UCSD-Embedded-C-Final-Assignment
Audio Helper

5/25/2020

Introduction:

My final project is a idea that was really born from having to stay home and
having my daughter staying home from school during this COVID-19 shelter in
place order. My daughter loves to listen to her music with her earphones in and
cut out us parents and my wife usually ends up have to almost scream to get her
attention. So that got me thinking that if | could make a device that "listens" for
an event then it could pause music and even pipe in what is being said into the
headphones.

In doing some research about using the microphones that are on the class
development board turned out to be rather complex and there is no software
support in the BSP package to use the microphones. So | would have to make a
driver from the ground up and with the amount of time | had this was not a option.
So | did the next best thing and used a analog microphone that will be sampled by
the STM32 ADC1. | also did not have time to integrate an audio DAC that would
pipe in the conversation audio.

System Overview:

The system | made has the basic functions to find the average baseline “noise” of
the surrounding environment, then while continually sampling the audio
microphone, if a average sample is higher then the baseline the system enters a
triggered mode. This is where it sets a time out for the audio event if the audio
sample is still higher then the baseline at the end of the timeout then action is
taken. The system action is to light the red LED, pause the source audio, switch
the audio channels over to the message audio source, play message, wait for user
to press the blue button, switch audio back to source, red LED off, and play source
audio. The system then restates and goes back to looking for a trigger event
again.

Hardware Setup:

The project was centered around the B-L475E-I0OT01A1 STM32 Development
board. | used several features of the STM32 Microcontroller which are: ADC1,
UART4, Timer6, and GPIO (Arduino GPIO Header and the Blue Button). The
external hardware | used was 2x 4 conductor headphone adapter boards, 2x
SN74HC4066DR analog switch chips, Red LED, and EMIC Text to Speech module
as my stand in DAC. The EMIC module will speak any ASCII text string you send it
over a UART interface. This is what | used to also alert the user of someone trying
to get there attention.

.
-
-
z
>
-
-
.

=

B

— i 4 & i £ 2P
This shows the whole working system.

skip Fo"mrd

Function Yoy Bus
y—) Ry gk 4 oo
|3 GAD

7* ?\;9‘* h w\nd
1 Leff Channe|

FUY\C‘}“O“ Chort
Fonction I Tdea| R] X Rongel Apprc DC Vooff

Dormart | 0Pen open 2.5
i/ 63 | o-BR| e ?]
Skit B 2200 [133-3220] O.179 B
SKiPfod G20Q ‘-(37~?((.2‘ T 0.429

This schematic shows how the pause command is sent to the smart phone or
device. By bring the 4™ signal pin to GND which will pause the play of audio. |
found that ~400mS was the right amount to pause and then play the audio on my
phone. If the signal is low for longer the phone will skip to the next song which
was a undesired command.

Kt Fycunerd
NESN
T [
Ex GnD
(.

WAV s Tem

£Emfey of oV

Frpeey i Flesww F 1B -or GBOD -acodec
Pom-siehe Fle.faw

Slebe ovdeot ormat s signed J(bt bigerdian
audio ratp U.MJ,J +o €000k,

L> Risvtchanne
U; Leff Chame]

Fonction Chort

BRI,

This shows the overall schematic of the audio switch over circuit and pause
switch.

Embedded Code Configuration:

After doing some more research on the STM32 ADC and Audio Sampling |
implemented the following system. | took advantage of a couple key components
of the ADC system: the ADC can be clocked at a high rate, ADC can over sample,
and the ADC has DMA support. | set up the ADC to provide 48KHz audio samples. |
referenced ST App note AN5012 page 17 to help with the ADC setup. | then used
the DMA to create a circular audio buffer that is filled with out the use of the CPU.
The microphone is sampled continually in the back ground with no CPU
intervention. The CPU does have to calculate the averages of the audio at buffer
half full and buffer full Interrupts.

The CPU just checks the average audio samples that come out and checks to see

it the sample is higher then the trigger level. If so then runs the algorithm to alert
the user.

STM32CubeMX B-L_ADC_AnalogMic_try1.ioc: STM32L475VGTX B-L475E-IOTO1A1 o ®

Window Help D oy x &y

Project Manager Tools

GubeMx

Home

sz @ File

| used STM32CubeMX to configure all the Microcontroller Peripherals. Shown is
how the clocks where configured to clock the ADC at 76.8MHz.

