
STM8 BASIC

Embedded
for the

STM8S103F3 Microcontroller

User’s Manual

Copyright © 2019, 2020 by Roger DiPaolo
All Rights Reserved

1.0 Welcome
Thank you for acquiring your new STM8S103F3 Minimum System

Board preloaded with the STM8S103F3 version of STM8 BASIC Embedded.

STM8 BASIC Embedded is a version of the BASIC language designed
specifically for small 8-bit microcontrollers with very limited memory – meaning it
will run on very inexpensive microcontrollers. It was inspired by early versions
of BASIC (Beginner’s All purpose Symbolic Instruction Code) such as the
original version, Dartmouth BASIC and BASIC versions such as used on vintage
8-bit Personal Computers – in this sense it is also honoring the early days of
programming in BASIC when 8-bit computers began a revolution in the
computing world. If you’ve ever programmed using BASIC on a 1980’s or earlier
personal computer this style of BASIC will seem very familiar to you – and even
if you haven’t you will still find STM8 BASIC Embedded very easy to learn and
use.

STM8 BASIC Embedded’s goal is to allow you to program a microcontroller to
do anything it supports, within limited memory constraints of course, controlling
it at the register level using a very simple and easy to learn interpreted
language.

STM8 BASIC Embedded provides features not known to most varieties of the
BASIC language, features specifically designed to allow you do things required
when register level programming a microcontroller such as hexadecimal math,
hexadecimal user I/O, and bitwise logical operators common to languages such
as C and C++ (although the syntax of course differs).

STM8 BASIC Embedded gives you maximum visibility and reach into the
Microcontroller and it’s memory. With the exception of the code memory for the
actual BASIC environment and interpreter by using the PEEK and POKE, along
with the very powerful “M-Command” function, you can access almost any
memory location and all of the peripheral device registers with both read and
write capabilities – if you really want to get tricky you can, if you are very very
careful, even modify the BASIC code memory itself which holds your BASIC
program that exists in non-volatile EEPROM. Yes, (partially) self-modifying code

is possible with this system – and of course messing things up if you don’t do it
exactly right is very possible as well. ;)

For debugging your BASIC programs a debug tool is provided which both traces
line execution and outputs the values of all variables at that point in time.

There are some things that STM8 BASIC Embedded wasn’t designed for that
other varieties of BASIC do well. All of them would have been included if there
was enough code space on the microcontroller to support them, but there isn’t
so it was decided that what would be left out of this version of BASIC was
anything not absolutely necessary for the use of the microcontroller’s peripheral
devices. This BASIC is intended primarily for controlling hardware devices such
as I/O (Input/Output) ports, A/D (Analog to Digital) converter inputs, and PWM
(Pulse Width Modulated) outputs on microcontrollers so small that they don’t
have the memory to support other versions of BASIC besides STM8 BASIC
Embedded.

NOTE: It is strongly recommended to carefully review all of the example
programs in this manual as a great deal of detailed information about the
system can be gained from the listings and their descriptions.

2.0 Getting Started

You will first need to connect your board to power and a
serial terminal. If you are using a standard Serial to USB
converter cable then refer to the diagram below.

WHITE wire
from Serial to
USB converter

GREEN wire from
Serial to USB
converter

BLACK wire
from Serial to
USB converter

RED wire
from Serial to
USB
converter

USB to Serial
converter

connections

The key connection points are:

D5 RS232 serial TX (transmit) out of your board (3.3 volt levels).

D6 RS232 serial RX (receive) into your board (3.3 volt levels).

GND Ground (from power supply, wire usually black)

5V 4.5 to 15 volts into the voltage regulator (wire usually red)

3V3 3.3 volts out from the voltage regulator (powers the micro & LEDs)

The on-board USB connector only provides power to the board, there is no
actual USB connection. Power is usually provided through a Serial to USB
cable as shown in the connection diagram above. Note that the power input is
+4.5 to +15 VDC, whereas the microcontroller runs on +3.3VDC. There is a
voltage regulator on the underside of the board that converts the +4.5 to +15
VDC to +3.3VDC to power the microcontroller. All Board I/O expects inputs to
be 0 to +3.3VDC, and outputs from 0 to +3.3VDC. If you are interfacing to any
+5VDC level inputs or outputs you will need to use 5V<=>3.3V level converters,
or “level shifters” (easily and inexpensively available on the internet), or else you
risk damaging your microcontroller and/or connected devices.

The 3V3, SWIM, GND, and NRST connection points on the opposite end of the
board from the USB connector are exclusively for development and debugging
of the processor’s native code (The BASIC interpreter and environment) and
therefore are not used.

The “RST” connection point can be used to reset the microcontroller by pulling
the line to ground and releasing it, doing exactly the same function as if the on
board reset button had been pressed. All other connection points not in use can
be programmed to be inputs or outputs of the microcontroller’s internal devices.

The RS-232 Serial interface consists of the TX (transmit) line out of the board at
connection point D5, and RX (receive) at connection point D6. The connection
diagram shows the wire colors for connecting the 4 wires of a standard serial to
USB cable with wires in place of a standard DB-9 serial port connector.

