
C I A R C I A ' S C I R C U I T C E L L A R

Steve Ciarcia

Part 3 : Software

Build the GT180
Color Graphics Board
A look at the software that drives the graphics syste

.
m

graphics extensions.

Programming the ACRTC
The ACRTC is an extremely complex
device, containing three separate 16-bit
processors, more than 200 bytes of
registers, and 38 high-level commands.
The on-chip CPUs perform separate tasks:
timing control , display control , and draw­
ing. Each CPU includes specialized reg­
isters optimized for its specific task.

In typical operation, the timing control
registers establ ish the basic CRT timing.
Once you initialize them, you rarely
change them. The contents of the display
control registers specify the frame-buffer
scanning method, including hardware split
screen and window. You will periodical­
ly reprogram these registers to move or
resize splits and windows. Drawing com­
mands and parameters issued to the
ACRTC create an image on the screen.

A complete discussion of each. of the
more than 200 ACRTC registers is beyond
the scope of this article. (This informa­
tion is contained in the Hitachi HD63484
User Manual.) Instead, we'll highlight the
main command and control registers.

Like other chips that contain a large
number of registers, the ACRTC adopts an
indirect addressing mechanism that
reduces the number of address lines re­
quired to specify an individual register.
The ACRTC uses only one address line,

RS (register select), instead of eight ad­
dress lines to access the more than 200
bytes of registers on-chip. Accessing a
particular ACRTC register is a two-step
process. First, write the register address
of interest into the address register
(RS=low) . Then, read from or write to
the selected register (RS=high).

Reading the status register returns the
overall state of the ACRTC. Information
returned includes whether a command has
completed or a command error has oc­
curred. Also, to support the clipping and
hitting functions, an area-detection flag is
provided. This is set when a drawing
operation attempts to enter (hit) or leave
(clip) a programmer-defined area on the
screen. Another bit in the status register
indicates when an optional light pen has
been activated. (The GT180 uses this bit
as a flag that indicates when vertical sync
is occurring.) Finally, 4 bits reflect the
state of the separate read and write first­
in/first-out registers that communicate
with the ACRTC drawing processor.

To speed drawing operations, separate
16-byte read and write FIFOs buffer com­
munication to and from the ACRTC draw­
ing processor. As mentioned above, the
status register allows you to determine the
FIFO's state. For the read FIFO, the status
register shows whether the FIFO is full
or not empty. For the write FIFO, the
status register shows whether the FIFO is
empty or not full. While the drawing pro­
cessor is a 16-bit CPU (and the ACRTC
has a 16-bit data bus), the SB180 interface
is 8 bits wide. Consequently, commands,
parameters, and data are transferred in
high byte-low byte order.

Command Control Register
The lower 8 bits of the command control
register correspond exactly to the 8 bits
in the status register and are used to enable
or disable each status bit from generating

COPYRIGHT © 1987 STEVEN A. CIARCIA. ALL RIGHTS RESERVED.

an interrupt to the CPU. For instance, as
an alternative to polling, you could pro­
gram the system so that the FIFO's state
generates an interrupt, invoking the CPU
to read or write the appropriate FIFO.

Besides polling and interrupt-driven
transfer, the ACRTC can also request
direct memory access transfer. This is
ideal for high-speed reading and writing
of the frame buffer. In response to a data­
transfer command, the ACRTC will auto­
matically invoke DMA to move the data
between the frame buffer and main
memory. You can program the type of
DMA request as either burst or cycle steal
(correspondingly, you must program the
HD64180 DMA controller to be level- or
edge-sensitive) .

You specify the number of colors the
ACRTC supports by programming the
number of bits per dot as either 1 (mono­
chrome), 2 (4 colors), 4 (16 colors), 8
(256 colors) , or 16 (64K colors) . In the
GT180, 4 bits per dot is specified.

Finally, 2 bits allow you to abort or
pause ACRTC command processing. An
abort stops command processing, clears
the FIFOs, and reinitializes the status
register. A pause simply stops command
processing without affecting the FIFOs or
status register. Paused commands can be
restarted later.

'
Operation Mode Register
The operation mode register determines
the ACRTC's overall operation mode and

continued

Steve Ciarcia (pronounced ' 'see-ARE-see­
ah ' ') is an electronics engineer and com­
puter consultant with experience in pro­
cess control, digital design, nuclear in­
strumentation , and product development.
The author of several books on elec­
tronics, he can be reached at PO Box 582,
Glastonbury, CT 06033.

JANUARY 1987 • B Y T E 85

The ACRTC alternates

frame-buffer accesses

between display and

drawing operations.

Thus, the GT180 can

perform drawing

operations at any time.

must be initial ized before enabling the
display.

