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Abstract

Music has a vocabulary, just in the way English and machine code do. Using chords
as our “words” and chord progressions as our “sentences,” there are some di↵erent
ways to think about “grammar” in music by dividing music by some classification,
whether it be artist, album, year, region, or style. How strict are these classifications,
though? We have some intuition here, that blues will be more strict a classification
than jazz, say, and songs of Madonna will be more similar to each other than that
of Beethoven. To solve this problem computationally, we digitally sample songs in
order to filter out chords, and then build a Markov chain based on the order of the
chords, which documents the probability of transitioning between all chords. Then,
after restricting the set of songs by some (conventional) classification, we can use the
measure of entropy from information theory to describe how “chaotic” the nature of
the progressions are, where we will test if the chain with the highest amount of entropy
is considered the least predicable classification, i.e., most like the rolling of a fair die,
and if the lowest amount corresponds to the most strict classification, i.e., one in which
we can recognize that classification upon hearing the song. In essence, I am trying to
see if there exist functional chords (i.e., a chord i that almost always progresses next
to the chord j) in music not governed by the traditional rules from harmonic music
theory, such as rock. In addition, from my data, a songwriter could compose a song in
the style of Beethoven’s Piano Sonata No. 8, Op. 13 (“Pathetique”), or Wire’s Pink
Flag, or more broadly, The Beatles. Appendices include some basic music theory
if the reader wishes to learn about chord construction, and a discussion of hidden
Markov models commonly used in speech recognition that I was unable to implement
in this thesis.





Introduction

Motivations

Why chord progressions?

What gives a song or tune an identity? Many might say lyrics or melody, which seems
to consider the literal and emotional messages music conveys as the most distinguish-
able components. However, many times, two songs will have lyrics that dictate the
same message, or two melodies that evoke the same emotion. Instead, what if we
consider the temporal aspect of music to be at the forefront of its character—the way
it brings us through its parts from start to middle to end? In many popular songs, the
chorus will return to a section we have heard before, but frequently, the melody and
lyrics will be altered. Why do we recognize it as familiar if the literary and melodic
material is actually new?

To go about solving the di�cult problem of defining musical memory, I choose to
analyze harmony, which takes the form of chord progressions, as an indicator of musi-
cal identity. Not only are chords harder to pick out than melody and lyrics, but they
construct the backbone of progress in (most) music, more than other aspects such as
rhythm or timbre. Many times we will hear two songs with the same progression of
chords, and recognize such, but what about the times when just one chord is o↵? A
di↵erence of one chord between two songs seems like a much bigger di↵erence than
a di↵erence in melodies by one note, but the entropy of these two songs is very near
identical. The inexperienced ear cannot detect these di↵erences, when if a song only
di↵ers from another song by one chord, they are likely classified by the same style.
Styles seem to possess tendencies between one chord and another. I believe that all
of this is evidence of the strength of our musical memory.

In support of the existence of these “tendencies,” most classical music before the
movement of modernism (1890-1950) was quite strictly governed by rules that dic-
tated the order of chords [29]. A viio chord must be followed by a chord containing the
tonic (the note after which the key is named) in Baroque counterpoint, for example,
and this chord is usually I or i. Secondary dominant chords, and other chords not
within the set of basic chords of the given key, must progress to a chord from the key
in which they are the dominant, i.e., V/iii must progress to iii, or another chord from
the third scale degree, such as ii/iii, in music before modernism. These chords are
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said to be “functional,” but we can still label a chord as a secondary dominant even
if it does not resolve as specified, when it is simply called “non-functional”. There-
fore, the marriage of probability theory and harmonic (chord) progression is hardly a
distant relative of music theory.

Remarkably, the length of one chord seems to take up a single unit in our memory.
The chord played after it seems to depend only on the one before it, and in this way,
a sequence of chords could be said to possess the Markov property.

Memory in music is often referenced by musicologists and music enthusiasts alike,
just like memory in language and psychology. Think of those songs that, upon hearing
for the first time, you have the ability to anticipate exactly their structure. To
recognize components of a song, whether having heard it before or not, is something
that everyone can do, either from the instrumentation, or the era (evidenced by
quality of recording, at the very least), or the pitches being played. Clearly, there
are a lot of patterns involved in the structure of music, and if we can quantify any of
these patterns, we should.

Why digital filtering?

Everything in this thesis is tied to information theory, and one of the largest problems
approached by the field is that of the noisy channel. “Noise,” however, can be thought
of in two ways: (1) background interference, like a “noisy” subway station, or a poor
recording where the medium used to acquire sound contains a lot of noise, like a
revolver or even a coaxial cable; and then, (2) undesired frequencies, like a C, C],
and F all at once, when we just want to know if a C is being played. Both of these
problems can be addressed by filtering in digital signal processing, and in a quick,
faster-than-real-time fashion, can give us the results digitally that our ear can verify
in analog.

Why entropy?

“Complex” and “di�cult” are adjectives that many musicians and musicologists are
hesitant to use [21], even though it seems readily applicable to many works in both
music and the visual arts. I was provoked by this hesitance, as well as very inter-
ested in some way of quantifying the “di↵erence” between two songs. Realizing that
pattern matching in music was too chaotic a task to accomplish in a year (I would
have to hold all sorts of aspects of music constant—pitch/tuning, rhythm, lyrics,
instrumentation—and then, what if the song is in 3

4

time?), I turned to the concept
of entropy within information and coding theory for some way of analyzing the way
a sequence of events behaves.

If you have heard of entropy, you probably came across it in some exposition on
chaos theory, or perhaps even thermal physics. Qualitatively, it is the “tendency to-
wards disorder” of a system. It is at the core of the second law of thermodynamics,
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which states that, in an isolated system, entropy will increase as long as the system
is not in equilibrium, and at equilibrium, it approaches a maximum value. When
using many programs or applications at once on your laptop, you have probably no-
ticed that your computer gets hotter than usual. This is solely due to your machine
working harder to ensure that an error does not occur, which has a higher chance of
happening when there is more that can go wrong.

The entropy of a Markov chain boils down a song (or whatever sequence of data is
being used) to the average certainty of each chord. If we didn’t want the average cer-
tainty, we would simply use its probability mass function. But, in trying to compare
songs to one another, I wanted to handle only individual numbers (gathered from the
function of entropy) versus individual functions for each set or classification. As you
will see, entropy is a fine measure not only of complexity, but of origination in music.
It can tell us if a song borrows from a certain style or range of styles (since there are
so many) by comparing their harmonic vocabularies of chords, and telling us just how
an artist uses them. This is better than simply matching patterns, even of chords, be-
cause two songs can have similar pitches, but be classified completely di↵erently from
one another. Hence, entropy can prove a very interesting and explanatory measure
within music.

Automatic Chord Recognition

Current methods for Automatic Chord Recognition have only reached about 75%
e�ciency [25], and I cannot say I am expecting to do any better. However, I do know
how to part-write music harmonically, so I will have a control which I know to be
correct to the best of my abilities.

Using several (12 times the number of octaves over which we wish to sample, plus
one for the fundamental frequency) bandpass filters in parallel, we receive many pass-
bands from a given sampling instant, all corresponding to a level of power [measured
in watts (W)]. We sample the entire song, left to right, and document the relative
powers of our 12 passbands at each instant (any fraction a second seems like more
than enough to me), and choose chords based on the triple mentioned above: key,
tonality, and root. The root is always present in a chord, and since we are normal-
izing pitch to its fundamental (i.e., octaves do not matter), inverted chords will be
detected just as easily as their non-inverted counterparts. Thus, we match our 1-4
most powerful pitches to a previously defined chord pattern and label the chord with
the appropriate Roman numeral, based on the key of the song or tune.

Smoothing

Too bad it is not that easy. The 1-4 most powerful pitches in the digital form rarely
comprise a chord, so we have to smooth the functions of each pitch over time in order
to see which ones are actually meaningful. We do this by averaging the power of a
frequency over some range of samples, optimally equal to the minimum duration of
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any chord in the progression.

Western Convention in Music

How was harmony discovered? Arguably, that is like asking, “How was gravity discov-
ered?” It was more realized than discovered. The story is that, one day in fifth century
B.C.E., Pythagoras was struck by the sounds coming from blacksmiths’ hammers hit-
ting anvils [22]. He wondered why occasionally two hammers would combine to form
a melodious interval, and other times, would strike a discord. Upon investigation,
he found that the hammers were in almost exact integer proportion of their relative
weights: euphonious sounds came from hammers where one was twice as heavy as
the other, or where one hammer was 1.5 times as heavy as the other. In fact, they
were creating the intervals of an octave (12 half steps) and a perfect fifth (7 half steps).

His curiosity peaked, Pythagoras sat down at an instrument called the monochord
and played perfect fifths continuously until he reached an octave of the first frequency
he played. For example, if he began at A (27.5 Hz), he went up to E, then B, F],
C], G], D], A], E] (F), B] (C), F] ] (G), C] ] (D), and finally G] ], the “enharmonic
equivalent” of A1. However, you may notice that (1.5)12 = 129.746338 6= 128 = 27,
because 12 perfect fifths in succession spans 7 octaves. Pythagoras’ estimation of 1.5
thus had a 1.36% error from the true value of the di↵erence in frequency between a
note and the note 7 half steps above it, which is 2(7/12).

Sound is not the only wave motion to which harmony applies: the light from a
prism also has proportional spacings of color. Sir Isaac Newton even devised a scheme
coordinating audible frequencies with the visible spectrum in something he called a
spectrum-scale, depicted below, matching colors to musical tones.

The piano was designed in 1700 based on acoustical techniques applied to the
harpsichord, which was most likely invented in the late Middle Ages (16th century).
The lowest A is 27.5000 Hz, and since we double the initial frequency of a note to
find one octave higher, each A above it is an integer. The piano produces sound
by striking a key and thereby dropping a hammer onto a wire (which behaves like
a string), which causes it to vibrate. The speed v of propagation of a wave in a
string is proportional to the square root of the tension of the string T and inversely
proportional to the square root of the linear mass m of the string:

v =

r
T

m

The frequency f of the sound produced by this wave only requires knowledge of the
length L of the string and the speed of propagation, and is

f =
v

2L
1In music theory, the di↵erence between these two notes is larger than you might expect
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Figure 1: Two representations of Newton’s “spectrum-scale,” matching pitches to
colors. The circular one is highly reminiscent of depictions of the circle of fifths. Note
that the primary colors (red, yellow, blue) are the first, third, and fifth colors of the
seven on the color wheel (RoYgBiv), just as a chord is constructed of a first, third,
and fifth of seven scale degrees in a key. Both images reproduced from Voltaire’s
Elémens de la philosophie de Neuton (1738) in [22].

The wavelength � of the fundamental harmonic is simply

� = 2L.

Therefore,

v = �f.

Hence, shortening the string, increasing the tension of the string, or decreasing the
mass of the string all make for a higher fundamental frequency.

In Western music, the piano is archetypical. It is a linear system where notes to
the left have lower frequencies (and longer wires) and to the right, higher. The com-
mon chromatic notation of music where we have a treble and bass clef with middle-C
written the same way, at the same height, is natural to the keyboard and its linear
nature, because the lowest note is indeed the leftmost note on the keyboard and the
highest note is the rightmost note on the keyboard. It is also nice because the bass
clef usually designates those notes played by the left hand, and the treble clef those
played by the right. The notation adds another dimension, that of time, to make the
system a sort of plane with lines of melody (“voices”) according to pitch.

Now, a half-step (A to A], for example) multiplies the initial frequency (the lower
one) by 21/12. It is clear that an octave, which is equivalent to 12 half-steps, multiplies
the initial frequency by 2. This distribution of frequencies on the piano is known as
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“equal temperament,” which has a ring of political incorrectness, since many East-
ern cultures use quarter-tones (simply half of a half-step). But we attach a positive
meaning to “harmony,” and indeed the frequencies that occur from a note’s harmonic
overtone series are considered “pleasant,” and shape much of Western convention in
songwriting.

For more about the notation techniques and harmonic part-writing used in this
thesis, please see Appendix A.

Procedure

This project requires evidence from a vast range of mathematics, acoustics, and music
theory, so I try to develop each relevant discipline as narrowly as possible.

1. We import songs into a series of bandpass filters in parallel, and pick out the
most intense frequencies by analyzing their power.

2. We count up the number of times we transition between chord ci and chord cj

for all chords ci and cj s.t. ci 6= cj (or simply, i 6= j) in a progression X with
state space C.

3. We divide these counts by the total number of times we transition from the
initial chord ci and obtain a probability distribution. We insert this as a row
into a Markovian transition matrix representing a Markov chain, where the
chain is a chord progression, in which each row of the matrix sums to 1 and the
diagonal entries are 0, since we are not paying mind to rhythm and therefore
cannot account for the duration of states.

4. We take the entropy of the Markov chain for each (set of) progression(s) using
the measure

P
i pi

P
j pj|i logN(1/pj|i), where pi is the probability of hearing

chord ci, N is the number of distinct states in C, and pj|i is the probability of
transitioning to chord cj from chord ci.

5. We compare the levels of entropy against each other and see what the measure
means in terms of the strictness of the musical classification of the set of chords.

The first of these procedures, i.e. filtering and digital signal processing, is de-
veloped in the first chapter. The second and third are discussed in Chapter 2 on
Markovian probability. The final two are found in the third chapter on entropy and
information theory, where the conclusions and some code can be found.2

2Because so many of aspects of this thesis come from very distinct fields of mathematics, physics,
and engineering, I would not be surprised to hear that I go into far too much detail trying to describe
the elementary nature of each of the fields. However, I wanted to make sure that this document was
“compact,” and contained all definitions that one might need to reference. For those that I didn’t
state immediately after their introduction, they can (hopefully) be found in the glossary.



Chapter 1

Automatic Recognition of Digital
Audio Signals

1.1 Digital Audio Signal Processing

Digital signal processing (DSP) originated from Jean Baptiste Joseph, Baron de
Fourier in his 1822 study of thermal physics, Théorie analytique de la chaleur. There,
he “evolved” [10] the Fourier series, applying to periodic signals, and the Fourier
transform, applying to aperiodic, or non-repetitive, signals. The discrete Fourier
transform became popular in the 1940s and 1950s, but was di�cult to use without
the assistance of a computer because of the huge amount of computations involved.
James Cooley and John Tukey published the article “An algorithm for the machine
computation of complex Fourier series” in 1965, and thereby invented the fast Fourier
Transform, which reduced the number of computations in the discrete version from
O(n2) to O(n log n) by a recursive algorithm, since roots of unity in the Fourier trans-
form behave recursively. Oppenheimer and Schafer’s Digital Signal Processing and
Rabiner and Gold’s Theory and Application of Digital Signal Processing remain the
authoritative texts on digital signal processing since their publication in 1975, though
the highly technical style keeps them fairly inaccessible to the non-electrical engineer.
Also, the Hungarian John von Neumann’s architecture of computers from 1946 was
the standard for more than 40 years because of two main premises: (1) there does not
exist an “intrinsic di↵erence” between instructions and data [10], and (2) instructions
can be partitioned into two major fields containing an operation and data upon which
to operate, creating a single memory space for both instructions and data.

Essentially, DSP’s goal is to maximize the signal-to-noise ratio, and it does so with
filters like the discrete Fourier transform, bandpass filters, and many others. Digital
media is always discrete, unlike its analog predecessor, but the digital form has its
advantages. For one, a CD or vinyl will deteriorate over time, or become soiled and
scratched, and this does not happen to digital files. Second, it is easy and fast to
replicate a digital version and store it in many places, again increasing the likelihood
of maintaining its original form. Finally, with analog’s “infinite sampling rate” [10]
comes infinite variability, and this also contributes to digital media’s robustness over
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analog.
To sample a signal, we take a discrete impulse function, element-wise multiply it

(i.e., take the dyadic product of it) with an analog signal, and retrieve a sampling of
that signal with which we can do many things. The construction of a filter essentially
lies in the choice of coe�cients; we will go through a proof of our choice in coe�cients
to show that the filtering works.

1.1.1 Sampling

There are three di↵erent ways of sampling an analog signal: ideal, instantaneous, and
natural [14]. The simplest of these and the one which we will use is the ideal sampling
method, which consists of a sequence of uniformly spaced impulses over time with
amplitude equivalent to the sampled signal at a given time. An impulse is a vertical
segment with zero width and infinite amplitude, extending from y = 0 to y = 1.
It is dotted with the analog signal to heed a discrete-time signal just described.

Figure 1.1: Three di↵erent types of digital sampling for an analog signal (a): (b)
ideal, (c) instantaneous, and (d) natural [14].

Figure 1.2: The dyadic product of an impulse function with a signal in ideal sampling
[14].
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Formally, this is given by

xs(t) = x(t) · (�(t�1) + . . . + �(t� T ) + �(t) + �(t + T ) + . . . + �(t +1))

= x(t)
1X

n=�1
�(t� nT )

where xs(t) is the sampled (discrete-time) signal, � is the impulse function, and T is
the period of x(t), i.e., the spacing between impulses. We compute the power p at a
point in time t

p(t) = |x(t)|2

and the energy of a system, or entire signal

E =
1X

t=�1
|x(t)|2.

Energy is measured in joules, where 1 joule is 1 watt ⇥ 1 second. The average power
P is then

P = lim
T!1

1

2T

TX

t=�T

|x(t)|2.

A signal has a minimum frequency fL (it is fine to assume that this is 0 Hz, in
most applications) and a maximum frequency fU . If a signal is undersampled, i.e.,
the sampling frequency is fs < 2 · fU , the impulses will not be spaced far enough
apart, and the resulting spectrum will have overlaps. This is known as aliasing, and
when two spectra overlap, they are said to alias with each other. We have a theorem
that forebodes the problems that occur from undersampling.

The Nyquist-Shannon Sampling Theorem. If a signal x(t) contains no fre-
quencies greater than fU cycles per second (Hz), then it is completely determined by
a series of points spaced no more than 1

2fU
seconds apart, i.e., the sampling frequency

fs � 2fU . We reconstruct x(t) with the function

x(t) =
1X

n=�1
x(nT )

sin[2fs(t� nT )]

2fs(t� nT )
.

The minimum sampling frequency is often referred to as the Nyquist frequency
or Nyquist limit, and this rate of 1

2fU
is referred to as the Nyquist rate. The

bandwidth of a signal is its highest frequency component, fU .

Aliasing is depicted in the following sequence of images, all taken from [7]. The
construction of the impulse function is crucial to avoiding aliasing.
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Figure 1.3: The impulse function � for sampling a signal at !s.

Figure 1.4: The spectrum X(!M) of the signal x(t), where !M is the maximum
frequency of x(t).