The serial interface works with the following parameters:

Data rate: 115200 Baud
Parity: None
Data bits: 8
Stop bits: 1

This board is intended to be used with a serial terminal as the user interface. If
you are connecting to a Windows host PC, the “Tera Term” freeware terminal
program is recommended for use, as it has been found to work better than the
others tested for use with this board although most serial terminal programs can
be used.

A direct serial connection, instead of going through a serial to USB cable, can be
used as well as long as the TX (connection point D5) and RX (connection point
D6) serial lines are level shifted into and out of the board between 3.3VDC on
board and 5VDC externally to interface directly to PC serial ports.

Below is a schematic of your board:

IMMEDIATE COMMANDS FOR STM8 BASIC EMBEDDED
--

LIST List the current program, with a
pause every 10 lines. This is the
only command that also works in Edit
mode.

NEW Clears all BASIC program memory.

RUN Executes the program currently in
BASIC program memory, if any exists.

EDIT Unlike traditional BASIC, STM8 BASIC
employs an "Edit mode" entered by
this command. You will notice that in
Edit mode the prompt will change from
'OK' to ':'

 NOTE: USE AN "ESCAPE" KEYPRESS TO
EXIT EDIT MODE AND RETURN TO THE
COMMAND ENVIRONMENT.

AR Reports current autorun state, on or
off

ARON Enables automatic execution of
current program on power-on or reset
(not recommended until you have a
fully stable program).

AROFF Disables automatic execution of
program on poweron or reset - DEFAULT
MODE. This is a non-volatile setting.

CLR Performs an ANSI Clear Screen on the
terminal display.

MEM Report BASIC program memory status.
Shows current number of bytes free.

RST Cause a hard reset of the CPU

DBGON Turn on execution debug
(DeBuGON). This debugging tool shows
the line number and full text of each
line just after the line executes,
along with a display showing the
current value of all variables at
that moment.

DBGOFF Turn off execution debug

(DeBuGOFF).

<’ESC’ Key> Exit to the command environment from
either an executing program or Edit
mode.

STM8 BASIC EMBEDDED PROGRAM FUNCTIONS & STATEMENTS
--

CLR
Performs an ANSI Clear Screen on the
terminal display.

END
When encountered END will halt program
execution and return to the command
environment. Not required if your program
loops “forever” and never ends, or simply
executes a linear sequence of statements
with no “forever” looping. No line
following the last valid execution
line of a BASIC program will imply an
“END” without actually needing one.
Excellent for looping until a program exit
condition is met, then branching to an
“END” statement.

FOR var = expression TO expression

Loop between this line and the line
containing “NEXT <var>” by first assigning
your chosen variable to the initial value
after which it will be automatically
incremented by one each time through the
loop until it reaches the terminal count
specified in the “TO” expression. After
terminal count is reached execution will
continue at the line following the “NEXT
<var>” line.

GOSUB (subroutine line number expression)

Go to the line number indicated by the
expression (start of the subroutine), then

return to the line following this one upon
encountering the first occurrence of a
RETURN statement in the subroutine.

GOTO (destination line number expression)

Continue program execution at the
destination line number indicated by the
expression.

IF (comparison expression) THEN (“GOTO” expression)

If the comparison expression evaluates to
TRUE, then continue program execution at
the line number indicated by the ‘GOTO’
expression. Note that the explicit use of
the keyword “GOTO” is not part of the IF
statement syntax, but it is implied.

INPUT variable

Waits for the user to enter either a
positive or negative integer value from
-32767 to 32767 if the variable is A
through F. Variables G through L, and Z,
are unsigned 16-bit variables with a
range of 0 to 65535 ($FFFF). Variables N
through Y have a range of from 0 to 255.
Hexadecimal input is also supported, the
Hexadecimal number must be preceded by a
‘$’ character (such as: $FF for 255).

NOTE: Hitting the escape (ESC) key instead
of entering a numeric value will skip that
INPUT statement without altering the value
of the specified variable.

LON (v2.3 or later only)

Illuminate the on-board user LED. Note
that this is destructive to all Port B
bits. For register safe LED usage see
the example programs.

LOFF (v2.3 or later only)

Extinguish the on-board user LED. Note
that this is destructive to all Port B
bits. For register safe LED usage see
the example programs.

M (4-byte hex address)(hex data bytes)

This can be considered “POKE on steroids”.
The “M” command (for ‘M’emory insert)
takes the first 4 hex digits following the
character ‘M’ as the starting address to
write the subsequent data bytes to. Each
data byte is entered as 2 hex digits to be
written to subsequent memory locations.
Note that as in the example there is no
space between the “M” and the first digit
of the address.

Example:

10 M02001122334455667788

This writes the 8 bytes, $11, $22, $33,
$44, $55, $66, $77, and $88 to 8
subsequent memory locations beginning at
address $0200.

