
Introduction to Firmware
Reversing

Hackaday Remoticon 2020

About Me

● IoT Security Consultant at Payatu, India
 Embedded Hardware Security
 Firmware Reverse Engineering

● Trainer/Speaker
 Checkpoint CPX360, Nullcon, IDCSS
 Infosec meetups

● Email - asmita@payatu.com
● Twitter - aj_0x00

Agenda
● Introduction to firmware
● Why firmware reversing
● Possible attack scenarios w.r.t firmware
● Introduction to tools for firmware static and dynamic analysis
● Examples of attacks due to vulnerabilities in the firmware
● Hands-on Labs

Introduction to Firmware
● Term coined by Ascher Opler in 1967 Datamation article

● Wikipedia (https://en.wikipedia.org/wiki/Firmware)

 A type of software that gives the low-level control for a device's
specific hardware. It provides control, monitoring and data manipulation
of engineered products and systems.

● Held in non-volatile memory such as ROM, EEPROM or flash memory

● Code running on embedded devices

https://en.wikipedia.org/wiki/Computer_hardware

Introduction to Firmware

 Hardware

 OS

 Application

 Hardware

 Application

OS based firmwares Bare metal firmwares

Why Firmware Reversing?

IoT Device

Why Firmware Reversing?

IoT Device

Hardware

Why Firmware Reversing?

IoT Device

Hardware

User Application

Why Firmware Reversing?

IoT Device

Hardware

User Application

Communication

Why Firmware Reversing?

IoT Device

Hardware

User Application

Communication

Management,
storage

Why Firmware Reversing?

IoT Device

Hardware

User Application

Communication

Management,
storage

Why Firmware Reversing?

IoT Device

Hardware

User Application

Communication

Management,
storage

Firmware

Why Firmware Reversing?

IoT Device

Hardware

User Application

Communication

Management,
storage

Firmware

It’s the core business logic of the device/product

It might be an IP for some vendors

Why Firmware Reversing?

IoT Device

Hardware

User Application

Communication

Management,
storage

Firmware

Why Firmware Reversing?

IoT Device

Hardware

User Application

Communication

Management,
storage

Firmware

Can provide low hanging fruit for an attacker.
Might affect other parts of the ecosystem.

Unearth

Exploits

Possible Attack Scenarios w.r.t Firmware
● Filesystem
● Custom Binaries
● Hardcoded sensitive information like passwords, keys, etc.
● Configuration files
● Certificates
● Perform debugging , hunt & attack
● No hardware, no problem!! Emulation
● Fuzzing
● Vulnerability in binaries leading to RCE, DoS attacks
● Patch with backdoors

Introduction to tools for firmware static & dynamic
analysis

Approach
● Identify if it’s OS based or bare metal firmware
● Identify if the firmware is encrypted
● If encrypted - Workaround to decrypt it (It can be tricky !!)

● Reversing the previous non-encrypted releases/transitions of the firmware
● Hardware attacks like SCA to fetch the key
● ……...

● If bare metal/RTOS/Proprietary - Not much tools in your court :(

● If OS based - Get your tools ready & start :)

● Identify the controller, get the datasheet.
● Identify the architecture, memory map
● Reverse the binary usings tools like Ghidra, IDA Pro, radare2
● Real time analysis using debuggers
● If hardware not present, use tools like Qemu, Unicorn for partial emulation

 Refer - https://payatu.com/blog/munawwar/iot-security---part-7-reverse-engineering-an-iot-firmware

https://payatu.com/blog/munawwar/iot-security---part-7-reverse-engineering-an-iot-firmware

Static Analysis
● Extraction

 Extract firmware files / code

● Strings
 Find interesting strings in the code

● Hexdump
 Analyse the supposed file header

● Identifying instruction set
 Try to identify the instruction set if no info on the chip

