Formal Software Development of Android Games

Salim Perchy
Pontificia Universidad Javeriana
Cali, Colombia
ysperchy@javerianacali.edu.co

ABSTRACT

We present a formal software development methodology for
implementing Android video games. We use formal methods
embedded within a Model-View-Controller (MVC) design
pattern for software development. The Model of the game
is written in Event-B, which is then translated to JML (Java
Modeling Language) by using the EventB2Jml tool. A Java
code implementation is manually written that closely follows
the JML specification. Writing a formal model in Event-
B avoids the costly testing phase in traditional incremental
software development methodologies for games. We validate
our ideas on the proposed methodology by presenting the
software development of a car racing game for the Android
platform. Our methodology incorporates rigour in a number
of ways. All the proof-obligations of the Event-B model are
discharged prior to the generation of JML specifications, and
we use OpenJML to verify the Java implementation against
the JML specification obtained from Event-B.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tions—methodologies, tools

; D.2.4 [Software/Program Verification]: [validation,
formal methods]

General Terms

automated translation, combined formal methods

Keywords

Android, Event-B, Formal Methods, Game Design, Game
Development, Java, JML, Software Engineering

1. INTRODUCTION

Software engineering methods provide a disciplined ap-
proach to software development, yet software is often flawed,
and even small software development projects have an in-
herently high level of complexity that requires the coding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Néstor Catano
The University of Madeira
Carnegie Mellon Portugal

ncatano@uma.pt

of mathematical well-founded algorithms. Software devel-
opment projects are often composed of multi-disciplinary
teams with diverse expertise in different tools and tech-
niques. This is particularly true for teams developing video
games, e.g. for the Android platform [12]. Video games usu-
ally follow incremental software development methodologies
that include heavy-weight beta testing and debugging final
phases for the release candidate [20]. This testing phase de-
mands a high amount of human and monetary resources for
teams to meet deadlines. On top of that, the functionality
of the game should always be re-tested after the release.
We present a software development methodology for im-
plementing Android games following the traditional Model-
-View-Controller design pattern. Therefore, the View is de-
veloped using usability engineering techniques as advocated
by Jakob Nielsen in [18]. The code for the Model is semi-
automatically generated. One writes the model in Event-
B [3], then uses the EventB2Jml tool [6] to automatically
generate a JML specification of the model, and finally writes
Java code that verifies against the JML specification. The
translation from Event-B to JML is automated and tool-
supported. And, although going from JML to Java is man-
ual and laborious, it is intuitive as only requires removing
JML specification markers. The Controller includes wrap-
ping code that communicates with the View and the Model.
The relationship between the View and the Model is im-
plemented by generating a Java field for every local event
variable, as well as accessors and mutators for these fields.
Our methodology incorporates formal rigour in a num-
ber of ways: i.) all proof obligations of the Event-B model
are discharged prior to the generation of JML specifications;
11.) the soundness of the translation from Event-B to JML
has been proven [7] and 4ii.) OpenJML [9] is used to ver-
ify the Java implementation against the JML specification
obtained from Event-B. Our methodology permits the use
of different software validation and development techniques
— Refinement Calculus in Event-B and Design-by- Contract
as advocated by JML, and Usability Testing for the View.
The contributions of this paper are two-fold: (1) we pro-
pose a methodology that integrates formal methods to tradi-
tional usability engineering techniques for the development
of games for the Android platform that (2) avoids the costly
testing phase used in incremental software development of
games. We validate our approach by presenting the software
development of an Android race car game available at [1].
In the following, Section 2 introduces Android, Event-
B and JML, and describes the Android game. Section 3
describes the proposed methodology. Section 4 presents

the Event-B model for the game. Section 5 describes the
JML specification generated by the EventB2Jml tool on the
Event-B input. Section 6 describes how Java code is written
that verifies against JML, Section 8 presents related work,
and Section 9 concludes.