ADC1 Mode and Configuration :
Mode

IN1 [Disable v] l
INZ [Disable v
IN3 [Disable v
NG |Disab|e V‘
-Disable V‘
— M 1

Configuration

Reset Configuration

rameter Settings R

a6
©®@ 0 (i]

Clock Prescaler Asynchronous clock mode divided by 1
Resolution ADC 12-bit resolution
Data Alignment Right alignment
Scan Conversion Mode Enabled
Continugus Conversion Mode Disabled
Discontinuous Cenversion Made Disabled
DMA Continuous Regquests Enabled
End Of Conversion Selection End of single conversion
Overrun behaviour Overrun data preserved
Low Power Auto Wait Disabled
~ ADC_Regular_ConversionMode
Enable Regular Conversions Enable
Enable Regular Oversampling Enable
Oversampling Right Shift 2 bit shift for oversampling
Oversampling Ratio Oversampling ratio 64x
Regular Oversampling Mode Oversampling Continued Mode
Triggered Regular Oversampling single trigger for all oversampled conversions
Number Of Conversion 2
External Trigger Conversion Source Regular Conversion launched by software
External Trigger Conversion Edge Mone
> Rank 1
> Rank 2
~ ADC_Injected_ConversionMode
Enable Injected Conversions Disable

~ Analog Watchdog 1

Shown is the ADC baseline configuration.

ADC1 Mode and Configuration

R

IN1 [Disable |
IN2 [Disable |
IN3 [Disable v
IN& Disable v
-Disable V|
-]

Configuration

Reset Configuration

@ DMA Settin

DMA Request
ADCL DMAL Channel 1 Peripheral To Memory Low

ADC DMA is configured. | used the circular buffer setting.

ADC1 Mode and Configuration

Mode
IN1 [Disable | |
IN2 [Disable |
IN3 [Disable v |
IN& Disable |

-Disable V|
|]

Configuration

Reset Configuration

ettings) sttings | @& GPIO Settings

Search Signals

|~ h(crt+F) | O show only Modified Pins
[Pin Na... |Signal on ...|GPIO outp..]GPIO mode|GPIO Pull-. Fast Mode Modified
PCS ADC1_IN14 nja Analog m... No pull-up...nfa n/a ARD AO[

ADC input pin configuration.

TIME Mode and Configuration

A

Activated

[0 one Pulse Mode

Configuration

Reset Configuration

@ Parameter Settings

~ Counter Settings

Prescaler (PSC - 16 bits value) 19200
Counter Mode Up
Counter Period (AutoReload Register - 16 bit... 100
auto-reload preload Enable

~ Trigger Output (TRGO) Parameters
Trigger Event Selection Reset (UG bit from TIMx_EGR)

Timer 6 is used for the audio trigger timeout timer. The timer period was set for a
second timeout. This was used to try and filter out load noise spikes that would
give a false trigger. So if the trigger audio was still “load” at the end of the
timeout then was considered a real trigger event. | did try other timeout period
values as well. The timer prescaler is set to 1ms so the timer is incremented every
millisecond.

UART4 Mode and Configuration :
Mode |Asyn<hronﬂus \/|
Hardware Flow Control (R5232) v

@ Parameter Settings | @ User Constants | @ NVIC Settings | @ DMA Settings | @ GPIO Settings
IConfigure the below parameters :
~ Basic Parameters
Baud Rate 2400 Bits/s
word Length 8 Bits (including Parity)
Parity None
Stop Bits 1
~ Advanced Parameters
Data Direction Receive and Transmit
Over Sampling 16 Samples
Single Sample Disable
~ Advanced Features
Auto Baudrate Disable
TX Pin Active Level Inversion Disable
RX Pin Active Level Inversion Disable
Data Inversion Disable
TX and RX Pins Swapping Disable
Overrun Enable
DMA on RX Error Enable
MSB First Disable

UART4 is used to send the ASCII text strings to the EMIC Text To Speech Module
The baud rate is set to a slow 2400 baud as the module is old.

