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Chapter 1

What Is seL4?

seL4 is an operating system microkernel
An operating system (OS) is the low-level system software that controls a
computer system’s resources and enforces security. Unlike application software,
the OS has exclusive access to a more privileged execution mode of the
processor (kernel mode) that gives it direct access to hardware. Applications
only ever execute in user mode and can only access hardware as permitted by
the OS.

An OS microkernel is a minimal core of an OS, reducing the code executing at
higher privilege to a minimum. seL4 is a member of the L4 family of microkernels
that go back to the mid-1990s. (And no, seL4 has nothing to do with seLinux.)

seL4 is also a hypervisor
seL4 supports virtual machines that can run a fully fledged guest OS such as
Linux. Subject to seL4’s enforcement of communication channels, guests and
their applications can communicate with each other as well as with native apps.

Learn more about what it means that seL4 is a microkernel and its use as a
hypervisor in Chapter 2. And learn about real-world deployment scenarios,
including approaches for retrofitting security into legacy systems in Chapter 7.

seL4 is proved correct
seL4 comes with a formal mathematical, machine-checked proof of
implementation correctness, meaning the kernel is in a very strong sense “bug
free” with respect to its specification. In fact, seL4 is the world’s first OS kernel
with such a proof at the code level [Klein et al., 2009].

seL4 is provably secure
Besides implementation correctness, seL4 comes with further proofs of security
enforcement [Klein et al., 2014]. They say that in a correctly configured
seL4-based system, the kernel will guarantee the classical security properties of
confidentiality, integrity and availability. More about these proofs in Chapter 3.

seL4 improves security with fine-grained access control through capabilities
Capabilities are access token which support very fine-grained control over which
entity can access a particular resource in a system. They support strong
security according to the principle of least privilege (also called principle of least
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authority, POLA). This is a core design principle of highly secure system, and is
impossible to achieve with the way access control happens in mainstream
systems such as Linux or Windows.

seL4 is still the world’s only OS that is both capability-based and formally
verified, and as such has a defensible claim of being the world’s most secure
OS. More about capabilities in Chapter 4.

seL4 ensures safety of time-critical systems
seL4 is the world’s only OS kernel (at least in the open literature) that has
undergone a complete and sound analysis of its worst-case execution time
(WCET) [Blackham et al., 2011, Sewell et al., 2017]. This means, if the kernel is
configured appropriately, all kernel operations are bounded in time, and the
bound is known. This is a prerequisite for building hard real-time systems, where
failure to react to an event within a strictly bounded time period is catastrophic.

seL4 is the world’s most advanced mixed-criticality OS
seL4 provides strong support for mixed criticality real-time systems (MCS),
where the timeliness of critical activities must be ensured even if it co-exists with
less trusted code executing on the same platform. seL4 achieves this with a
flexible model that retains good resource utilisation, unlike the more established
MCS OSes that use strict (and inflexible) time and space partitioning [Lyons
et al., 2018]. More on seL4’s real-time and MCS support in Chapter 5.

seL4 is the world’s fastest microkernel
Traditionally, systems are either (sort-of) secure, or they are fast. seL4 is unique
in that it is both. We built seL4 for real-world use across a wide class of use
cases, whether they are security- (or safety-)critical or not. More on seL4
performance in Chapter 6.

seL4 is pronounced “ess-e-ell-four”
The pronunciation “sell-four” is depreciated.

How to read this document

This document is meant to be approachable by a wide audience. However, for
completeness, we will add some deeper technical detail in places.

Such detail will be marked with a chilli, like the one on the left. If you see this
then you know you can safely skip the marked section if you are not interested in
this level of detail, as only other chillied sections will assume you have read it.
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Chapter 2

seL4 Is a Microkernel and a
Hypervisor, It Is Not an OS

2.1 Monolithic Kernels vs Microkernels

To understand the difference between a mainstream OS, such as Linux, and a
microkernel, such as seL4, let’s look at Figure 2.1.
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Figure 2.1: Operating-system structure: Monolithic kernel (left) vs microkernel (right).

The left side presents a (fairly abstracted) view of the architecture of a system such as
Linux. The orange part is the OS kernel, it offers services such as file storage and
networking to applications. All the code that implements those services executes in
the privileged mode of the hardware, also called kernel mode or supervisor mode –
the execution mode that has unfettered access and control of all resources in the
system. In contrast, applications run in unprivileged, or user mode, and do not have
direct access to many hardware resources, which must be accessed through the OS.
The OS is internally structured in a number of layers, where each layer provides
abstractions implemented by layers below.