Dynamic Analysis
● Emulation

● Fuzzing

● Hardware & software based debugging

 Tools for static analysis
● Hex Editors : Hexdump - https://man7.org/linux/man-pages/man1/hexdump.1.html , Bless -

https://github.com/bwrsandman/Bless

Tools for static analysis
● Binwalk - https://github.com/ReFirmLabs/binwalk/wiki/Usage

https://github.com/ReFirmLabs/binwalk/wiki/Usage

● Ghidra / IDA Pro - https://github.com/NationalSecurityAgency/ghidra
 https://www.hex-rays.com/products/ida/

 Tools for static analysis

https://github.com/NationalSecurityAgency/ghidra
https://www.hex-rays.com/products/ida/

● Firmwalker - https://craigsmith.net/firmwalker/

 Tools for static analysis

https://craigsmith.net/firmwalker/

● FACT Tool - https://github.com/fkie-cad/FACT_core

Source - https://fkie-cad.github.io/FACT_core/main.html#screenshots

 Tools for static analysis

https://github.com/fkie-cad/FACT_core

● EXPLIoT Firmware Auditor - https://expliot.io/pages/firmware-auditor (Community
Version Free)

 Tools for static analysis

https://expliot.io/pages/firmware-auditor

● strings
● John the ripper (JtR) - https://www.openwall.com/john/

● Hex Editors - Hexdump , Bless - https://github.com/bwrsandman/Bless

● Binwalk - https://github.com/ReFirmLabs/binwalk/wiki/Usage

● Ghidra / IDA Pro - https://github.com/NationalSecurityAgency/ghidra,
https://www.hex-rays.com/products/ida/

● Firmwalker - https://craigsmith.net/firmwalker/

● FACT Tool - https://github.com/fkie-cad/FACT_core

● EXPLIoT Firmware Auditor - https://expliot.io/pages/firmware-auditor

● Firmware mod kit - https://github.com/rampageX/firmware-mod-kit/wiki

 Tools for static analysis

https://www.openwall.com/john/
https://github.com/bwrsandman/Bless
https://github.com/ReFirmLabs/binwalk/wiki/Usage
https://github.com/NationalSecurityAgency/ghidra
https://www.hex-rays.com/products/ida/
https://craigsmith.net/firmwalker/
https://github.com/fkie-cad/FACT_core
https://expliot.io/pages/firmware-auditor
https://github.com/rampageX/firmware-mod-kit/wiki

Tools for dynamic analysis
● gdb-multiarch
● Qemu - https://www.qemu.org/

● Avatar2 - https://github.com/avatartwo/avatar2

● Firmadyne - https://github.com/firmadyne/firmadyne

● Unicorn - https://www.unicorn-engine.org/

● Qiling - https://github.com/qilingframework/qiling

● Fuzzing Tools like Radamsa, booFuzz, etc.

https://www.qemu.org/
https://github.com/avatartwo/avatar2
https://github.com/firmadyne/firmadyne
https://www.unicorn-engine.org/
https://github.com/qilingframework/qiling

Examples of attacks due to
vulnerabilities in the firmware

Example1
● CVE-2017-8408
● Vulnerability - Command injection
● Affected Software : D-Link DIR-823G devices
● Detail Report - https://www.cvedetails.com/cve/CVE-2019-15530/

● This occurs in the /bin/goahead when a HNAP API function trigger a call to
the system function with untrusted input from the request body.

● A attacker can execute any command remotely when they control this
input.

https://www.cvedetails.com/cve/CVE-2019-15530/

Example1

Source - https://github.com/TeamSeri0us/pocs/blob/master/iot/dlink/823G-102B05-2.pdf

Example1

Source - https://github.com/TeamSeri0us/pocs/blob/master/iot/dlink/823G-102B05-2.pdf

Example2
● CVE-2020-8614
● Vulnerability - Remote Code Execution (RCE)
● Affected Software : Askey AP4000W TDC_V1.01.003 devices
● Detail - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8614 ,

https://improsec.com/tech-blog/rce-askey

● An attacker can perform Remote Code Execution (RCE) by sending a
specially crafted network packer to the bd_svr service listening on TCP
port 54188.

