E.N.S.E.|.LR.B.

Linux4Nano Project

Synthesis

CONCERNING IPOD NANO 2G
AND CRYPTOGRAPHY

A Linux4Nano Team document

April 6th 2007

Abstract

In September 2006 Apple issued a new generation of iPod Nano, a portable multime-
dia player. A new firmware obfuscation mechanism has been introduced, preventing
any other firmwares but Apple’s one to be loaded on the iPod. This article presents
all the accumulated knowledge about this obfuscation mechanism in an attempt to
install other operating systems on this platform.

Contents

1 Getting firmwares

1.1 Getting a dump from the Internet
1.2 Getting a dump file from the iPod

121 Under GNU/Linux

1.2.2 Under Windows
1.3 Extracting firmwares from the dump file
1.4 Getting moredump files

2 Facts about firmwares and encryption

2.1 Proofofencryption
2.2 Firmware structure

221 Overview

2.2.2 Firmwaresizeso

2.2.3 Header structureo

2.2.4 Data structureo
2.3 Entropyo

3 Old hypothesis about ciphered data cryptanalysis

3.1 Monoalphabetic substitution
3.2 Polyalphabetic substitution
3.3 Compressiono
3.4 Substitution by 4 byte blocks 0oL
3.5 Patternresearch

4 Current prospects

4.1 Encryption algorithm class: stream cipher
4.1.1 Definitiono
4.1.2 Argumentso

4.2 Key emplacements: header and/or bootloader

4.3 RC4 . . . e
431 rcdh . ..o
432 rcdc ...

4.4 decrypt.c

(2NN SE; ST TN NN

OO O © 0o 0o~

Introduction

On September 12th 2006, Apple issued the iPod Nano 2G. This second-generation,
which is smaller than the first one, brings new features such as a brighter display,
an upgraded battery life and new storage options (including 2, 4 and 8GB models).

In addition to those numerous features, Apple brings a new firmware obfuscation
mechanism. This barrier prevents other firmwares from loading on the iPod. For
instance, IN2G is currently not supported by iPodLinux project!.

The aim of this document is to provide all the knowledge which have been found
about the firmware encryption since the beginning of the project.

As an introduction, basic knowledge compulsory to archive experiences will be
explained. After, the facts we have obtained up to now will be summarized. Then
firmware encryption hypothesis which have been invalided will be focused. Finally,
hypothesis we are currently assuming will be presented.

lhttp://wuw.ipodlinux.org

Chapter 1

Getting firmwares

First of all, to achieve experiences so as to obtain information about encryption,
you need a/several version/s of iPod Nano 2G firmware. To obtain a firmware, you
need a dump of the iPod. Two ways are offered to obtain it:

1. from Internet;

2. directly from the iPod.

1.1 Getting a dump from the Internet

Two versions of iPod dump are available on Internet. They can be found at following
addresses:

e version 1.1.1: http://rapidshare.com/files/15681296/iPod_19.1.1.1.
ipsw.html

e version 1.1.2: http://www.felixbruns.de/iPod/firmware

You will obtain a *. ipsw file. Rename it to a *.zip file, unzip it and you will get a
file named Firmware-w.x.y.z. This file corresponds to dump.img. To extract the
firmware from a dump, jump to section 1.3.

1.2 Getting a dump file from the iPod

To extract a dump from your iPod read following instructions.

1.2.1 Under GNU/Linux
1. plug the iPod to one usb port of your computer;

2. execute following command:

$ dd if=/dev/sdX1l of=dump.img

Change /dev/sdX1 according to your configuration, /dev/sdX device file has
to correspond to your iPod. Usually X has to be replaced by a or b;

3. after the execution of previous command, you will obtain a file named dump . img,
it correspond to data dumped from your iPod.

When it is done, jump to the 1.3 section.