The problem with privileged-mode code is that it is dangerous: If anything goes wrong
here, there’s nothing to stop the damage. In particular, if this code has a bug that can
be exploited by an attacker to run the attacker’s code in privileged mode (called a
privilege-escalation or arbitrary code-execution attack) then the attacker can do what
they want with the system. Such flaws are the root problem of the many system
compromises we experience.
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Of course, software bugs are mostly a fact of life, and OSes are not different. In fact,
with the Linux kernel comprising of the order of 20 million lines of source code
(20 MSLOC), we can estimate that it contains literally tens of thousands of bugs
[Biggs et al., 2018]. This is obviously a huge attack surface! This idea is captured by
saying that Linux has a large trusted computing base (TCB), which is defined as the
subset of the overall system that must be trusted to operate correctly for the system to
be secure.

The idea behind a microkernel design is to drastically reduce the TCB and thus the
attack surface. As schematically shown at the right of Figure 2.1, the kernel, i.e. the
part of the system executing in privileged mode, is much smaller. In a well-designed
microkernel, such as seL4, it is of the order of ten thousand lines of source code
(10 kSLOC). This is literally three orders of magnitude smaller than the Linux kernel,
and the attack surface shrinks accordingly (maybe more, as the density of bugs
probably grows more than linear with code size).

Obviously, it is not possible to provide the same functionality, in terms of OS services,
in such a small code base. In fact, the microkernel provides almost no services: it is
just a thin wrapper around hardware, just enough to securely multiplex hardware
resources. What the microkernel mostly provides is isolation, sandboxes in which
programs can execute without interference from other programs. And, critically, it
provides a protected procedure call mechanism, for historic reasons called IPC. This
allows one program to securely call a function in a different program, where the
microkernel transports function inputs and outputs between the programs and,
importantly, enforces interfaces: the “remote” (as in contained in a different sandbox)
function can only be called with exactly the parameters its signature specifies.

The microkernel system uses this approach to provide the services the monolithic OS
implements in the kernel. In the microkernel world, these services are just programs,
no different from apps, that run in their own sandboxes, and provide an IPC interface
for apps to call. Should a server be compromised, that compromise is confined to the
server, its sandbox protects the rest of the system. This is in stark contrast to the
monolithic case, where a compromise of an OS service compromises the complete
system.

This effect can be quantified: Our recent study shows that of the known Linux
compromises classified as critical, i.e. most severe, 29% would be fully eliminated by
a microkernel design, and another 55% would be mitigated enough to no longer
qualify as critical [Biggs et al., 2018].

2.2 seL4 Is a Microkernel, Not an OS

When we talk about seL4, we talk about the seL4 microkernel. Many people confuse
it with seLinux (probably because seL4 might be mistaken as a shorthand for the 4th

version of seLinux). seLinux is a security policy framework built into Linux. While in
some ways more secure than standard Linux, it suffers from the same problem of a
huge TCB, and correspondingly huge attack surface, as Linux does. seLinux is not
suitable for truly security-critical uses.
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Figure 2.2: L4 microkernel family tree.

Figure 2.2 shows seL4’s provenance as a member of the L4 microkernel family. It was
developed by the UNSW/NICTA group that, at the time, had 15 years of experience in
developing high-performance microkernels. And it had a track-record of real-world
deployments: Our L4-embedded kernel from the mid-Noughties shipped on billions of
Qualcomm cellular modem chips, and our OKL4 Microkernel runs on the secure
enclave of all recent iOS devices (iPhones etc).

But, because seL4 is a microkernel, it contains none of the usual OS services, these
are separate programs running in user mode. This has its good and its bad sides. The
bad side is that these components must be provided. Some can be ported from
open-source OSes such as Linux or FreeBSD, or they can be written from scratch.
But in any case, this is significant work.

To scale up we need the help of the community, and the seL4 Foundation is the key
mechanism for enabling the community to cooperate and develop or port such
services for seL4-based systems. The most important ones are device drivers,
network protocol stacks, and file systems. We have a fair number these, but much
more is needed..

An important enabler are component frameworks; they allow developers to focus on
the code that implements the services, and automate much of the system integration.
There are presently two main component frameworks for seL4, both open source:
CAmkES and Genode.