Embedded Code:

uintlé t MyMicValues[256];

uint32 t AudioSampleAccuml = ©, AudioSampleAccum2 = @;
68 uintlé t AudioAvl, AudioAv2, AudioAvTotal;

69 uintlé t GlobalTriggerlLevel;

760 ulntl6 t DescisionFLAG = @;

71 uintl6 t TriggerFLAG = @;

72 Uintlﬁ_t ButtonFLAG = 0;

73 uintl6 t NewAudioSampleFLAG = 0;

4
65 /* USER CODE BEGIN PV */
6
7

75 uint32 t DescisionLoopCNT= @;
76 uint32 t DescisionAccum = 8;
77 /* USER CODE END PV */

78
The global variables used in the call back functions.

uintlé t TriggerLoopCount = ©;
uint32 t TriggerAccum;
uintl6 t TriggerTotal;
uintlé t TriggerlLevel;

char *msg = "say=Please listen for important message;";
uintlé t len = strlen(msg);
//char *backmsg[128];

158 HAL GPIO WritePin(ARD D3 GPIO Port, ARD D3 Pin, SET);
159 HAL GPIO WritePin(ARD D4 GPIO Port, ARD D4 Pin, RESET);
166 HAL GPIO WritePin(ARD D5 GPIO Port, ARD D5 Pin, RESET);
163 //HAL TIM Base Start IT(&htimé);

165 HAL ADCEx Calibration Start(&hadcl, ADC SINGLE ENDED);
166 ~ HAL_ADC Start DMA(&hadcl, (uint32 t*)MyMicValues, BUF_LEN);

168 //HAL ADC Start(&hadcl);

169

17 while (TriggerLoopCount <= 1824)

71 | 1

172 //if (NewAudioSampleFLAG)

173 ToA

17 TriggerAccum = TriggerAccum + AudicAvTotal;
175 HAL Delay(15);

176 TriggerLoopCount++;

177 HAL GPIO TogglePin(LED2 GPIO Port, LED2 Pin);
178 /1Y

179 //NewhudioSampleFLAG = @;

180 }

181

182

183 // HAL TIM SET AUTORELOAD(&htimé,2000);

184

185 TriggerTotal = TriggerAccum >> 10;
186 TriggerLevel = TriggerTotal + 540;
187 GlobalTriggerLevel = TriggerLevel;
188 HAL _TIM Base Stop IT(&htimé);

189 TriggerAccum = 8;

190 /* USER CODE END 2 */

This is the start up code used. | calibrate the ADC and then start the ADC in DMA
mode. This is the only call | need to make to start getting audio samples in the
MyMicValues buffer.

The while loop is the code that is finding the average “noise” of the surrounding
area. Then lastly is the code to take the average and set the trigger level that will
be used.

while (1)
if (AudioAvTotal > TriggerLevel)
{
//HAL GPIO TogglePin(LED2 GPIO Port, LED2 Pin);
HAL TIM Base Start IT(&htim6);
while(!DescisionFLAG);
/1
// 1if (NewAudioSampleFLAG)
171
// DescisionAccum = DescisionAccum + AudioAvTotal;
//DescisionLoopCNT++;
/1}
//NewhAudioSampleFLAG = @;
i}
HAL TIM Base Stop IT(&htimé);
if (TriggerFLAG)
{
//HAL TIM Base Stop IT(&htim6);
HAL GPIO WritePin(ARD D8 GPIO Port, ARD D8 Pin, SET); //red LED
HAL GPIO WritePin(ARD D5 GPIO Port, ARD D5 Pin, SET); //pause audio source
HAL Delay(400);
HAL GPIO WritePin(ARD D5 GPIO Port, ARD D5 Pin, RESET);
HAL GPIO WritePin(ARD D3 GPIO Port, ARD D3 Pin, RESET);
HAL GPIO WritePin(ARD D4 GPIO Port, ARD D4 Pin, SET); //switch over audio
for(uintlé t messageloop =0; messagelLoop < len; messagelLoop++)
{
HAL UART Transmit(&huart4, (uint8 t *)&msg[messageLoop], 1, 0);
//HAL UART Receive(&huart4, (uint8 t #)&backmsg,2,0);
HAL Delay(5); //should find TX ready flag
}
//HAL UART Receive(&huart4, (uint8 t *)&backmsg,2,0);
while(!ButtonFLAG);
ButtonFLAG = ©;
HAL GPIO WritePin(ARD D3 GPIO Port, ARD D3 Pin, SET);
HAL GPIO WritePin(ARD D4 GPIO Port, ARD D4 Pin, RESET); //switch over audio
HAL_GPIO WritePin(ARD D5 GPIO Port, ARD D5 Pin, SET); //un-pause audio source
HAL Delay(480);
HAL GPIO WritePin(ARD D5 GPIO Port, ARD D5 Pin, RESET);
HAL GPIO WritePin(ARD D& GPIO Port, ARD D8 Pin, RESET);//RED LED
TriggerFLAG = 0;
DescisionFLAG = ©;
}
else
// HAL TIM Base Stop IT(&htimé);
HAL GPIO WritePin(ARD D8 GPIO Port, ARD D8 Pin, RESET);
//TriggerFLAG = 8;
DescisionFLAG = B;