1.3 Extracting firmwares from the dump file 5

1.2.2 Under Windows
1. plug the iPod to one usb port of your computer;
2. goto Start Menu>Execute, type cmd and validate;
3. get the windows version of dd at http://www.chrysocome.net/dd;

4. then type the following command:

> dd — —list

5. search in NT Block Device Objects following sequence:

\\?\ Device \ (XXXXXXXX)\ Partition0

link to \\?\Device\ (XXXXXXX)\ (\1dots)

Removable media other than floppy. Block size = 2048
size is 4060086272 bytes

6. look for a size of 2Go, 4Go or 8Go depending on your Nano version;
7. note the (XXXXXXX) field (it looks like Hardisk1 or similar);

8. type the following command:

> dd if=\\?\Device\(XXXXXXX)\ Partition0 of=dump.img bs=2048
skip=63 count=11860 — —progress

9. after the execution of previous command, you will obtain a file named dump . img,
it corresponds to data dumped from your iPod.

When it is done, jump to the 1.3 section.

1.3 Extracting firmwares from the dump file

Three files have to be extracted from the dump:

1. osos.fw: ciphered Apple’s main software which contains the operating system
code;

2. aupd.fw: ciphered Flash ROM updater;

3. rsrc.fw: unencrypted iPod Nano file system. Apple uses it to store data
needed for accessories such as Nike iPod Sport Kit.

To extract firmwares from dump file, follow the next instructions:

1. checkout the latest version of extract2g at the following address: http://
svn.gna.org/viewcvs/linux4nano/trunk/extract2g and compile it using
make command;

2. type the following command to obtain the list of available files:
$ extract2g —1 dump.img
3. using the command

$ extract2g —A dump.img

extract from dump . img following files:

6 Getting firmwares

® 0s0s.fw;
o aupd.fw;

e rsrc.fw.

4. to obtain more information on extract2g software you can type the following
command:

$ extract2g — —help

Under Windows, replace extract2g by extract2g.exe.

1.4 Getting more dump files

Comparison between different firmware versions brings a lot of information. Thus,
linux4nano team added an option to extract2g which make a hash sum of the
firmware in argument. By making a hash sum of your firmware and send it to
the development team, it can be easily known whether you have a firmware version
which have not yet been identified. To obtain the hash sum, follow next instructions.
Thanks to community tree versions have already been listed:

1. version 1.0.2;

2. version 1.1.1;

3. version 1.1.2.
Instruction to compute hashes :

e check out the latest version of extract2g at the following address: http://
svn.gna.org/viewcvs/linux4nano/trunk/extract2g and compile it using
make command;

e to obtain firmware hash sum, use -H option as following:
$ extract2g —H dump.img
e the result will look like to:

./ extract2g compiled at 14:23:05 Feb 3 2007.

05808 : Oxskkkskkskx TSrC: Oxkdkxskirkk aupd: Oxksskxssrkk

e just send it by mail to sendyourfirmwares@linux4nano.org.

Under Windows, replace extract2g by extract2g.exe.

Chapter 2

Facts about firmwares and
encryption

This chapter presents all collected facts (no hypothesis).

2.1 Proof of encryption

On previous iPod version, osos and aupd files contain binary data. Thus, we can
assume that extracted files still contained binary data. A quick overview on osos
and aupd files shows that there are divised in three parts:

1. 512 bytes (the header);

2. 1536 bytes of zeros;

3. variable length data.

Using a disassembler such as Objdump' or IDA pro

2 on first and third parts,

incoherent ARM9 code is gotten®, thus it is not an unencrypted ARM9 binary.
The code obtained from the first part of osos.fw is:

0:

4:

8:

C:
10:
14:
18:
lc:
20:
24:
28:
2c:
30:
34:

00000000
00000002
00000001
00000040
00000000
00615800
20fd5db4
9ab034c3
2add0a27
1994 dbel
755037 fb
f7304faf
3477d43f
70a3a52b

andeq r0, r0, r0

andeq r0, r0, r2

andeq r0, r0, rl

andeq r0, r0, r0, asr #32
andeq r0, r0, r0

rsbeq r5, rl, r0, 1lsl #16
ldrcsh 15, [sp], #212

bls 0xfec0d330

bes 0xff7428c4

ldmneib r4, {r5, r6, r7, r8, r9, rll, r12, Ir, pc}
ldrveb 13, [r0, —#2043]
ldrnv r4, [r0, —pc, lsr #31]!
ldrccbt sp, [r7], —#1087
adcve r10, r3, r1l, lsr #10

and the code from third part is:

