of equations

The Problem

a = b
. . . = c
. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in Isar:

Ü Keywords also and finally to delimit steps

Ü . . . : predefined schematic term variable,
refers to right hand side of last expression

Ü Automatic use of transitivity rules to connect steps
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also/finally

have ”t0 = t1” [proof] calculation register
also ”t0 = t1”
have ”. . . = t2” [proof]
also ”t0 = t2”
...

...
also ”t0 = tn−1”
have ”· · · = tn” [proof]
finally t0 = tn
show P
— ’finally’ pipes fact ”t0 = tn” into the proof
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More about also

Ü Works for all combinations of =, ≤ and <.

Ü Uses all rules declared as [trans].

Ü To view all combinations: print trans rules
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Designing [trans] Rules

have = ”l1 � r1” [proof]
also
have ”. . .� r2” [proof]
also

Anatomy of a [trans] rule:

Ü Usual form: plain transitivity [[l1 � r1; r1 � r2]] =⇒ l1 � r2
Ü More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:

Ü pure transitivity: [[a = b; b = c]] =⇒ a = c

Ü mixed: [[a ≤ b; b < c]] =⇒ a < c

Ü substitution: [[P a; a = b]] =⇒ P b

Ü antisymmetry: [[a < b; b < a]] =⇒ False

Ü monotonicity:
[[a = f b; b < c ;

∧
x y . x < y =⇒ f x < f y ]] =⇒ a < f c
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Demo