CAmkES is a framework that is aimed at embedded and cyber-physical systems,
which typically have a static architecture, meaning they consist of a defined set of
components that does not change once the system has fully booted up.

Genode is in many ways a more powerful and general framework, that supports
multiple microkernels and already comes with a wealth of services and device drivers,
especially for x86 platforms. It is arguably more convenient to work with than
CAmkES, and is certainly the way to get a complex system up quickly. However,
Genode has drawbacks: 1. As it supports multiple microkernels, not all as powerful as
seL4, Genode is based on the least common denominator. In particular, it cannot use
all of seL4’s security and safety features. 2. It has no assurance story. More on this in
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Section 3.2.

2.3 seL4 Is Also a Hypervisor

seL4 is a microkernel, but it is also a hypervisor: It is possible to run virtual machines
on seL4, and inside the virtual machine (VM) a mainstream OS, such as Linux.
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Figure 2.3: Using virtualisation to integrate native OS services with Linux-provided
services.

This enables an alternative way of provisioning system services, by having a Linux VM
provide them. Such a setup is shown in Figure 2.3, which shows how some services
are borrowed from multiple Linux instances running as guest OSes in separate VMs.

In this example, we provide two system services: file system and networking.
Networking is provided by a native protocol stack running directly on seL4, lwIP or
PicoIP are frequently used stacks. Instead of porting a network driver, we borrow one
from Linux, by running a VM with a stripped-down Linux guest that has little more than
the NIC driver. The protocol stack communicates with Linux via an seL4-provided
channel, and the application similarly obtains network services by communicating with
the protocol stack. Note that in the setup shown in the figure, the application has no
channel to the NIC-driver VM, and thus cannot communicate with it directly, only via
the NW stack.

A similar setup is shown for the file-system service, this time the file system is a Linux
one running in a VM, while the storage driver is native. Again, communication
between the components is limited to the minimum channels required. In particular,
the app cannot talk to the storage driver (except through the file system), and the two
Linux systems cannot communicate with each others.

When used as a hypervisor, seL4 runs in the appropriate hypervisor mode (EL2
on Arm, Root Ring-0 on x86, HS on RISC-V), which is a higher privilege level
than the guest operating system. Just as when running as the OS kernel, it only
does the minimum work that has to be performed in the privileged (hypervisor)
mode and leaves everything else to user mode.

Specifically this means that seL4 performs world switches, meaning it switches
virtual machine state when a VM’s execution time is up, or VMs must be
switched for some other reason. It also catches virtualisation exceptions (“VM
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Figure 2.4: seL4 virtualisation support with usermode VMMs.

exits” in Intel lingo) and forwards them to a user-level handler, called the virtual
machine monitor (VMM). The VMM is then responsible for performing any
emulation operations needed.

Each VM has its private copy of the VMM, isolated from the guest OS as well as
from other VMs, as shown in Figure 2.4. This means that the VMM cannot break
isolation, and is therefore not more trusted than the guest OS itself. In particular,
this means that there is no need to verify the VMM, as that would not add real
assurance as long as the guest OS, typically Linux, is not verified.
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Chapter 3

seL4’s Verification Story

In 2009, seL4 became the world’s first OS kernel with a machine-checked functional
correctness proof at the code level. This proof was 200,000 lines of proof script at the
time, one of the largest ever (we think it was the second largest then). It showed that
functionally correct OSes were possible, something that until then had been
considered infeasible.

Since then we have extended the scope of the verification to higher level properties.
Importantly, we maintained the proof with the on-going evolution of the kernel:
Commits to the mainline kernel source are only allowed if they do not break proofs, or
the poofs have been updated as well. This proof engineering is also a novelty. Our
seL4 proofs are by far the largest proof base that is actively maintained, they have by
now grown to well over a million lines, most of this manually written and then machine
checked.

3.1 Correctness and Security Enforcement
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Proof

Abstract
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C Imple-
mentation

Proof

Confidentiality Availability
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Figure 3.1: seL4’s proof chain.
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Figure 3.1 shows the chain of proofs we have for seL4.

Functional correctness

The core of it is the functional correctness proof, which says that the C
implementation is free of implementation defects. More precisely, there is a formal
specification of the kernel’s functionality, expressed in a mathematical language called
higher-order logic (HOL). This is represented by the box labelled abstract model in
the figure. The functional correctness proof then says that the C implementation is a
refinement of the abstract model, meaning its possible behaviours are a subset of
those allowed by the abstract model.