NOTE: 256 bytes of volatile User RAM is
available from $0200 to $02FF, and is
reserved exclusively for your use.

NEXT variable

(see FOR statement description)

var = NOT variable

NOT Performs a unary bitwise negation
(inversion) on the variable (ex: $FF
becomes $00, and $55 becomes $AA, etc.).

var = PEEK (address expression)

Assign to variable the 8-bit byte contents
of the STM8 memory address indicated by
expression. PEEK of a non-existent memory
location will cause no harm – your program
will keep right on running normally, but
it will return a garbage value.

NOTE: 256 bytes of volatile User RAM is
available from $0200 to $02FF, and is
reserved exclusively for your use.

POKE (address expression),(data expression)

Set the value of the STM8 memory location
indicated by the address expression to the
value indicated by the 8-bit byte data
expression. If the data expression
evaluates to 16 bits (such as variables A
through L, and Z) then the value POKE’d is
truncated to the value of the least

significant 8-bits of the variable. POKE
to a non-existent memory location will
cause no harm – your program will keep
right on running normally.

NOTE: 256 bytes of volatile User RAM is
available from $0200 to $02FF, and is
reserved exclusively for your use.

PRINT string

Print to the user console the literal
string contained between double-quotes
(“”).

Nothing following the closing quote
tells PRINT to automatically add a
carriage return and line feed, a semi-
colon (;) tells PRINT to leave the cursor
at the end of the printed string, a
comma (,) tells PRINT to TAB 4 spaces
after printing the string, and lastly an
underscore character (_) will cause a
carriage return on the current line with
no linefeed after printing the string
(good for overwriting something already
existing on the same line).

PRINT “”

Prints nothing, only outputs a carriage
return followed by a line feed.

PRINT expression

Prints the numeric value of expression to
the user console, followed by a carriage
return and a line feed.

PRINT variable

Prints the numeric value of the variable,
in either decimal or hexadecimal. The
default is decimal, and to print a
hexadecimal value simply precede the
variable with a “$” character (ex: 20
PRINT $A).
Nothing following the variable tells PRINT
to automatically add a carriage return and
line feed, a semi-colon (;) tells PRINT to
leave the cursor at the end of the printed
number, a comma (,) tells PRINT to TAB
4 spaces after printing the number, and
lastly an underscore character (_) will
cause a carriage return on the current
line with no linefeed after printing the
variable value (good for overwriting
something already existing on the same
line).

PRINT <nothing following>

You’ve heard about them, but until now
never actually seen one – a real bug that
became a legitimate feature!

This version of PRINT, which is only a
“PRINT” statement followed by nothing,
will print out the line number of the
line following this one (if any exists)
and do nothing else. The next line will
execute normally.

REM any text
BASIC’s answer to code commenting. Due to
the fact that each byte of a REM takes up

precious BASIC program memory space, it is
recommended to use REM only as absolutely
needed. The BASIC interpreter does
absolutely nothing with a REM statement
but to pass over it to the next line.

RETURN
(see description of GOSUB)

RST
Cause a hard reset of the CPU, equivalent
to a power-on restart of the STM8
microcontroller.

SLEEP expression

Pauses program execution for the number of
seconds indicated by the expression.
(Note: due to use of the internal
microcontroller oscillator instead of an
on-board external oscillator this timing
is approximate and may vary slightly from
board to board).

USR expression

Causes CPU execution to jump to a machine
code routine that begins at the address
indicated by expression.
It is the user’s responsibility to insure
that the user routine performs a proper
return – whereupon the BASIC program will
continue execution as normal at the line
following this line.

NOTE: 256 bytes of volatile User RAM is
available from $0200 to $02FF, and is
reserved exclusively for your use.

WAIT expression

Pauses program execution for the number of
tenth-milliseconds (0.1 ms) indicated by
the expression. (Note: due to use of the
internal microcontroller oscillator
instead of an on-board external oscillator
this timing is approximate and may vary
slightly from board to board).

variable=expression

A simple variable assignment.

STANDARD OPERATORS (grouped by precedence, high to low)

> Greater than
< Less than
<= Less than or equal to
>= Greater than or equal to

* Multiply
/ Divide
% Modulus (Remainder of a Divide)

+ Add
- Subtract

= Equate (comparison)
<> Not equals

BITWISE OPERATORS (grouped by precedence, high to low)
----------------- (the precedence of all “bitwise”
operators is lower than the precedence of all “standard”
operators)

>> (shift right)
<< (shift left)

& (AND)

^ (XOR)

| (OR)

NOT (unary operator, ex: “40 Y=NOT X”)
(NOTE: Precedence does not apply to “NOT”)

ASSIGNMENT OPERATOR (lowest of all precedence)

= Assignment operator

VARIABLES

STM8 BASIC Embedded uses system predefined single letter
variables. Note that all variables are capital, not lower
case, letters.

Variables A through F are signed 16-bit integers (range
-32768 to 32767).

Variables G through L, and non-volatile variable Z, are
unsigned 16-bit integers (range 0 to 65535 which is $FFFF
hexadecimal).

