
UCSD-Embedded-C-Final-Assignment
Audio Helper

5/25/2020

Introduction:
My final project is a idea that was really born from having to stay home and
having my daughter staying home from school during this COVID-19 shelter in
place order. My daughter loves to listen to her music with her earphones in and
cut out us parents and my wife usually ends up have to almost scream to get her
attention. So that got me thinking that if I could make a device that "listens" for
an event then it could pause music and even pipe in what is being said into the
headphones.
In doing some research about using the microphones that are on the class
development board turned out to be rather complex and there is no software
support in the BSP package to use the microphones. So I would have to make a
driver from the ground up and with the amount of time I had this was not a option.
So I did the next best thing and used a analog microphone that will be sampled by
the STM32 ADC1. I also did not have time to integrate an audio DAC that would
pipe in the conversation audio.

System Overview:
The system I made has the basic functions to find the average baseline “noise” of
the surrounding environment, then while continually sampling the audio
microphone, if a average sample is higher then the baseline the system enters a
triggered mode. This is where it sets a time out for the audio event if the audio
sample is still higher then the baseline at the end of the timeout then action is
taken. The system action is to light the red LED, pause the source audio, switch
the audio channels over to the message audio source, play message, wait for user
to press the blue button, switch audio back to source, red LED off, and play source
audio. The system then restates and goes back to looking for a trigger event
again.

Hardware Setup:
The project was centered around the B-L475E-IOT01A1 STM32 Development
board. I used several features of the STM32 Microcontroller which are: ADC1,
UART4, Timer6, and GPIO (Arduino GPIO Header and the Blue Button). The
external hardware I used was 2x 4 conductor headphone adapter boards, 2x
SN74HC4066DR analog switch chips, Red LED, and EMIC Text to Speech module
as my stand in DAC. The EMIC module will speak any ASCII text string you send it
over a UART interface. This is what I used to also alert the user of someone trying
to get there attention.

 This shows the whole working system.

HeadphonesHeadphones
Smartphone

Microphone

STM32 Dev Board

External Hardware

Source Audio

User Audio

Switch to Pause

Switch for
audio Channels

Red LED

EMIC Module

This schematic shows how the pause command is sent to the smart phone or
device. By bring the 4th signal pin to GND which will pause the play of audio. I
found that ~400mS was the right amount to pause and then play the audio on my
phone. If the signal is low for longer the phone will skip to the next song which
was a undesired command.

This shows the overall schematic of the audio switch over circuit and pause
switch.

Embedded Code Configuration:
After doing some more research on the STM32 ADC and Audio Sampling I
implemented the following system. I took advantage of a couple key components
of the ADC system: the ADC can be clocked at a high rate, ADC can over sample,
and the ADC has DMA support. I set up the ADC to provide 48KHz audio samples. I
referenced ST App note AN5012 page 17 to help with the ADC setup. I then used
the DMA to create a circular audio buffer that is filled with out the use of the CPU.
The microphone is sampled continually in the back ground with no CPU
intervention. The CPU does have to calculate the averages of the audio at buffer
half full and buffer full Interrupts.
The CPU just checks the average audio samples that come out and checks to see
it the sample is higher then the trigger level. If so then runs the algorithm to alert
the user.

I used STM32CubeMX to configure all the Microcontroller Peripherals. Shown is
how the clocks where configured to clock the ADC at 76.8MHz.

Shown is the ADC baseline configuration.

ADC DMA is configured. I used the circular buffer setting.

ADC input pin configuration.

Timer 6 is used for the audio trigger timeout timer. The timer period was set for a
second timeout. This was used to try and filter out load noise spikes that would
give a false trigger. So if the trigger audio was still “load” at the end of the
timeout then was considered a real trigger event. I did try other timeout period
values as well. The timer prescaler is set to 1ms so the timer is incremented every
millisecond.

UART4 is used to send the ASCII text strings to the EMIC Text To Speech Module
The baud rate is set to a slow 2400 baud as the module is old.

Embedded Code:

The global variables used in the call back functions.

Local variables used and the Text To Speech string used.

This is the start up code used. I calibrate the ADC and then start the ADC in DMA
mode. This is the only call I need to make to start getting audio samples in the
MyMicValues buffer.

The while loop is the code that is finding the average “noise” of the surrounding
area. Then lastly is the code to take the average and set the trigger level that will
be used.

This is the main loop which handles the trigger timeout and then the main
function of alerting the user and switch the audio.

Once a valid trigger is found the code will turn ON the red LED, pause the audio,
switch the audio to the Text To Speech module, Play the text message, then wait
for the user to press the blue button, the audio this then switched back, and the
source audio is set to play.

I used 4 call back functions in my program. The two ADC Interrupt functions are
triggered when the ADC DMA has filled half the buffer and when the buffer is full.
When the half is triggered the DMA is already filling the next half and when the
full is triggered the DMA is filling the bottom half of the buffer again. This works so

that new audio samples are always being written into the buffer and the audio
sample averages are always being calculated.
The TIM call back is for the Timer 6 period elapsed which is when the period
compare register is equal to the timer counter. This signals the end of the audio
trigger timeout and sets a flag for the main loop to execute the audio switch over.
The GPIO call back is for the blue button to signal the user is done listening to who
or what need there attention and is ready to turn back to there music.

Capture of the UART4 serial data stream to the Text To Speech Module.

Shows the debugger running and the “noise” trigger level has been found to be
31968.

This is the Audio samples buffer that is filled through DMA.

This is a Audio Trigger that has made it through the timeout and will be processed.

Problems and Future Steps:
The Audio Trigger still has bugs and is hard to find a valid trigger sample because
the audio sample buffer is being filled so fast and audio samples are complex.
Audio noise in the environment also is causing false triggers but the timeout did
help to filter out so spikes. I did not get to really test this system out but the audio
pause and audio switching really works well and there is not noticeable sound
degradation. I think a better trigger timer code would help to find valid audio
triggers in the buffer along with better audio filtering.
I am going to keep working with this project and will look into more ways to
process the audio samples to detect when the user needs to be interrupted and
when the users does not. Maybe look into Audio Key Word Detection or some kind
of Audio FFT Algorithm. I also would like to work with an I2S DAC to use instead of
the Text To Speech Module.

Conclusion and Lessons Learned:
 In conclusion I get a audio system to sample a analog microphone and then was
able to process that data into an average audio level and make a decision based
on that data to control a smart phone audio input. Even through the audio trigger
is still has bugs and needs work I think this project was a success. I learned that
audio systems are more complex then I originally thought but learned a lot about
using embedded code and using the HAL drivers and STM32cubeMX. I hope to
keeps this project moving forward and make a more usable system.

