Prototyping in Mechanical Engineering

Class 4: Fluids and Thermo

Movie Break!

Today's Agenda

- Movie Break!
- Intro to Fluids and Thermodynamics
- Fluid Dynamics
- Thermodynamics
- Resources for Design

Intro to Fluids and Thermodynamics

Introduction

- Why are fluids and thermodynamics often taught together?
 - Thermo in stationary bodies is well known
 - Fluids complicate thermo
 - Pressure, temperature, and heat show up in both
 - Applications often overlap
- Today's class:
 - More theory than practical knowledge

Fluid - Definition

- Material that conforms to its container
 - Liquid
 - Incompressible
 - Viscous
 - Gas
 - Compressible
 - Inviscid

Terms & Properties

- Pressure force per area
- Temperature
- Heat thermal energy
- Volume
 - Compressibility
- Entropy disorder, but also thermal energy *not* available for work
- Enthalpy product of P and V, energy available for work
- Viscosity material property
 - Temperature dependent

Today's Agenda

- Movie Break!
- Intro to Fluids and Thermodynamics
- Fluid Dynamics
- Thermodynamics
- Resources for Design

Fluid Dynamics

Fluid Dynamics

- The Big Three: Pressure, Volume, and Temperature
- Flow Field Diagrams
- No Slip Condition
- Laminar and turbulent flow
- Drag
- Conservation of Mass & Conservation of Energy
- Fluid Circuits
- Bernoulli Effect
- Lift

Pressure

- Force per area
 - Pa, bar, torr, psi, atm
- Design for pressure:
 - Cylinders and sphere
 - Avoid corners
 - High pressure is harder than vacuum
- Vacuum
 - Millitor (mtorr)
 - Microtorr (high vac)
 - Mean Free Path (ultra high vac)

Volume

- Liter, mL, cc
- Variable volume
 - Cylinders
 - Syringes
 - Pistons
 - Bladders / Balloons
 - Bellows

Temperature

- Measure of molecular kinetic energy
 Celsius, Fahrenheit, Kelvin, Rankine
- Changed by heat flow
- Endothermic / exothermic processes
- Determines speed of sound in a gas

The Big Three

PV = nRT Amount Constant

The Big Three

$\Delta PV = \Delta T$

The Big Three

$\frac{P_0 V_0}{T_0} = \frac{P_1 V_1}{T_1}$

Flow Fields

Solid surface

Velocity profile without slip

No Slip Condition

Fluid in contact with a surface does not move with respect to the surface

Movie Break!

Laminar and Turbulent Flow

- Laminar flow
 - Smooth, predictable, mathematical
 - Viscous flow dominates
 - Re < 2300 (pipe flow)</p>
- Turbulent flow
 - 'choppy', chaotic, difficult math
 - Inertial flow dominates
 - Re > 2900 (pipe flow)
- Reynold's Number:

$$Re = \frac{\rho u L}{\mu}$$

Movie Break!

Drag

- Skin Drag
 - Based on the no-slip condition and fluid viscosity
- Pressure Drag
 - Based on pressure differences in the flow field
- Sportsballs
 - Turbulent flow separation

Conservation

- Mass
 - Flow that goes into a system comes out of it
 - Flux: Flow through a known area
- Energy
 - Energy that goes in to a system comes out of it

Closed systems

- Circulating systems
 - Mass (thus flow rate) through the system stays constant
 - Temperature, pressure, work, heat, etc. may not be constant

Bernoulli Principle

Increasing fluid velocity *decreases* fluid pressure!

Redirecting flow

AND

Bernoulli's principle

Applications

Pitot Tube:

Today's Agenda

- Movie Break!
- Intro to Fluids and Thermodynamics
- Fluid Dynamics
- Thermodynamics
- Resources for Design

Thermodynamics

Thermodynamics

- Heat Transfer
 - Radiation
 - Conduction
 - Convection
- Heat that "does work"
- State Changes
- Psychrometrics
- Refrigeration
- Combustion

Radiation

- Electromagnetic emission
 - Usually IR, but at higher temperatures, visible
- All matter emits it
 - Flow from higher temperature to lower
 - Absolute units

$$(T_a-T_b)^4$$

Conduction

- Math
 - "The Heat Equation" (when transient)

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \overset{\bullet}{e} = \rho c_p \frac{\partial T}{\partial t}$$

- Linear with ΔT (in steady-state)
- Semantically: Between or within solid objects

Convection

- Conduction to a fluid
- Natural convection
 - Density driven
- Forced convection

- Dimensionless Numbers: Rayleigh, Prandtl, Nusselt, etc.
 - Predicts forced vs. natural convection and other factors
- More mathematically difficult than conduction!