Figure 1.5: The result of choosing a sampling rate !s < 2!M .

We are already witnessing some characteristics of the important operation of con-
volution, denoted by ⇤: a spectrum convolved with an impulse function is actually
the (discrete) Fourier transform (F) of the discrete-time signal, i.e.,

F
"
x(t)

1X

n=�1
�(t� nT )

#
= F(x(t)) ⇤

"
fs

1X

m=�1
�(t�mfs)

#
,

where F denotes the Fourier transform [14]. Note also that a spectrum of a signal is
given by its Fourier transform, F(x(t)).

The operation of convolution is commutative, additive, and distributive, but does
not have a multiplicative inverse. However, in the delta distribution, which is such
that

Z 1

�1
�(t� t

0

)f(t)dt = f(t
0

),

�(t�m) ⇤ �(t� n) = �(t� (m + n)),

the convolution of a function with � returns the function, i.e.,

f ⇤ � = f.
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1.1.2 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) and its inverse (the IDFT) are used on ape-
riodic signals to establish which peak frequencies are periodic (i.e., are overtones1),
and those that are aperiodic. The DFT represents the spectrum of a signal, and the
IDFT reconstructs the signal (with a phase shift) and retrieves only those frequencies
that are fundamental. It is a heavy but simple algorithm with many variables, so it is
best to approach it slowly to truly understand its mechanisms2. It was born from the
Fourier series in Fourier analysis, and it attempts to approximate the abstruse waves
of a spectrogram by simpler trigonometric piecewise functions, for the behavior of a
frequency can be modeled by sinusoidal functions. This helps clarify what is noise
in a signal and what is information by reducing a signal to a su�ciently large, finite
number of its fundamental frequencies in a given finite segment of the signal.

Definition: Fourier transform. The Fourier transform is an invertible linear
transformation

F : CN ! CN

where C denotes the complex numbers. Hence, it is complete. The Fourier transform
of a continuous-time signal x(t) is represented by the integral [34]

X(!) =

Z 1

�1
x(t)e�i!tdt, and inversely,

x(t) =

Z 1

�1
X(!)ei!td!, ! 2 R,

where X(!) is the spectrum of x at frequency !.

It is not di�cult to see why the discrete-time signal case is then represented by

X(!k) =
N�1X

n=0

x(tn)e�i!ktn , k = 0, 1, 2, . . . , N � 1,

which, because !k = 2⇡k/(NT ) and tn = nT , can also be written

X(k) =
N�1X

n=0

x(n)e�i2⇡kn/N , k = 0, 1, 2, . . . , N � 1,

and the inverse DFT, or IDFT, is

x(tn) =
1

N

N�1X

k=0

X(!k)e
i!ktn , n = 0, 1, 2, . . . , N � 1,

1The overtone series of a fundamental frequency is the sequence of frequencies resulting from
multiplying the fundamental frequency by each of the natural numbers (i.e., {1 ·ffund, 2 ·ffund, . . .}).
The overtone series of A=55 Hz is {55 Hz = A, 110 Hz = A, 165 Hz = E, 220 Hz=A, 275 Hz=C ],
330 Hz = E, 385 Hz=G, 440 Hz=A, 495 Hz=B [, . . .}.

2The book [34] is a very good resource for those new to the Fourier transform.
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which similarly can be rewritten

x(n) =
1

N

N�1X

k=0

X(k)ei2⇡kn/N , n = 0, 1, 2, . . . , N � 1.

List of symbols in the DFT.

:= := “defined as”

x(t) := the amplitude (real or complex) of the input signal at time t (seconds)

T := the sampling interval, or period, of x(t)

t := t · T = sampling instant, t 2 N
X(!k) := spectrum of x at frequency !k

!k := k⌦ = kthfrequency sample

⌦ :=
2⇡

NT
= radian-frequency sampling interval (radians/sec)

! := 2⇡fs

fs := 1/T =
!

2⇡
= the sampling rate, in hertz (Hz)

N := the number of time samples = the number of frequency samples 2 Z+

The signal x(t) is called a time domain function and the corresponding spectrum
X(k) is called the signal’s frequency domain representation. The amplitude A of
the DFT X is given by

A(k) = |X(k)| =
p
<(X(k))2 + =(X(k))2,

and its phase � is

�(k) = 2 arctan
=(X(k))

|X(k)| + <(X(k))

This trigonometric function finds the angle in radians between the positive x-axis
and the coordinate (=(X(k)),<(X(k))). It is positive and increasing from (0, ⇡)
(counter-clockwise), and negative and decreasing from (0,-⇡) (clockwise). It equals ⇡
at ⇡.

You may notice that the exponentials in both the DFT and its inverse resemble
roots of unity, of which Euler’s identity will be helpful in explaining.

Euler’s identity. For any real number x,

eix = cos x + i sin x, and

e�ix = cos x� i sin x.

Definition: Roots of unity. We call the set W = {W 0

N , W 1

N , . . . ,WN�1

N } the
N th roots of unity corresponding to points on the unit circle in the complex plane,



1.1. Digital Audio Signal Processing 13

where

WN = e
2⇡i
N , the primitive N th root of unity;

W k
N = e

2⇡ik
N = (WN)k, the kth N th root of unity;

WN
N = W 0

N .

By Euler’s identity,

W kn
N = e

2⇡ikn
N = cos(2⇡kn/N) + i sin(2⇡kn/N).

This is called the “kth sinusoidal function of f” [34].
By Euler’s identity, e�i2⇡kt/N = cos(2⇡kt/N) � i sin(2⇡kt/N) and ei2⇡kt/N =

cos(2⇡kt/N) + i sin(2⇡kt/N). Therefore, we can also write the DFT and its inverse
as follows:

X(k) =
N�1X

t=0

x(t)e�i2⇡kt/N , k = 0, 1, . . . , N � 1

=
N�1X

t=0

x(t) cos(2⇡kt/N)� i
N�1X

t=0

x(t) sin(2⇡kt/N)

x(t) =
1

N

N�1X

k=0

X(k)ei2⇡kt/N , t = 0, 1, . . . , N � 1

=
1

N

N�1X

k=0

X(k) cos(2⇡kt/N) +
i

N

N�1X

k=0

X(k) sin(2⇡kt/N).

Then,

e�i2⇡kt/N = cos(2⇡kt/N)� i sin(2⇡kt/N)

is the kernel of the discrete Fourier transform.
For the sake of clarity, I will show that the IDFT is indeed the inverse of the DFT.

To do so, all we need to note is the boundedness of k in either of the sums:

X(k) =
N�1X

t=0

x(t)e
�2⇡itk

N

=
N�1X

t=0

 
1

N

N�1X

k=0

X(k)e
2⇡itk

N

!
e
�2⇡itk

N

Since the k in e
�2⇡itk

N is not bounded by the k in the inner sum, we change the inside
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k to l:

=
N�1X

t=0

 
1

N

N�1X

l=0

X(l)e
2⇡itl

N e
�2⇡itk

N

!

=
N�1X

t=0

1

N

N�1X

l=0

X(l)e
2⇡it(l�k)

N

=
1

N

N�1X

l=0

X(l)
N�1X

t=0

e
2⇡it(l�k)

N

= N when l = k, 0 otherwise

Thus, our double sum is

1

N

N�1X

l=0

X(l)N�lk = X(k),

where �lk = 1 for l = k and 0 otherwise.

To help you visualize how the DFT and IDFT manipulate a signal, four examples
of signals are shown in Figures 1.6-1.9: two are periodic, two aperiodic, two noiseless,
and two containing noise. All transforms are absolute values; note the phase shift in
the IDFT reconstruction when the signal contains negative values.

Figure 1.6: Noiseless periodic signal, its DFT, and its IDFT.

Figure 1.7: Noisy periodic signal, its DFT, and its IDFT.

Note that the transforms are symmetric about the middle term, k = t = N/2, the
Nyquist frequency. This happens because the signals are real-valued. For complex-
valued signals, the Nyquist frequency is always zero.
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Figure 1.8: Noiseless aperiodic signal, its DFT, and its IDFT.

Figure 1.9: Noisy aperiodic signal, its DFT, and its IDFT.

1.1.3 Properties of the Transform

The nature of complex numbers provides the Fourier transform (both the discrete and
continuous versions) with many nice properties. We will only have time to discuss
those relevant to its function as a filter, and those include convolution and linearity.

Cyclic Convolution. The cyclic convolution of two signals each of length N
is equal to the inverse discrete Fourier transform of the dyadic product of the discrete
Fourier transform of each signal. The operation of convolution is notated by the
symbol *.

Proof. Let F denote the discrete Fourier transform operator. For two signals
x(t

1

) and y(t
2

),

F(x(t)) = X(k) =
N�1X

t=0

x(t
1

)e�2⇡ikt1/N ,

F(y(t0)) = Y (k) =
N�1X

t0=0

y(t
2

)e�2⇡ikt2/N .

The inverse discrete Fourier transform of their dyadic (element-wise) multiplication
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is

F�1(F(x(t
1

)) · F(y(t
2

))) =
1

N

N�1X

k=0

X(k)Y (k)e2⇡itk/N

=
1

N

N�1X

k=0

 
N�1X

t1=0

x(t
1

)e�2⇡ikt1/N

! 
N�1X

t2=0

y(t
2

)e�2⇡ikt2/N

!
ei2⇡kt/N

=
1

N

N�1X

t1=0

N�1X

t2=0

x(t
1

)y(t
2

)
N�1X

k=0

e2⇡ik(t�(t1+t2))/N .

Summing over k, we get

N�1X

k=0

e2⇡ik(t�(t1+t2))/N = N�,

where � is 1 when n ⌘ (t
1

+ t
2

) mod N and 0 otherwise. Therefore, the above triple
sum becomes

X

t1+t2⌘t mod N

x(t
1

)y(t
2

) =
N�1X

t1=0

x(t
1

)y(t� t
1

)

=
N�1X

t2=0

x(t� t
2

)y(t
2

)

= x ⇤ y(t),

which proves the theorem.

Corollary.

F(x(t) · y(t)) = F(x(t)) ⇤ F(y(t)).

This is how we obtain the aforementioned result

F
"
x(t)

1X

n=�1
�(t� nT )

#
= F(x(t)) ⇤

"
fs

1X

m=�1
�(t�mfs)

#
.

Another important property of the Fourier transform is its linearity.

Linearity of the DFT. A signal x can be scaled by a constant a such that
F(a · x) = a · X.

Proof.

ax(t) =
a

N

N�1X

t=0

X(f)ei2⇡ft/N

= aX(f).
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Also, the sum of two signals equals the sum of their transforms, i.e., a · x + b · y =
a · X + b · Y , a and b constants.

Proof.

ax(t) + by(t) =
a

N

N�1X

t=0

X(f)ei2⇡ft/N +
b

N

N�1X

t=0

Y (f)ei2⇡ft/N

= aX(f) + bY (f).

The DFT is called a linear filter because of these properties, and it is time-
invariant or time-homogeneous, meaning that over time, it does not change.

One final interesting property of the DFT that is likely relevant to filtering, though
I have not come across a literal relevance, is in Parseval’s theorem, which states
that

N�1X

t=0

|x(t)|2 =
1

N

N�1X

k=0

|X(k)|2,

or, the DFT is unitary. A more general form of Parseval’s theorem is Plancherel’s
theorem [33].

The Fourier transform can be used to detect instrumentation, because each in-
strument (including each person’s voice) has a unique timbre. Timbre means “tone
color,” and is simply the word we use to distinguish a note played by a violin from
the same note played by a piano. Timbre a↵ects the amplitudes of a frequency’s
overtone series, which is the sequence of frequencies found by multiplying the fun-
damental frequency by each of the natural numbers (i.e., {1 ·ffund, 2 ·ffund, . . .}). So,
in this way, the human ear is foremost a Fourier device: it can distinguish between
instruments, just as it can other humans’ voices. However, computers give us the
details about what it is that makes the quality of voices di↵erentiable. Although this
is fascinating, we will not be paying mind to timbre in this project, which I am sure
will prove problematic in trying to separate the (background) chord progression from
the (foreground) melody.

1.1.4 Filtering

We use a filter when we want to retrieve a single frequency or set of frequencies
from a signal, and decimate the remainder. Decimation via digital filtering is called
attenuation. One way to think of a digital filter is as a Kronecker delta function.
It is a spectrum with amplitude 1 at the frequencies it is designed to maintain in
a signal, and amplitude 0 at the frequencies it is designed to kill. But because it
is a continuous function, it contains amplitudes in between 0 and 1, and where the
amplitude is 0.5 is called a cuto↵ frequency. There can be only zero, one, or two
cuto↵ frequencies in the filters described below.
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In working with digital signals, we use Finite Impulse Response (FIR) techniques
[14]. An important concept in digital filtering is the impulse response h(t), which
is a measure of how the outputted signal responds to a unit impulse from the im-
pulse function �. A unit impulse is given by �(t), the continuous case of familiar
Kronecker delta function. Both a filter and a signal have an impulse function. We
can integrate or sum over the impulse response to obtain the step response a(t), and
use the Laplace transform, a definition of which can be found in the glossary but
is beyond the scope of this thesis, to obtain the transfer function H(s), where
s = 1�z

1+z
, z from the z-transform, also beyond the scope of this thesis but defined in

the glossary.
The general form for a linear time-invariant FIR system’s output y at time t is

given by

y(t) =
N�1X

⌧=0

h(⌧)x(t� ⌧)

=
N�1X

T=0

h(t� T )x(T )

by a change of variables, T = t� ⌧ .
Filters are specified by their frequency response H(f), which is the discrete

Fourier transform of the impulse response h(t).

H(f) =
N�1X

t=0

h(t)e�i2⇡tf/N , f = 0, 1, . . . , N � 1.

A filter modifies the frequencies within the spectrum (DFT) of a signal. When we
want to rid a signal of frequencies below some cuto↵ (or critical) frequency fc, such
that we are left with only frequencies above fc, we design a highpass filter. Its
impulse response is defined for a user-defined value N equal to the number of taps,
or the number of frequencies, at which the response is to be evaluated, and is given
by

h(t) = h(N � 1� t) = �sin(m�c)

m⇡

where m = t� N�1

2

and �c = !cT = 2⇡fcT . If N is odd, then we compute

h

✓
N � 1

2

◆
= 1� �c

⇡
.

Like the discrete Fourier transform and its inverse, the impulse response is symmetric
about t = N

2

for N even or about t = N�1

2

for N odd, and therefore half-redundant.
But since audio signals are real-valued, the Nyquist frequency is not necessarily 0.

Now, for a lowpass filter in which only low frequencies, or those below some fc,
may “pass through,” our impulse response function is

h(t) = h(N � 1� t) =
sin(m�c)

m⇡
,
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where again m = t� N�1

2

and �c = 2⇡fcT . If N is odd, then

h

✓
N � 1

2

◆
=

�c

⇡
.

Putting the two together is one way of designing a bandpass filter, whose pass-
band (the resulting bandwidth of any kind of “pass” filter) is restricted by a lower
critical frequency, fl, and an upper critical frequency, fu. If fl = fL, the minimum
frequency in the signal, and fu = fU , the maximum frequency in the signal, then the
filter is an all pass filter. Its impulse response function is

h(t) = h(N � 1� t) =
1

m⇡
[sin(m�u)� sin(m�l)]

and once again m = t� N�1

2

and �u = 2⇡fuT,�l = 2⇡flT . If N is odd, then we have

h

✓
N � 1

2

◆
=

�u � �l

⇡
.

The opposite of a bandpass filter is a bandstop filter or notch filter. Its impulse
response is given by

h(t) = h(N � 1� t) =
1

t⇡
[sin(m�l)� sin(m�u)].

For odd N ,

h

✓
N � 1

2

◆
= 1 +

�l � �u

⇡
.

Again, m, �l, and �u are all defined as above.
All of these impulse response functions output the coe�cients for an N -tap filter

of their type, and the IDFT gives the corresponding discrete-time impulse response
[14].

1.2 A Tunable Bandpass Filter in Mathematica

1.2.1 Design

A bandpass filter takes an input of a frequency f , quality Q, and signal x, and
outputs a signal with bandwidth centered at f . It does not matter whether f exists
in the spectrum, but if it does, the bandpass filter gets excited, and shows that the
frequency contributes to the amplitude (power) of the signal. The value Q is positive
and real, and a high Q (¿20) means a sharp focus around this “resonant” frequency f
by defining the sinusoid to have a dramatic and steep peak centered at f , where a low
Q means a gentler-sloped sinusoid is chosen for the filter. In essence, Q determines
how quickly the impulse response of a filter goes from 0 to 1, and/or 1 to 0.
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When dealing with a digital signal, we must tune our desired frequency to take
the sampling frequency into account. We do this by scaling f by 2⇡

fs
, where fs is the

sampling frequency. We name the tuned frequency ✓f = 2⇡
fs

· f .
To show that the coe�cients

� =
1

2

0

@
1� tan

⇣
✓f

2Q

⌘

1 + tan
⇣

✓f

2Q

⌘

1

A ,

↵ =
1

2

✓
1

2
� �

◆
,

� =

✓
1

2
+ �

◆
cos(✓f )

in the recursion

y(t) = 2 (↵ (x(t)� x(t� 2)) + �y(t� 1)� �y(t� 2))

will define such a filter, let us prove them using the Ansatz (“onset”) solution method,
where we will let A(✓f ) designate our educated guess.

Proof. Since we know that x(t) and likewise its filtered signal y(t) are sinusoidal
functions, let

x(t) = ei!t,

y(t) = A(!)x(t).

Then we can solve for A by

A(!)ei!t = 2
�
↵
�
ei!t � ei!(t�2)

�
+ �

�
A(!)ei!(t�1)

�
� �

�
A(!)ei!(t�2)

��

A(!)

2
= ↵(1� e�2i!) + �A(!)e�i! � �A(!)e�2i!

= ↵� ↵e�2i! + �A(!)e�i! � �A(!)e�2i!.

Therefore,

A(!) ·
✓

1

2
� �e�i! + �e�2i!

◆
= ↵� ↵e�2i!

making A the ratio

A(!) =
↵� ↵e�2i!

1

2

� �e�i! + �e�2i!
.

Here is a plot of A for the frequency fcenter = 256, sampling frequency fs = 22050,
and quality Q = 80.
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We will show that A is indeed our ideal curve for bandpass filtering.
We can define Q precisely by the ratio [13]

Q =
fcenter

fu � fl

,

where fu is the high cuto↵ frequency and fl is the low cuto↵ frequency of the filter.
The frequencies fl and fu are cuto↵ frequencies because they determine the domain for
which the amplitude of the filter |A| � 0.5, meaning frequencies outside this domain
are attenuated, or decimated, and those inside the domain appear in the passband.
The di↵erence fu � fl is the bandwidth of the passband.