/* USER CODE END WHILE #*/
/* USER CODE BEGIN 3 #*/
by
/* USER CODE END 3 #*/

254 }

255 /*USER CODE BEGIN 4*/) o

This is the main loop which handles the trigger timeout and then the main
function of alerting the user and switch the audio.

Once a valid trigger is found the code will turn ON the red LED, pause the audio,
switch the audio to the Text To Speech module, Play the text message, then wait
for the user to press the blue button, the audio this then switched back, and the
source audio is set to play.

255 /*USER CODE BEGIN 4%/

256- void HAL_ADC_ConvHalfCpltCallback(ADC HandleTypeDef *hadc)
257 {

258 for(uintl6é t AvCount = ©; AvCount <= HALF BUFF _LEN; AvCount++)
259 {

260 AudioSampleAccuml = AudioSampleAccuml + MyMicValues[AvCount];
261 }

262 AudioAvl = AudioSampleAccuml >> 7;

263 AudioSampleAccuml = AudioAvl; //running audio average
264 }

265

266~ volid HAL_ADC_ConvCpltCallback(ADC HandleTypeDef *hadc)

267 {

268 for(uintl6é t AvCount = HALF BUFF LEN; AvCount <= BUF LEN; AvCount++)
269 {

278 AudioSampleAccum? = AudioSampleAccum? + MyMicValues[AvCount];
271 }

272 AudicAv2 = AudioSampleAccum2 >> 7;

27 AudioAvTotal = (AudioAvl + AudioAv2) == 1;

274 AudioSampleAccum2 = AudioAv2; //running audio average
275 NewAudioSampleFLAG = 1;

276

277 }

278

279=void HAL_TIM PeriodElapsedCallback(TIM HandleTypeDef *htim)
280 {

281 HAL GPIO TogglePin(LED2 GPIO Port, LED2 Pin);

282 //uint32 t temp;

283 DescisionFLAG = 1;

284 //temp = (DescisionAccum / DescisionLoopCNT);

285 if (AudioAvTotal = GlobalTriggerLevel)

286 {

287 TriggerFLAG = 1;

288 }

289 DescisionAccum = 8;

298 DescisionLoopCNT = ©;

291 }

292

293~ void HAL_GPIO_EXTI_Callback(uintlé t GPIO Pin)

294 {

295 UNUSED(GPIO Pin);

296 ButtonFLAG = 1;

297 }

298 /*USER CODE END 4%/
| used 4 call back functions in my program. The two ADC Interrupt functions are
triggered when the ADC DMA has filled half the buffer and when the buffer is full.
When the half is triggered the DMA is already filling the next half and when the
full is triggered the DMA is filling the bottom half of the buffer again. This works so

that new audio samples are always being written into the buffer and the audio
sample averages are always being calculated.

The TIM call back is for the Timer 6 period elapsed which is when the period
compare register is equal to the timer counter. This signals the end of the audio
trigger timeout and sets a flag for the main loop to execute the audio switch over.
The GPIO call back is for the blue button to signal the user is done listening to who
or what need there attention and is ready to turn back to there music.

Capture of the UART4 serial data stream to the Text To Speech Module.