Variables N through W are unsigned 8-bit bytes (range 0 to
255 or $00 to $FF hexadecimal), as are the non-volatile
byte variables X and Y.

Z is an unsigned 16-bit integer (range 0 to 65535, or $0000
to $FFFF in hexadecimal) and actually shares memory space
with X and Y such that X = the high byte of Z, and Y = the
low byte of Z. Changes to Z can affect X and/or Y. Any
changes to X and Y of course also affect Z.

Variables are not initialized, so be sure to initialize any
variables you use before using their contents as they will
contain random values after a power-on – with the exception
of X, Y, and Z which are located in non-volatile memory.

EDITING

- Edit mode is entered from command mode by using the
“EDIT” command. Edit mode is exited by using the Escape
key (ESC).

- The Line Editor uses line re-entry to overwrite an
existing line.

- Entering a line number with nothing following it deletes
the line.

- Line numbers can be in the range of 1 to 32767

- Maximum number of program lines allowed vary per
processor and STM8 BASIC version.

BASIC program length is limited by the condition
encountered first: either the maximum number of program
lines for the given processor or all of program memory
used.

Note that each program line includes a termination "NULL"
character (a value of zero) that the programmer cannot
alter, this NULL is counted as a part of the program for
purposes of determining a line's length. Line numbers and
all spaces are also counted as part of a program line's
length.

For the STM8S103F3 the maximum number of BASIC lines is 100
and the maximum program line length is 32 characters, line
numbers and spaces included.

NOTE: REGARDLESS OF THE NUMBER OF PROGRAM LINES, ONLY A
MAXIMUM NUMBER OF 630 CHARACTERS (Bytes) IN TOTAL IS
ALLOWED for a BASIC program on the STM8S103F3.

REQUIRED INPUT FORMAT

The reasons for requiring this formatting is to keep the
code small enough to fit in an STM8 microcontroller with
room left to run BASIC. If the BASIC interpreter code
expects something to be in a certain place it's alot less
code required than for doing a search.

- ALL INPUT WILL BE ATTEMPTED TO BE CONVERTED BY THE BASIC
ENVIRONMENT TO UPPERCASE, "Except within strings in your
BASIC code". It is still the programmer’s responsibility
to insure that all BASIC code (excluding text inside of
quoted strings) must be UPPERCASE.

- NO SPACE IS ALLOWED BEFORE THE LINE NUMBER WHICH MUST
BEGIN EACH LINE OF CODE.

- ONE SPACE AND ONLY ONE SPACE must follow the line number
(unless deleting the line in Edit Mode)

- Outside of strings DO NOT ADD SPACES to expressions
except as shown below!! Here are some valid examples:

50 A=B
210 X=$FF
45 Y=PEEK A
20 POKE A,N (or POKE A N)
30 L=((32*B)/R)+1)
200 FOR I=0 TO T
300 IF X>Y THEN (3000+(D*100))

Note that there is never a space on either side of an
equals sign or operator, nor inside of an expression.

IMPORTANT MEMORY REGIONS

Hexadecimal Address | Memory region | Notes

$0000 STM8 System RAM Start
$01FF STM8 System RAM End
$0200 User RAM start User RAM is 256
$02FF User RAM end bytes.
$0300 STM8 System RAM Start
$03FF STM8 System RAM End
$4000 (non-volatile) BASIC prog mem Start
$4276 (non-volatile) BASIC prog mem End
$4277 (non-volatile) BASIC ENV NV data Start
$427F (non-volatile) BASIC ENV NV data End
$4800 STM8 registers Start
$7F92 STM8 registers End
$8000 (PROTECTED) BASIC ENV/INTRP Start
$9FFF (PROTECTED) BASIC ENV/INTRP End

NON-VOLATILE PROGRAM MEMORY

BASIC program memory for STM8 BASIC is non-volatile,
meaning that your BASIC program will not disappear when you
power off or reset the processor. To erase your program
you must use the “NEW” command or completely overwrite it
in Edit mode.

The variables X, Y, and Z are also contained in the Non-
volatile (NV) memory area along with a small area reserved
for use by the BASIC environment for non-volatile system
flags.

STM8 PERIPHERAL BASE REGISTER ADDRESSES

NOTE: It is highly recommended to refer to documents
“stm8s103f3.pdf” and “cd00190271.pdf”, the microcontroller
datasheet and reference manual which contains the
information needed to program this microcontroller’s
registers, available for download at:

https://www.st.com/resource/en/datasheet/stm8s103f3.pdf

https://www.st.com/resource/en/reference_manual/cd00190271.
pdf

 OPT_BaseAddress $4800
 GPIOA_BaseAddress $5000
 GPIOB_BaseAddress $5005
 GPIOC_BaseAddress $500A
 GPIOD_BaseAddress $500F
 GPIOE_BaseAddress $5014
 GPIOF_BaseAddress $5019
 GPIOG_BaseAddress $501E
 GPIOH_BaseAddress $5023
 GPIOI_BaseAddress $5028
 FLASH_BaseAddress $505A
 EXTI_BaseAddress $50A0
 RST_BaseAddress $50B3
 CLK_BaseAddress $50C0
 WWDG_BaseAddress $50D1
 IWDG_BaseAddress $50E0
 AWU_BaseAddress $50F0
 BEEP_BaseAddress $50F3
 SPI_BaseAddress $5200
 I2C_BaseAddress $5210
 UART1_BaseAddress $5230
 UART2_BaseAddress $5240
 UART3_BaseAddress $5240
 UART4_BaseAddress $5230