Since ✓f is simply the frequency f scaled, Q is also the ratio

Q =
✓fcenter

✓fu � ✓fl

.

So, for our parameters for Q and fcenter, it should be the case in A that fu� fl =
fcenter/Q = 256/80 = 3.2 Hz, the bandwidth of the filter, and judging by the apparent
symmetry of A, the cuto↵ frequencies should be close to fu = 256 + 1.6 = 257.6 Hz
and fl = 256�1.6 = 254.4 Hz. When we tune the filter, the width of A at half-power
(A = 0.5 ± 0.5i, or |A| = 0.5) is the ratio

✓
256Hz

Q
=

2 · ⇡ · 256

22050 · 80
= 0.0009118455.

Now, |A(✓f )| = 0.5 at ✓fl
= 0.0724931385 and ✓fu = 0.073404984, meaning that the

untuned cuto↵ frequencies are fl = 254.404991 Hz and fu = 257.604991 Hz. Their
di↵erence is ✓fu� ✓fl

= 0.0009118455, exactly the expected width of A for the quality
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Q = 80, and the ratios

max✓f
(A(✓f ))

✓fu � ✓fl

=
✓
256 Hz

✓
257.604991 Hz � ✓

254.404991 Hz

=
0.07294763904 Hz

0.0009118455 Hz
= 80

= Q

and

fcenter

fu � fl

=
256 Hz

257.604991 Hz� 254.404991 Hz

=
256 Hz

3.2 Hz
= 80

= Q

are as expected.

1.2.2 Implementation

To demonstrate how our bandpass filter picks out a given frequency, we will design
a 13 note scale, C to C, in Mathematica. Since we do not change Q for di↵erent
frequencies, this filter is called a constant-Q bandpass filter.

The “SampleRate” set to 22050 indicates that the frequency resolution of our
filter is 22050 Hz, or 22050 samples per second. CD-quality sound has a frequency
resolution of 44100 Hz, so when it sampled at only 22050 Hz, the sound has twice
the duration. The “SampleDepth” indicates the amplitude resolution of our filter.
At 16, each sample therefore may have any of 216 = 65536 amplitudes [13]. Now, the
filter itself contains an initial frequency f ; a “tuning” ✓f (designated below by T0)
equal to 2⇡f divided by the frequency resolution; and the quality Q, hard-wired at
80. The 3 coe�cients, ↵, �, and �, are constructed from ✓f and Q (as shown in the
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proof by Ansatz above) to change our signal x into a filtered signal y:

We calculate the total power, or energy, of the sound through the bandpass filter
in the function BandPower(x, f, Q) by, as defined above, squaring the terms and then
summing them. Since we chose 440 Hz (A) to be our initial frequency (it is the only
piano frequency that is an integer, not to mention the most common reference point
amongst musicians since it lies within our vocal range and is close in proximity to
the center of the keyboard, middle-C), 9 steps down will give us middle-C, at 261.626
Hz.

To create a filter bank, implementing many filters at once to obtain power data
about the signal at each frequency and at each point in time, we define a table
ThreeOctavePower(x) in Mathematica as a storage location.

So, a 2.1-second sample in Mathematica 7 takes more than 6 times its duration
when filtered over three octaves. ThreeOctavePower(x) stores the individual powers
that each pitch generates in a range of three octaves. Its range here is from the C
that is 21 half steps down from A440, up to the C that is 15 half steps up from A440,
so it is actually of 37 frequencies, not 36. The first element after the timing is the
power at low C; it took additional time to list out the powers..
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So, the frequencies 13 (261.626 Hz) through 25 (523.25 Hz), 13 notes in total,
produce the most power, because they were the only ones present in our signal.

Now, we want to partition the sample (song) such that we can retrieve the fre-
quencies from time 0 to time 0.1, 0.1 to 0.2, etc. until we have realized the entire
signal. To do this, we partition x and multiply the segment of time (0.1 seconds)
by the sampling rate, 22050 Hz, since it directly corresponds to the duration of the
sample (a song sampled at 44100 Hz will be real-time, and twice as fast as one at
22050 Hz):

Then, we can plot the power of each frequency at each interval of time. Note that
those partitions in which two notes occur have a wider peak in their power graph.
The IDFT of x(t), also plotted below, reproduces the absolute value of the original
signal from its spectrum, with a phase shift �(k) = 2 arctan =(X(k))

|X(k)|+<(X(k))

, as given

above. The frequencies present in x(t) are shifted on the x-axis and appear to be
about twice that of their actual value.



1.2. A Tunable Bandpass Filter in Mathematica 25



26 Chapter 1. Automatic Recognition of Digital Audio Signals

Now, let us filter out just one frequency in our sample. When we set our frequency
f to C = 261.62 Hz, all the other frequencies are muted while the low note, C, passes
through, because of the way y is designed. Thus, y = BandPower(x, 261.62, 80).

The x-axis shows the sample number, and there are a total of 22050Hz·2.18s =
48069 of them. The y-axis indicates volume, or power. The IDFT of this passband
is shown in the following graph.

Again, the x-axis indicates twice the frequency of the actual signal. We can see
that our filter does a fairly accurate job of only allowing 1 given note to pass through.
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If we increased Q, we might get even more precise results, but Q = 80 seems to be
su�cient for this project.

Now, let’s test it on a chord. I chose the recognizable augmented chord at the
beginning of The Beatles’ “Oh! Darling”. We can use just the left channel of the
signal in our analysis to reduce the number of operations required.
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The 0.63 second sample through 49 bandpass filters for four octaves (plus high
C) takes 1.323 times the time the three octave (37 filters) module takes, which is
approximately the ratio 49/37 = 1.324. Thus, we can expect this program to run in
approximately 13.412 times the length of the sample.

Finally, we retrieve the normalized powers of each note in the three octave spec-
trum, and see peaks at 5, 13, 17, 24, 29, and 45. We add 47 to each of these to get
the MIDI keyboard equivalent, playable through GarageBand and similar platforms,
and got E=52, B=59, C=60, E=64, B=71, E=76, and G]=92, which actually spell
out an augmented C-seventh chord, but the peak at E makes it clear that it is the
root and that the B is incorrect. Indeed, it is an overtone of E, and the actual chord
played is an E+ (augmented) chord.

1.3 A Tunable Bandpass Filter in C

Figure 1.10: A screenshot of the application BandPower correctly identifying the
chord A Major in the Beatles song “Oh! Darling” from Abbey Road.



1.3. A Tunable Bandpass Filter in C 29

To run a 3-minute song in Mathematica would take some 40 minutes, a gross
amount of memory, and all of my very current MacBook Pro’s 2.4 GHz dual processor
power, so naturally, the main thing to improve upon is speed. In the language of C,
Devin Chalmers built for me the incredibly fast application, BandPower.app, shown
above. The application does exactly what the Mathematica program does (except it
adds the powers at every octave together, so that we get only one power for each
pitch class), but Mathematica can be very slow when dealing with a large quantity
of numbers, which is obviously the case when we multiply our sampling frequency of
44100 by the duration (in seconds) of a sound file!

Importing and analyzing a WAVE-format song (60 seconds translate to about
10.1 MB) over five octaves takes about 4 seconds, including the 34.7 MB, 3:26-long
Beatles’ song, “Oh! Darling.” Upon the selection of a file, a new window opens in
BandPower. Once the song is loaded, we see a histogram with two sliding levers.
On the x-axis are buckets for 12 pitches, ordered C through B, and on the y-axis,
the power of each of these pitches is shown. We set the desired sampling instant by
moving the lever along the x-axis, and the desired threshold power value by moving
the lever along the y-axis. Those pitches whose powers at the designated sampling
instant are above this power level are displayed at the top of the window, and the
sampling instant is displayed at the bottom right corner.

According to BandPower.app, the chord progression of the first 33 seconds of
“Oh! Darling” is

Chord Time (s)
E 0.9
A 2.3
E 7.5

F] (unknown quality)7 10.8
b 14.9
E7 21.2
b 23.0
A 27.8
D7 29.6
A7 31.2
E7 33.4

The true chord progression of this section of “Oh! Darling” is

Chord Time (s)
E+ 0.2
A 2.3
E 6.8
f]7 10.6
D 14.9
b7 19.0
E7 21.0
b7 23.0
E7 25.0
A 27.0
D7 29.0
A 31.0
E7 33.0
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Much can be said to excuse these errors, but since BandPower only includes 4
power plots per second, the times occasionally did not match up, so a complete
understanding of its e↵ectiveness (and error) cannot be attained. Here, we were able
to name 6 of the 13 chords exactly correctly, and seldom did we mislabel the root,
save when we failed to detect two chords at 14.9 and 25.0 seconds in. But note that
D (D, F], A) contains all of the pitches (except B) that are in b7 (B, D, F], A), and
E7 (E, G], B, D) contains two of the pitches in b7 (B, D, F], A).

It is perfectly possible that the extra sevenths we noted with BandPower were
present in the vocal melody or harmony, since sevenths make for a more “dramatic”
sound, or simply the overtones of the thirds in the triads (the dominant is quite loud
in the overtone series). The chord that was the most o↵ base was the first, which
should have been labeled “E+,” but, although our ears are bad detectors of loudness
(even a very soft noise, coming from silence, will seem loud to our ears, because it
startles us), the first chord is played on a piano with no accompaniment, unlike the
rest of the song.

1.3.1 Smoothing

Since it is so hard to find an actual triad that makes it to the three most powerful
frequencies, I decided to smooth the data and see if meaningful chords would evolve
then. The entirety of “Oh! Darling,” unsmoothed and then smoothed in the program
R, is depicted in Figures 1.11 and 1.12. These colorful graphs are known as Pitch
Class Profiles, in which the y-axis shows “pitch class” (one of C through B), the
x-axis is time, and the entries are the individual powers. Those with little to no power
are colored dark blue, and those with some to a lot of power are tinted somewhere
between green and orange. This graphical system, developed by Fujishima in 1999, is
a powerful way of visualizing the harmony of a song because it is three-dimensional.
It is clearly much easier to understand and conjecture about the chord progression
from the smoothed contour map versus the unsmoothed one.

Figure 1.11: Unsmoothed contour plot of “Oh! Darling”.
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Figure 1.12: Smoothed contour plot of “Oh! Darling”.

After exporting the data into a Comma Separated Values (.csv) file from Band-
Power, smoothing of it was achieved by averaging over a user-defined3 range of par-
titions, each 10000

44100

seconds in length, with the function “windowsmooth” that takes
the range of partitions and data as its input:

From these smoothed values (and its corresponding pitch class profile representation),
we can see that some pitches are struck far more than others. Since only 7 comprise
a scale, we will see if the 7 most played pitches build the (or any, for that matter)
scale.

3If the minimum duration of any chord in a progression is known, the user should input this
duration into the smoothing function to achieve more robust plots.
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1.3.2 Key Detection

Because the majority of humans do not have perfect pitch, intervals of two notes sound
the same regardless of their location on the keyboard. For example, the interval of 5
half steps known as a perfect fourth (P4) sounds the same whether between an A and
D, or a G and C. To account for this aural normalization, we write chords as Roman
numerals relative to their key, where “I” and “i” both occur on the first scale degree4

(the tonic), “ii” and “iio” on the second degree of the scale (the supertonic), and
so on. The notation “[ II” means that the chord is rooted at a half step above the
first scale degree and a half step below the second scale degree. The seven “ordinary”
triads within a major key are labeled I, ii, iii, IV, V, vi, and viio, where a capitalized
Roman numeral indicates a major quality, i.e., the second note in the chord is 4 half
steps above the root and the third note in the chord is 7 half steps above the root.
A lowercase Roman numeral indicates a minor quality, where the second note is 3
half steps above the root and the third is also 7 half steps above the root. Finally,
a lowercase Roman numeral followed by a “o” indicates a diminished chord quality,
where the second note is 3 half steps above the root and the third is 6 half steps away
from the root.

The natural triads in a minor key are i, iio, III, iv, v, IV, and VII. If you take
a moment to look at the pattern of qualities of the chords in the minor key lineup
against that of the major key, you’ll see that the minor key begins on the sixth scale
degree of a major key. This major key is called its relative major key because the
notes are the same.

When we are in a major key but encounter a chord like v, we say it is borrowing
from the parallel minor key, for the root is the same but the scale degrees are in
di↵erent places (i.e., G Major and g minor are in a parallel-key relationship). It is
very common for both major and minor keys to borrow chords from their relative
counterparts, in the Beatles’ and Beethoven’s music alike. In fact, I wish I had
accounted for this common event in my analysis and naming with Roman numerals,
by saying that every song is in a major key, since the chords can simply be written
vi, viio, I, etc. instead of i, iio, III. That way, the behavior of major and minor songs
could be analyzed together, and the labeling would be normalized.

When we encounter a chord that is neither in the major or parallel minor scale,
we consider two things before labeling it with a Roman numeral. First, we analyze
its quality. If it is a major chord, we check to see if its root is at [2̂, in which case
it is the Neapolitan chord. Otherwise, we label it with a “V/” and see what note is
7 half steps below its root, and put the appropriate Roman numeral from our key
(or its parallel key) underneath this slash. Most of these chords, called secondary
dominants, transition next to the chord underneath the V. This is called resolution.
For instance, V/iii (consisting of the scale degrees 7̂, ]2̂, and ]4̂) “resolves” to the
chord iii (consisting of 3̂, 5̂, and 7̂). But in modern music, this is not as strict of a
rule as it was in classical compositions, so we will label a chord constructed with 7̂,
]2̂, and ]4̂ as a V/iii even if it does not resolve to iii.

Now, summing the powers of each pitch in the song “Oh! Darling,” we calculate

4See glossary.
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the energy of each note. We will see if the top seven pitches translate to its true key
of A Major.

Pitch Energy
C 1080.135
C] 1463.439
D 1147.141
D] 1388.449
E 2540.088
F 1523.343
F] 2492.183
G 1100.494
G] 1503.934
A 2419.257
A] 1270.820
B 2322.360

So, we have that E is our most encountered pitch, then F], A, B, F, G], and finally
C]. This is not quite a scale, but since F, C, and G are all sharp (and A is not), we
can assume that we are in a scale containing sharps and not flats, meaning that at
least F is sharp. So, let’s throw away the F natural (unsharpened), so that we have
C] - E - F] - G] - A - B. We have narrowed our options down, then, to the keys of c]
minor, E Major, f] minor, and A Major. This could very well be E Major or c] minor
(they contain the same frequencies in their scales), both of which contain a D]. But
D] is the eleventh most common pitch, so we try our other option, and see that D is
the tenth most common pitch. Therefore, we choose the scale A - B - C] - D - E - F]
- G].

Now, should we pick the major or minor version? Looking again at our order
of pitches, we see that F] is the third most heard frequency. This would lead us to
incorrectly label the key as f] minor when the true key is A Major, but our attempts
came close. Another way of prioritizing the pitches might be searching for dominant
relationships. For example, we see that E and A are the first and third most played
pitches, and F] and C] just the second and seventh. This would lead us to a correct
naming of the key.

1.3.3 Summary

In sum, the bandpass filter within the application BandPower does an impressive
job of identifying key and chords. I did not do any fiddling with Q, hard-wired in
BandPower at 80, and could see how modifying it for each frequency could improve
accuracy, because the di↵erence between 25 and 26 Hz is much greater sonically than
2025 and 2026 Hz. All of the observations of its capabilities were made without
computer assistance, so the development of an algorithm to retrieve triads from the
smoothed data is the next step. I did not get around to implementing some Python
code that I wrote to label chords with their appropriate Roman numeral, so it is
located in Appendix A.





Chapter 2

Markovian Probability Theory

This temporal world is filled with events that depend on the past. Nearly every
present manifestation of human behavior is based on what one has learned from
mistakes and successes from the past, appearing to approach some optimal limit after
enough time has passed. Markovian processes characterize events that happen in
sequence, and models their local behavior with a matrix.

The hidden Markov model (HMM) is used when we want to predict the behavior of
a data set, and we are not sure of how to exactly characterize its prior behavior. Thus,
we build a Markov chain based on previous observations of the action or set of actions
we wish to predict, whether the stock market, or the weather, or one’s health—or,
here, the typical chord progression of a style, or region, or artist, or album, and then
we can produce guesses for future observations, given that the model is not completely
random. Will Landecker studied HMMs and attempted to compose a new, Bach-like
melody using data from one of Bach’s works, Minuet in G. My project aims not to
compose music from my data, but to study the di↵erence in the models constructed
from various pools of songs, so it just involves counting up the number of times we
transition from chord to chord, and dividing by the total sum of chords to find a
probability, instead of the complex algorithms involved with hidden Markov models.
For instance, I would like to know the di↵erence between Irving Berlin’s and Cole
Porter’s songs, so I create two chains from their bodies of work, thereby forming two
(presumably distinct) transition matrices, and subtract the two matrices. But when
I want to look at more than two models, another measure of comparison must be
made. Hence, I look at the entropy of the system, since it measures uncertainty. We
will look at the meaning derived from the subtraction versus that derived from the
measure of entropy, and decide if entropy is indeed a good indicator of style, relative
to other styles, in music.

For more on hidden Markov models and their application to automatic speech
(and chord) recognition, see Appendix B.
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2.1 Probability Theory

The idea of Markovian processes is easily relatable and accessible in the real world of
choices and decision-making, like much of the notions enveloped by probability theory:
a Markov chain describes the probability of some state sj occurring next given that
we are “in” state si with a matrix that contains this probability in the (i, j)th entry.
This can be thought of as the probability that it will rain tomorrow (state sj), or
any other designated period of time, given that it is raining today (states si = sj), or
the probability that it will not rain tomorrow (state sj) given that it is not raining
today (states si 6= sj), and so on, to describe 4 total transition probabilities. Say the
probability of it raining tomorrow, given rain today, is 0.7, and the probability that it
will rain tomorrow given that it is not raining today is 0.2. Then we can infer that the
probability of it not raining tomorrow given that it is raining today is 1� 0.7 = 0.3,
and the probability of no rain tomorrow given no rain today is 1� 0.2 = 0.8. This is
visualizable with a transition matrix:

A =


0.8 0.2
0.3 0.7

�

The entry aij, 1  i, j  2 is the probability of going from state si to state sj, so here,
state s

1

is the case in which it is not raining, and state s
2

is the case in which it is
raining. Note that the rows of A must sum to 1 if the state appears in the Markov
chain at any point before time t = T . Otherwise, the rows sum to 0.