This informal description glosses over a lot of detail. Here is some of it in case
you wonder.

C is not a formal language; in oder to allow reasoning about a C program in the
theorem prover (we use Isabelle/HOL), it has to be transformed into
mathematical logic (HOL). This is done by a C parser written in Isabelle. The
parser defines the semantics of the C program, and gives it meaning in HOL
according to this semantics. It is this formalisation which we prove to be a
refinement of the mathematical (abstract) model.

Note that C does not have an official mathematical semantics, and parts of the C
language are notoriously subtle and not necessarily that well defined. We solve
this by restricting our use of C to a well-defined subset of the language, for which
we have an unambiguous semantics. However, this does not guarantee that our
assumed semantics for that subset is the same as the compiler’s. More on that
below.

The proof means that everything we want to know about the kernel’s behaviour (other
than timing) is expressed by the abstract spec, and the kernel cannot behave in ways
that are not allowed by the spec. Among others, this rules out the usual attacks
against operating systems, such as stack smashing, null-pointer dereference, any
code injection or control-flow highjacking etc.

Translation validation

Having a bug-free C implementation of the kernel is great, but still leaves us at the
mercy of the C compiler. Those compilers (we use GCC) are themselves large,
complex programs that have bugs. So we could have a bug-free kernel that gets
compiled into a buggy binary.

To protect against such compiler defects, we have a separate proof, from C to the
executable binary that is produced by the compiler and linker. It proves that the binary
is a correct translation of the (proved correct) C code, and thus that the binary refines
the abstract spec.

Unlike the verification of the C code, this proof is not done manually but by an
automatic tool chain. It consists of several phases. A formal model of the

9



processor’s instruction set architecture (ISA) formalises the binary in the
theorem prover; we use the an L3 formalisation of the RISC-V ISA, as well as
the extensively tested L3 Arm ISA formalisation of Fox and Myreen [2010].

Then a disassembler, written in the HOL-4 theorem prover, translates this
low-level representation into a higher-level representation in a graph language
that basically represents control flow. This transformation is provably correct.

The formalised C program is also translated into the same graph language, also
provably correct in the Isabelle/HOL theorem prover. We then have two
programs in the same representation for which we need to show that they are
the same. This is a bit tricky, as compilers apply a number of heuristic-driven
transformations to optimise the code. We apply a number of such
transformations through rewrite rules on the graph-language representation of
the C program (still in the theorem prover, and thus provably correct).

In the end we then have two programs that are quite similar but not the same,
and we need to prove that they have the same semantics. In theory this is
equivalent to the halting problem and as such unsolvable. In practice, what the
compiler does is deterministic enough to make the problem tractable. We do this
by throwing the programs, bit for bit, at a set of multiple SMT solvers. If one of
these can prove that all the corresponding pieces have the same semantics,
then we know that the two programs are equivalent.

Note also that the C program that is proved to refine the abstract spec, and the C
program that we prove to be equivalent to the binary, are the same Isabelle/HOL
formalisations. This means that our assumptions on C semantics drop out of the
assumptions made by the proofs. Altogether, the proofs not only show that the
compiler did not introduce bugs, but also that its semantics for the C subset we
use are the same as ours.

Security properties

Figure 3.1 also shows proofs between the abstract spec and the high-level security
properties confidentiality, integrity and availability (these are commonly dubbed the
CIA properties). These basically state that the abstract spec is actually useful for
security: They prove that in a correctly configured system, the kernel will enforce
these properties.

What this means is that:

confidentiality seL4 will not allow an entity to read (or otherwise infer) data without
having been explicitly given read access to the data;

integrity seL4 will not allow an entity to modify data without having been explicitly
given write access to the data;

availability seL4 will not allow an entity to prevent another entity’s authorised use of
resources.
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These proofs presently do not capture properties associated with time. Our
confidentiality proofs rule out covert storage channels but presently not covert
timing channels, although this is something we are working on [Heiser et al.,
2019]. Similarly, the integrity and availability proofs presently do not cover
timeliness. Our new MCS model [Lyons et al., 2018] is designed to cover those
aspects.

Proof assumptions

All reasoning about correctness must be based on assumptions, whether the
reasoning is formal, as with seL4, or informal, when someone thinks about why their
program might be “correct”. Every program executes in some context, and its correct
behaviour inevitably depends on some assumptions about this context.