2. PRELIMINARIES

2.1 Event-B

The B method for software development, introduced by
J.-R Abrial [2], is a strategy for software development in
which an abstract model of a system is transformed into
an implementation via a series of refinement steps, where
the behaviour of each refinement is provably consistent with
the behaviour of the previous step. Each refinement adds
more details to the description of the system. A derivative
of the B method, also introduced by J.-R Abrial [3], is called
Event-B. Event-B models are complete developments of dis-
crete transition systems composed of machines and contexts.
Machines contain the dynamic part of a model (variables,
invariants, and events). Contexts contain the static part of
a model (carrier sets and constants). Three basic relation-
ships are used to structure a model, namely, a machine sees
a context or refines another machine, and a context extends
another context. The B language for stating properties, es-
sentially predicate logic plus set theory, and the B language
for specifying dynamic behaviour (i.e. programs) are seam-
lessly integrated.

2.2 The Java Modeling Language

JML [5] is a model-based language for specifying the be-
haviour of Java classes. JML specifications are typically
embedded directly into Java class implementations using
special comment markers /*@ ... @+/ or //@. Specifica-
tions include various forms of invariants and pre- and post-
conditions for methods. JML syntax is intentionally similar
to that of Java so that it is less intimidating for develop-
ers. In particular, the mathematical types that are heavily
used in other model based specification languages (sets, se-
quences, relations and functions) are provided in JML as
classes, and the operations on those types are specified (in
JML) and implemented as Java methods. In JML, meth-
ods are specified using requires, assignable and ensures
clauses, which respectively give the precondition, the frame
(what locations may change from the pre- to the poststate)
and the postcondition. A method specification can also in-
clude an exsures or signals clause to specify conditions
under which the method could throw an exception. The
specification of a method appears immediately before its
declaration. Class invariants can also be given to constrain
the states of legal class instances.

2.3 The Android Platform

The Android platform [12] was introduced by Google in
2008 as an operating system for mobile devices. It supports
interfacing with common hardware found in embedded de-
vices as well as more general-purpose programming libraries
for threads and networking.

The Android SDK [16] has a wide support for program-
ming and includes extensive examples and documentation.
It supports technologies commonly found in video game de-
velopment, e.g. 3D rendering pipelines (through OpenGL),
raster graphics, and input device interaction (keyboard and

Model

T

Controller View

Figure 1: MVC (left) and Game Loop (right). Both
indicate the flow of information and behaviour, same
purpose blocks are drawn in the same colour.

touch screen). When developing large-scale projects, an IDE
is recommended for features as code refactoring, SVN sup-
port, repositories, automatic compilation, etc. The Eclipse
programming environment supports Android.

Android programs have to adhere to a special program
structure for interactive applications like our car racing game.
Hence, any program in Android that requests a visual in-
terface must create a main Activity. This activity has ac-
cess to a variety of widgets and visual structures. Android’s
graphical nature makes the MVC design pattern widely used
among its apps. It includes three big modules in a software
project, they are; the Model, which specifies the internal and
logical behaviour of the app, the View, which implements its
visual aspect, and the Controller, which synchronizes and
communicates the View and the Model.

2.4 Game Development in Android

As it’s often the case in professional games to request
hardware video acceleration, Android provides an OpenGL
abstraction layer (either version 1.0 or 2.0) to interact with
the video hardware. The activity created inside the applica-
tion thus must posses an extended GLSurfaceView to inter-
act with the user and offer video acceleration. This part of
the structure serves as the Controller module in the MVC
design pattern. The View module is implemented inside as
GLSurfaceView.renderer, a part of GLSurfaceView, all vi-
sual feedback to the user is provided here. The Model lies
outside this structure as it is implemented independently,
however, it is used here.

Game design employees use a similar MV C-alike architec-
ture based on a concept called the game loop. Both archi-
tectures are based on real time interactivity (see Figure 1).
Therefore, the Model part in MVC is analogous to the logic
part in game loop. This is the critical part defining how the
information is processed both from and to the users. The
functional requirements are largely implemented here there-
fore this work explains how to generate logic code that is
both correct and consistent with the software requirements.