Now, if this data did not exist somewhere, we would have to count it up our-
selves from some subset of observations of the weather, and build these probabilities
ourselves. This is the näıve version of a Hidden Markov Model, and we leave the al-
gorithmic one to be explained in Appendix B. The näıve version is more manageable
when we do not need to compare our observations with our expectations. Because we
only have a little intuition on the abstract nature of quantifying musical harmony, we
can describe our expectations qualitatively, and test our results by experimentation.

Before we get too far into Markov chains, however, let us review some essential
parts of probability theory [5] that will help our intuitions on the subject.

Definition: Discrete-Time Random Variable. A real-valued variable X is a
discrete-time random variable if it can only take on at most a countable number
of possible values si for all arguments t of X, 0  t  T , t, T 2 N. We call the set of
these possible values that X can take on the state space S of X, |S| = N  T . We
can formally define the function X by

X : N ! S.

For example, say that our state space consisted of 24 major and minor chords, and
we ordered them so that s

1

= C Major and sN = s
24

= b minor. Then, the random
variable X would map each point in time to one of these chords, with replacement
(i.e., it could be the case that X(t) = X(t0) = s

1

= C Major, for t 6= t0). This makes
it clear that it is not necessarily true that X(1) = s

1

; X(1) could be any value of S.
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Definition: Discrete-Time Random Process. A discrete-time random
process

{X(0), X(1), . . . , X(T )}

is an ordered sequence of real, positive integer values corresponding to the value of the
random variable X at time t. We say that X(t) is in state si at time t i↵ X(t) = si,
1  i  N , i, t, T, N 2 N.

Definition: Event. We define an event E to be any set of outcomes in S, such as
the event that the sum of the two dice is 7, in which case E = {(1, 6), (2, 5), (3, 4), . . .} ✓
S, and (1, 6) is an outcome ei 2 S. The union of all the events in S equals S. When
we define events such that they are disjoint, the sum of the probabilities of all the
events is 1.

Definition: Independence. Two events or outcomes in S are independent
if the probability of one of them occurring does not influence the probability of the
other occurring.

For example, when we toss a die, whether it is weighted or unweighted (“fair”), its
outcome is not influenced by previous outcomes. There are few real world examples
in which the outcomes are independent of each other.

Definition: Conditional Probability. The conditional probability of event
F occurring given that E occurred is given by the following formula:

P (F |E) =
P (EF )

P (E)

for P (E) > 0. We consider the concept of conditional probability to be the opposite
of independence, since when E and F are independent, P (F |E) = P (F ).

Keeping our example of the sum of two dice, let E be the event (outcome) in
which the first die equals 2. What, then, is the probability of the sum of that die’s
outcome plus that of another die yet to be rolled equals 8? It is simply P (second die
is 6) = 1

6

, which is not equal to P (sum of two dice is 8) = |{(2,6),(3,5),(4,4),(5,3),(6,2)}|
|S| = 5

36

.

Definition: Bayes’ Formula. Suppose that F
1

, F
2

, . . . , Fn are mutually exclu-
sive (disjoint) events such that

n[

i=1

Fi = S,

i.e., exactly one of the events Fi must occur. Define E by

E =
n[

i=1

EFi,
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and note that the events EFi themselves are mutually exclusive. Then we obtain

P (E) =
nX

i=1

P (EFi)

=
nX

i=1

P (E|Fi)P (Fi).

In other words, we can compute P (E) by first conditioning on the outcome Fi. Sup-
pose now that E has occurred and we are interested in determining the probability
that Fj also occurred. This is the premise of Bayes’ formula, which is as follows:

P (Fj|E) =
P (EFj)

P (E)

=
P (E|Fj)P (Fj)Pn
i=1

P (E|Fi)P (Fi)
.

This formula may be interpreted as evidencing how the “hypotheses” P (Fj) should
be modified given the conclusions of our “experiment” E.

Definition: Probability Mass Function. For a discrete-time random variable
X, we define the probability mass function p(x)

for x 2 R, p(x) = P{t 2 N : X(t) = x}.

The probability mass function (pmf) is positive for at most a countable number of
values of x, since X is discrete. Since X must take on one of the values x, we have

X

x2X

p(x) = 1.

The distribution function F(x) of X is similar in that it finds the probability that
the random variable is less than or equal to x, and is defined by

F (x) = P{x 2 R : X  x} =
xX

y=�1
p(y),

and is also referred to as the cumulative distribution function or cdf of X. It is
nondecreasing, such that P{a  X  b} = F (b)� F (a) is nonnegative.

Definition: Expectation. If X is a discrete random variable having a probabil-
ity mass function p(x), the expectation or the expected value of X, denoted by
E[X], is defined by

E[X] =
X

x:p(x)>0

x p(x),
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where the x’s are the values that X takes on. This can be thought of as a weighted
average of the state space S.

For example, flipping a fair coin heeds the probability mass function p(heads)
= 1

2

= p(tails), so we could write

p(0) =
1

2
= p(1)

E[X] = 0

✓
1

2

◆
+ 1

✓
1

2

◆
=

1

2
.

Definition: Finite Probability Scheme. A finite probability scheme E of
the sample space S is a partition of S into disjoint events Ei with probabilities that
sum to 1, represented by the array

S =


E

1

E
2

. . . En

p
1

p
2

. . . pn

�

where n is the number of parts in the partition of S, and pi is the probability of event
Ei,

Pn
i=1

pi = 1.

Each event Ei has its own set of individual outcomes, which can be thought of
as elementary events (events with cardinality 1), written e

1

, . . . , em with probabilitiesPm
j=1

p(ej) = 1 as well.

2.2 Markov Chains

Now that we have laid the framework for the terminology used in defining our hidden
Markov models, we can continue to a formal definition of a Markov chain, and to
the properties they exhibit. Here, we will use the notation (X

0

, . . . , XT ) in place of
{X(0), . . . , X(T )}, only because it is widespread.

Definition: Markov Property. If the conditional distribution of the variable
Xt+1

, given the process (X
0

, X
1

, . . . , Xt), where Xi is some state such as a rain on
day i, depends only on the previous variable, Xt, i.e.,

p(Xt+1

|X
0

, . . . , Xt) = p(Xt+1

|Xt),

the process is said to satisfy the memoryless property, or Markov property.

The word “depends” here is somewhat misleading. Independent outcomes can be
modeled by a Markov chain: then, p(Xt+1

|Xt) = p(Xt+1

). Therefore, two consecutive
states do not necessarily have to be related to write them as a conditional probability.



40 Chapter 2. Markovian Probability Theory

Instinctively, Markov chains possess the Markov property. They can be “homoge-
neous,” “irreducible,” “aperiodic,” and “stationary,” all of which are defined below.
Hidden Markov models are “time-homogeneous,” which means that the probability
of transitioning between two given states does not change over time. Hence, even
when we observe a sequence of four heads from a fair coin, the probability of flipping
a head next is still 0.5.1

Although music is much like speech in its grammar-like structure, two musicians
actually di↵er less than two speakers in their spectrograms. Therefore, there is no
need to waste time constructing a whole hidden Markov model for our data since the
F ] from a piano does not di↵er drastically from the F played from a guitar. For more
on hidden Markov models, see Appendix B.

Now we have arrived at our definition of a Markov chain. We call our set of chords
the “state space” S2, and our chord progression an ordered sequence X of chords in
S from time t = 0 to t = T . We record the transition probabilities in an |S| ⇥ |S|
matrix A.

Definition: Markov Chains. Let A be a n⇥n matrix with real-valued elements
{aij : i, j = 1, . . . , n}, all of which are nonnegative and sum to 1. A random process
(X

0

, . . . , XT ) with values from the finite state space S = {s
1

, . . . , sn} is said to be a
Markov chain with transition matrix A, if, for all t, i, and k such that 0  t  T, 1 
{i, j, i

0

, i
1

, . . . , ik}  n

p(Xt+1

= sj|X0

= si0 , . . . , Xt�1

= sik , Xt = si) = p(Xt+1

= sj|Xt = si)

= aij,

Thus, aij is the transition probability of moving from state si to state sj.

More specifically, this is a time-homogeneous Markov chain, since, from one
time to another, the transition probabilities do not change.

In other words, a Markov chain is a random process usually governed by some-
thing that cannot be concretely understood, like the weather governs rain or harmony
governs music. Harmony in music can come from unexpected aspects, like new chords
that have rarely been played before or thunderstorms in Oregon, and that is why we
consider this and other Markov chains random processes. Note that just because it
is random does not mean there do not exist patterns that we can identify after the
fact—in other words, it can still contain conditional probabilities, but the weather
tomorrow does not necessarily abide by those conditional probabilities. Rather, the
character of the newly observed state of the weather is added to the Markov chain,
and the transition probabilities are then updated.

Property: Probability mass function. X has its probability mass function

1Since we do classify music by the era from which it comes, our hidden Markov model is not time-
homogeneous, and is instead “state-homogeneous,” since there are only a finite number of possible
states.

2In section 2.2.1, Song as a Probability Scheme, we call the state space C.
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based on the real values of elements of its transition matrix A [3], where

p(aij) = P{A = aij} = p(Xt+1

= sj|Xt = si).

For each i,

p(Xt+1

= s
1

|Xt = si) + p(Xt+1

= s
2

|Xt = si) + . . . + p(Xt+1

= sj|Xt = si) = 1.

Property: Initial distribution. The initial distribution is the distribution of
the Markov chain X at time 0 and is represented by a row vector ⇡

0

[3] given by

⇡
0

= (p(s
1

), p(s
2

), . . . , p(sn))

= (p(X
0

= s
1

), p(X
0

= s
2

), . . . , p(X
0

= sn))

where si is the ith state. The probability p(X
0

= si) is simply the number of times
si occurs over the total number of states that occurred, i.e., the number of C Major
chords we observe in a sequence of N chords. Thus, all of the initial probabilities
sum to 1, just as do all of the transition probabilities in each row of A.

A powerful way of visually conveying a Markov process is with a “transition
graph,” which designates states as nodes and transitions as arrows with the pos-
sible transitions of a state si written underneath it. Four common ones are depicted
as follows, all images from [45]:

si ! {si, si+1

} si ! {si, si+1

, . . . , sk}

si ! {si, si+2

} si ! {s
1

, . . . , sk}

Since I am assuming here (perhaps näıvely) that any style of music could contain
any chord, and that chord could transition to any other chord, we expect our Markov
chain to be ergodic, i.e., any state can transition to any other state.

Definition: Irreducibility. A Markov chain is said to be irreducible if it does
not decimate in time, i.e., if for all states si, sj in S = {s

1

, ..., sn}, we have si $ sj
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(any state may transition to any state) as depicted in the “ergodic” transition graph
above. Otherwise, the chain is said to be reducible.

We check for irreducibility in a chain by multiplying its transition matrix by itself
n times, for some n, and seeing if the diagonal entries of A are greater than 0. In
other words, there exists an n such that the (i, j)th term of the matrix Am

ij > 0 for
some i, j 2 {1, . . . , k}, where Am

ij = p(Xl+m = sj|Xl = si).
We multiply a transition matrix by itself when we are trying to find the probability

of a sequence after some quantity of “steps,” i.e., the probability of transitioning to
G Major after hearing C Major and F Major in the key of C, or in by their equivalent
Roman numerals, of transitioning to V after I and IV . Thus, A2

00

is the probability
of returning to state s

0

given that s
0

occurred 2 states back, or two steps ago, no
matter what happened in between. This sort of analysis of Markov chains is cer-
tainly relevant to the goal of the complexity of a chord progression, but will not be
quantified here. However, the computation is simple, and it can be shown that many
(usually simple) progressions do approach a distinct limit for each j for large m in Am

ij .

Definition: Aperiodicity. The period d(si) of a state si is given by

d(si) = gcd{m � 1 : [Am]i,i > 0}.

If d(si) = 1, i.e., if there does not exist a common factor between the diagonal entries
of A1, A2, . . . , we say that the state si is aperiodic. A Markov chain is said to be
aperiodic if all of its states are aperiodic. Otherwise, it is said to be periodic.

Example. A state in a Markov chain is periodic if the probability of returning
to it is 0 except at regular intervals, and at these regular intervals, the probabilities
have some greatest common denominator (note that these will be less than 1, and in
some cases, 1 is actually reasonable). An example of a periodic state, say s

0

, is given
by the transition matrix

A =

2

4
0 1 0

1� p 0 p
0 1 0

3

5 ,

A1

00

= 0

A2

00

= 1� p

A3

00

= 0

A4

00

= 1� p

A5

00

= 0

A6

00

= 1� p
...

so for m = 2k, k 2Z+, An
00

= 1 � p > 0, and for m = 2k + 1, An
00

= 0, making the
gcd{m � 1 : Am

00

} = 1� p. Likewise, A
11

and A
22

are periodic, for in fact, A = A2j+1,
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and A2j = A2k for all positive integers j, k.

A finite, irreducible, aperiodic Markov chain is said to be ergodic. Ergodic
Markov chains satisfy Am

ij =
Pn

k=0

Ar
ikA

m�r
kj for all 0 < r < m, a set of equations

known as the Chapman-Kolmogorov equations [5].

Proof.

Am
ij = p(Xm = sj|X0

= si)

=
X

k

p(Xm = sj, Xr = sk|X0

= si)

=
X

k

p(Xm = sj|Xr = sk, X0

= si)p(Xr = sk|X0

= si)

=
X

k

Am�r
kj Ar

ik,

where the third step is by the Markov property.
Now, since Am

ij > 0 for all i, j = 0, 1, . . . , n, Am
ij converges as m !1 to a value ⇡j

that depends only on j (A First Course in Probability, p. 469). We call this ⇡j the
limiting probability of the state sj. Since by the Chapman-Kolmogorov equations
we have

Am+1

ij =
nX

k=0

Am
ikAkj,

it follows that, as m approaches infinity,

⇡j =
nX

k=0

⇡kAkj.

Furthermore, since
Pn

j=0

Am
ij = 1,

nX

j=0

⇡j = 1.

Thus, the ⇡j, 0  j  n, are the distinct, nonnegative solutions to the equations
⇡j =

P
k ⇡kAkj and

P
j ⇡j = 1. We say that for an ergodic Markov chain with

transition matrix A, as m goes to infinity in the limit

lim
m!1

Am
ij ,

the Markov chain is approaching equilibrium.
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2.2.1 Song as a Probability Scheme

We use the above definition of a probability scheme to describe a Markov chain X of
chords as follows:

X := (X
0

, X
1

, . . . , XT ) = a probability scheme, where events are the chord

progressions of individual songs, classified in any (user-defined) way(s),

including but not limited to conventional style, artist, region, era,

and/or album;

C := the state space of X;

ci := (key, tonality, root) = a triple corresponding to the ith chord in C;

acicj := aij = the transition probability of transitioning from chord ci to cj;

p(ci) := pi = the relative frequency of ci 2 X;

E[X] := the expected chord progression of classification X;

H(X) := the average entropy per chord in X;

N := the order of, or number of distinct chords in, C

where 1  i  N ; key, root 2 {0, 1, . . . , 11}; and tonality 2 {major, major7, minor,
minor7, diminished, diminished7, augmented, augmented7}. Key, root, and tonality
defined this way comprise everything that one needs to know to build every kind of
chord, including those with major or minor sevenths, but excluding (the somewhat
rare) chords with ninths, elevenths, and so on. I exclude these because the intervals
ninth and above are excluded from classical chord labeling in which I am trained,
not that identifying ninths is hard to do, but because frequently, a ninth’s function
is that of an accidental.

An event in the probability scheme X is a song Xk with state space Ck ✓ C, but
here we will refer to songs by their title, because there are (unfortunately) so few of
them.

2.2.2 The Di↵erence between Two Markov Chains

Before we assume that entropy, discussed in the next chapter, is the best way to
evaluate the di↵erence in certainty between Markov chains, let us actually take the
di↵erence, i.e., subtraction, of two transition matrices that we will later analyze en-
tropically.

Consider the transition matrices for the chord progressions of the songs “Tell Me
Why” from the Beatles’ A Hard Day’s Night and “When I’m 64” o↵ of their Sgt.
Pepper’s Lonely Hearts Club Band.
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Figure 2.1: “Tell Me Why” transition matrix.

Figure 2.2: “When I’m 64” transition matrix.

Because the state space of “When I’m 64” contains states that “Tell Me Why”
does not, and vice versa, both have rows of all zeros so that their matrices are the
same sizes and may be subtracted from one another. We can accept this because
transitions with 0 probability do not contribute or take away from their entropy rate,
since H(0) := 0. Their absolute di↵erence is
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Figure 2.3: The absolute di↵erence between the two transition matrices.

Clearly, there is not much meaning to be derived from this matrix, besides that the
two songs have wildly di↵erent transitions! However, we will see that their entropy
rates (defined in the next chapter) are very close: “Tell Me Why” has an entropy rate
of 0.2438 10-ary digits (or simply, “symbols”) per time interval, and “When I’m 64”
has an entropy rate of 0.2822 11-ary digits per time interval.

Therefore, merely subtracting two transition matrices does not indicate similarity
in their levels of certainty.

In summary, this chapter exists to further the reader’s understanding of the bridge
connecting chord progressions and Markov chains. The definitions of properties sur-
rounding them are of minimal importance: the concept of ergodicity (the freedom
each state has to be able to move to any other state) is likely the only one you should
worry about taking away from them. Other than that, a Markov chain is simply an
ordered sequence of states, so their movement or behavior is characterized by con-
ditional probabilities, but since a Markov process is “memoryless” (i.e., it has the
Markov property), these conditional probabilities only take one state (the present
state) as “given”.



Chapter 3

Information, Entropy, and Chords

3.1 What is information?

The study of communication requires certain statistical and probabilistic parameters
that the theory of information provides. Many consider the mathematical definition
of information unintuitive. Indeed, information and uncertainty have a directly pro-
portional relationship: the more that is left up to chance in a message, the more infor-
mation a message must contain in order to be transmitted unambiguously. However,
they are in fact opposites, because the more uncertain a message, the less information
it contains. For compression purposes as well as e�cient coding methods, knowing
how much information is contained in a given message is highly relevant and vital to
developing a well-functioning model.

Unary is the simplest language for humans and computers alike to “speak”. It is
also the least e�cient. If we communicated in unary, where our language was only
“0” (permitting a space bar), every distinct word in our language would be translated
to a distinct length of 0’s. Therefore, binary is the second simplest, but with it we
can actually communicate in half the amount of total symbols. We use binary digits
(and the base-2 logarithm) exclusively when we talk about information theory.