One of the advantages of machine-checked formal reasoning is that it forces people
to make those assumptions explicit. It is not possible to make unstated assumptions,
the proofs will just not succeed if they depend on assumptions that are not clearly
stated. In that sense, formal reasoning protects against forgetting assumptions, or not
being clear about them.

The verification of seL4 makes three assumptions:

Hardware behaves as expected. This should be obvious. The kernel is at the mercy
of the underlying hardware, and if the hardware is buggy (or worse, has Trojans),
then all bets are off, whether you are running verified seL4 or any unverified OS.

The spec matches expectations. This is a difficult one, because one can never be
sure that a formal specification means what we think it should mean. Of course,
the same problem exists if there is no formal specification: if the spec is informal
or non-existent, then it is obviously impossible to precisely reason about correct
behaviour.

One can reduce this risk by proving properties about the spec, as we have done
with our security proofs, which show that seL4 is able to enforce certain security
properties. That then shifts the problem to the specification of those properties.
They are much simpler than the kernel spec, reducing the risk of
misunderstanding.

But in the end, there is always a gap between the cyber world and the physical
world, and no end of reasoning (formal or informal) can remove this completely.
The advantage of formal reasoning is that you know exactly what this gap is.

The theorem prover is correct. This sounds like a serious problem, given that
theorem provers are themselves large and complex programs. However, in
reality this is the least concerning of the three assumptions. The reason is that
the Isabelle/HOL theorem prover has a small core (of a few 10 kSLOC) that
checks all proofs against the axioms of the logic. And this core has checked
many proofs small and large from a wide field of formal reasoning, so the
chance of it containing a correctness-critical bug is extremely small.
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Proof status and coverage

seL4 has been or is being verified for multiple architectures, Arm, x86 and RISC-V.
Some of these are more complete than others, but the missing bits are generally
worked on or waiting for funding. Please refer to the seL4 project status page for
details.

3.2 The CAmkES component framework

Component A

Component C

Component B

Shared memory

RPC

Semaphore

Figure 3.2: CAmkES components and connectors.

CAmkES is a component framework that allows you to reason about a system
architecturally, i.e. as a collection of sandboxed components with defined
communication channels. Figure 3.2 shows the main abstractions.

Components are represented as square boxes. They represent encapsulated
programs, code and data, running on seL4.

Interfaces are shown as decoration on the components. They define how a
component can be invoked, or can invoke others. An interface is either imported
(invoking an interface of another component) or exported (able to be invoked by
another components imported interface), except for the shared-memory
interface, which is symmetric.

Connectors connect like interfaces, each an importing with an exporting interface.
Connectors in CAmkES are always one-on-one, broadcast or multicast
functionality could be implemented on top of this model by replicating
components.

The CAmkES system is specified in a formal architecture description language (the
CAmkES ADL), which contains a precise description of the components, their
interfaces and the connectors that link them up. The CAmkES’s promise to the
system designer is that what is specified in the ADL (and visualised as in Figure 3.2)
is a faithful representation of the possible interactions. In particular, it promises that no
interactions are possible beyond those shown in the diagram.

Of course, this promise depends on enforcement by seL4, and the ADL
representation must be mapped onto low-level seL4 objects and access rights to
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them. This is what the CAmkES machinery achieves, and is shown in Figure 3.3.

In the figure, the architecture (i.e. what is described in the ADL) is shown at the top.
This is a fairly simple system, consisting of four native components and one
component that houses a virtual machine hosting a Linux guest with a couple of
networking drivers. The Linux VM is only connected to other components via the
crypto component, which ensures that it can only access encrypted links and cannot
leak data.

Even this simple system maps to hundreds if not thousands of seL4 objects, an
indication of the complexity reduction provided by the CAmkES component
abstraction.

For the seL4-level description we have another formal language, called CapDL
(capability description language). The system designer never needs to deal with
CapDL, it is a purely internal representation. The CAmkES framework contains a
compiler which automatically translates CAmkES ADL into CapDL, indicated by the
box arrow pointing left-down. The box in the left of the figure gives a (simplified)
representation of the seL4 objects described in CapDL. (It is actually a simplified
representation of a much simpler system, basically just the two components at the top
of Figure 3.2 and the connector between them.)
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Figure 3.3: Verified architecture mapping and system generation (note that not all ver-
ification steps are of full strength yet). Gray boxes are generated provably correct.
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The CapDL spec is a precise representation of access rights in the system, and it is
what seL4 enforces. Which means that once the system gets into the state described
by the CapDL spec, it is guaranteed to behave as described by the CAmkES ADL
spec, and therefore the architecture-level description is sufficient for further reasoning
about security properties.