The race car game model and the implementation pre-
sented in this paper are kept to a minimum for space and
simplicity reasons. The full Android game application in-
cluding aspects such as scoring, road friction, maximum ve-
locity, track collision, dynamic objects management, tex-
tures, user input and acceleration is available at [1]. This
game software was implemented using the Eclipse frame-
work and developed for the Android platform version 2.3

using Java with OpenGL 1.0.
2.5 The Race Car Game

A race car game consists of a single car controlled by the
user, the car is placed on a track that has a finish line and
borders. Several static and dynamic objects called obstacles
as well as other artificially controlled cars called opponents
are placed on the track. The goal of the game is to reach the
finish line in the least amount of time possible, hence colli-
sions with the opponents and track borders must be avoided.
The simulation of the physics involved in driving a car can
be as accurate as the developers want and the hardware al-
lows. A score system is modelled to reward players. As
games are meant to attract people, variations of the scoring
system and rules can be implemented in order to achieve
market differentiation.

Two important aspects of physics involved in artificially
simulating a car race are kinetic movement and collision de-
tection. A straight transformation of physics equations of
accelerated movement into algorithms (implemented in Java
for instance) is not possible because of their continuous na-
ture. Game programmers often opt to apply a discrete ap-
proach based on Euler Discretization [14]. The following
equations model an uniformly accelerated movement. The
reader may see that these equations are recursive, and re-
quire an initial value, similar to a state machine. The A; is
the time step-value of the discrete system.

acc(obj) = a
vel(obj) = vel(obj) + acc(obj) x A¢
pos(obj) = pos(obj) + vel(obj) x Ay

A great diversity of algorithms exist to calculate collisions,
which may use boxes, spheres or ellipses as their geometrical
enclosing form to calculate intersection of objects. Because
exhaustive collision detection is time demanding, the trade-
off thus is speed of processing vs. exactitude [14].

We implement a two-dimensional box collision detection
algorithm (see Figure 2). Let Obj1 and Obj2 be two objects
inside the game’s world, we wish to know if they are actually
colliding and take action upon this information. Because we
are dealing with two dimensional figures, the position of an
object can be described as poss(obj) and posy(obj). The
following logical proposition holds when a collision between
obj1 and obj2 occurs.

Iposs (obj1) — posa(objz)| < wzdthQ(objl) + wzdth2(ob]2)
. . height(obj height(obj
[pos, (obi) — pos, (obiy)| < "<OMILIL) | etght{obiz)

We enclose each object into a 2D box of width and height
dimensions and then test if there is intersection between the
two. We use boxes in our race car game, but circles or
ellipses might be the best choices for other scenarios with
objects such as balls (Billiard game) or humans.

3. THE METHODOLOGY

We envision the use of formal methods within a typical
Model-View-Controller (MVC) design pattern for develop-
ing software applications. This comprises an interface (the
View) that interacts with the user, a functional core (the

pos|obj2)
height
pos{objl)
1
width

Figure 2: 2D box collision detection scheme

Model) that implements all the core functionality of the ap-
plication, and a linking part (the Controller) handling all
the user’s requests as understood by the Model. The Con-
troller includes wrapping code for communicating between
the View and the Model. Event-B and the translation to
JML are used in developing the Model. In producing Java
code from the JML specification, a Java class field is gener-
ated for every local event variable as well as accessors and
mutators for these fields. These fields are used in writing
methods to check whether the guard of an event is satisfied
before invoking (the translation of) the event. The proposed
methodology comprises the following steps:

1. The developer chooses the desired level of abstraction
for a formal description of the system in Event-B as a
hierarchy of machine refinements.

2. All proof obligations of the above Event-B model are
discharged in Rodin.

3. The Event-B model, provably correct, is automatically
translated into JML by using the EventB2Jml tool.

4. Java code for the Model, complying with the JML
specification, is produced.

5. The View is developed using Usability Engineering tech-
niques [18]. In particular, every local event variable in
the Event-B model is implemented as a Java field in
the View, and accessors and mutators are included in
the Java code. This enables communication between
the Model and View implementations.

6. If a Java implementation is produced manually (rather
than being automatically generated), a tool such as
OpenJML [9] can be used to verify the Java code against
the JML specification.