Consider a string of independent binary digits. We should treat it as a queue of
symbols where each has one of two actions, one with probability p, and the other with
probability 1� p. There are two possibilities, 0 and 1, for each symbol in the string,
and 2N possible strings, where N is the length of the string. Since a symbol, if not 0,
is 1, each symbol’s identity can be realized with only one (binary) question: “Is the
digit a 0?” Therefore, there are at most log

2

(2N) = N yes/no questions required to
uniquely identify each string.

Claude Shannon discusses the encoding of the English alphabet in his transcen-
dental work, The Mathematical Theory of Communication (1948). Counts are made
from some given set of text, say a dictionary, to see the relative frequencies of the
letters ’e’ and ’a’ versus ’z’ or ’x’. Noting that ’e’ is one of the more common symbols,
we would want to represent it with a shorter string of code than one we might choose
for ’z’ or ’x’, the least occurring symbols, so that a message could be transmitted as
quickly as possible.
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Coding theory (a subfield of information theory) aids the construction of binary
code to the extent that a string of letters translated into binary can be read un-
ambiguously. Shannon worked with Robert Fano to develop Shannon-Fano coding,
which ensures that the code assigned to a character in the alphabet does not exceed
its optimal binary code length by more than 1 [6]. David Hu↵man was a student of
Fano at MIT in 1951, when he outdid his professor in the creation of a maximally
e�cient binary code with his own algorithm, named Hu↵man coding. Examine the
following Hu↵man code for some letters in English:
Then the string “promise me this” is

Character Relative Frequency Hu↵man Code
space 4 111

a 4 010
e 4 000
f 3 1101
h 2 1010
i 2 1000
m 2 0111
n 2 0010
s 2 1011
t 2 0110
l 1 11001
o 1 00110
p 1 10011
r 1 11000
u 1 00111
x 1 10010

Figure 3.1: Hu↵man binary code, based on the relative frequencies of 16 characters
from the English alphabet.

10011110000011001111000101100011101110001110110101010001011

and is unambiguous, so it cannot be read any other way. Let us walk through the
string to show this. The first symbol is either “100”, “1001”, or “10011” since strings
can only be between 3 and 5 symbols in length. From our given set of 16 symbols,
only one of them begins with “100”, and that is “p” with 10011. So we advance 5
symbols to the next string, any of “110”, “1100”, or “11000”, and see that “r” is
the only symbol that fits one of those possibilities. Note that we do not pick “f”
even though it begins with “110” because it is four bits and the last one is “1”. We
advance another 5 symbols to “001”, “0011”, or “00110”, and unambiguously decide
it is “o”. And so on.

It is easiest to start at the beginning of the string, but it can also be unambiguously
determined at any other point based on the construction of the binary coding scheme.
Consider starting at the middle with “111” (the last 3 bits of “0111” corresponding
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to “m”) and deciding that is “space”. The next is either “000”, “0001”, or “00011”,
and we decide it is “e” (mapped to “000”). Then the previous string is any of “110”,
“1110”, or “01110”, and we realize that this does not correspond to any of the binary
codes assigned to our given vocabulary, so our initial starting point was not at the
beginning of a symbol’s code.

Hu↵man developed his encoding methods such that any set of symbols (not just
16, although the fact that 16 is a power of 2 does contribute to the maximal e�ciency
of the given encoding scheme) could be assigned unambiguous bit representations,
enabling shorter signals that do not utilize all 27 characters of the English alphabet to
be transmitted even faster—in fact, as briefly as binary will allow. In this way, entropy
measures the compressibility of a set of symbols, when we know the probability of
correctly transmitting them.

In this thesis, the letters of our alphabet will be pitches, such that the cardinality
of our alphabet is 12. Therefore, words are chords, sentences are musical phrases,
and paragraphs are an entire song. We could extend the idea of supersets in musical
classification even further, chapters to albums, books to discographies, but there it
gets a little fuzzy1.

Information theory and logarithms have a deeply seeded connection, namely within
the function of entropy. Entropy is the uncertainty, or information, contained in a
message. It is a measure of the likeliness that a sent message will not convey the
intended meaning it was given, and it is equal to the number of bits2 per symbol of
improbability that the message contains. It follows that a scenario in which all of the
events are independent and equally likely contains the most entropy of any scenario,
for there are the most possible messages: if you wanted to transmit a “6” from tossing
a fair die, there would only be a 1/6 probability of that happening.

To further color this important characteristic, consider a probability scheme A
with outcomes A

1

and A
2

, say heads and tails, p(A
1

) = p(A
2

) = 1

2

. Also, say that
we are transmitting these H’s and T’s at 1000 symbols per second3. If we want to
transmit the sequence “HTHH”, in a model where H and T are transmitted with
the same probability and they are the only symbols we can transmit, the sequence
“HTHH” is just as likely to be transmitted as “THTT” or “THHT” or any sequence
of 4 symbols. Thus, we expect only half of the symbols to be transmitted correctly,
left entirely up to chance (entropy), so we say that our source is actually transmitting
0 bits of information (i.e., the certainty that the transmitted symbol was the one the
source intended to transmit). This is the same as calculating �

�
1

2

log
2

1

2

+ 1

2

log
2

1

2

�
=

�
�

1

2

·�1 + 1

2

·�1
�

= 1 bit/symbol, and multiplied by our transmission rate of 1000
symbols/second is 1000 bits/second. Our given message and the resulting message
after going through this probabilistic encoding process work against each other, so

1We could also call chords phonemes or morphemes, as in linguistics, because they contribute
to the meaning/emotion of a song, as well as are designed keeping the restrictions of the apparatus
(instrument) in mind.

2John Tukey’s shortening of “binary digit” [6]
3What would the transmission rate of music be? If you find yourself asking this, observe that a

“rate” implies that is only a scaling factor, and therefore the entropy rate is all that is important
here.
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we subtract this rate from our transmission rate to determine how much information
is actually being processed, which is 1000� 1000 = 0 bits/symbol as we expected [6].

Now, for a probability scheme B, also with 2 outcomes B
1

and B
2

such that
p(B

1

) = 0.99 and p(B
2

) = 0.01, we would expect our system to transmit information
at a high rate, and have low entropy. We might guess that the transmission of
information would have a rate of 990 bits/second, but this does not take into account
the independence of the symbols and replacement. We find that the entropy is equal
to �

P
2

i=1

p(Bi) log
2

p(Bi) = � (0.99 log
2

0.99 + 0.01 log
2

0.01) = 0.081 bits/symbol,
multiplied by our sampling rate is 81 bits per second, and see that the system is
actually transmitting at 1000� 81 = 919 bits/second of information.

This is the independent case, at least. It is rare that two events in this world,
however, are unrelated to each other. Therefore, it is even more rare for the tth symbol
in a sequence to be independent of what came before (the first through (t � 1)st
symbols, or perhaps, as in Markovian processes, just the (t � 1)st symbol), and
through this we can transcribe any sort of progression for the purpose of e↵ective
communication, in some harmonic and witty arrangement. The words of a single
statement can be jumbled up to the point of nonsense, but together, their meaning is
likely still translatable. But, like intelligent and correct speech, the genius of music lies
in perfectly aligned rhythm between the melodic line and lyric, the synthesis of several
instruments or occasionally the choice to go solo, and, the most easily analyzable
characteristic, the clever patterning of harmony to structure the aforementioned.

So, by nature, it is more interesting to look at cases involving conditional or joint
probabilities. When we want some way of probabilistically describing our Markov
chain, information theory chimes in with many measures and applications to coding.
Entropy is one of these measures. It is interesting to compare the entropies of di↵erent
systems with one another, and see how distinct in “propensity for chaos” two systems
are. It is, in actuality, rather useless to look at the translation of this measure to its
binary code-length, but the binary form does correspond to code containing however
many symbols required to represent the number of chords in the vocabulary, say d, so
the measure we will find is easily scaled by log(2)

log(d)

. Therefore, it does not really matter
if we look at the binary interpretation or the d-ary one, for some positive integer d.
For this reason, all logarithms used in this thesis, unless otherwise noted, are base-2
and should be considered the “binary representation”.

3.2 The Properties of Entropy

First, we will remind the reader of the definition of a probability scheme, as stated
in section 2.2.

Definition: Finite probability scheme. Given a finite sample space S, we
define an event Ai ✓ A ✓ S to be any set of m outcomes a

1

, a
2

, . . . , am 2 Ai with
respective probabilities p(aj) = qj,

P
j qj = 1. The probability of an event Ai is given

by p(Ai) = pi,
Pn

i=1

pi = 1, where n is the number of events in A. The subsets Ai are
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disjoint 8i, and partition all of S [4]. We call the matrix

A =


A

1

A
2

. . . An

p
1

p
2

. . . pn

�

the finite probability scheme of S.4

As alluded to earlier, the function of entropy gives the average number of (binary)
bits per symbol needed to correctly transmit a string of these symbols, where each
has a given probability of being correctly transmitted. The following lengthy proof
evolves the notion of entropy to the function H(X) = �

P
x2X p(x) log p(x).

Theorem. Let H(p
1

, p
2

, ..., pn) be a function defined for any integer n and for
all values p

1

, p
2

, . . . , pn, which are the probabilities of the subsets A
1

, A
2

, . . . , An in a
finite probability scheme A such that pk � 0 and

Pn
k=1

pk = 1 . If, for any n, this
function is continuous 8pi, and if

1. H is maximized when pk = 1

n
8k (the characteristic we just showed);

2. For the product scheme AB, H(AB) = H(A) + H(B|A); and

3. H(p
1

, p
2

, . . . , pn, 0) = H(p
1

, p
2

, . . . , pn), i.e., adding an impossible event to a
scheme does not change H;

then

H(A) = H(p
1

, p
2

, . . . , pn) = ��
nX

k=1

pk log pk,

where � is a positive constant.

Proof. Let H
�

1

n
, 1

n
, . . . , 1

n

�
= �(n). We will show that �(n) = � log(n), where

� > 0.
Since H is maximized when pk = 1

n
8k by the first property, we have

�(n) = H

✓
1

n
,
1

n
, . . . ,

1

n

◆

= H

✓
1

n
,
1

n
, . . . ,

1

n
, 0

◆

 H

✓
1

n + 1
,

1

n + 1
, . . . ,

1

n + 1
,

1

n + 1

◆

= �(n + 1),

4Note that it is possible for Ai = A, in which case the finite probability scheme features a
1

through am in its first row and q
1

through qm in its second.
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i.e., � is a non-decreasing function of n. Now, let m, r be positive integers. Let
S

1

, S
2

, . . . , Sm be mutually exclusive schemes all containing r equally likely events,
i.e., for all k,

H(Sk) = H

✓
1

r
,
1

r
, . . . ,

1

r

◆

= �(r).

Then, since all the schemes are independent by their disjointness,

H(S
1

S
2

) = H(S
1

) + H(S
2

)

= �(r) + �(r)

= 2 · �(r)
...

H(S
1

· S
2

· . . . · Sm) = H(S
1

) + H(S
2

) + . . . + H(Sm)

= m · �(r).

But S
1

· S
2

· . . . · Sm (the “product scheme”) contains rm equally likely events, so
H(S) = �(rm). Hence,

�(rm) = m · �(r).

Now, let s and n be arbitrary numbers such that

rm  sn  rm+1.

Then

m log r  n log s < (m + 1) log r
m

n
 log s

log r
<

m + 1

n
.

Since � is nondecreasing,

�(rm)  �(sn)  �(rm+1)

which, because �(rm) = m · �(r), is equivalent to

m · �(r)  n · �(s)  (m + 1) · �(r)

m

n
 �(s)

�(r)
 (m + 1)

n
.

Then, since m+1

n
� m

n
= 1

n
,

����
�(s)

�(r)
� log s

log r

���� 
1

n
.
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Since n is arbitrarily large,

�(s)

log s
=

�(r)

log r

�(r) =
�(s)

log s
log r

= � log r

where � is a constant. Then

�(n) = � log n

by the arbitrariness of r and s. Since log n � 0, and �(n) � 0, it is the case that
� � 0, and so we have proved our assertion.
In fact, � is simply the scalar log 2

log x
for a language with x symbols, because the log

function above is base-2.

To prove the general case, let A and B be two dependent schemes such that A
consists of n events with probabilities p

1

, p
2

, ..., pn where

pk =
gk

g

(so, here it is not necessary that pk = 1

n
8k), and

nX

k=1

gk = g,

and B consists of g events, which are divided into n subsets each containing gi events,
1  i  n. Then, for the event Ak ✓ A, we have gk events in the kth group of B all
with a 1

gk
probability, and all other events in the 1st, 2nd, ... , (k-1)st, (k+1)st, ... ,

nth subsets of B have probability 0. Then

Hk(B) = H

✓
1

gk

,
1

gk

, ...,
1

gk

◆

= �(gk)

= � log gk.
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Noting that the sum of all the pk is 1, this heeds the conditional entropy

H(B|A) =
nX

k=1

gk

g
Hk(B)

=
nX

k=1

gk

g
� log gk

= �
nX

k=1

gk

g
log g pk

= �
nX

k=1

pk(log g + log pk)

= � log g + �
nX

k=1

pk log pk.

Now, consider the product scheme A · B = AB(= A \ B). The total number of
possible events in AB is g, which is equal to the number of events in B, and since
each event is equally likely to occur,

pk

gk

=
1

g
.

Therefore,

H(AB) = �(g) = � log g.

Now, by the second property, and from above,

H(AB) = H(A) + H(B|A)

= H(A) + �
nX

k=1

pk log pk + � log g.

Then we can subtract � log g from both sides to get

0 = H(A) + �
nX

k=1

pk log pk.

Thus,

H(A) = H(p
1

, . . . , pn)

= ��
nX

k=1

pk log pk,

and we have arrived at the function of entropy. Since H is continuous by assumption,
this holds for any value of pi. This completes the proof.
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To recapitulate, we proved the functional form of entropy first for the maxi-
mal case, when all the pi = 1

n
. We did this mostly by the nondecreasing nature

of �. Then, to prove the general case, we used the second property of H and
the conditional entropy (defined in the next section) H(B|A) to make the function
H(A) = �

Pn
k=1

pk log pk to emerge (� = 1 in the binary case).
Now let us backtrack and define H(B|A) and H(AB) more precisely.

3.3 Di↵erent Types of Entropy

Events where not all outcomes are independent of one another, as in a Markov chain,
have di↵erent entropy than the independent case. All of these terms are defined for
events, but do extend to probability schemes.

3.3.1 Conditional Entropy

For simplicity of notation, we will write P (AB) to denote P (A \ B) and P (A · B).
Recall that the conditional probability P (A|B), where the event A may or may not
be independent of event B, is

P (B|A) =
P (AB)

P (A)
,

with the common notation of A \ B = AB demonstrated. When A and B are inde-
pendent, i.e. disjoint, i.e. unrelated, P (B|A) = P (B).

Definition: Conditional Entropy. The conditional entropy of cj given ci,
where ci and cj are distinct chords, is

H(cj|ci) = �p(cj)p(cj|ci) log p(cj|ci),

where p(ci) =
Pn

k=0

p(ck)p(ci|ck), p(cj|ci) is the probability of transitioning from ci

to cj, and p(cj) is the probability of observing ci.

We will see in the definition of joint entropy that this quantity is also

H(cj|ci) = �p(ci, cj) log p(cj|ci),

i.e., p(ci, cj) = p(cj)p(cj|ci).
Now, the conditional entropy H(D|ci), where C and D are events and |C| = m,

|D| = n, is conceptually the amount of entropy in D given the probability of one
chord ci occurring.

H(D|ci) = �
nX

j=1

p(dj|ci) log
2

p(dj|ci)
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and H(D|C) where the entirety of A is given is

H(D|C) = �
mX

i=1

p(ci)H(D|C = ci)

= �
mX

i=1

nX

j=1

p(ci)p(dj|ci) log
2

p(dj|ci).

As in probability theory, C and D are mutually exclusive if and only if P (D|C) =
P (D), so likewise,

(C [D) = ; () H(D|C) = H(D).

It should follow intuitively that the conditional entropy when the events are dependent
is always less than the conditional entropy of two independent events, since knowing
any information about C should only aid the correct transmission of D when the
outcomes of C a↵ect the outcomes of D.

Proposition.

H(D|C)  H(D),

with equality only when C and D are independent.

Proof. Consider the function f(x) = x log x. It is convex for x > 0. For some
�i � 0,

P
�i = 1,

nX

i=1

�if(xi) � f

 
nX

i=1

�ixi

!
.

This is Jensen’s inequality. But since entropy is negative, the inequality flips so that

�
nX

i=1

�if(xi)  �f

 
nX

i=1

�ixi

!
.
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Letting �i = p(ci), |C| = m, |D| = n, and xi = pci(dj),

H(D|C) = �
mX

i=1

p(ci)
nX

j=1

pci(dj) log p(dj|ci)

= �
nX

j=1

mX

i=1

p(ci)f(p(dj|ci))

 �
nX

j=1

f

 
mX

i=1

p(ci)p(dj|ci)

!

= �
nX

j=1

f(p(dj))

= �
nX

j=1

p(dj) log p(dj)

= H(D).

This proves our assertion.

Entropy is an a priori measure to guide e�cient coding because we do not measure
the actual entropy of a potential code, in practice; we measure only those that came
before it. It follows that the expected value of the entropy of the event C, E[H(C)],
is just H(C). Similarly, the conditional expectation E[H(D|C)] = H(D|C).

3.3.2 Joint Entropy

The joint entropy of two events C and D is also the entropy of their intersection, CD.
We consider pairs of outcomes (ci, dj) with probabilities p(ci, dj) = p(ci)p(dj|ci) from
the definition of conditional probability given above, and they form the function of
joint entropy as follows:

H(C, D) = H(CD) = H(C) + H(D|C).

Proof. Since p(ci, dj) = p(ci)p(dj|ci) 8i, j,

H(C, D) = �
X

i

X

j

p(ci, dj) log p(ci, dj)

= �
X

i

X

j

p(ci)p(dj|ci)[log p(ci) + log p(dj|ci)]

= �
X

i

p(ci) log p(ci)�
X

i

p(ci)
X

j

p(dj|ci) log p(dj|ci)

= H(C) + H(D|C).
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Before we get to the entropy of Markov chains, note that, for the outcomes c, d,
and e,

p(c, d, e) = p(c, d)p(d, e|c) = p(c, d)
p(d)p(e|d)

p(d)
= p(c, d)p(e|d)

= p(c)p(d|c)p(e|d).