So we need assurance that the system boots up into the state described by the
CapDL spec. We achieve this with a second automated step: We generate from
CapDL the startup code that, as soon as seL4 itself has booted, takes control and
generates all the seL4 objects referenced by the spec, including the ones describing
active components, and distributes the capabilities (see Chapter 4) that grant access
to those objects according to the spec. At the end of the execution of this init code,
the system is provably in the state described by the CapDL spec, and thus in the state
represented by the ADL spec.

The third thing that gets generated from the ADL spec is the “glue” code between
components. Sending data through a connector requires invocation of seL4 system
calls, the exact details of which are hidden by the CAmkES abstraction. The glue
code is setting up these system calls. For example, an “RPC” connector abstracts the
invocation of a function provided by another component as a regular function call
performed by the client component.

Note: At the time of writing, the proofs about CAmkES and CapDL are not yet
complete, but completion should not be far off.

Note also that none of the verification work mentioned deals with information
leakage through timing channels (yet). This is a major unsolved research
problem, but we’re at the forefront of solving it.
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Chapter 4

About Capabilities

We encountered capabilities in Chapter 1, noting that they are access token. We will
now look at the concept in more detail.

Obj reference
Access rights

Object

Figure 4.1: A capability is key that conveys specific rights to a particular object.

As shown in Figure 4.1, a capability is an object reference, in that sense it is similar to
a pointer (and implementation of capabilities are often referred as “fat pointers”). They
are immutable pointers, in the sense that a capability will always reference the same
object, so each capability uniquely specifies a particular object.

In addition to pointers, a capability also encodes access rights, in fact, the capability is
an encapsulation of an object reference and the rights it conveys to that object. In a
capability-based system, such as seL4, invoking a capability is the one and only way
of performing an operation on a system object.

For example, an operation may be to call a function in a component. The object
reference embedded in the capability then points to an interface to that object, and
conveys the right to invoke that function. The capability may or may not at the same
time convey the right to pass another capability along as a function argument
(delegating to the component the right to use the object referenced by the capability
argument).

This is a high-level description of what happens at the CAmkES abstraction level.
In fact, at the CAmkES level, the capabilities themselves are abstracted away.

Underneath, the connector is represented by an endpoint object, and the client
component needs a capability with call right.

It is this fine-grained object-oriented nature that makes capabilities the access-control
mechanism of choice for security-oriented systems. The rights given to a component
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can be restricted to the absolute minimum it needs ot do its job, as required by the
principle of least privilege.

Note that this notion of object capabilities is quite different from (and far more
powerful than) what Linux calls “capabilities”, which are really access-control
lists (ACLs) with system-call granularity. Linux capabilities, like all ACL schemes,
suffer from the confused deputy problem, which is at the root of many security
breaches. seL4 capabilities do not have this problem.

seL4 capabilities are also not susceptible to the attack of Boebert [1984]; this
attack applies to capabilities directly implemented in hardware while seL4’s
capabilities are implemented and protected by the kernel.

The seL4 objects referenced by capabilities are:

Endpoints which are used to perform protected function calls;

Address Spaces which provide the sandboxes around components and are
thin wrappers around hardware page tables;

Cnodes which store capabilities and represent a component’s access rights;

Notifications which are synchronisation objects (similar to semaphores);

Frames which represent physical memory that can be mapped into address
spaces;

Scheduling Contexts which represent the right to access a certain fraction of
execution time on a core; and

Untypeds which represent unused (free) physical memory and can be
converted (“retyped”) into any of the other types.
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Chapter 5

Support for Mixed-Criticality
Real-Time Systems

TBD
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Chapter 6

Security is No Excuse for Poor
Performance

Performance has always been the hallmark of L4 microkernels, and seL4 is no
exception. We built seL4 for real-world use, and our aim was not to lose more than
10% in IPC performance relative to the fastest kernels we had before. In fact, seL4
ended up beating the performance of those kernels.

And it beats the performance of any other microkernel. This is a claim that is difficult
to prove, as the competition generally holds their performance data close to their
chest (for very good reason!)

