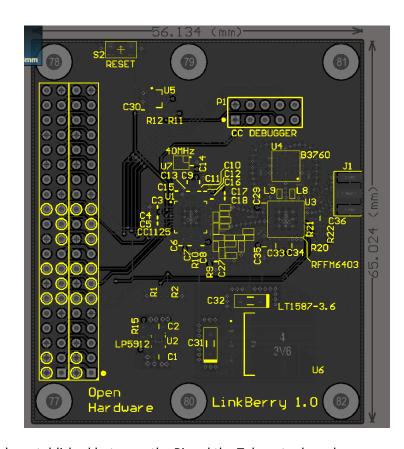
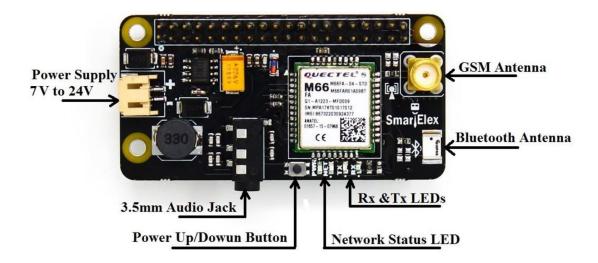

RAS_PI pinouts:



 $oldsymbol{\Lambda}$ The PWM pin available on the GPIO header is shared with the Audio system

TELEMETRY BOARD:

Shoreline_Header				
3V3	1 (2)	5V		
3	\sim	5V		
3 5 7	3 4	GND		
7	7 8	8		
GND	9 10	10		
GP0	\sim	BYP		
GP2	(13) (12)	GND		
GP3	13 16	TR		
3V3	17 18	18		
MOSI	19 20	GND		
MISO	(21) 22	22		
SCK	<u>3</u> 24	CSn		
GND	25 26	26		
27	27 28	28		
29	29 30	GND		
31	31 32	32		
33	33 34	GND		
35	35 36	36		
37	37 38	38		
GND	39 40	40		
Header 20X2				


- # Bidirectional SPI communication needs to be established between the Pi and the Telemetry board
- # Encircled pins are used by the telemetry board
- # Rotate any one diagram by 180deg
- # Pins 19, 21, 23, 24 are used for SPI communication between the Pi and the RF IC (CC1125, TI)
- # Pins 11, 13, 15 are GPIO pins of the CC1125 (read CC1125 documentation for their usage)
- # Pins 12, 16 are control pins of the front-end module (RFFM6403)

Header Pin No.	Pi GPIO	CC1125 GPIO	RFFM6403 CTRL
11	GP17	GP0	
13	GP27	GP2	
15	GP22	GP3	
12	GP18		ВҮР
16	GP23		TR

TR	MODE
1	TX
0	RX

ВҮР	MODE
1	PA/LNA Disable
0	PA/LNA Enable

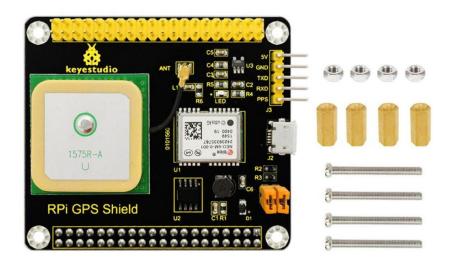
GSM BOARD:

The HAT uses the Quectel M66 Module. All communication with the HAT is through a serial interface. AT commands are used to configure and communicate with the HAT. The HAT allows you to use a software serial port on your Raspberry Pi. An onboard 3.5mm Audio Jack allows you to connect a headphone to answer calls.

Features:

- Quad-band module (850/900/1800/1900MHz).
- Works on 7V ~ 24V.
- Operates at -35° C $\sim +80^{\circ}$ C.
- Include Onboard Bluetooth BT 3.0 with antenna.
- Controlled via AT commands.
- Autobauding 4800bps to 115200bps.
- Maximum download speed 85.6kbps.
- Send/Receive SMS
- Make/Receive voice call with 3.5mm audio jack.

HAT Connection with Raspberry Pi:


HAT	Raspberry Pi Pins
Rx	GPIO14 / BCM14 /UARTO Tx
Tx	GPIO15 / BCM15/ UARTO Rx
Reset	GPIO25 / BCM25

Note:

To Power on HAT Press Power button for moment (5s to 10s) and press same button to power down shield.

GPS BOARD:

keyestudio RPI GPS Shield

Connection Method

To get started, hook the GPS module up to your Pi as follows, cross-connecting the TX and RX pins (TX on one device goes to RX on the other and vice versa), and supply 5V from the Pi to the VIN pin on the GPS module.

For the Raspberry Pi 3 you need to explicitly enable the serial port on the GPIO pins. The reason for this is a change with the Pi 3 to use the hardware serial port for Bluetooth and instead use a slightly different software's serial port for the GPIO pins.

A side effect of this change is that the serial port will actually change speed as the Pi CPU clock throttles up and down--this will unfortunately cause problems for most serial devices like GPS receivers!

NOTE: GPS and GSM boards use the same two pins for serial communication so, we need to mux and demux the RX and TX pins.

The GPIO pins for the mux and demux shall be updated once designed # Information about the sensor board shall also be updated once it is designed, for now reserve the I2C bus for the sensors.

SPI communication between the telemetry board and Pi will also be required at the ground station.