4. THE EVENT-B MODEL OF THE GAME

Figure 3 presents a simplified model of the car racing game
in Event-B. Machine RacingGameMachine sees the Racing-
GameContext context (not shown here), which declares two
carrier sets OBJECT and TRACK representing all the possi-
ble objects in the game and all the possible race tracks. Vari-
ables objects and tracks are the current objects of the game
and the existing race tracks; obstacles is the set of static
objects of the game, and cars is the set of dynamic objects.
Invariants obstacles U cars = objects and obstaclesNcars =
& ensure that obstacles and cars make up a partition of

machine RacingGameMachine
sees RacingGameContext
variables objects tracks obstacles cars width height
posX posY wel acc lean score collided active
invariants
objects C OBJECT
tracks C TRACK
obstacles U cars = objects A obstacles N cars = &
posX € objects — Z
posY € objects — 7
width € objects - N
height € objects =+ N
vel € cars — Z
acc € cars — 7
lean € cars — {—1,0,1}
score € cars — 7
collided C cars
active C obstacles U cars
events
event initialisation then
objects := @ tracks := & obstacles := & cars := &
posX = & posY := & width := & height := &
vel := & acc := I lean := I collided := & active := &
end
event update_pos
any car elapsed
where
car € cars
elapsed € N
then
posX (car) := posX(car) + lean(car) x elapsed < 1000 * 50
posY (car) := posY (car) + vel(car) x elapsed -+ 1000
end

Figure 3: An Event-B model for car racing.

objects. Every object has an horizontal and vertical posi-
tion (posX and posY’), a total function that maps the object
with an integer number representing the position. Objects
are two-dimensional with a height and a width. Variables
vel (velocity), acc (acceleration), and lean (bending from
the straight up position) keep track of the kinetic system
of cars. Variable collided (a set) keeps track of the collided
objects.

The event update_pos updates the car’s position according
to Euler discrete movement approach, popular in real-time
applications, where elapsed is a global measure of the time
passed since the last update to the object’s position, ex-
pressed in milliseconds (converted to seconds in the model).
Events may only be triggered when the guard (the where

condition) holds. The event update_pos models an unbounded

substitution in Event-B (the any clause), so it allows the
implementer of the event to choose any value for car and
elapsed that verifies the guard. The symbol “:=" represents
simple assignments in Event-B, @ the empty set, and — a
total function.

The initialisation event describes what happens at the ini-
tial state of the machine. Machine invariants must hold
after the initialisation event, and machine events must main-
tain the machine invariants, so they should still hold after
the assignments in the body of events.

S. THE JML SPEC OF THE GAME

Figure 4 presents a partial JML output of applying the
EventB2Jml tool [6] to the Event-B model in Figure 3. An
Event-B abstract or refinement machine is translated as a
JML abstract specification class. Event-B carrier sets and
machine variables of type set are translated as model fields
of type BSet<Integer>, a JML specification for sets. model

variables are specification only variables, they exist in JML
but not in Java. Event-B machine variables of type relation
are translated as JML model variables of type BRelation,
a JML implementation for relations in Event-B, along with
invariants that model the type of the variable. For instance,
the conditions posX.isaFunction() and posX.domain() .-
equals(objects) ensure that posX is a total function.

The EventB2Jml tool produces a JML abstract method
for every event of the Event-B model. The method includes
a post-condition (the JML ensures clause) and a frame con-
dition (the assignable clause). The frame-condition speci-
fies the variables assigned by the event, i.e. posX and posY.
Bounded variables, i.e. car and elapsed, are existentially
quantified in JML. Method override is part of BRelation
and implements “:=’, and the JML \old operator returns
the value of an expression evaluated before the method call.