However we make this performance claim, publicly, at every opportunity. If anyone
disagrees they need to present evidence. We also know through a number of informal
channels that IPC performance of other systems tends to range between 2 times
slower than seL4 to much slower, typically around a factor 10.

The few independent performance comparisons certainly back our claim.

Mi et al. [2019] compare the performance of three open-source systems, seL4,
Fiasco.OC and Zircon. It finds that seL4 IPC costs are about 10–20% above the
hardware limit of kernel entry, address-space switch, kernel exit. Fiasco.OC is
more than a factor two slower than seL4 (close to three times the hardware
limit), and Zircon is almost nine times slower than seL4.

Gu et al. [2016] compare the performance of CertiKOS to seL4, measuring
3,820 cycles for a round-trip IPC operation in CertiKOS compared to 1,830 in
seL4, a factor of two. However, it turns out sel4bench, the seL4 benchmarking
suite, had at the time a bug in dealing with timers on x86, resulting in
exaggerated latencies. The correct seL4 performance figure is around 720
cycles, or more than five times faster than CertiKOS. This is in the context of
CertiKOS offering very limited functionality, and no capability-based security.
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Chapter 7

Real-World Deployment and
Incremental Cyber Retrofit

7.1 General considerations

When planning to protect the security or safety of your system with seL4, the first step
should be to identify the critical assets you need to protect. The aim should be to
minimise this part of your trusted computing base, and make it as modular as feasible,
with each module becoming an seL4-protected CAmkES component.

The other important preparation is to check availability and verification status of seL4
on your platform. Obviously you will want a verified kernel, that’s what seL4 is all
about. However, even on platforms where the kernel is not verified, the fact that it
shares much of its code with a verified platform will give you much higher assurance
than with almost any other OS. But keep in mind that without verification the
assurance is not what it can be. Also, you must not make any verification claim if you
are not using a kernel that is not verified for your platform, or that is in any way
modified.

You furthermore will need to assess whether the available user-level infrastructure is
sufficient for your purpose. If not, then this is where the community may help you.
There are companies specialising on providing support for seL4 adoption. Also, if you
develop any generally-useful components yourself, you should seriously consider
sharing them with the community under an appropriate open-source license. Those
who give back will find it easier to get help from others.

7.2 Retrofitting existing systems

Most real-world deployments of seL4 will not run everything native. Typically there are
significant legacy components that would be expensive to port, because they are too
big or rely on too many system services that are not presently supported by seL4.
Also, frequently there would be little security or safety gain from running such legacy
stacks natively.
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Figure 7.1: Incremental cyber-retrofit on the Boeing ULB mission computer during the
DARPA HACMS program.

Using seL4’s virtualisation capabilities is frequently the pragmatic way to proceed,
Section 2.3 shows examples.

A typical way to proceed is what we call incremental cyber-retrofit, a term coined by
then DARPA program director John Launchbury. It typically starts out by simply
putting the whole existing software stack into a virtual machine running on seL4.
Obviously this step buys nothing in terms of security and safety, it only adds (very
small) overhead. Its significance is that it provides a baseline from where to start
modularising.

A great example is the work our HACMS project partners did on cyber-retrofitting the
Boeing ULB autonomous helicopter. The original system ran on Linux, and in a first
step, the team put seL4 underneath.

The next step broke out two components: The particularly untrusted camera software
was moved to a second VM, also running Linux, with the two Linux VMs
communicating via CAmkES channels. At the same time, the network stack was
pulled out of the VM and converted to a native CAmkES component, also
communicating with the main VM.

The final step pulled all other critical modules, as well as the (untrusted) GPS
software, into separate CAmkES components, removing the original main VM. The
final system consisted of a number of CAmkES components running seL4-native
code, and a single VM running just Linux and the camera software.

The upshot was that while the initial system was readily hacked by the professional
pentesters hired by DARPA, the end state was highly resilient. The attackers could
compromise the Linux system and do whatever they wanted with it, but were unable to
break out and compromise any of the rest of the system. The team was confident
enough to demonstrate an attack in-flight.
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Chapter 8

Conclusions

This white paper has hopefully given you a reasonable idea of what seL4 is, what you
can do with it, and, importantly, why you would want to use it. I hope this will help you
become an active member of the seL4 community, including joining and participating
in the seL4 Foundation.

I expect this document will keep evolving, and I am keen on feedback. But most of all,
I’m keen to hear of your experience with deploying seL4.
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