Thttp://www.gnu.org/software/binutils
2http://www.datarescue.com/idabase/index.htm
3Instruction Set Quick reference Card: http://www.arm.com/pdfs/QRCO001H_rvct_v2.1_arm.

pdf

8 Facts about firmwares and encryption

800: 60844d84 addvs r4, rd4, rd4, Isl #27

804: d6588dfe wundefined

808: 485a875b ldmmida r10, {r0, rl, r3, r4, r6, r8, r9, rl0, pc}”
80c: blfb2f08 mvnlts r2, r8, 1sl #30

810: c071dfd4 ldrgtsb sp, [rl], —#244

814: 5d9ecf03 ldcpl 15, crl2, [lr, #12]

818: abd76325 ldrgeb 16, [r7, #805]

81c: 609404a7 addvss r0, r4d, r7, lsr #9

820: 7576fdcb ldrveb pc, [r6, —#3531]!

824: 56872792 wundefined

828: 9edc6a78 mrcls 10, 6, r6, crl2, cr8, {3}

82c: 5851ae0f Idmplda r1, {rO0, rl, r2, r3, r9, rl0, rll, sp, pc}”
830: 7cfe2050 ldcvel 0, cr2, [Ir], #320

This operation gave coherent code when it is performed on previous iPod gen-
erations. This clue asserts that firmwares are ciphered. Moreover, the strings
command which returns character strings found in the input, returns on osos.fw
no sense sentence (such as >ZNj7Ah6qMB$1 DCF[) whereas on previous unencrypted
firmware it gives normal sentences (such as Apple Computer, Inc.).

2.2 Firmware structure

2.2.1 Overview

Figure 2.1 resumes simple firmware structure.

0x00
(cI ear text)
0x200
zeroed
(padding)
0x800

4 N

payload
(crypted)

Figure 2.1: Simple firmware structure

2.2 Firmware structure 9

2.2.2 Firmware sizes

| Firmware version | Size |
osos 1.0.2 0x5FB000
aupd 1.0.2 0x10D800
osos 1.1.1 0x615800
aupd 1.1.1 0x10D800
osos 1.1.2 0x5FA000
aupd 1.1.2 0x10E000

2.2.3 Header structure

We firstly compared osos. fw and aupd . fw. They begin with the same 5 bytes which
exist in all known versions. We also found that the next field is the length of the
data. This information is already presents in directory entries*. Then we looked for
similarities and differences between each osos version. We could determine seven
fields but without sense for the moment. Figure 2.2 describes the structure found.
We found the same structure comparing each aupd version. The fact that bytes
are identical means that they are identical between all osos versions and all aupd
versions, however they are different comparing osos and aupd.

| Relative address | Values |

0x0 00 00 00 00

0x4 02 00 00 00

0x8 01 00 00 00

Oxc 40 00 00 00

0x10 00 00 00 00

0x14 length of file data in little-endian
0x18 4 unknown identical bytes
0x1C 20 unknown different bytes
0x30 420 unknown identical bytes
0x1D4 20 unknown different bytes
0x1E8 24 unknown identical bytes
0x200 header end

Figure 2.2: osos header structure description

2.2.4 Data structure

There is no header like structure in data part. Regarding figures 2.3 and 2.4,
comparison between available firmwares give us a lot of information.