The initialisation event is translated to a JML initially
clause, which is an assertion that the initial values of the
class fields must satisfy.

public abstract class RacingGameMachine {
/*@ public model BSet<Integer> OBJECT; @x/
/*@ public model BSet<Integer> TRACK; @*/

/%@

public model BSet<Integer> objects;

public model BSet<Integer> tracks;

public model BSet<Integer> obstacles;

public model BSet<Integer> cars;

public model BRelation<Integer,Integer> width;

public model BRelation<Integer,Integer> height;
public model BRelation<Integer,Integer> posX;

public model BRelation<Integer,Integer> posY; ... @/

/*@ public invariant

objects.isSubset (OBJECT) && tracks.isSubset(TRACK) &&
obstacles.union(cars).equals(objects) &&
obstacles.intersection(cars) .equals(BSet.EMPTY) &&
width.isaFunction() && width.domain().equals(objects) &&
width.range() .isSubset (NAT. instance) &&
height.isaFunction() && height.domain().equals(objects) &&
height.range() .isSubset (NAT.instance) &&
posX.isaFunction() && posX.domain().equals(objects) &&
posX.range() .isSubset (INT.instance) &&
posY.isaFunction() && posY.domain().equals(objects) &&
posY.range() .isSubset (INT.instance) && ... @x/

/*@ initially
objects.isEmpty() && tracks.isEmpty() &&
obstacles.isEmpty() && cars.isEmpty() && ... @*/

/*@ assignable posX, posY;
ensures (\exists Integer car;

(\exists Integer elapsed; \old((cars.has(car) &&
NAT.instance.has(elapsed))) &&
posX.equals(\old(posX.override ((

new BRelation<Integer,Integer>().singleton(car,
posX.apply(car) + lean.apply(car) * elapsed / 1000 * 50))))) &&
posY.equals(\old(posY.override ((
new BRelation<Integer,Integer>().singleton(car,
posY.apply(car) + vel.apply(car) * elapsed / 1000))))))); @*/
public abstract void update_pos();
}

Figure 4: The JML spec for the racing car.

6. THE IMPLEMENTATION OF THE GAME

Figure 5 shows the Java code written for the JML example
in Figure 4. A Java class is created that extends the JML
abstract specification class. All JML model variable decla-
rations are naturally transformed into Java variable declara-

class RacingGame extends RacingGameMachine {
BSet<Integer> OBJECT;
BSet<Integer> TRACK;

BSet<Integer> objects;
BSet<Integer> tracks;
BSet<Integer> obstacles;
BSet<Integer> cars;
BRelation<Integer,Integer> width;
BRelation<Integer,Integer> height;
BRelation<Integer,Integer> posX;
BRelation<Integer,Integer> posY;

RacingGame() {

OBJECT = new BSet<Integer>();
TRACK new BSet<Integer>();
objects = new BSet<Integer>();
obstacles = new BSet<Integer>();

}
Integer car, elapsed;

public abstract void update_pos() {
if (cars.has(car) && NAT.instance.has(elapsed)) {
BRelation tempPosX = posX.override(
new BRelation<Integer,Integer>().singleton(car,
posX.apply(car) + lean.apply(car) * elapsed / 1000 * 50));
BRelation tempPosY = posY.override(
new BRelation<Integer,Integer>().singleton(car,
posY.apply(car) + vel.apply(car) * elapsed / 1000));

posX
posY
}
}
}

tempPosX;
tempPosY;

Figure 5: The Java code for the racing game.

tions since BSet and BRelation are indeed Java implemen-
tations for sets and relations. A typical event in Event-B is
represented through an unbounded substitution (the ANY
construct). For every event, variables bounded by the un-
bounded substitution - which are existentially quantified in
JML, are declared as class fields in Java. These variables
communicate the View with the Model, and accessors and
mutators are implemented in Java (not shown here) to set
the communication. JML postconditions are rewritten to
produce the body of the Java method, and the constraints
on the bounded variables (the guard of the event) are writ-
ten as the guard of an if-statement within the body.

The JML \old operator is implemented in Java by cre-
ating temporary variables tempPosX and tempPosY that are
evaluated before any assignment is made. This and the fact
that left hand-side variables in Event-B machines are all
different guarantee that semantics of Event-B simultaneous
assignment is preserved.