 TIM1_BaseAddress $5250
 TIM2_BaseAddress $5300
 TIM3_BaseAddress $5320
 TIM4_BaseAddress $5340
 TIM5_BaseAddress $5300
 TIM6_BaseAddress $5340
 ADC1_BaseAddress $53E0
 ADC2_BaseAddress $5400
 CAN_BaseAddress $5420
 CFG_BaseAddress $7F60
 ITC_BaseAddress $7F70
 DM_BaseAddress $7F90

USER CALLABLE ‘C’ ROUTINES

The user callable ‘C’ routines are “bonus” features in that
they were written for the use of the BASIC Environment and
Interpreter, but I am providing you access to the ones that
are simple to call and do something potentially useful for
you without incurring any harmful side-effects.

All of these are called with the “USR” command, or can be
called from your custom machine code routine in RAM. The
entry point addresses are provided in a table below the
following descriptions of the routines:

List

Executes a “LIST” command, exactly as if issued from the
BASIC Environment, including pauses every 10 lines.

ClearScreen

Sends an ANSI Clear Screen command to the terminal (of
course, you could use “CLR” to do the same – making this
best to be used in your STM8 machine code routines).

Debug

This allows you to perform a single invocation of the same
Debug as is available with the immediate command DBGON,
except it only runs for the one line you make this call
from. Good for checking the variable values at a point of
interest in your code.

Reset

Triggers the microcontroller’s internal watchdog circuit,
then waits in a forever loop for the microcontroller reset
to occur (to guarantee no unwanted behavior), just like an
“RST” command (which uses up fewer bytes in your BASIC

code, making this best for use in your own STM8 machine
code routines).

ReScanCode

Causes the BASIC Environment to re-scan your BASIC code and
create the necessary internal data structures required to
execute your code. Where this could be useful is if you
somehow modify your own code during it’s execution – after
making the modifications (the self-modifying code is up to
you) before continuing execution you can do 2 things to
allow the new code to run correctly, either call this
routine or reset the processor with AutoRun on.

And speaking of AutoRun, to enable or disable AutoRun from
your code you simply need to set bit 1 at location $427F to
1 to enable, or to 0 to disable. This is a non-volatile
setting.

UserSendByte

Refer to the example program “DISPLAY ALL ANSI CHARACTERS”.
IMPORTANT: You must write the character to be transmitted
to RAM location $02FF prior to making the call to
UserSendByte.

ENTRY POINT ADDRESSES FOR C HELPER ROUTINES BY VERSION
--

STM8 BASIC EMBEDDED VERSION 2.3

List $8644
ClearScreen $863D
Debug $8C13
ReScanCode $85CC
Reset $8C0D
UserSendByte $82A1

STM8 BASIC EMBEDDED VERSION 2.2

List $8623
ClearScreen $861C
Debug $8BF2
ReScanCode $85AB
Reset $8BEC
UserSendByte $8280

STM8 BASIC EMBEDDED VERSION 2.1

List $8638
ClearScreen $8631
Debug $8c07
ReScanCode $85c0
Reset $8c01
UserSendByte $8295

EXAMPLE PROGRAMS

"Hello World"

10 PRINT "Hello World"
20 END

NOTE: The last statement, line ‘20 END’, is not necessary
and can be eliminated because when BASIC reaches a line
which has no following lines an “END” is automatically
assumed.

"Hello World Forever"

10 PRINT "Hello World"
20 GOTO 10
30 END

NOTE: The last statement, line ‘30 END’, is not necessary
and can be eliminated in this kind of situation where it
will never be reached.

"Blinky"

The following program will blink the on-board LED one
second on and one second off in a “forever loop” while
printing out messages in sync with the LED switching on and
off.

On your board the User LED is a digital output on Port B,
bit 5. Setting bit 5 to 0 in the Port B Output Data
register turns on the LED, and of course setting it to 1

turns the LED off. It would be simple to just write a
hexadecimal $20 or $00 to the Port B output data register
(hexadecimal address $5005) to turn the LED on and off, but
we would be overwriting all of the other bits in the
register as well. This might be OK in some cases but in
other cases you may want to retain any existing bit values
in the other 7 bits.

The following code uses a “READ-MODIFY-WRITE” technique to
insure that the value of all bits except bit 5 – which
controls the on-board user LED – retain their original
values as they were before the program was run.