3.4 The Entropy of Markov chains

The probability of a given chord progression X is simply [4]

P (X) = pp1N
1

pp2N
2

· · · ppnN
n

where N is the length of the progression and piN is the number of occurrences of the
ith chord in the sequence X. We measure the entropy rate of a Markov chain X
by quantifying the entropy per chord Xt = ci in X

H(X) =
X

Xt2X

p(Xt)H(Xt) = �
mX

i=0

mX

j=0

p(ci)p(cj|ci) log p(cj|ci)

= �
mX

i=0

p(ci)
mX

j=0

p(cj|ci) log p(cj|ci),

ci, cj 2 C, the state space of X, whose cardinality |C| = m. This is the entropy per
chord5 because it multiplies each of the inner sums by the probability of observing
the initial chord, and each of those probabilities (p(ci) = pi) is found by dividing the
number of its occurrences (piN) by the total number of chords observed, N . Hence,
the entropy of an entire Markov chain is just NH.

3.4.1 How to interpret this measure

Since the entropy of an entire Markov chain is NH, where N is the length of the
sequence and H is the entropy of each chord, systems with more observations (larger
N) will tend to have more entropy than just as chaotic systems with a smaller N .
Therefore, in characterizing a system by its entropy, it is clearer to use simply H to
describe it.

The entropy of a Markov chain has the same form as the entropy of two condi-
tional events, because by the Markov property, we only consider two states in the
calculation of transition probabilities. We already knew that a Markov chain was
simply a sequence of conditional probabilities, so it should be unsurprising that its
entropy is modeled after this conditional character.

5In fact, our entropy rate is also the “entropy per time interval.” Since there is no rhythm
associated with our Markov chain, these time intervals are likely not uniform (though it is certainly
possible for a song to uniformly change over time).
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It seems possible that two systems, one with a dictionary (chord vocabulary) many
times larger than the other, could have the same amount of entropy per chord, or
for the larger to be more certain (lower entropy) than the smaller. This happens
when the system with a larger vocabulary contains transitions with a higher amount
of certainty than the smaller one’s higher transitions, and/or the larger contains
transitions that have more uncertainty than the smaller one’s lower transitions. This
isn’t strictly the case, but is shown by the two systems with transition matrices S
and L [p(si) = 1

4

8i, p(li) = 1

5

8i]

S =

2

664

0 .5 .25 .25
.75 0 .25 0
.25 .25 0 .5
.5 .5 0 0

3

775

L =

2

66664

0 .5 .25 0 .25
0 .25 0 0 .75

.25 .25 0 .5 0
.5 .5 0 0 0
0 0 1 0 0

3

77775

The smaller system (with state space C) has entropy 1.20282 bits/chord, and the
larger (with state space D) has entropy 0.96226 bits/chord.6 However, the two sys-
tems have the exact same amount of total entropy (4.81128 bits) because the fifth
chord in D has no uncertainty associated with it, and thus contributes no entropy to
the system. Therefore, when we find the total entropy of S,

|C| · H(S) = 4 · -
✓

1

4
H(row

1

) +
1

4
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) +
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and of L,

|D| · H(L) = 5 · -
✓
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) +
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5
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5
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◆
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the two quantities are clearly going to be equal (H(row
5

) = 0) when we increase N
by 1, increase the denominator of the uniformly distributed probabilities by 1, and
keep the sum of the entropies of each row the same. Note that in both cases, the
probability distribution is uniform, i.e., p(x) = 1/n for all x, where n is the number
of distinct states.

We will see in the Beatles diverse music several di↵erent styles, and thereby mea-
sure the strictness of these classifications.

6Note that these entropy rates are actually higher than 1, so they are greater than the maximum
entropy rate: the entropy rate of a completely random (binary) system. To normalize this, we should
scale the binary entropy rate by log(2)

log(4)

for the entropy rate of S, making it 0.60141 “nits” per chord,

and by log(2)

log(5)

for L, so, 0.41442 nits per chord.
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3.5 Expectations

Studying the entropy rate of a sequence of symbols is one way of determining their
unique source. For example, entropy has been applied to the four gospels of the Bible
to establish whether or not they were indeed written by four di↵erent authors—and it
was found that they were not!7 Music and art seem to borrow from previous material
more shamelessly than literature, and artists can have a repertoire containing a vast
range of styles and instrumentation, whereas authors are usually confined to one
language, and cannot adapt their style so easily as a band of four or more musicians
can in parallel. Even when the members of a band do not collectively write their
songs, each of their individual styles and preferences in instrumentation do appear
in the frequency spectrum. Therefore, I suspect that the application of entropy to
music will not specify artist, but rather, origin of the style.

As one listens to more and more music under distinct classifications, one starts
to learn its language This is true especially of music that gains popularity, primarily
because it is easy to discover. “What makes a hit?” is the big question amongst
songwriters—either because they want the satisfaction that goes with creating some-
thing that has appeal and makes money, or because they want to discern what it is
about certain songs that appeals to them, and what turns them o↵. With a proba-
bilistic model like a Markov chain, our quantified findings cannot be completely o↵
base with describing the tendencies of a set of music.

This is only because we name chords relative to their key, I would like to point
out. From the light spectrum, say that we treated “colors” like the scales of the key,
[R, O, Y, G, B, I, V] = [1, 2, 3, 4, 5, 6, 7]. Do humans perceive the combination of
orange (2̂) and violet (7̂) the same way they do red (1̂) and indigo (6̂)? Not in the
way that humans cannot distinguish the root of sonic intervals, though interestingly,
those of us that do have perfect pitch usually perceive distinct pitches as a unique
color in the spectrum!

But, maybe we should challenge the notion that perfect pitch (the ability to de-
tect pitch, not limited to those on the keyboard) is a gift received at birth. Allegedly,
the percent of humans with perfect pitch is something like 0.001%, and I’ve met just
one in my lifetime (who did in fact have the color-pitch synesthesia). After this thesis,
I can tell that I am much better at estimating pitch than before, though because I
sing, I know almost the exact range that my voice can handle. The acquisition of
relative pitch (the ability to detect melodic intervals) from years of music theory,
plus knowing one’s vocal range, gives me all the tools I need to identify a note with
a smaller amount of error.

Now, I expect popular music to have a noticeably lower entropy rate than any
other style, and popular musicians alike, just because popular songs are simple and
predictable on average. The Beatles were certainly interesting, but what gave them
that extra spark was their fun rhythms and lyrics, not necessarily complex chord
progressions. However, I would say that few other musicians used the same sets of
chords and transitions between chords that the Beatles did in their songs. Since I

7R. Crandall, private communication (2009).
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have played Beethoven and music from other classical musicians (though, I seem to
have a propensity for the Romantics), as well as some knowledge of music theory in
jazz, I know that many accidentals are used in the two styles. Therefore, I expect a
higher amount of entropy in these systems as well as a greater state space of chords.
I do not expect the data from our bandpass filter to be noise-free, because I could
not familiarize myself enough with the discrete Fourier transform to the point that
I could trust the frequencies it picks out to be fundamental frequencies, and not a
harmonic thereof.

The Beatles released 11 studio albums (EP’s) to the U.K. in the following order8:

1963 : Please Please Me

1963 : With the Beatles

1964 : A Hard Day’s Night

1964 : Beatles for Sale

1965 : Help!

1965 : Rubber Soul

1966 : Revolver

1967 : Sgt. Pepper’s Lonely Hearts Club Band

1967 : The Magical Mystery Tour

1968 : The Beatles (White Album)

1969 : Yellow Submarine

1969 : Abbey Road

1969 : Let It Be

All of the albums feature fairly “unexpected” chords and chord progressions, but
the first few (before Rubber Soul, or arguably pre-Help! ) contain many songs that
sound remarkably alike, some of which are (highly predictable) standards not written
by The Beatles. Then, in the albums Rubber Soul through Abbey Road, The Beatles
expanded their musical vocabulary, or at least di↵erentiated between songs on the
same album more. But their final album, Let It Be, they seemed to return to their old
sound. Because of this, comparing the a↵ectation of a few of these albums should be
a good test of our hypothesis that music under a loose classification, like “jazz,” has a
more uniform Markov chain (or, it will be more like throwing a die), and music under
a strict classification has a greater certainty about it. Below are a few songs with
their chord names and, beneath those, the Roman numerical equivalent, to show you
just how their harmonic vocabulary grew—and with Let It Be, down-sized. I predict

8I have ordered this list as best I can, for the following anachronisms and peculiarities are true:
(1) The Beatles released The Magical Mystery Tour to the U.K. in 1976 but to the U.S. upon its
completion in 1967; (2) Yellow Submarine features many orchestral songs from the film of which
it is a soundtrack, but “Only a Northern Song,” “It’s All too Much,” “Hey Bulldog,” and “All
Together Now” do not appear on any other album; and finally, (3) Abbey Road was actually the last
album The Beatles recorded but was released before Let It Be because of issues with Phil Spector’s
direction.
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that the album Sgt. Pepper’s will have less songs with similar progressions, indicating
more uncertainty and a more vague notion of what the album’s sound is, and Please
Please Me will have the more certainty about it, and a small vocabulary of chords.

3.6 Results

3.6.1 Manual

The easiest to calculate (by hand) was Wire’s Pink Flag (1977) because of its small
state space in every song, and in its entirety. This was the first example I did, and I
divided the album into a set for those songs in a major key, and the remainder into
a set for those in a minor key. I noted 16 songs in a major key in Pink Flag, and 5
songs in a minor key. I accidentally skipped analysis of the last song on the album
because it was not imported onto my computer. I deciphered all of the chords from
ear on guitar, because every (admittedly free) source of chord transcription I looked
at for the album contained a multitude of errors. The entire album is only 35:19 long,
less the last song, meaning the average song length is around 100 seconds, and that
each of them consist of only a few chords, thus a minimal amount of transitions to
count up. Pink Flag has been my favorite album for going on a year, so the project
was nothing short of exciting. Still, it took at least 20 hours (including mistakes)
to acquire the following transition matrices and corresponding entropy rates. Blank
entries are zeros.

Figure 3.2: The counts of observations of each chord transition within major songs
from Wire’s Pink Flag.
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Figure 3.3: The corresponding transition matrix of the major songs from Wire’s Pink
Flag.

Figure 3.4: The counts of observations of each chord transition within minor songs
from Wire’s Pink Flag.

Figure 3.5: The transition matrix of the 5 minor songs from Wire’s Pink Flag.

Next, I attempted to analyze every song the Beatles ever recorded, and find their
(as well as their albums’) entropy rate. I got through five albums, A Hard Day’s Night,
Help!, Sgt. Pepper’s Lonely Hearts Club Band, Abbey Road, and Let It Be before I got
to a point of disorganization at which I was convinced I was double-checking my work
for the fourth time. Fortunately, the true entropy rates revealed results according to
my intuitions: their music from before 1965 and the age of psychedelics is almost 20%
less entropic than the music they produced between 1965 and 1969, until returning
to a more rock ‘n’ roll, true-to-their-beginnings sound with Let It Be.

Then, I found the transition matrices of each song on the five aforementioned
albums, and calculated their entropy rates. Additionally, I picked one song from each
album and measured its entropy rate, and chose the song with the closest T to the
ratio Talbum

|Songs|album
, i.e., the total number of states that a given album transitions to over

the number of songs in that album. Interestingly, this ratio was just about 70 in all



64 Chapter 3. Information, Entropy, and Chords

cases—not to mention that T for each of the albums released between 1965 and 1969
are all within a range of 4!

Finally, I analyzed a sonata for piano by Beethoven with which I was very familiar:
the decadent Piano Sonata No. 8, Op. 13 (“Pathetique”). I analyzed all three
movements from the score by hand in under three hours, and the number of distinct
states meant listing out the transition probabilities was a nightmare. However, this
project took less time overall than did Wire, perhaps only because I had done it
before, but also because I did not have to backtrack and triple-check the chords by
ear since I had the score right in front of me.

I only wish to reproduce here the first of the three movements of “Pathetique,”
based on the amount of space the following (single) transition matrix consumes (Fig-
ures 3.6 and 3.7 at the end of this section. The binary entropy rate of each chord
appears in the rightmost column, AU, and at the bottom we have the entropy rate
of the entire movement. At the very bottom-right corner of the matrix (cell AU45), I
found the binary entropy of the system by multiplying through by the total number
of states T in the progression. Adjusted for the size of its dictionary N = 43, the
true entropy rate of the first movement of Beethoven is 0.3933457 43-ary digits per
chord.

The results are given in the following tables. The first shows the binary entropy
rate, bits per symbol, of the given classification, as well as the size of sequence T and
the size of vocabulary N ; the second shows the entropy rate of the given classification
adjusted for the size of the classification’s chord vocabulary, N ; and the rest break
down each of the five albums by song, and show their true entropy rates only. Re-
member that the base-N entropy rates are simply the binary entropy rate scaled by
� = log(2)

log(N)

. Only then is one able to compare their entropy rates with one another.

Classification Binary Entropy Rate T N
“Tell Me Why” from A Hard Day’s Night 0.8097371 78 10
“You’re Going Lose That Girl” from Help! 0.6606718 69 12

“When I’m 64” from Sgt. Pepper’s 0.9763367 69 11
“Oh! Darling” from Abbey Road 1.0961483 67 11

“Two of Us” from Let It Be 0.7129891 76 9
A Hard Day’s Night 2.0693784 993 38

Help! 2.3278379 962 28
Sgt. Pepper’s 2.3199219 960 30
Abbey Road 2.4892385 958 39
Let It Be 1.5592536 855 24

First mvmt. of Beethoven 2.1343981 481 43
Second mvmt. of Beethoven 1.1371771 141 23
Third mvmt. of Beethoven 2.0581977 321 41

All of Beethoven 2.6348037 943 54
Major Pink Flag songs 1.9627405 821 17
Minor Pink Flag songs 1.4553366 142 8
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Classification True Entropy Rate
“Tell Me Why” from A Hard Day’s Night 0.2437552
“You’re Going Lose That Girl” from Help! 0.1828974

“When I’m 64” from Sgt. Pepper’s 0.2822246
“Oh! Darling” from Abbey Road 0.3168579

“Two of Us” from Let It Be 0.2249230
A Hard Day’s Night 0.3943230

Help! 0.4842243
Sgt. Pepper’s 0.4727886
Abbey Road 0.4709648
Let It Be 0.3357670

First mvmt. of Beethoven 0.3933457
Second mvmt. of Beethoven 0.2513897
Third mvmt. of Beethoven 0.3841676

All of Beethoven 0.4578376
Major Pink Flag songs 0.4801855
Minor Pink Flag songs 0.4851122

Observe that Help! is the album with the highest (true) entropy rate of the 5
albums, yet it contains the song (“You’re Going to Lose That Girl”) with the lowest
entropy rate of the songs analyzed in the previous sample. Intrigued by this anomaly,
I found the (true) entropy rate of each song from Help!, in addition to the other
albums.

Song from Help! Entropy Rate T N T/N
“Help!” 0.2152401 48 9 5.33

“The Night Before” 0.2086572 101 12 8.42
“You’ve Got to Hide Your Love Away” 0.3887134 103 6 17.17

“I Need You” 0.2571845 60 10 6
“Another Girl” 0.3201159 79 8 9.875

“You’re Going to Lose That Girl” 0.1828974 69 12 5.75
“Ticket to Ride” 0.3713393 49 6 8.17
“Act Naturally” 0.3685859 40 4 10
“It’s Only Love” 0.2893418 53 7 7.57

“You Like Me Too Much” 0.2863428 76 10 7.6
“Tell Me What You See” 0.2325980 91 6 15.17
“I’ve Just Seen a Face” 0.4595894 60 6 10

“Yesterday” 0.1616613 88 13 6.77
“Dizzy Miss Lizzy” 0.4251817 56 3 18.67

Funny that “Yesterday,” the most covered song of all time9, had one of the lowest
entropy rate of any classification analyzed. Looking at its progression, it is extremely

9“Yesterday” has the Guinness World Record for the most recorded cover versions (or, renditions),
with over 3,000 documented.
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periodic, repeating itself four times with only a few chords sticking out. Perhaps
its low entropy has some correlation to musicians’ desire to produce a version of it
themselves.

Noting that some of the songs on Help! with a relatively high ratio T/N � 9 also
had the higher entropy rates, and the songs with relatively low T/N < 9 have the
lower entropy rates, I regressed the two linearly to see if there was some relationship.
A linear regression of the entropy rate against T/N shows that only 32.33% of the
data can be explained in a linear relationship, i.e., R2 = 0.3233. Removing the
outlier “Ticket to Ride” improves R2 to 0.3786—not very much. The remainder of
the albums also show that the relationship is not statistically significant.

Song from A Hard Day’s Night Entropy Rate T N T/N
“A Hard Day’s Night” 0.3693949 97 10 9.7

“I Should Have Known Better” 0.2472442 127 6 21.17
“If I Fell” 0.2393726 65 10 6.5

“I’m Happy Just to Dance with You” 0.3958344 109 9 12.11
“And I Love Her” 0.2493109 58 14 4.14
“Tell Me Why” 0.2437552 78 10 7.8

“Can’t Buy Me Love” 0.3201860 54 6 9
“Any Time at All” 0.4268255 63 7 9

“Things We Said Today” 0.1092970 84 10 8.4
“When I Get Home” 0.2711269 51 8 6.38
“You Can’t Do That” 0.2244769 54 10 5.4

“I’ll Be Back” 0.1881344 58 11 5.27

These “poppy” songs were meant to put the Beatles on the map (i.e., the charts),
and they did just that. “Can’t Buy Me Love” and the title track were the biggest
hits of the two, and their entropy rates are very close to one another. The dramatic
“I’m Happy Just to Dance with You” and “Any Time at All” sound quite similar, as
well as “You Can’t Do That,” but the third does not really compare with the high
entropy rates of the first two. Additionally, “Things We Said Today” and “If I Fell”
are both slow, sadder songs, but their entropy rates are also not very similar. This
indicates that the classification of “dramatic” or “sad” could be a loose one.
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Song from Sgt. Pepper’s Lonely Hearts Club Band Entropy Rate T N T/N
“Sgt. Pepper’s Lonely Hearts Club Band” 0.4314825 51 7 7.28

“With a Little Help from My Friends” 0.2695691 85 9 9.44
“Lucy in the Sky with Diamonds” 0.2344558 103 10 10.3

“Getting Better” 0.1764410 62 7 8.86
“Fixing a Hole” 0.3147904 101 8 12.63

“She’s Leaving Home” 0.1885085 66 8 8.25
“Being for the Benefit of Mr. Kite” 0.2084119 105 13 8.08

“Within You Without You” 0 20 2 10
“When I’m Sixty-Four” 0.3037015 69 11 6.27

“Lovely Rita” 0.4010419 80 11 7.27
“Good Morning, Good Morning” 0.2307419 87 5 17.4

“Sgt. Pepper’s Lonely Hearts Club Band (Reprise)” 0.4132076 33 7 4.71
“A Day in the Life” 0.2617964 97 11 8.82

The “psychedelic” style of rock music appears most on Sgt. Pepper’s, especially
within “Lucy in the Sky with Diamonds,” “Fixing a Hole,” “Being for the Benefit of
Mr. Kite,” and “A Day in the Life.” All of these have entropy rates ranging from
0.2084119 and 0.3147904, expressing the wide scope of the classification, and thus
a less defined rate of entropy. The title track and its reprise have very close rates,
unsurprisingly.

