Prototyping in Mechanical Engineering

Engineering feels like:

Rice University NASA

Rice University NASA Nano Precision Medical

Rice University NASA Nano Precision Medical

* Rice University * NASA * Nano Precision Medical Patent Agent

* Rice University * NASA * Nano Precision Medical Patent Agent

* Rice University * NASA * Nano Precision Medical Patent Agent * D20 Robotics

* Rice University * NASA * Nano Precision Medical Patent Agent * D20 Robotics Chicago Booth MBA * Rinckl

* Rice University * NASA * Nano Precision Medical Patent Agent * D20 Robotics Chicago Booth MBA * Rinckl * Freelancer Improviser

* Rice University * NASA * Nano Precision Medical Hockodo The shick of Patent Agent * D20 Robotics Chicago Booth MBA * Rinckl * Freelancer Improviser

What does this all mean?

This class about Mechanical Engineering will be **prototyping focused**.

Today's Agenda

- My background
- Course Intro
- What/why is prototyping?
- Schematics and drawings

Course Introduction

"Mechanical Engineers build the weapons

"Mechanical Engineers build the weapons and Civil Engineers build the targets"

- Engineering?
 - Using science, logic, and empathy to design useful things
- Mechanical?
 - Stuff that moves
 - Robots, gears, etc.
 - Spaaaaaace (also planes, boats, dirigibles)
 - Manufacturing equipment
 - Fluids
 - Thermodynamics

- What do they teach us in school?
 - Statics
 - Kinetics
 - Kinematics
 - Materials (also fracturing, material failure, etc.)
 - Electro-mechanical systems (also mechatronics, robotics, etc.)
 - Fluids (also acoustics, aerodynamics, etc.)
 - Thermodynamics (also Heat Transfer, Psychrometrics, etc.)
 - Vibration
 - Control Theory
 - A lot of math

A quick aside

Metric

VS

English WILLEBSCHER

A quick aside

VS

What to expect to learn

- An overview of:
 - Class 1 Prototyping, schematic drawings
 - Class 2 Materials
 - Class 3 Fabrication
 - Class 4 Fluids
 - Class 5 Motion
- High level look at these fields
- Teach a 'style of thinking'
- Prototyping perspective

Pace

To learn these more in depth, ask in the office hours, or check out YouTube to learn specific skills from other people. You can also email me directly.

Today's Agenda

- My background
- Course Intro
- What/why is prototyping?
- Schematics and drawings

What is Prototyping?

"Genius is one percent inspiration, ninety-nine percent perspiration." -Thomas Edison

Crud. Now what?

You need some way to learn

Prototyping

Prototyping

Prototyping

Prototype toward a Question

• What can make or break this project?

• What questions need to be answered before it "works"?

Can I get just this little widget working?

Rapid & Imperfect

• Goal:

- Create a prototype as quickly as possible so that it can still answer your question
- It doesn't have to be perfect

Rapid & Imperfect

• Goal:

- Create a prototype as quickly as possible so that it can still answer your question
- It doesn't have to be perfect

- Ask:

Seek the advice of experts (respectfully and efficiently)

Rapid & Imperfect

• Goal:

- Create a prototype as quickly as possible so that it can still answer your question
- It doesn't have to be perfect

- Ask:

Seek the advice of experts (respectfully and efficiently)

• Fail:

- Often the biggest value in a prototype is in its failures
- We learn more from our mistakes than from our successes

Fail

- Failure is a skill
 - Fail quickly
 - Fail gracefully
 - Fail usefully (answer a question!)

Don't be afraid to fail

Practice Prototyping

Prototyping is a practiced skill

Get a better sense of building stuff

Today's Agenda

- My background
- Course Intro
- What/why is prototyping?
- Schematics and drawings

Schematics: Disclaimer

Creating drawings for mechanical parts is an entire career (draftsperson)

We are covering just the *very* beginning

We won't cover GD&T

Schematic Drawings

- Why are drawings important?
 - Communication
 - Specification for manufacturing
 - Specification for assembly
 - Identification
- What are the stakes?
 - Money
 - Time
 - Reputation
 - DEATH?

(eith

How to read a drawing

- Views
- Dimensions, notes, and tolerances
- Title Block

How to read a drawing: Views

- There are three orthographic ("Third Angle") views
 - Top
 - Front
 - Side
- Detail Views
- Section Views

How to read a drawing: Views

How to read a drawing

Dimensions

GENERAL TOLERANCES FOR LINEAR AND ANGULAR DIMENSIONS (DIN ISO 2768 T1)

- Tolerances
 - Document-wide, unless otherwise specified
 - ISO 2768

LINEAR DIMENSIONS:

Permissible deviations in mm for ranges in		Tolerance class designation (description)		
nominal lengths	f (fine)	m (medium)	c (coarse)	v (very coarse)
0.5 up to 3	±0.05	±0.1	±0.2	-
over 3 up to 6	±0.05	±0.1	±0.3	±0.5
over 6 up to 30	±0.1	±0.2	±0.5	±1.0
over 30 up to 120	±0.15	±0.3	±0.8	±1.5
over 120 up to 400	±0.2	±0.5	±1.2	±2.5
over 400 up to 1000	±0.3	±0.8	±2.0	±4.0
over 1000 up to 2000	±0.5	±1.2	±3.0	±6.0
over 2000 up to 4000	-	±2.0	±4.0	±8.0

Title Blocks

• ISO 7200:2004

- Usually include:
 - Title
 - Part number
 - Tolerances
 - Units
 - Material
 - Paper size
 - Scale
 - Designer
 - Company/organization
 - Approval information
 - Appropriate dates
- Include as necessary:
 - Sheet number
 - Notes
 - Revision number
 - Signatures
 - Confidentiality

Dept.	Technical reference	Created by		Approv	ed by		
MECH		Will Fischer	2/18/2020		,		
Tolerances ISO 2768-mK		QUOTE / BUE	Document type QUOTE / BUDGETARY C15 Steel or ec		quivalent		
		[™] 2.2m Thre	aded Rod	d 1140-03			
				Rev. 1	Date of issue		Sheet 1/1
5		6	7			8	

Responsible dep.	Technical reference	Creator	Approval person				
Wikimedia Commons		Document type P&I Diagram		Document status First issue			
		Title		Identification number			
		Feed unit with tank					
				Rev. 00	Date of issue	1-20	Sheet 1/1

Let's look over a drawing

When creating a drawing

- Think about how this will be made (more in Class 3!)
- Visual clarity
 - Don't overlap tolerances
- Inspection
- Don't over-specify
- Don't overcommunicate (especially if there's valuable IP!)
- Tolerance Stackups
- Check with your machinist or manufacturer

Tolerance Stackups

Inspection

- Always inspect parts
 - Measure measurable dimensions
 - Fit parts together
 - Check threads with known fasteners
- Common inspection tools:
 - Calipers
 - Pin gauges
 - Granite Flat
- Optical inspection $\textcircled{\begin{array}{c} \begin{array}{c} \end{array} \end{array}$

Today's Agenda

- My background
- Course Intro
- What/why is prototyping?
- Schematics and drawings

Engineering is about humility.

Don't underestimate the people you work with.

Questions? Office Hours!

Will Fischer will@wfisch.com