10 REM REGISTER SAFE BLINKY
20 PRINT "LED ON"
30 V=PEEK $5005
40 POKE $5005,V&$DF
50 SLEEP 1
60 PRINT "LED OFF"
70 V=PEEK $5005
80 POKE $5005,V|$20
90 SLEEP 1
100 GOTO 20

And for the sake of completeness, as well as saving code
memory, here is the “QUICK AND DIRTY” method (which still
doesn’t toggle any other bits, it just sets them all to
zero), which works fine to blink the LED but is not
register safe. All we had to do was to remove 4 lines of
code and renumber.

10 REM QUICK & DIRTY BLINKY
20 PRINT "LED ON"
30 POKE $5005,0
40 SLEEP 1
50 PRINT "LED OFF"

60 POKE $5005,$20
70 SLEEP 1
80 GOTO 20

USR Function example

Both example programs below write a very small STM8 machine
code routine consisting of 4 bytes into User RAM starting
at address $0200. This routine first pops a single byte
off of the internal system “C stack”, discarding it at
address $0300 (assuming that location is unimportant, if
not you can change it to another), then executing a return
instruction to return to the line immediately following the
line where the USR function called the machine code
routine.

10 REM USR WITH POKE
20 POKE $0200,$32
30 POKE $0201,$03
40 POKE $0202,$00
50 POKE $0203,$81
60 REM $0200 = $32 = POP byte to
70 REM $0201,$0202 = ADDR $0300
80 REM $0203 = $81 = RET
90 PRINT "Making USR $200 call";
100 USR $0200
110 PRINT "..back from USR call"

Or a version using the “M” command instead of POKE:

10 REM USR WITH M-COMMAND
20 REM $0200 = $32 = POP byte to
30 REM $0201,$0202 = ADDR $0300
40 REM $0203 = $81 = RET
50 REM WRITE STM8 MACHINE CODE:
60 M020032030081

70 PRINT "Call code @ $0200";
80 PRINT "...";
90 USR $0200
100 PRINT "RETURNED!"

USER RAM DUMP

4 PRINT ""
5 PRINT "User RAM dump"
6 PRINT "-------------"
7 PRINT ""
10 FOR A=$0200 TO $02FF
20 PRINT "Addr: $";
30 PRINT $A;
40 PRINT " Data: $";
50 V=PEEK A
60 PRINT $V
70 NEXT A

PEEK 8 CONSECUTIVE BYTES

50 REM PEEK 8 BYTES @ ANY ADDR
100 PRINT "Addr: ";
200 INPUT A
210 PRINT $A;
220 PRINT " :";
230 B=A+7
300 FOR L=A TO B
600 N=PEEK L
650 PRINT " ";
700 PRINT $N;
800 NEXT L
850 PRINT ""
999 END

SOFTWARE PWM (PULSE WIDTH MODULATION)

1 REM ‘BREATHING’ LED
2 REM USING SOFTWARE PWM
3 REM (PULSE WIDTH MODULATION)
4 REM TO VARY THE LED INTENSITY
5 A=0
7 B=150
10 POKE $5005,0
15 WAIT A
20 A=A+1
25 IF A=150 THEN 2000
30 POKE $5005,$20
40 WAIT B
42 B=B-1
50 GOTO 10
60 A=150
70 B=0
80 POKE $5005,0
90 WAIT A
100 A=A-1
110 POKE $5005,$20
120 WAIT B
130 B=B+1
135 IF B=150 THEN 1000
150 GOTO 80
1000 WAIT 1000
1010 GOTO 5
2000 WAIT 1000
2010 GOTO 60

LUNAR LANDER GAME

This is a re-creation of one of the earliest BASIC computer
games, the famous “Lunar Lander” program.

The goal is to land on the moon in your lunar lander at a
downward velocity of less than 5. You begin at an altitude
of 1000 with a downward velocity of 70, and with 500 units
of fuel in your tank.

At each turn you can burn from 0 to 250 units of fuel.
Make too big of a burn and you can achieve a negative
downward velocity and actually begin climbing higher in
altitude! Burn too little and you risk descending so fast
that even burning the maximum fuel won’t slow you down
enough to land softly.

It’s very possible to make a good landing (I’ve done it
with this program), but it’s harder than you think. The
first several times you will most likely just be adding
more craters to the moon!!! ;)

1 PRINT "Land@<5"
3 L=70
4 F=500
5 H=1000
6 GOSUB 33
7 GOSUB 55
8 H=H-L
9 IF H<=0 THEN 21
10 L=(((L+2)*10)-(K*2))/10
11 IF F<=0 THEN 17
12 F=F-K
15 IF H>0 THEN 6
16 GOSUB 33
17 F=0
18 GOTO 6