Song from Abbey Road Entropy Rate T N T/N
“Come Together” 0.1673155 26 6 4.33

“Something” 0.1637179 67 14 4.79
“Maxwell’s Silver Hammer” 0.3043236 105 11 9.55

“Oh! Darling” 0.2658129 67 11 6.09
“Octopus’ Garden” 0.2658129 75 9 8.33

“I Want You (She’s So Heavy)” 0.1278756 83 12 6.92
“Here Comes the Sun” 0.3368234 113 8 14.13

“You Never Give Me Your Money” 0.2606540 95 20 4.75
“Sun King” 0.1526444 47 10 4.7

“Mean Mr. Mustard” 0.3628259 25 5 5
“Polythene Pam” 0.1980518 72 7 10.29

“She Came in through the Bathroom Window” 0.2109171 44 8 5.5
“Golden Slumbers” 0.1194754 29 10 2.9

“Carry That Weight” 0.2089544 36 11 3.27
“The End” 0.1450917 50 12 4.17

“Her Majesty” 0.1975524 25 10 2.5

Surprisingly, the B-side of Abbey Road10 (“Here Comes the Sun” through “The
End”, so, excluding “Her Majesty” which is something of an afterthought, featuring
Paul solo on acoustic guitar) is not very similar in entropy rates, ranging from very low
(0.1194754 nits/second for the brief “Golden Slumbers”) to somewhere in the middle

10For some reason, “Because” was not included in the reference [27], where I found the chords for
the rest of the songs, so it is left out here.
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of our findings (0.3628259 nits/second for the even briefer “Mean Mr. Mustard”).
However, “Carry That Weight” and “You Never Give Me Your Money” are fairly
close in entropy rate, and the former recapitulates the latter in chord progression.
Also, “Maxwell’s Silver Hammer” and “Octopus’ Garden” are very close in entropy
rate (0.3043236 and 0.2658129), and it is said that Ringo Starr’s lack of songwriting
skills led “Octopus’ Garden” to sound very close to “Maxwell’s.”

Song from Let It Be Entropy Rate T N T/N
“Two of Us” 0.2249230 76 9 8.44

“I Dig a Pony” 0.1964138 98 7 14
“Across the Universe” 0.2702220 54 8 6.75

“ I Me Mine” 0.1732533 66 11 6
“Dig It” 0.3154649 36 3 12

“Let It Be” 0.3054991 127 6 21.17
“Maggie Mae” 0.3647870 12 4 3

“I’ve Got a Feeling” 0.1565072 123 8 15.38
“One After 909” 0.4193111 40 4 10

“The Long and Winding Road” 0.2858642 83 8 10.38
“For You Blue” 0.3738869 57 4 14.25

“Get Back” 0.3372992 82 5 16.4

Now, “Act Naturally,” “Dizzy Miss Lizzy,” “One After 909,” “For You Blue,” and
“Get Back” are very similar and reminiscent of the 12-bar blues chord progression.
The 12-bar blues is I-I-I-I-IV-IV-I-I-V-IV-I-I, and it repeats. Note that all of these
songs have similar entropy rates to each other. The chord progressions in these songs,
and the entropy rate of the 12-bar blues, is

Song Chord Progression Entropy Rate
12-bar blues I-I-I-I-IV-IV-I-I-V-IV-I-I 0.4206198

“Act Naturally” I-I-IV-IV-I-I-V-V-I-I-IV-IV-V-V-I-I 0.3685859
“Dizzy Miss Lizzy” I-I-I-I-IV-IV-I-I-V7-IV-I-V7 0.4251817
“One After 909” I7-I7-I7-I7-I7-I7-IV7-IV7-I7-V7-I7-I7 0.4193111
“For You Blue” I7-IV7-I7-I7-IV7-IV7-I7-I7-V7-IV7-I7-V7 0.3738869

“Get Back” I-I-I-I-IV-IV-I-I-I-I-I-I-IV-IV-I-I 0.3372992

In order to analyze the 12-bar blues by the methods applied to the others, I condensed
it only to the transitions, making it simply I-IV-I-V-IV-I, so, 6 chords. The entire
chord progressions of none of the songs were reproduced above, especially in the case
of “Get Back,” and, excluding “Get Back” and “Dizzy Miss Lizzy,” they all contain
the secondary dominant chord V/V or V7/V. Since I treated V7 and V as if they were
unrelated, we can probably identify some of the error resulting from that here, since
“Act Naturally” does not have a single seventh chord.

George Harrison wrote “I Need You,” “Within You Without You,” “Something,”
“Here Comes the Sun,” and “For You Blue” in the songs studied. These entropy
rates range from 0 to 0.3738869, and excluding “Within You Without You” and the
standard blues song “For You Blue,” 0.1637179 to 0.3368234, the rates of his songs
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from Abbey Road. Paul McCartney’s songs (of which there are too many to list)
have a larger range of entropy rates [0.1194754 (“Golden Slumbers”) to 0.4595894
(“I’ve Just Seen a Face”)] than John Lennon’s [0.1278756 for “I Want You (She’s So
Heavy)” to 0.3887134 for “You’ve Got to Hide Your Love Away”], perhaps indicative
of his greater knowledge of music than any of the Bealtes, and John’s tendency to be
more bluesy and almost American in sound. It would be interesting to see how each
of their solo albums compare with these ranges.

Song from Pink Flag Entropy Rate T N T/N
“Reuters” 0.2246579 31 3 10.33

“Field Day for the Sundays” 0.0863660 18 5 3.6
“Three Girl Rhumba” 0.1224055 70 6 11.67

“Ex-Lion Tamer” 0.2901141 93 5 18.6
“Lowdown” 0 16 4 4

“Start to Move” 0.0517911 39 5 7.8
“Brazil” 0.1861653 33 5 6.6

“It’s So Obvious” 0.2349974 41 3 13.67
“Surgeon’s Girl 0.2483058 8 3 2.67

“Pink Flag” 0 5 2 2.5
“The Commercial” 0 16 4 4

“Straight Line” 0.5190109 52 4 13
“106 Beats That” 0.1759036 22 8 2.75

“Mr. Suit” 0.3097678 114 3 38
“Strange” 0.1186875 72 4 18
“Fragile” 0.3144970 57 5 11.4

“Mannequin” 0.2455547 83 5 16.6
“Di↵erent to Me” 0.3868528 16 6 2.67

“Champs” 0.0582476 59 6 9.83
“Feeling Called Love” 0.3114073 60 3 20

“12XU” 0.2766039 66 6 11

By my rules, a binary system of chords cannot have any entropy, since I call
the probability of transitioning from a chord to itself 0, making the probability of
transitioning to the other chord 1. However, “Within You Without You” is a sitar
song all in C, simply moving from C to C7, and “Pink Flag” (the song) is only 5 chords
in duration, and completely predictable in my opinion (and certainly periodic). “The
Commercial” is also periodic, giving it zero entropy.

Wire’s music is called “post-punk,” a movement that began in the 1970s and is
still thriving, especially in Portland. The only one of these that I can connect in
feel to the Beatles’ music is the love song “Feeling Called Love,” for its vocabulary is
strictly I, IV, and V. It is not quite the 12-bar blues, nor even a blues song arguably,
but the small vocabulary and “typical pop song” quality gives it an entropy rate
similar to the blues songs analyzed above.
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3.6.2 Automatic

And then, there is BandPower.app. Its speediness deserves more praise than its
e↵ectiveness, but we have shown that even without smoothing its output, it can ac-
curately derive the frequencies C through B present in a spectrum (Figure 3.6). After
smoothing (Figure 3.8), we can see that its e↵ectiveness is more readily apparent.

Figure 3.6: The application BandPower displays a bar graph of powers for each
pitch, pitches on the x-axis, power in watts on the y. It has two sliding levers, one for
each axis, where the x-axis lever controls time, and the other sets a threshold power
value at which to print out the pitches that meet that value, displayed above. Here,
it is correctly identifying an A Major chord at time 21.0s in the Wire song “Feeling
Called Love” from Pink Flag.

Although the chords are easily visualizable in this plot, the data they model is not
as easy to retrieve, and I ran out of time before I was able to examine the e↵ectiveness
of the smoothed bandpass powers.
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Figure 3.7: Sometimes, the three most powerful pitches at a given time do not create
a triad, nor resemble the actual chord being played (here, the actual chord is A Major,
but the three most powerful pitches are C], E, and B, which we would probably name
C] minor7).

Figure 3.8: The contour plot of the Wire song “Feeling Called Love” from Pink Flag.
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Conclusion

The application BandPower.app successfully picks out frequencies from the West-
ern, 12-pitch scale, and allows one to view the frequencies excited at any time in
the scale, and set some threshold value for their amplitude in order to retrieve the
frequencies with the most power. By smoothing these results, we can throw out the
unexplained (and not meaningful) pitches that often but irregularly appear, and keep
the ones that locally and consistently appear. The fact that BandPower.app runs
in less than 10 seconds (for any WAVE-format file converted within iTunes) is a real
achievement, and I anticipate even smarter versions of it to come.

The values of the calculated entropy rates from musical examples did not match
my intuitions, in general—but they did show me that it isn’t the value, it is the range
of values. Indeed, the blues songs studied had very similar entropy rates, and the
psychedelic and emotional ones had a wider range of them. It is hard to say that
this is the case for the classification in general, of course, since our sample size was
so small, but is intriguing nonetheless.

If we did consider rhythm in our Markov chain, the entropy rates would most
certainly turn out considerably di↵erent, and identify the true chaos of a classification
much more accurately. Consider, for example, the song “Tomorrow Never Knows” by
the Beatles, featuring just one chord: C Major. This song cannot be a Markov chain
by my rules, because a row that sums to 0 in the transition matrix implies that the
given state does not exist in C, the state space of the song. And, as mentioned before,
songs with only 2 chords also have 0 entropy, since by my rules, the probability of
transitioning to the other chord is automatically 1.

Another method which I did not implement that would improve the ranges of
entropy rates toward my association of it with “strictness of musical classification”
is the assignment of relative weights to those states that are closely related. For
instance, the chords V, v, and V7 function harmonically more closely than do ii, VI,
and viio, in general. Songs containing chords such that some of them have the same
root should therefore be adjusted to have lower entropy than other songs with the
same amount of states but less of these “neighborhoods” of chords.

It is also possible that, generally speaking, music is not an ergodic, and thus not an
aperiodic, Markov chain. Support for this claim comes from repetition of the same
progressions for each verse, chorus, and bridge of virtually all popular songs—i.e.,
there exist patterns governed by rhythm (and hence periodic) within chord progres-
sions. It makes sense that, because we ignored rhythm, the T above is too small in all
cases, since it documents only times when we move from the present chord. However,
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if it were indeed not ergodic, this fact would not a↵ect our calculated entropy rates.
In summary, musicians should be less hesitant to apply mathematics to songwrit-

ing and the art of music, just as we have to language with linguistics. Those whose
devotion to music extends to seeking out the best training for their personal style,
practicing for hours on end to perfect the fluidity of movement on their instrument(s),
must be well acquainted with the probabilistic nature of their sound, whether they
treat it mathematically, or with a qualitative, psychological sense of likelihood. I un-
derstand that boiling down music to probability theory is a little dry (and also insist
that I have hardly “boiled things down” here, as I analyzed only chord progressions in
music, something liberated by expression), but what if it is the solution to the great
enigma that is our musical memory? It is no wonder that I applied many of the same
techniques used in speech recognition to music, for music is a language, and those
who love to speak it have one of the richest and most accessible ways of escaping from
reality.



Appendix A

Music Theory

A.1 Key and Chord Labeling

A key is usually restricted to two classifications: major and minor. We call each
note of the 7 in a key a scale degree, and mark them 1̂ through 7̂. The first scale
degree (1̂) of C Major, for instance, is C. The second is D, and it is 2 half steps (2
keys on a piano, one black, one white) above C. C is the only major key with no
sharps or flats, so 1̂ through 7̂ is simply C-D-E-F-G-A-B. The di↵erence between E
and F and B and C is 1 half step, and the rest of the notes have an interval of two
half steps (one whole step) between them. We can also write this using interval
notation, where m2=half step, M2=whole step, so a major key is M2, M2, m2, M2,
M2, M2, m2.

Minor keys are written with lowercase letters, and a minor is the same as C Major
in pitches, but not the same in scale degrees. The key of a minor begins on C Major’s
sixth scale degree. For a minor, 1̂ through 7̂ is A-B-C-D-E-F-G, or in intervals, M2,
m2, M2, M2, m2, M2, M2.

Now, chords are triads with a root, third, and fifth with scale degrees n̂, \(n + 2),

and \(n + 4)1, though they are not required to have the third or fifth to be called a
chord. We call a single note a chord when the third and/or the fifth occurred just
before, and the root is kept, or the third and/or the fifth will occur next in time. The
“basic” chords of the C Major scale, meaning those not borrowed from any other key,
are

and c minor consists of the chords

1When n + i > 7, we mod it by seven and add 1, because there is no scale degree “0̂”.
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We label them by scale degree, but also make them upper- or lowercase depending
on their tonality. Tonality is limited to 4 classifications: major, minor, dimin-
ished, and augmented. The “viio” and “iio” above are diminished, and there are
no augmented chords in either key. I, IV, and V are the only major chords within the
major scale, and III, VI, and VII the only ones within the minor scale. However, it
is common for both to borrow chords from each other, especially the dominant (V)
from the major to the minor. The most commonly (and pretty much only) borrowed
chords in C Major are

where iio, III, v, VI, and VII come from the parallel minor, c minor. Actually, all
of the chords from c minor can occur within C Major, and vice versa. There is a flat
symbol next to III, VI, and VII because they are rooted at scale degrees [̂3, [̂6, and
[̂7, but the flat is not necessary to write because in the parallel minor, that is the
correct scale degree.

However, [II is the Neapolitan chord. It is the equivalent of V/V/viio, but
V/viio rarely occurs and is considered slightly bad notation.

The notation “X/Y” means the Xth scale degree of key Y. Here, key Y is G
because G is the fifth scale degree (the dominant) of C, so V/V is a D major chord,
and we make the F sharp. Borrowed chords of this type almost always resolve (when
the song returns to the original key) to the chord Y, but this is not a rule in modern
pop music like it is in (some) classical music.

An augmented chord is also rare, but they do appear in a few Beatles songs and
even classical compositions. Also, chords do not have to be played simultaneously,
i.e., all three notes at once. They can be arpeggiated, which is depicted alongside
an augmented chord:
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A.2 Ornaments

Not all pitches in a composition contribute to its chord structure/progression. These
are called ornaments, and include passing tones, neighboring tones, suspen-
sions, anticipations, and escape tones. Unfortunately, I did not have time (and
apparently neither did many others in their constructions of automatic chord rec-
ognizers) to specify such ornaments and their misplacement in a chord progression.
More unfortunately, this leads to some very bad specification of chord labels, but it
is likely only a matter of deleting those that contain non-chord tones (ornaments) in
most cases, since the chord should occur without non-chord tones within proximity—
otherwise we are mislabeling it in the first place, and the non-chord tones are chord
tones! However, with multiple voices and timbres as in most popular music, it is hard
to say this is generally the case.

Neighbor tones (NT) are within a half or whole step of any chord tone, and return
to the original tone. Passing tones (PT) move stepwise upward or downward from a
chord tone, and keep within the key (no accidentals). Anticipations (A) (resolving
upward) and suspensions (S) (resolving downward) initialize a chord with a non-
chord tone, and resolve to the true chord. An escape tone (ET) is a combination of
an anticipation and a suspension, straddling the chord tone it is leaving.

A.3 Inversion

This thesis does not take the inversion of chords into account, but it may be interest-
ing to point out why inversion is not important to the realization of a chord. When
using a pitch class profile system, the lowest C is notated the same as the highest
C, and every C in between. This is because of the noise that occurs in digital audio
processing and the sometimes strange voicings in popular music. Inversion simply
means that the bass note is di↵erent from the root—i.e., that the chord is not spelled
root-third-fifth(-seventh). When the bass note is the third and there is no seventh, we
write “ 6 ” to the upper right of the Roman numeral, e.g., I6. When the bass note is
the fifth and there is no seventh, we write “6

4

” to the right of the Roman numeral, e.g.,
V6

4

. When a seventh is present, a chord inverted with its third in the bass is written
with “6

5

” to the right; with its fifth in the bass, “4

3

” appears to the right; and with
its seventh as the lowest pitch, we write “4

2

” instead of the uninverted “7” notation.
Here are two chords, C Major (I) and C Major7 (I7), with their inversions labelled:

The use of a pitch class profile system automatically inverts a chord such that its
bass note (not to be confused with its root) is the first appearing in the sequence
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{C, C], . . ., B}. This, in addition to the fact that most listeners cannot distinguish
between two types of inversions, renders analysis of inversion obsolete.

A.4 Python Code for Roman Numeral Naming

The following code in the language Python is incomplete, and has thus never been im-
plemented. However, its implementation would clarify the functions of chords within
a key, as well as di↵erentiate the functions of chords in a minor key from those in
a major key [recall that if a chord has a function, its row vector ⇡ is 1 at some i
and 0 elsewhere (but the opposite is not necessarily true); otherwise, it is considered
functionless].



A.4. Python Code for Roman Numeral Naming 81



82 Appendix A. Music Theory



A.4. Python Code for Roman Numeral Naming 83





Appendix B

Hidden Markov Models

B.1 Application

We see Hidden Markov Models (HMMs) most often in research on speech recognition,
but because music is inherently like language in that every artist is unique, it has
useful application to the recognition and algorithmic composition of music. However,
I did not quite figure out the reasonable place for HMMs in chord recognition when
one does not wish to compose a song from the data, so I relocated this section to an
appendix to avoid confusion.

B.2 Important Definitions and Algorithms

Definition: Hidden Markov Chain. A hidden Markov chain consists of two
sequences of states, assigned to integer values: a predicted Markov chain Q =
(q

1

, . . . , qT ) to be modified, and a sequence of observations O = (o
1

, . . . , oT ), where ot

is an observation about state qt (Landecker). The Markov property holds so that

P (qt = xt|q1

= x
1

, q
2

= x
2

, . . . , qt�1

= xt�1

) = P (qt = xt|qt�1

= xt�1

).