Version | 1.0.2 1.1.1 1.1.2

1.0.2 - 0 0

1.1.1 0 - 1680 bytes (0x800 -> 0xE90)
1.1.2 0 1680 bytes (0x800 -> 0xE90) -

Figure 2.3: Number of identical bytes at the beginning of osos data part

4For more details, read the hardware synthesis avaible at http://www.linux4nano.org/drupal/
files/hardware_synth.pdf

10 Facts about firmwares and encryption

Version 1.0.2 1.1.1 1.1.2
1.0.2 - 240 (0x800 -> 0x8F0) | 32 (0x800 -> 0x820)
1.1.1 240 (0x800 -> 0x8F0) - 32 (0x800 -> 0x820)
1.1.2 32 (0x800 -> 0x820) 32 (0x800 -> 0x820) -

Figure 2.4: Number of identical bytes at the beginning of aupd data part

2.3 Entropy

The entropy is a measure of disorder and correlation between data. The entropy £
is computed thanks to following formula:

255 c
k k
E=-> —lo (—)
Z n &2 n
k=0
where k corresponds to a character, ¢, corresponds to the number of character k
255
occurrences and n = Z Ck -
k=0
A high entropy (8 is the maximum) means that file looks like random files.
Figure 2.5 gives entropy values of osos and aupd.

| Firmware | Value |
osos 1.0.2 | 7.999958
aupd 1.0.2 | 7.999459
osos 1.1.1 | 7.999959
aupd 1.1.1 | 7.999497
osos 1.1.2 | 7.999964
aupd 1.1.2 | 7.999496

Figure 2.5: osos and aupd entropies

Chapter 3

Old hypothesis about
ciphered data cryptanalysis

First, simple hypothesis were supposed. All the following hypothesis are based on
statistical hypothesis. The aim of this chapter is to validate/invalidate the use of
“basic” encryption algorithms by Apple to protect its firmware.

3.1 Monoalphabetic substitution

A first algorithm considered is monoalphabetic substitution. Each character (ASCII)
corresponds to an other. For instance, adding 13 modulo 256 is a possible encryption
function. Any substitution on the ASCII characters is possible.

This type of algorithm keeps one of the original text’s property : the frequency
of each character is the signature of a text. A simple program (available on the svn
of our project!) was made to analyze the dumped files.

Unfortunately, according to figure 3.1, each ASCII character frequency is 1/256,
that means all characters appear in the text as many time as others.

aaaaaaa

25380

25280

25180

25080
24880
24780

os,stat” using 132 ——1
249“‘
2] ous2 ou6a 0u06 ocs eufa

24680
24580
aaaaa

Figure 3.1: osos character frequencies

This kind of repetition means that algorithm used is more complex than a simple
monoalphabetic substitution.

lhttp://svn.gna.org/viewcvs/linux4nano/trunk/stats/

11

12 Old hypothesis about ciphered data cryptanalysis

3.2 Polyalphabetic substitution

The first assertion has been invalidated. Using several different substitutions could
basically give a balanced repartition. Thus, this hypothesis can be assumed. It
can be supposed substitution number is a multiple of 4 (which represents ARM9
instruction length).

To assert this hypothesis, the previous program was modified in order to analyze
the first bytes of each ”instruction”, corresponding to the opcode.

Again, according to figure 3.2, each ascii character frequency is 1/256. Further-
more, comparing with an analysis done on a ARM binary version of 1s software
(cf figure 3.3), frequencies are really different. Thus polyalphabetic substitution
hypothesis has also been invalidated.

ing 132 ——
ousa g oucs axfa

32

3208

3190

3250
“osos, opcode™ u
3100
3050
- “
o

2058
2908
[

Figure 3.2: Statistics on osos opcodes

2508

2008

1008

Figure 3.3: Statistic on ARM opcode (considering 1s ARM binary)

3.3 Compression
An other hypothesis which had been supposed is: the encryption algorithm is a
compression algorithm. Following facts rejecting this hypothesis:

e firmware size does not seem to have been reduced;

e an important time is needed to decompress it;

e ciphered file entropy is too high to correspond to a compression algorithm.

An compression, added to an other encryption algorithm, can be considered as
a valid hypothesis, however the time needed to obtain the unencrypted file will
increase. Therefore, it can be assume that algorithm type is not used.