Design for Convection

- Surface area
 - Fins
 - Multiple loops
- Flow
 - Forcing additional volume of fluid through helps convection, but is also more difficult
 - Set up natural flow to help
 - Anticipate flow direction and work with it

Countercurrent and cross/counter **Cocurrent Flow Countercurrent Flow** are most efficient ifting lug Cross/Counter Flow (Hybrid) Crossflow Tube side Expansion joi connection Baffle late Heat Exchange Double-pipe heat exchange flange ---

shell-side

Heat that does work

- Convert Enthalpy to Work
- Combustion
 - Chemical potential energy converts to thermodynamic energy
 - Otto and Diesel Cycles
- Turbines
 - Rankine Cycle
 - Very high efficiency
 - Typically industrial-scale

State Changes

- Useful for maintaining temperatures
 - Exact*
 - Convenient
- Frustratingly energy intensive
- *Pressure dependent

Heat

Refrigeration

- Best conceptualized as a 'heat pump'
 - Carnot cycle
 - Bulky, complex, noisy
 - Can be very efficient
- Thermoelectric effect
 - Compact, simple, silent
 - Not typically very efficient

Psychrometrics

- Study of gas-vapor mixtures
- Most commonly used in climate control
- Dew Point
 - Temperature at which condensation occurs for a given air-water mixture
- Wet Bulb Temperature
 - Temperature of a thermometer that is wet (i.e. takes into account humidity)
 - Is more accurately how it "feels"
- Humidity

Today's Agenda

- Movie Break!
- Intro to Fluids and Thermodynamics
- Fluid Dynamics
- Thermodynamics
- Resources for Design

Resources for Design

Design Resources

- Piping
- Pressure Vessels
- Pumps
- Valves

Piping

- Diameter
 - No-slip condition and 'head loss'
- Material
 - Weight, price, etc. (as you would any material!)
 - Galvanic Corrosion
- Rigid vs. flexible
- Connection types:
 - Push-to-connect
 - Barbs
 - Swagelok
 - Pipe thread
 - Other

Pumps

- Pump Curves
- Types of Pump
 - Low viscosity pumps
 - High viscosity pumps
- Others
 - Syringe Pump
 - Bladders, bellows, solenoid diaphragms, etc.
 - Specialty vacuum pumps
- Head Pressure
 - Pressure measurement
 - Piping resistance
- Self-priming pumps
- Pulsatile vs. Constant

Pump Curves

- Head (in length) vs. Flow (in volume/time)
- Head -> Pressure
 - Convert

Google	15 meters of water in bar		x 🕴 Q	
	🔍 All 🖾 Images 🕩 Videos 🔗 Shoppin	g 🖽 News : More	Settings Tools	T Intice
	About 67.100.000 results (0,66 seconds)			0
	1.470992			
	Convert 15 Meters of Water to Bars			
	15 Meters of Water (mH2O)	1.470992 Bars (Bar)		
	1 mH2O = 0.098066 Bar	1 Bar = 10.197 mH2O		

Q (mc/h)

Pump Types: Low Viscosity

- Fans
- Impeller
- Centrifugal

Pump Types: High Viscosity

- Scroll Pump
- Vane Pump
- External Gear Pump
- Internal Gear Pump
- Peristaltic Pump
- Diaphragm Pump

Valves

- Valve Functions:
 - Check Valve
 - Tesla Valve
 - On/Off Valve
 - Regulators
 - Pressure output control
 - Relief Valve
 - Throttling Valve
 - Flow rate output control

On/Off Valves

- Toggle Valve
- Ball Valve
 - Typically hand-driven
 - Typically on/off, but can be throttling
- Solenoid Valve
 - Electrically controlled
 - Heat when active
 - Bi-latching available

Regulators

 Regulators use known area and springs to adjust pressure

Throttling Valves

- Needle Valve
 - Useful as flow-controller in pneumatics!
- Gate/Knife Valve
- Butterfly Valve
- Flow Control Valve
- Dampers

Today's Agenda

- Movie Break!
- Intro to Fluids and Thermodynamics
- Fluid Dynamics
- Thermodynamics
- Resources for Design

Engineering is about creativity.

Look for those opportunities to think outside the cylinder.

Questions? Office Hours!

Will Fischer will@wfisch.com