So in our case with chord progressions deducing something about musical style, we
think of qi as a chord within a given style at time i, and oi as the actual (observed)
chord played at time i. Since we want to predict the behavior of the chords within a
style, we construct a model that will tell us how closely O adheres to Q. This model,
a hidden Markov model, is defined by the following.

Definition: Hidden Markov Model. A hidden Markov model (HMM) � =
(A, B, ⇡) is a triple containing three di↵erent sets of probabilities: (1) the state tran-
sition probabilities aij, (2) the probabilities of observing each ot given qt (defining the
observation matrix B), and (3) the probabilities of beginning the chain in each of the
states qi (the initial distributions ⇡i).

We can think of � as a set of parameters to be modified again and again until
P (O|�) is maximized.
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There are three main obstacles one must overcome to build a satisfactory HMM:

1. Given O and �, calculate P (O|�).

2. Given O and �, how can we “refresh” Q so that P (Q|O, �) is maximized?

3. Given O, alter � to maximize P (O|�).

We surmount the first of these problems with the forward algorithm, the second with
the Viterbi algorithm or backward algorithm, and the third can be solved with any of
the backward-forward algorithm (sometimes called the forward-backward algorithm),
the Baum-Welch algorithm, or the Expectation Maximization (EM) algorithm. The
most common and best for speech recognition is the Baum-Welch, so I believe since
music is a language, what with all of its “speakers” communicating distinctly (thereby
making the possibilities for the set S infinite, but the established vocabulary Q finite),
it will also be best suited for music. These algorithms will be explicated once we lay
out more formal definitions for the many variables designated above.

Now, let there be N distinct possible states, i.e., chords, and define the state
space as S = {si}, 1  i  N . Let there be M distinct possible observations, and
define the observation space as V = {vi}, 1  i  M . Then, each state qi comes
from S, and each observation oi comes from V .

We represent the random variable of the observation at time t by Ot, and likewise
the random variable of the state at time t by Qt, such that there are T -many random
variables for each of O and Q. By the Markov property, the probability of being in a
state depends only on the previous state, and the current observation depends only
upon the current state, so therefore,

P (Qt = qt|Q1

= q
1

, . . . , QT = qT , O
1

= o
1

, . . . , OT = oT , �) = P (Qt = qt|Qt�1

= qt�1

, �)

and

P (Ot = ot|Q1

= q
1

, . . . , QT = qT , O
1

= o
1

, . . . , OT = oT , �) = P (Ot = ot|Qt = qt, �)

Without loss of generality, the above (beastly) equalities are notationally equivalent
(in this thesis, unless otherwise noted) to writing

P (qt|q1

, . . . , qT , o
1

, . . . , oT , �) = P (qt|qt�1

, �),

and

P (qt|q1

, . . . , qT , o
1

, . . . , oT , �) = P (ot|qt, �).

We construct our state transition matrix A, relating to Q’s behavior over time,
with the probabilities

A = {aij : aij = P (qt = sj|qt�1

= si, �), 1 < t  T},

NX

j=1

aij = 1.
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At initialization of our hidden Markov chain Q, or when t = 1, we define the initial
distribution ⇡ by the row matrix

⇡ = {⇡i : ⇡i = P (q
1

= si|�)},

NX

i=1

⇡i = 1.

Then, our observation matrix B is given by

B = {bij : bij = P (ot = vj|qt = si, �)},

MX

j=1

bij = 1,

and contains the probabilities

bi(j) = bij = P (ot = vj|qt = si, �),

bqt(ot) = bqtot = P (Ot = ot|Qt = qt, �).

We assume that A and B are time-homogenous, that is, the probability of transi-
tioning between any two states is the same at all times. This is also a byproduct of
the Markov property.

Now we can attempt to tackle the aforementioned three main problems that, once
solved, will only better our HMM. First, we want to know how well our current model
� predicts O, i.e., P (O|�). Naively, this is

P (O|�) =
TX

i=1

P (O|qi, �)P (qi|�)

by Bayes’ formula. Now,

P (O|Q, �) =
TY

i=1

P (oi|qi, �)

= bq1(o1

) · bq2(o2

) · · · bqT (oT ),

and

P (Q|�) = ⇡q1 · aq1q2 · aq2q3 · · · aq(T�1)qT ,

so the probability P (O|�) becomes

TX

i=1

P (O|qi, �)P (qi|�) =
TX

i=1

⇡qibq1(o1

)aq1q2 · · · bqT (oT )aq(T�1)qT .
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However, we can also discover this probability recursively using the forward algo-
rithm.

Definition: Forward Algorithm. The forward variable ↵j(t) assists compu-
tation of the probability P (O|�) with the function

↵j(t) = P (o
1

, o
2

, . . . , ot, qt = sj|�),

the probability of observing O up to time t and being in state sj at that time. We
calculate ↵j(t) by multiplying P (Ot = ot|qt = sj) by each probability of transitioning
to state sj from the instant before, time t� 1. This heeds the recursion

↵j(t) =
NX

i=1

↵i(t� 1)aijbj(ot)

initialized by ↵j(1) = ⇡jbj(o1

). Hence,

P (O|�) =
NX

j=1

↵j(T ).

We call this recursion the forward algorithm.

This is found in TN2 operations versus the 2TNT operations made in the näıve
calculation of P (O|�) above. It is called the “forward” algorithm because we first
compute ↵j(2), then ↵j(3), up to ↵j(t), whereas the “backward” algorithm we are
about to discuss is first computed at time T � 1, down to time t + 1.

Second, we want to calculate the probability of receiving our remaining observa-
tions, ot+1

, . . . , oT , given the current state qt. This is the same as finding P (ot+1

, . . . , oT |qt =
si, �) by which we define our “backward variable”.

Definition: Backward Algorithm. The backward variable �i(t) is given be

�i(t) = P (ot+1

, . . . , oT |qt = si, �),

and is the probability of a “finishing observation sequence” starting at time t, given
that we are currently in the state si = qt. It analyzes the set of observations mutually
exclusive from those analyzed with the forward variable, and thus is calculated by
multiplying the probability of the finishing observation sequence with the possible
transition probabilities between times t and t + 1. This is the recursion

�i(t) =
NX

j=1

�j(t + 1)aijbj(ot+1

)

initialized by �i(T ) = 1. Hence, another way of getting P (O|�) is found:

P (O|�) =
NX

i=1

�i(1)⇡ibi(o1

).
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Now that we have our forward and backward algorithm, we want to redefine � so that
P (O|�) is maximized. This will solve our third problem.

First, note that

↵i(t)�i(t) = P (o
1

, . . . , ot, qt = si|�)P (ot+1

, . . . , oT , qt = si|�)

which by the definition of conditional probability is

=

✓
P (o

1

, . . . , ot, qt = si, �)

P (�)

◆✓
P (ot+1

, . . . , oT , qt = si, �)

P (qt = si, �)

◆
.

Since the Markov property states that the probability of the t-th observation ot de-
pends only on the t-th state qt and �, i.e., qt, ot+1

, . . . , oT are independent of one
another,

↵i(t)�i(t) =
P (o

1

, . . . ot, qt = si, �)P (ot+1

, . . . , oT )P (qt = si, �)

P (�)P (qt = si, �)

=
P (o

1

, . . . ot, qt = si, �)P (ot+1

, . . . , oT )

P (�)
.

Again calling upon the Markov property, we see that

P (o
1

, . . . , ot, qt = si, �)P (ot+1

, . . . , oT ) = P (o
1

, . . . , oT , qt = si, �),

so the product of the forward and backward variables is then

↵i(t)�i(t) =
P (o

1

, . . . , oT , qt = si, �)

P (�)

= P (O, qt = si|�).

Thus, we can calculate the probability we are trying to maximize a third way, by

P (O|�) =
NX

i=1

P (O, qt = si|�)

=
NX

i=1

↵i(t)�i(t)

for any t.
Now we want to define a variable that will give us the expected number of times

of entering state si given O and �. This is found with the conditional probability

P (qt = si|O, �) =
P (O, qt = si|�)

P (O|�)

=
↵i(t)�i(t)PN

j=1

↵j(t)�j(t)

= �i(t).
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We call this conditional probability �i(t) and see that the value
PT

t=1

�i(t) gives us
the expected occurrence of state si, as desired above. This will help refine all of the
variables in �.

We are almost finished describing the initial structure of an HMM. Next, we need
to calculate the probability of transitioning from state si to state sj at any time t.
We call this, keeping in line with Landecker’s notation, ⇣ij(t), and it is defined by

⇣ij(t) = P (qt = si, qt+1

= sj|O, �)

=
P (qt = si, qt+1

= sj, O|�)

P (O|�)

which by Bayes’ formula is

=
(↵i(t)aij)(�j(t + 1)bj(ot+1

))
PN

k=1

PN
l=1

↵k(t)akl�l(t + 1)bl(ot+1

)
.

Thus, the value
PT�1

t=1

⇣ij(t) is the expected number of transitions from state si to
state sj 2 O.

At last we can refine our model’s parameters, ⇡, A, and B as follows:

⇡̂i = �i(1),

âij =

PT�1

t=1

⇣ij(t)PT�1

t=1

�i(t)
,

b̂ij =

PT
t=1

�i(t)�ot,vjPT
t=1

�i(t)
,

where �ot,vj is equal to 1 when ot = vj and is 0 otherwise.

B.3 Computational Example of an HMM

Let’s say that we want to model (what we believe to be) a blues song, and that there
are only 3 possible states, I, IV, and V 7, to which it can transition. We are pretty sure
that blues songs typically begin with either I or V 7, and it is more likely to hear I ini-
tially. Then, any of the three states can transition to any of the other three states. We
deduce from the twelve-bar blues progression, Q = {I, I, I, I, IV, IV, I, I, V 7, IV, I, I}
that our initial transition matrix is

A =

2

4
5/7 1/7 1/7
2/3 1/3 0
0 1 0

3

5

where s
1

= I, s
2

= IV, and s
3

= V 7.
A only depends on Q, and Q comes from some pre-existing notion of a typical

blues progression. We cannot build B just yet since it depends on O which we have
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not yet observed, but we can define our initial probabilities ⇡i as follows:

⇡i(1) =

2

4
1
0
0

3

5 .

Now, we observe a repeating sequence of 8 chords in a song we think should be
classified as “blues”. We observe O = (I, I, I, I, V 7, IV, I, I, I, IV , V 7, I), while
our “typical” blues progression Q is defined as Q = (I, I, I, I, IV, IV, I, I, V 7, IV ,
I, I). Thus, Q does not equal O at times 5, 9, 10, or 11, and N = 3, T = 12. So, in
Mathematica,

and hence we can define ↵j(t) as a matrix, [↵j,t], by

↵j,1 = ⇡jBj,1, 1  j  3;

↵j,t =
3X

k=1

↵k,t�1

Ak,jBj,ot , 1  j  3, 2  t  12.

Then, our backward variable �i(t) is

�i,12

= 1, 1  i  3;

�i,t =
3X

k=1

�k,t+1

Ai,kBk,ot+1 , 1  i  3, 1  j  11.

Doing these two algorithms by hand required 10 pages (and included many a compu-
tational error), so I defined the following loops in Mathematica:
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The matrix form of ↵ is

↵N⇥T =

2

4
.7143 .3644 .1859 .09484 .009677 .0009874 .0005034 .000257 .0001311 1.338E-5 1.365E-6 6.964E-7

0 .0510 .03453 .01903 .009946 0 7.053E-5 4.774E-5 2.631E-5 0 9.556E-7 2.568E-7
0 .05102 .02603 .01328 0 .0006912 7.053E-5 3.598E-5 1.836E-5 9.365E-6 0 9.750E-8

3

5 ,

and we find � by the recursion

The matrix form of � is

�N⇥T =

2

4
1.248E-6 2.446E-6 4.8E-6 9.399E-6 9.211E-5 .0009028 .00177 .003469 .0068 .06663 .653 1
1.777E-6 3.671E-6 8.326E-6 .0000231 8.598E-5 .001237 .002367 .004295 .006346 .1693 .6428 1
1.835E-6 4.163E-6 .00001155 4.299E-5 0 .001184 .002148 .003173 0 .3214 .5 1

3

5 .

Then I defined �i(t) = ↵i(t)�i(t)Pt
k=1 ↵k(t)�k(t)

in Mathematica:

Then, the matrix form of � is

�N⇥T =

2

4
1 .6904 .6025 .4687 .5104 .5214 .7368 .7363 .8422 .2285 .5920 .6628
0 .1451 .1943 .2312 .4896 0 .1380 .1694 .1578 0 .408 .2444
0 .1645 .2032 .3001 0 .4786 .1252 .0943 0 .7715 0 .0928

3

5

We can now re-estimate our ⇡, ↵, and �. I called the re-estimates ⇡̂ “PNEW”,
Â “ANEW”, and B̂ “BNEW” in Mathematica, as well as “delt” (since “delta” is
reserved in Mathematica) for the Kronecker delta, �ot,vk

. Since Â is quite a lengthy
summand, I broke up the numerator and denominator and called them “numA” and
“denumA”. The recursion is as follows:
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In summary,

So ⇡̂, Â, B̂, and �ot,vk
are, in matrix form,

⇡̂N⇥1

=

2

4
1
0
0

3

5 ,

ÂN⇥N =

2

4
0.701542 0.159441 0.266733
0.553007 0.198254 0

0 0.810903 0

3

5

�N⇥T =

2

4
1 1 1 1 0 0 1 1 1 0 0 1
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0

3

5 ,

B̂N⇥N =

2

4
0.75602 0.0987759 0.145204
0.587813 0 0.412187
0.439457 0.560543 0

3

5 .

The rows of A do not add up to 1, but the rows of B and the columns of �, ⇡, and
� do. This is because

P (O|�) =
NX

j=1

↵j(T ) = ↵
1

(12) + ↵
2

(12) + ↵
3

(12)

= 0.0000010514 =
NX

i=1

↵i(12)�i(12),
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but

P (O|�) =
NX

i=1

�i(1)⇡ibi(o1

) = �
1

(1) · 1 · 5/7 + 0 + 0

= 0.0000008929042 =
NX

i=1

↵i(1)�i(1).

The failure of this very simple example perfectly encapsulates the di�culties asso-
ciated with HMMs, namely with keeping all of the variables straight. A good resource
for those unfamiliar with HMMs is [45].
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Glossary

accelerated intelligence Raymond Kurzweil states that “accelerated intelligence”
refers to “the quickening pace of our knowledge and intelligence will ultimately
alter the nature of what it means to be human.”

aliasing when an analog signal is undersampled to a digital form, i.e., when the
sampling frequency fs < 2fU , where fU is the highest frequency (bandwidth)
of the signal, the digital form undergoes aliasing, emitting false amplitudes for
the signal at frequencies n · fs, n 2 Z

bandwidth the maximum frequency of a signal, denoted fU or W (Shannon)

conditional probability the probability of something happening given information
about previous happenings

cyclic convolution a binary operation with no multiplicative inverse denoted by
⇤; the cyclic convolution of {a

0

, . . . , aN�1

} and {b
0

, . . . , bN�1

} is the sequence
{c

0

, . . . , cN�1

} where

N�1X

j=0

c
0

xj ⌘
 

N�1X

j=0

ajx
j

! 
N�1X

j=0

bjx
j

!
�
modxN � 1

�
.

dominant the frequency 7 half steps above the key to which it has a dominant
relationship

entropy a measure of the propensity of a signal or system of signals to be incorrectly
transmitted as intended

Euler’s identity ei⇡ = �1, where e is Euler’s number, the base of the natural
logarithm; i is the imaginary unit equal to

p
�1; and ⇡ is the ratio of the

circumference of a circle to its diameter. Also, eix = cos(x) + i sin(x) and
e�ix = cos(x)� i sin(x) for any value (real or imaginary) x

event in probability theory, an event is a set of outcomes

expectation in probability theory, the expectation, or expected value, of a random
variable is the predicted value that, on average, the variable will take on
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fifth the frequency either 6, 7, or 8 half steps above the fundamental frequency of
a chord. This can also refer to an interval separating two notes by 6, 7, or 8
half steps, depending if the quality of the interval is (respectively) diminished,
perfect, or augmented

filter in digital and analog signal processing, filters are used to reduce a signal to
some desired set of frequencies

impulse in physics, impulse is the integral of force with respect to time, equal to the
change in momentum over time

impulse function �(t)

impulse response a function h(t) mapping the power of a signal over time

independence in probability theory, two schemes or events or outcomes are inde-
pendent if the occurrence of one does not e↵ect the behavior of the other

Markov chain a Markov chain, or Markov process, is a stochastic process that pos-
sesses the Markov property, and its behavior is modeled by a transition graph
and transition matrix

Markov property in probability theory, a random variable is said to possess the
Markov property, or memoryless property, if every state Xt = sj only depends
on the previous state Xt � 1 = si

outcome in probability theory, an outcome is a possible value of a random process,
so, one state in its state space

parallel in music theory, the parallel minor key of a major key is the minor key with
the same root as the major key but di↵erent scale degrees to reflect the minor
quality; the parallel major key of a minor key is likewise the major key with
the same root as the minor key but with scale degrees (sta↵) to represent the
major quality

probability mass function (pmf) the function describing the individual proba-
bilities of every outcome in a system

quality in music theory, the nature of a chord, limited to major, minor, diminished
and augmented. Chords with major quality have their third 4 half steps above
the root and fifth 7 half steps above the root; those with minor quality have
their third 3 half steps above the root and fifth 7 half steps above the root;
diminished chords have a third 3 half steps above the root and fifth 6 half steps
above the root; and augmented chords are characterized by a third 4 half steps
above the root and a fifth 8 half steps above the root. “Quality” can also apply
to intervals; for instance, a major second is 2 half steps above the root while a
minor second is only 1 half step above the root
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root the fundamental frequency of a chord, after which it is labeled with a Roman
numeral

root of unity the nth roots of unity are defined as the set of all complex numbers
that are 1 when raised to the power n. These are also called de Moivre numbers

scale degree an integer denoted n̂ is called the nth scale degree of some scale, where
n̂ is the nth note in the scale

spectrum the positive real function of a variable f denoting frequency representing
the Fourier transform of a signal over time

state space the possible values a random process X can take on, also thought of as
its range

tap a frequency in the spectrum X(f) of a signal x(t) at which the impulse response
is to be evaluated

third the frequency either 3 or 4 half steps above the fundamental frequency of a
chord. This can also refer to an interval separating two notes by 3 or 4 half
steps, depending if the quality of the interval is (respectively) minor or major