No Java code is written for the JML invariants since all
the proof obligations of the Event-B model from which the
JML spec has been obtained have all been discharged. That
is, as the translation from Event-B to JML is sound, the
JML methods specifications comply with the Event-B ma-
chine invariants. However, if additional methods are added
to the Java code, then one needs to be sure they do not
break the invariants. To check whether Java code com-
plies with the class invariants, JML provides a represents
clause that relates JML specifications (invariants) with writ-
ten code. In addition to this, the Java constructor must fulfil
the JML initially clause. Event-B sets variables initialised

LOC | % of Total Generated
Event-B Machine 253 22.7% Manually
JML Abstract Model 226 20.3% Automatically
Implemented Model 192 17.2% Manually
Android+OpenGL code 443 39.8% Assisted
[TOTAL [1114] 100% [N.A. |

Table 1: Statistics of the car racing project

Machine LOC % POs | Aut. POs
Abstract 132 52% 43 43 (100%)
Refinement 120 48% 38 35 (92%)
TOTAL 253 100% 81 78 (96%)

Table 2: Event-B Code statistics of the model

as empty are allocated memory in Java by the constructor
but no elements are initially added to these sets. To in-
crease the confidence on the produced Java implementation,
we further used the OpenJML tool [9] to verify the JML
specification generated by Event2Jml.

7. EXPERIMENTAL RESULTS

Tables 1 and 2 summarise the experimental results of the
software development project presented in this paper. LOC
stands for Lines of Code, and POs for the number of proof
obligations generated. The first table shows how much of
the project is automatically generated and how much code
(60.2% = 22.7% + 20.3% + 17.2%) was needed to develop
the critical part (the Model). The second table shows the
scaling and evolution of the Event-B model. Regarding the
third line of Table 1, much of the method implementations
are a copy of the respective JML specification with a few de-
tails changed (following Section 6). Small parts of the fourth
line of Table 1 are automatically generated by Eclipse. Most
proof obligations in Table 2 are automatically discharged (78
out of 81); the other proof obligations require a considerable
amount of effort and knowledge to be discharged.

8. RELATED WORK

In [8], the second author presents the translation from
B to JML that is part of the core implementation of the
EventB2Jml tool. Meéry and Singh [17] define a translator
(implemented as a Rodin plug-in) that automatically trans-
lates Event-B machines into several different languages: C,
C++, Java and C+#. Unlike EventB2Jml, which utilises
Rodin to check the consistency of the model, their tool
checks syntax and type consistency before generating the
target programming language code. Also, Wright [19] de-
fines a B2C extension of the Rodin platform that translates
Event-B models into C code. This work considers only sim-
ple translations of formal concrete machines. The main issue
with these tools is that the user has to provide a final (or at
least an advanced) refinement of the system so that it can
be directly translated to code. Edmunds and Butler [10, 11]
present a tasking extension for Event-B that generates code
for concurrent programs (targeting multitasking, embedded
and real-time systems). Jin and Yang [13] outline an ap-
proach for translating VDM-SL to JML. Their motivations
are similar to the ones in [8] in that they view VDM-SL as a
better language for modelling at an abstract level (much the
way that we view Event-B), and JML as a better language

for working closer to an implementation level. In fact, they
translate VDM variables to Java fields, thus dictating the
fields of an implementation. In [4], Sue Black et al. show
how formal methods can be integrated into agile method-
ologies of software development, and in [15], Qaisar Malik
et al. propose a method for generating Java template im-
plementations for Event-B models.

9. CONCLUSION

In our methodology, the Model part is written in Event-
B and automatically translated to JML, which is manually
coded into Java (Android’s language), briefly modifying the
JML spec itself. We used formal methods to develop the
logic of the game, and proved the soundness of the model by
discharging all its proof obligations in Rodin. All together,
the final result down to Java code is sound (using translation
tools also sound). This avoided the authors the time of de-
bugging the application for internal consistency and logical
errors (such as flawed collision detection or erroneous scor-
ing). Avoiding debugging time and software maintenance on
costly and long-cycled projects like video games (6 months
through 3 years usually) reduces budgetary concerns, code
maintenance efforts, and also improves public confidence on
entertainment software developers.