3.4 Substitution by 4 byte blocks 13

3.4 Substitution by 4 byte blocks

Another hypothesis which can be made is the following: files are encrypted using
substitution by blocks multiple of 4. A program which reads files 4 bytes by 4 bytes,
was designed. No repetitions could be found thus, this assertion is false.

3.5 Pattern research

It can be supposed that the length of the blocks is not a multiple of 4. However,
finding repetitions of any length in a text requires a lot of memory.

fvprogram found at following addresshttp://www.fantascienza.net/leonardo/
ar/string_repetition_statistics/string_repetition_statistics.htmldoes
repetition statistics using hash techniques. It can be seen, on the figure 3.4, that
files look like pure random text.

Figure 3.4: Pattern repetition statistics

Finally, it seems that iPod encryption algorithm is a stronger algorithm (such as
DES, AES...). High entropy highlighted in section 2.3 confirms this assumption.

Chapter 4

Current prospects

4.1 Encryption algorithm class: stream cipher

4.1.1 Definition
According to Wikipedia !:

“In cryptography, a stream cipher is a symmetric cipher in which the
plaintext digits are encrypted one at a time, and in which the transfor-
mation of successive digits varies during the encryption. An alternative
name is a state cipher, as the encryption of each digit is dependent on
the current state. In practice, the digits are typically single bits or bytes.

Stream ciphers represent a different approach to symmetric encryp-
tion from block ciphers. Block ciphers operate on large blocks of digits
with a fixed, unvarying transformation. This distinction is not always
clear-cut: in some modes of operation, a block cipher primitive is used
in such a way that it acts effectively as a stream cipher. Stream ciphers
typically execute at a higher speed than block ciphers and have lower
hardware complexity. However, stream ciphers can be susceptible to
serious security problems if used incorrectly: see stream cipher attacks
— in particular, the same starting state must never be used twice.”

4.1.2 Arguments

In previous versions of iPod (since mini iPods), aupd file was encrypted. We know
that iPod 5G aupd file is encrypted thanks to RC4 algorithm. You can find C
implementation of decryption algorithms in chapter 4.2.

According to chapter 3, several simple encryption methods were invalidated.
Furthermore, a priori, there is no reason for Apple to choose another encryption
class of algorithms. Another argument in favor to use a stream cipher algorithm is
that it is easy to implement and it is fast (linear complexity regarding input length).

Comparing osos version 1.1.1 and 1.1.2 (cf figure 2.3), the first 1680 bytes of data
part (cf subsection 2.2.4) are the same. With a stream cipher encryption method,
the modification of a bit has repercussions on all following bits. Assuming that
there has been no major correction between two versions, the 1681st can be the first
different byte. Furthermore, data part of osos version 1.0.2 has no similar bytes with
two other versions. If we assume that there have been major corrections (notably,
the first byte is different), this hypothesis is coherent. Comparison between aupd
versions does not invalidate this hypothesis.

'http://en.wikipedia.org/wiki/Stream_cipher

14

4.2 Key emplacements: header and/or bootloader 15

A key is used by stream cipher to make an initialization vector (IV 2). The IV
is a high entropy block of bits that is required in first encryption step. To decrypt
a stream cipher encrypted file, we need to find the key.

4.2 Key emplacements: header and/or bootloader

It is improbable for the key to be fully located in read only memory. Indeed, if
someone finds the key (using for instance a brutforce attack, Apple cannot protect
anymore (without make important modifications) the firmware.

In a previous version (iPod 5G), a part of the key was hidden in the header.
The key was computed by an algorithm located in the bootloader using the header
(read-write memory) and a constant which is located in the bootloader (a priori
read-only memory). We can assume that Apple keeps a similar method for iPod
Nano 2G.

For each firmware versions (of iPod Nano 2G), there is no similarity between
osos and aupd files. Thus, we can assume that there are two keys, one to encrypt
osos and another to encrypt aupd. Regarding similarities between osos versions
and similarities between aupd versions in data part beginning, it can be supposed
that since version 1.0.2 keys have not been changed. As Apple knows that the key
has no been found yet, Apple has no reason to change it.