20 IF L>5 THEN 24
21 PRINT ""_
22 PRINT "Xlnt!"
23 END
24 PRINT ""_
25 PRINT "URA Crater!"
26 END
33 WAIT 5000-(L*L)
34 PRINT "*"
35 PRINT "Fuel:";
36 PRINT F
37 PRINT "Vel:";
39 PRINT L
41 PRINT "Alt:";
43 IF L>H THEN 20
44 PRINT H
45 RETURN
55 IF F<=0 THEN 82
57 PRINT "?";
59 INPUT K
60 IF K>250 THEN 76
61 IF K<0 THEN 73
63 IF K<=F THEN 81
65 PRINT "LowF"
67 GOTO 57
73 K=0
76 PRINT "Err"
77 GOTO 55
81 RETURN
82 K=0
83 RETURN

SOUND FROM THE TERMINAL USING ASCII “BELL” CODE

10 POKE $2FF,7
20 USR $8280

The above and below programs use a call to a ‘C’ language
routine in the BASIC Environment code (called UserSendByte)
that you can use to directly output to the serial port any
byte value from 0 to $FF (255).

UserSendByte expects the byte to be sent to first be
written to RAM address $02FF, the last byte of the User RAM
area, before UserSendByte is called with “USR $8280”.

DISPLAY ALL ANSI CHARACTERS

Using this method this will output the code value in
hexadecimal, followed by a ‘:’, then followed by the
character itself as displayed on the terminal. A partial
capture of the output of this program – all of the actual
graphics characters excluding normal characters are shown
below the program listing.

5 CLR
10 FOR T=0 TO $FF
12 PRINT $T;
14 PRINT " : ";
20 POKE $02FF,T
30 USR $8280
40 SLEEP 1
45 PRINT ""
50 NEXT T
60 PRINT ""
70 PRINT "Done"

ANSI Character Graphics codes (in hex), with output

DUMP BASIC PROGRAM MEMORY

This program will dump the contents of the non-volatile
BASIC program memory, which begins at address $4000 and is
630 bytes in size. It displays first the address, then the
hexadecimal value at that address, and lastly the ASCII
character represented by that value. Note that to get the
ASCII character to output we need to use a call to the
UserSendByte helper routine.

10 FOR A=$4000 TO A+630
20 PRINT "$";
30 PRINT $A;
40 PRINT " : $";
50 T=PEEK A
60 PRINT $T;
70 PRINT " : ";
80 POKE $02FF,T
90 USR $8280
100 PRINT ""
110 NEXT A

A good thing to note is that the interpreter determines
program end when it encounters two NULLs in a row (NULL =
0). A single NULL terminates each line of BASIC code. If
one is careful, the “left over” area of BASIC program
memory beyond the 2 NULLs can be used for anything you wish
(and it’s non-volatile) as long as you remember that
editing your program may well overwrite whatever you put
there, and of course a “NEW” will erase it completely. If
your program is stable and not going to change (so you
don’t “EDIT” or “NEW”) then you won’t have any issues using
this “trick”.

ANALOG TO DIGITAL CONVERSION ON PORT PIN D3 USING ADC1
--

This example program demonstrates how to do an Analog to
Digital conversion that will measure a voltage between 0
and 3.3VDC (the min and max values for the ADC input).

(WARNING: Do not attempt to measure a voltage greater than
3.3VDC with a direct connection to port pin D3!!! - the ADC
reading will be incorrect and you may possibly damage your
processor!)

(NOTE: lines beginning with a ‘*’ are not part of the code,
but are there to help your understanding of the code)

*STM8 CBE ADC CONVERSION
*Setup port D
*Set to Input
1 POKE $500F,0
*No internal pullup
2 POKE $5010,0
*End Of Conversion interrupt disabled
3 POKE $5011,0
*Use ADC1 (Base Address = $53E0)
*Address of Control Status Reg = $5400
*Address of Config Reg 1 = $5401
*Address of Config Reg 2 = $5402
*Address of Data high byte register = $5404
*Address of Data low byte register = $5405
*Set ADC1 Channel to AIN4 input in Control Status
*Register (Input is port/pin D3)
40 POKE $5400,4
*Set ‘Left align data’ using Config Reg 2
60 POKE $5402,0
*Enable ADC1. First POKE “turns on” the ADC.
*Subsequent POKEs trigger an ADC conversion.
70 POKE $5401,1
*Do conversions and output results

*Clear the screen
100 CLR
*Trigger a new conversion
105 POKE $5401,1
*Wait for conversion done bit set
*(bit 7 of Control Status Register)
110 L=PEEK $5400
120 IF L&$80 THEN 200
130 GOTO 110
*Conversion complete,
*Reset conversion complete bit
200 POKE $5400,4
*Read the data, high byte, then low byte
210 X=PEEK $5404
220 Y=PEEK $5405
*Print the result in millivolts
*65535 max counts = 3300 mv
*Here we take advantage of the X,Y & Z vars relationship
*for one of it’s intended uses – combining the values of
*two 8-bit registers (a “high byte” register and a “low
*byte” register) containing a single 16-bit value.
*Remember X is Z’s high byte, Y is Z’s low byte
310 PRINT Z/19
*Wait a half second...
320 WAIT 5000
*Do it all over again
400 GOTO 100

SET CONSOLE TEXT COLOR

Sets the console text color to your choice of 7 different
colors. The chosen text color is also saved to the system
flags area (address $427E) of non-volatile EEPROM so that
it is retained through successive resets or power cycles.