In the following, we list a few hints following our expe-
rience developing the game project. i) Event-B’s program-
ming paradigm differs greatly from that of Java’s, so ex-
perience in knowing the outcome of the Event-B to JML
translation is needed. ii) Discharging proofs in Rodin is la-
borious and requires specific mathematical knowledge which
a video-game company normally would not have. Neverthe-
less, in our case study, most of the proof obligations (78 out
of 81) were discharged automatically by Rodin. #i7) Game
development generally uses floating-point values to model
features such as position or dimension, so careful attention
was needed to treat these features in the discrete mathe-
matics world of Event-B. 7v) The translation of one (refine-
ment) machine results into a large Java class. Programming
the complete logic of a professional game in just one class is
cumbersome. We recommend strategically partitioning the
logic of the Event-B model in various machines.

As future work we plan to use standard Java classes to
implement set and relations rather than the BSet and BRe-
lation JML classes, which are more suitable for verification
purposes than for performance. The translation to these
Java classes might be automatic. We plan to undertake a
case study in which we compare the time required to refine
an abstract Event-B model to a machine that can directly
be translated to Java code with the time needed to pro-
duce a Java implementation by using the EventB2Jml tool
to translate the same Event-B model to JML, implementing
the JML specification by hand, and verifying the Java code
against the JML specification.

10. REFERENCES

[1] The racing car game, 2012. Available at http://cic.
javerianacali.edu.co/ ysperchy/formal-game.

[2] J.-R. Abrial. The B-Book: Assigning Programs to
Meanings. Cambridge University Press, 1996.

[3] J.-R. Abrial. Modeling in Event-B: System and
Software Design. Cambridge University Press, 2010.

[4] S. Black, P. Boca, J. P. Bowen, J. Gorman, and
M. Hinchey. Formal versus agile: Survival of the
fittest. IEEE Computer, 42(9):37-45, 2009.

[5] C.-B. Breunesse, N. Catano, M. Huisman, and
B. Jacobs. Formal methods for smart cards: An
experience report. Science of Computer Programming,
55(1-3):53-80, March 2005.

[6] N. Catafio and V. Rivera. The EventB2JML tool,
2012. Available at http://\-poporo.\-uma.\-pt/
\-Projects/\-favas/\-eventb2jml.html.

[7] N. Catano and C. Rueda. A machine-checked proof for
a translation of event-b machines to jml specifications.
Technical Report CIC-007-12, Pontificia Universidad
Javeriana,
http://cic.puj.edu.co/wiki/doku.php?id=grupos:
secsy:secsy, 2012.

[8] N. Catafio, T. Wahls, C. Rueda, V. Rivera, and
D. Yu. Translating B machines to JML specifications.
In 27th ACM Symposium on Applied Computing,
Software Verification and Testing track (SAC-SVT),
Trento, Italy, March 26-30 2012.

[9] D. R. Cok. OpenJML: JML for Java 7 by extending
OpenJDK. In NASA Formal Methods Symposium,
pages 472-479, 2011.

[10] A. Edmunds and M. Butler. Tool support for Event-B
code generation. In WS-TBFM2010, 2010.

[11] A. Edmunds and M. Butler. Tasking Event-B: An
extension to Event-B for generating concurrent code.
In PLACES 2011, 2011.

[12] google Inc. The android platform.
http://developer.android.com/design/index.html,
2012.

[13] D. Jin and Z. Yang. Strategies of modeling from
VDM-SL to JML. In International Conference on
ALPIT, pages 320-323, 2008.

[14] E. Lengyel. Mathematics for 3D Game Programming
and Computer Graphics. Course Technology PTR,
2011.

[15] Q. A. Malik, J. Lilius, and L. Laibinis. Scenario-based
test case generation using Event-B models. In
International IEEE Conference on Advances in
System Testing and Validation Lifecycle (VALID).
IEEE Computer Society, 2009.

[16] R. Mejer. Professional Android 4 Application
Development. Wrox, 2012.

[17] D. Meéry and N. K. Singh. Automatic code generation
from Event-B models. In Proceedings of the Second
SoICT, SoICT ’11. ACM, 2011.

[18] J. Nielsen. Usability Engineering. AP Professional,
1993.

[19] S. Wright. Automatic generation of C from Event-B.
In Workshop on IM_FMT. Springer-Verlag, 2009.

[20] V. Young. Programming a Multiplayer FPS in
DirectX. Charles River Media, 2004.