According to section 2.2.3, osos and aupd headers are very different, however,
each version of osos headers have a lot of similar field and its the same for aupd
headers. This is an other argument in favor with the hypothesis that a part of the
key is hidden in the header.

2nttp://en.wikipedia.org/wiki/Initialization_vector

References

In this chapter, some useful online references can be found. They all provide some
piece of information likely to be used in order to break the encryption protocol
applied on the firmwares, or in order to use some flaws to avoid the confrontation
with the encryption.

Books

e Cryptanalysis a Study of Ciphers and Their Solutions, Helen Fouche Gaines,
Dover Publications

e Handbook of Applied Cryptography, Alfred J. Menezes, Crc

e Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition,
Bruce Schneier, Wiley

e Practical Cryptography, Niels Ferguson, Wiley

Online Books

e http://osxbook.com/ an online book which provide a lot of information
about the MACOSX system and its binary obfuscation

e http://osxbook.com/book/bonus/chapter7?/binaryprotection/index.html
Understanding Apple’s Binary Protection in Mac OS X chapter

e http://apple.slashdot.org/article.pl?sid=06/10/30/2147231) How En-
crypted Binaries Work In Mac OS X discussion forum

e http://en.wikibooks.org/wiki/Reverse_Engineering a Wikibooks very
complete article exploring numerous aspects of reverse engineering. It can
provide some details that might have been forgotten

e http://en.wikibooks.org/wiki/Reverse_Engineering/File_Formats

Some firmware reverse engineering

e http://www.minidisc.org/pony_mp3nl_interview.html An interview with
Sasha Breginski, head of Pony Engineering, Moscow, on the topic of his team’s
reverse engineering of the Sony MZ-N1

e Hacking the Xbox: An Introduction to Reverse Engineering, Andrew Huang,
Xenatera Press

e http://www.rockbox.org/twiki/bin/view/Main/TargetStatus a website
that presents a very vast project. This team develops a free opensource mul-
tiplatform firmware. It has been adapted to many platforms, such as iPod
Nano 1G for instance. Some clues may be found there.

16

Source code

4.3 RC4
4.3.1 rc4.h

/* adapted from http://www.cypherspace.org/adam/rsa/rcd.c */

typedef struct rc4_key

{

unsigned char state [256];
unsigned char x;
unsigned char y;

} rcd_key;

void prepare_key(unsigned char xkey_data_ptr, int key_data_len, rc4d_key =xkey);

void rc4 (unsigned char xbuffer_ptr, int buffer_len, rcd_key xkey);
4.3.2 rcd.c

/* adapted from http://www.cypherspace.org/adam/rsa/rcd.c */

#include <stdio.h>
#include ”rc4.h”

#define swap_byte(x,y) t = #(x); *(x) = *(y); *(y) = ¢t

void prepare_key(unsigned char xkey_data_ptr, int key_-data_len, rc4_key =xkey)
{

unsigned char t;

unsigned char indexl;

unsigned char index2;

unsigned char% state;

short counter;

state = &key—>state [0];

for (counter = 0; counter < 256; counter++)
state [counter] = counter;

key—>>x = 0;

key—>y = 0;

indexl = 0;

index2 = 0;

for (counter = 0; counter < 256; counter++)
{

index2 = (key_data_ptr[indexl] + state[counter] + index2) % 256;

17

18 Current prospects

swap_byte(&state [counter], &state[index2]);
indexl = (indexl + 1) % key_data_len;

}
}

void rc4 (unsigned char xbuffer_ptr, int buffer_len, rcd_key xkey)
{

unsigned char t;

unsigned char x;

unsigned char y;

unsigned char* state;

unsigned char xorIndex;

short counter;

x = key—>x;

y = key—>y;

state = &key—>state [0];

for (counter = 0; counter < buffer_len; counter++)

{
x =(x+ 1) % 256;
y = (state[x] + y) % 256;
swap_byte(&state [x], &state[y]);
xorIndex = (state[x] + state[y]) % 256;
buffer_ptr[counter] "= state[xorIndex];