● Insecure firmware FTP server, hardcoded credentials

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8614
https://improsec.com/tech-blog/rce-askey

Example2

Source - https://improsec.com/tech-blog/rce-askey

● ”wget” to fetch a new firmware from a FTP-server

● Credentials “Askeyfota” with the password “d400fota”

● FTP-credentials had Read and Write rights to most directories on the

manufactures FTP-server

● Allow an attacker to add, delete or modify firmware images

● Implant a backdoor into the firmware

● No firmware signature validation in the update mechanism.

“Status.cgi” inside /web decompilation

Insecure firmware FTP server

https://improsec.com/tech-blog/rce-askey

Example2

Source - https://improsec.com/tech-blog/rce-askey

“bd_svr” application decompilation
Listening on port 0xd3ac i.e. 54188

Suspected functions

“Bd_svr” service inspection

After creating the socket, the program enters the
”tcp_svr_select_n_handle” function which runs a ”while”
loop waiting for client connections.

https://improsec.com/tech-blog/rce-askey

Example2

Source - https://improsec.com/tech-blog/rce-askey

Crafted message containing a “magic-signature”
allowed any unauthenticated user to write files to
 the filesystem.

The program had the calls to system functions like “lseek”, “write”, ”open”, “opendir” and “readdir”
which were all functions to interact with the filesystem.
By sending a crafted message containing a “magic-signature” allowed any unauthenticated user to
write files to the filesystem.

”cmd_n_data_send”, ”cmd_write”, ”cmd_send” and ”cmd_read” functions observation

https://improsec.com/tech-blog/rce-askey

Example3
● CVE-2020-8423
● Vulnerability - Buffer overflow
● Affected Software : TP-Link TL-WR841N V10 (firmware version 3.16.9)
● Detail - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8423 ,

https://ktln2.org/2020/03/29/exploiting-mips-router/

● A buffer overflow in the httpd daemon.
● Allows an authenticated remote attacker to execute arbitrary code via a

GET request to the page for the configuration of the Wi-Fi network.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8423
https://ktln2.org/2020/03/29/exploiting-mips-router/

Example3

Source - https://ktln2.org/2020/03/29/exploiting-mips-router/

https://ktln2.org/2020/03/29/exploiting-mips-router/

Example3

Source - https://ktln2.org/2020/03/29/exploiting-mips-router/

● Function that uses as input a buffer from
the user and as destination a buffer in
the stack

● It prints a value in the page and uses a
buffer of 512 bytes located in the stack
big as the size limit passed to
stringModify()

● used to print some values passed as GET
parameters

https://ktln2.org/2020/03/29/exploiting-mips-router/

Example 4
● CVE-2017-10721
● Vulnerability : Telnet Enabled

● Affected Software : Shekar Endoscope
– Shekar Endoscope Firmware has Telnet functionality enabled by default.
– This device acts as an Endoscope camera that allows its users to use it in various
industrial systems and settings, car garages, and also in some cases in the medical clinics
to get access to areas that are difficult for a human being to reach.

● Expliotation:
– Attacker has to connect to the camera’s default SSID with default creds
– Then he should be able to brute force telnet username password

Source - https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-10721

Labs

- Let’s get started…...

Lab 1 - Firmware extraction & credentials search
● Aim - Given a firmware binary of a router, extract the firmware, identify

the filesystem, architecture, find the hardcoded telnet credentials.