1 CLR
5 M02001B5B33
10 A=PEEK $427E
12 PRINT "--------------"
13 PRINT "RED = 1"
14 PRINT "GREEN = 2"
15 PRINT "YELLOW = 3"
16 PRINT "BLUE = 4"
17 PRINT "MAGENTA = 5"
18 PRINT "CYAN = 6"
19 PRINT "WHITE = 7"
20 PRINT "Current color: ";
30 PRINT A
40 PRINT "New color? ";
50 INPUT A
60 POKE $427E,A
70 FOR B=$0200 TO $0202
80 D=PEEK B
90 POKE $02FF,D
100 USR $8280
110 NEXT B
120 POKE $02FF,A+$30
130 USR $8280
140 POKE $02FF,$6D
150 USR $8280
160 PRINT ""
170 GOTO 10

 Program Output

LOADING AND SAVING

Although there is no LOAD nor SAVE command in STM8 BASIC
Embedded as there is in BASIC on a PC there is a very good
way to accomplish loading and saving of your BASIC programs
to and from a PC using the “Tera Term” freeware serial
terminal program. Most other terminal programs have
similar settings and capabilities.

Tera Term Serial Port Settings for STM8 BASIC Embedded.
Note the “Transmit delay” settings, these are important to
have set correctly for loading of your BASIC programs.

Saving a program via Tera Term is as easy as copy and
paste. First open up a new text document, giving it the
name you want your program to have. If you want to be able
to work with your BASIC programs on the PC you will need a
text editor, usually giving your BASIC program a file
extension of “.txt”.

You might also prefer to have your BASIC programs saved to
the PC with the extension “.BAS”, the standard for BASIC
program files. In this case you might need to set up your
preferred editor to open on “.BAS” files.

Either of the above naming conventions will work just fine
as long as you stick to your favorite convention.

The screenshot below shows selecting a block of code in
Tera Term that was output by a “LIST” command, in command
mode:

Using the Edit/copy of Tera Term copy the BASIC program
text and then paste it into the editor of your choice and
save it under your desired file name. Don’t add anything
else to the file other than your lines of BASIC code,
because this is code you will later load back into STM8
BASIC Embedded as will be explained in the following
paragraph.

To load a saved BASIC program simply enter the Edit mode
after having executed a “NEW” command to clear out BASIC
program memory, if needed. Now you are ready to load a
BASIC program.

Next choose a file to load using Tera Term’s File/Send
facility, as shown below:

Notice that loading is simply having the timing of the
terminal program’s sending of the text file set correctly,
as far as the BASIC environment knows it is a human that is
typing in the program. The end result is the same as shown
below:

Your program is now loaded and ready to run or modify.

STM8 BASIC ERROR CODES

E1 Basic code memory is full
E2 String Overflow (internal system string error, should

not occur – but just in case...)
E30 or E31 GOTO or GOSUB with no matching line number
E4 NEXT without a FOR
E5 FOR/NEXT table size exceeded (too many FOR/NEXT pairs)
E6 'M' is not a valid variable name
E7 Missing line number (check made when entering a line of

code)
E8 Invalid Hex Digit (must be only '0' through '9' or

uppercase 'A' through 'F')
E9 Evaluation Value Stack Overflow (Your expression is too

complex, break it up into two or more lines of code)
E10 Evaluation Operator Stack Overflow (same problem

resolution as for error E9)
E11 Invalid expression operator (see list of valid

operators)

Non-program related errors may also appear in the Command
and Edit modes as a series of one or more question marks
instead of an “OK” prompt.

Please note that in such a small amount of memory it simply
is not possible for STM8 BASIC to guard against or be able
to report every possible error that a user may make in
either the environment or in their BASIC programs –
especially logic errors. In such cases you may experience
unpredictable behavior, yet in any case you can always
press the reset button to get back to the initial banner &
prompt or auto-running your program again if you previously
invoked the ARON command (not recommended until you have a
fully stable program). There is no syntax checking, if the
interpreter doesn’t understand your line of code it will
usually skip it and go on to the next line.

PLEASE NOTE, that for intellectual property protection purposes any attempt at
reading out the code memory through the development/debug port for the STM8
BASIC Environment & Interpreter will result in all code memory being
irreversibly wiped clean using ST Micro’s built-in hardware code protection
capability. Therefore, it is not recommended to try to access this code or you
will end up owning a blank microcontroller.

Any attempt at accessing, copying, distributing, and/or reverse engineering
STM8 Compact BASIC Embedded is a violation of intellectual property laws and
violators will be prosecuted to the full extent of the law.

STM8 Compact BASIC Embedded was proudly made in the United States of
America.

STM8 BASIC is a trademark of Jeremiah 31:10 Ministries, Inc. a non-profit organization.

052420

	1.0 Welcome
	2.0 Getting Started