}

key—>x = x;

key—=>y = y;

}
4.4 decrypt.c

/% Adapted from Franco Zavatti <badblox@doramail.com> code */

#include "rc4.h”

#include <stdlib .h>
#include <stdio .h>
#include <unistd.h>

/* convertion big/little endian =*/
unsigned int
readword (unsigned char % data,unsigned int pos)

{

return (data[pos])+(data[pos+1]<<8)+(data[pos+2]<<16)+(data[pos+3]<<24);

}

/% test if the marker is enable %/
char
testmarker (unsigned int marker)
{
unsigned int mask;
unsigned int decrypt;
unsigned int templ,temp?2;

mask = (marker&0xff)|((marker&0xff)<<8)|((marker&0xff)<<16)|((marker&0xff)<<24);
decrypt = marker ~ mask;

templ=decrypt >>24;

temp2=decrypt <<8;

4.4 decrypt.c 19

if (templ==0){

return

}

0; /+ false =/

temp2=temp2>>24;
decrypt=decrypt <<16;
decrypt=decrypt >>24;
if ((templ<temp2)&&(temp2<decrypt)){
templ=templ&0xf;
temp2=temp2&0xf;
decrypt=decrypt&0xf;
if ((templ>temp2)&&(temp2>decrypt)){
if (decrypt!=0) return 1; // This marker is enable!

}
}

return 0;

int
main(int argc, char #x argv)

{

FILE % fdin, x fdout;

unsigned
int i,j;
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char header[512];

int key = 0,pos = 0;

int offset[]={0x5,0x25,0x6f,0x69,0x15,0x4d,0x40,0x34};
int amarker ,word, templ;

int constant = 0x54c3a298;

int rl,r2,r12,rl14;

char cle [4];

char buff[4];

rcd _key rcdk;
char isencrypted = 0;

if (!(fdin = fopen(argv[l], "r”))) {

perror (
return

}

” Open ”);

1;

/* Read the first 512 bytes of the file x/

for (i=0;
header |
}

i<512;i4++) {
i]=getc(fdin);

/* Compute the key #/

for (i=0;

i<8i++) {

pos=offset [i]*4;
amarker = readword (header ,pos);
printf(” Marker %d : %x\n”,i+1,amarker);
if (testmarker (amarker)){

isencrypted = 1;

20

Current prospects

printf (” Marker %d is set\n”, i+1);
pos =(offset [i+1]%4)+4;
for (j=0;j<2;j++) {
word=readword (header ,pos);
templ=amarker;
templ =word;
templ =constant ;
key=templ;
pos+=4;

r1=0x6f;

for (j=2;j<128;j+=2){
r2=readword (header , j*4);
rl12=readword (header ,(j+1)x4);
rld=r2| (rl2>>16);
r2&=0xffff;
r2|=rl2;
rl"=rl4;
rl=rl+4r2;

}

key =rl;

printf (” Associated key is %x\n” ,key);

}
}

if (!isencrypted){
fclose (fdin);
printf (” The input file is uncrypted\n”);
return EXIT_SUCCESS;

}

if (!(fdout = fopen(argv[2], "w+7))) {
perror (" open”);
return EXIT FAILURE;

}

cle [3]=(key&0x££000000)>>24;
cle [2]=(key&0xff0000)>>16;
cle[1]=(key&0xff00)>>8;
cle[0]=(key&0xff);

/* Prepare Key #/
prepare_key(cle ,4,&rcdk);

/*Decryption loop=/
while (!feof(fdin))
{

buff[0]=fgetc (fdin);
buff[1]=fgetc (fdin);
buff[2]=fgetc (fdin);
buff[3]=fgetc (fdin);
rcd (buff ,4,&rcdk);

fputc(buff[0], fdout);
fputc(buff[1],fdout);
fputc(buff[2],fdout);
fputc(buff[3],fdout);

o~~~ —~

4.4 decrypt.c

21

}

fclose (fdin);
fclose (fdout);
return EXIT_SUCCESS;