4+ Debug 2 & Y = 0 9 Breakpoints = Variables £2 |&f Live Expressions = 8
[E]B-L_ADC_AnalogMic_try1.elf [Embedded C/C++ Application] E B Ot ¥
- i .
i B-L_ADC_AnalogMic_try1.elf [cores: 0] Hame Type Talne
Thread #1 1 [core: 0] (Suspended : Ste
i — [- 705005‘)34 p) ¢-TriggerLoopCount uint16_t 1025
T= _m'"() — l _ e -TriggerAccum uink32_t 32182632
u.':f ome/biscuit2/ARMTools/bin/arm-atollic-eabi-gdb (7.10.1.20160923) w-TriggerTotal uint16_t 31428
L ETRLS -TriggerLevel uint16_t 31968
» msq char * 0x8006F3c "say=Please list:
[€ main.c &2 = 8

//__HAL TIM SET AUTORELOAD(&htimé,2000);

TriggerTotal = TriggerAccum >> 16;
TriggerLevel = TriggerTotal + 5460;
GlobalTriggerLevel = TriggerLevel;
HAL_TIM Base Stop IT(&htimé);
TriggerAccum = 0;

/* USER CODE END 2 */

Shows the debugger running and the “noise” trigger level has been found to be
31968.

(SRR I S

4 Expressions i |

Expression Type Value

- (2 MyMicValues uint16_t[256] 0%2000057¢ <MyMicValues>

~ [&[0...99] uint16_t [100] 0x2000057¢ <MyMicValues>

9= MyMicValues[0] uint16_t 30690
)= MyMicValues[1] uint16_t 30860
- MyMicValues[2] uint16_t 31050
)= MyMicValues[3] uint16_t 31362
9= MyMicValues[4] uint16_t 31323
9= MyMicValues[5] uint16_t 31613
9= MyMicValues[6] uint16_t 31184
- MyMicValues[7] uint16_t 31017
9= MyMicValues[8] uint16_t 31125
9= MyMicValues[9] uint16_t 30969
9= MyMicValues[10] uint16_t 30973
9= MyMicValues[11] uint16_t 31187
- MyMicValues[12] uint16_t 31385
6= MyMicValues[13] uint16_t 31488
9= MyMicValues[14] uint16_t 31332
9= MyMicValues[15] uint16_t 31304
9= MyMicValues[16] uint16_t 31303
6= MyMicValues[17] uint16_t 31393
9= MuMicValuesl181 uint16 31158

This is the Audio samples buffer that is filled through DMA.

b (= MyMicValues uint16_k [256] 0x2000057¢ <MyMicValues>

t9= AudioAvl uint16 k 31582

t9= AudioAv2 uint16_k 41729

t9= AudioAvTotal uint16 t 36655

t9-TriggerFLAG uint16_kt 1

- DescisionFLAG
t9-NewAudioSampleFLAG uint16 _t 1

#9-DescisionAccum uint32 t 0

#9-DescisionLoopCNT uint32_k 0

t9-GlobalTriggerLevel uint16 31968

=# Add new expression

This is a Audio Trigger that has made it through the timeout and will be processed.

Problems and Future Steps:

The Audio Trigger still has bugs and is hard to find a valid trigger sample because
the audio sample buffer is being filled so fast and audio samples are complex.
Audio noise in the environment also is causing false triggers but the timeout did
help to filter out so spikes. | did not get to really test this system out but the audio
pause and audio switching really works well and there is not noticeable sound
degradation. | think a better trigger timer code would help to find valid audio
triggers in the buffer along with better audio filtering.

I am going to keep working with this project and will look into more ways to
process the audio samples to detect when the user needs to be interrupted and
when the users does not. Maybe look into Audio Key Word Detection or some kind
of Audio FFT Algorithm. I also would like to work with an I12S DAC to use instead of
the Text To Speech Module.

Conclusion and Lessons Learned:

In conclusion | get a audio system to sample a analog microphone and then was
able to process that data into an average audio level and make a decision based
on that data to control a smart phone audio input. Even through the audio trigger
is still has bugs and needs work | think this project was a success. | learned that
audio systems are more complex then | originally thought but learned a lot about
using embedded code and using the HAL drivers and STM32cubeMX. | hope to
keeps this project moving forward and make a more usable system.