Steps :
1. Go to directory /home/exos/labs/lab1
2. Run command binwalk -e firm_lab1.bin , you get a directory _firm_lab1.bin.extracted
3. Inside the _firm_lab1.bin.extracted directory, go to squashfs directory,
4. Run command grep -irn “telnet” .
5. You can see a script file S80telnetd.sh
6. Cat that file using - cat ./etc/init0.d/S80telnetd.sh
7. Now you can find hardcoded credentials inside it :)

Lab 2 - Firmware Modification & Re-packing
● Aim - Given a firmware binary, extract the firmware, modify some

sensitive info and re-pack the extracted firmware.

Steps :
1. Go to directory /home/exos/labs/lab2
2. Run command extract-firmware.sh firm_lab2.bin , you get a directory fmk
3. Inside the fmk directory, go to rootfs directory, do change in any file of your choice. Modify

the firmware – Either add/modify a script in /usr/bin or delete root password in /etc/shadow
4. Rebuild (and extract at another location and check your modification to confirm modification

was successful)
 – Cmd: build-firmware.sh <fmk-dir>

– If it gives and error and complains about the size, use the -min option in the cmd

Lab 3 - Crack the password
● Aim - Given a firmware binary, extract the firmware, identify the password

related files & crack the Linux password.

Steps :
1. Go to directory /home/exos/labs/lab3
2. Run command binwalk -e firm_lab3.bin to extract the binary as in lab1
3. Inside the _firm_lab3.bin.extracted directory, go to squashfs directory, copy ./etc/passwd and

./etc/shadow files somewhere
4. Attempt to crack password using john

 - Cmd: $ john <shadowfile> (N.B. It will take more time)
 - Cmd for cracking using password list:$ john –wordlist=<pwd-list> <shadowfile>

 <pwd-list>: Password list – password.list file provided in the lab directory

5. NOTE: Once John cracks the password, it creates an entry in ~/.john/john.pot and doesn’t
crack it again, so if you used password list and cracked a password and want to try the
default bruteforce method, delete the john.pot file first (rm -rf ~/.john/*)

Lab 4 - Firmware Dynamic Analysis
● Aim - Given a firmware binary, extract the firmware, identify the custom /

proprietary binaries. Emulate & fuzz it.

Steps :
1. Go to directory /home/exos/labs/lab4 (This is your <lab-path>)
2. Run command binwalk -e firm_lab4.bin , to extract the binary as in previous labs
3. Copy qemu-mips (provided in the lab directory) to squashfs dir of extracted firmware

cd _firm_lab4.bin.extracted/squashfs
sudo cp <lab-path>/qemu-mips .

4. Run the binary using qemu in chroot env
– sudo chroot . ./qemu-mips <binary>
<binary>: A binary that you want to run and analyse. Use bin/busybox for example
Find any interesting binary (probably something that’s listening on some port) and try to fuzz
it

More links :
● https://www.unicorn-engine.org/docs/beyond_qemu.html

● https://payatu.com/blog/munawwar/solving-the-problem-of-encrypted-firmware

● https://www.thezdi.com/blog/2020/2/6/mindshare-dealing-with-encrypted-router-firmware

● https://www.pentestpartners.com/security-blog/breaking-bad-firmware-encryption-case-study-

on-the-netgear-nighthawk-m1/

● https://payatu.com/blog/asmita-jha/--stack-smashing--protection-in-hardware-attack (For bare
metal)

https://www.unicorn-engine.org/docs/beyond_qemu.html
https://payatu.com/blog/munawwar/solving-the-problem-of-encrypted-firmware
https://www.thezdi.com/blog/2020/2/6/mindshare-dealing-with-encrypted-router-firmware
https://www.pentestpartners.com/security-blog/breaking-bad-firmware-encryption-case-study-on-the-netgear-nighthawk-m1/
https://www.pentestpartners.com/security-blog/breaking-bad-firmware-encryption-case-study-on-the-netgear-nighthawk-m1/
https://payatu.com/blog/asmita-jha/--stack-smashing--protection-in-hardware-attack

Thank You
- Questions?

- Email : asmita@payatu.com
- Twitter : aj_0x00