Both display and drawing operations
contend for access to the frame buffer. In
some older designs, the display operation
required full-time, top-priority access to
the frame buffer to meet CRT timing con­
straints. The resulting approaches for
drawing were either draw at any time,
overriding display accesses, or draw only
during retrace when the CRT is blanked.
Neither of these is very productive. In the
first one, the conflicting display/draw
operation causes the well-known screen
"flash" effect; the second one results in
slow drawing since retrace time is only
about 25 percent of total display time.

The ACRTC has the ability to alternate
frame-buffer accesses between display and
drawing operations using a technique
called interleaving (see the text box
below) . Thus, the GT180 can perform
drawing operations at any time (during
display and retrace) without screen flash
occurring. When the ACRTC uses inter­
leaving, however, twice as many bits must
be pulled from the frame buffer each cycle
to keep up with the display timing of the
CRT. Calculation shows that to meet the

CIRCUIT CELLAR

constraints of the CRT and use interleaved
mode requires pulling 64 bits from the
frame buffer each display cycle. Thus, we ·
program the ACRTC graphics address in­
crement mode (within the operation mode
register) as 4, meaning four 16-bit words,
or 64 bits.

The dynamic RAMs used for the frame
· buffer need to be refreshed periodically.

The ACRTC includes an on-chip DRAM
refresh scheme that does the job. Once
enabled, the DRAMs are automatically
refreshed during horizontal retrace when
the CRT is blanked. Some of you might
suggest that the periodic scanning of the
frame buffer for CRT <;lisplay eliminates
the need for specifically refreshing the
DRAMs. This is fine if the frame buffer
contains only one screen . In the case of
the GT180, however, the frame buffer can
hold multiple screens, fonts, icons, etc.
Since only a portion of the frame buffer
is being displayed at one time, we need
to use the ACRTC refresh feature to
preserve the contents of the undisplayed
portion of the frame buffer.

Display Control Register
This register lets you enable, disable, or
blank each of the ACRTC's four logical
screen areas : the base, upper and lower
split screens, and the window. Only the
base screen must be defined (it can only
be enabled or blanked, not disabled).

Timing Control Registers
Thirty bytes of timing control registers
configure the on-chip timing control CPU
to generate the appropriate CRT timing­
particularly HSYNC and VSYNC fre­
quency and pulse width. These depend on
the specifications of the CRT being used
and must be appropriately initial ized
before ACRTC display or drawing can
occur. Also, the timing control registers

Interleaved Access Mode

T he ACRTC's interleaved design for
screen access provides consider­

able advantages over a noninterleaved
access method. In the latter, drawing can
occur only during retrace time minus the
time for DRAM refresh. Since display
time accounts for 68 percent of the total
time available, and DRAM refresh occurs
7 percent of the time, drawing time is
about 18 percent for a noninterleaved
design.

An interleaved design permits display
and drawing operations to alternate,
increasing drawing time by 34 percent
(half the display time of a non interleaved

86 B Y T E • JANUARY 1987

system) . This gives a total drawing time
of 52 percent-nearly three times faster
than a noninterleaved display.

In fact, for computer-bound (not bus­
bound) instruction sequences, the relative
improvement of interleaved mode will be
higher than a factor of 3. This is due to
the effect of idle drawing cycles-drawing
cycles that the ACRTC can't use because
it is performing an internal computation.
In noninterleaved mode al l idle drawing
cycles are wasted, while in interleaved
mode some idle cycles will overlap with
timeshared display cycles, reducing the
effective waste.

hold configuration information for the
split screens and window (see figure 1) .

Display Control RAM
Forty-eight bytes of registers referred to
as the display control RAM configure the
on-chip display control CPU to modify the
frame-buffer display address generation to
account for the split screens and window
(see figure 2) . The split screens and win­
dow are specified in terms of physical
frame-buffer addresses.

Drawing
Of the three on-chip CPUs (timing, dis­
play, and drawing), the drawing processor
is most like a conventional CPU. Besides
containing some registers, the drawing
processor executes a sequence of user
commands that correspond to a program
on a conventional CPU. The drawing pro­
cessor is programmed via FIFOs, pro­
viding the same high-performance benefits
as a pipeline on a conventional CPU.

Register-Access Commands
Since communication with the drawing
processor is via FIFO, the drawing pro­
cessor provides a special set of commands
to allow the programmer to access the
drawing registers. Two distinct sets of
drawing registers are used: the drawing
parameter registers and the pattern RAM .
These registers modify and control the
way in which a drawing command is ex­
ecuted (see figure 3). Items programmed
by the drawing parameter registers include
colors, patterns, clipping area definition,
modify mode, and other parameters.

Data-Transfer Commands
These commands allow high-speed
reading, writing, clearing, and modifying
of the frame buffer. This is especially
useful for applications with digitizers or
scanners, devices that construct an image
as an actual bit map rather than as a se­
quence of drawing commands. Also, you
can implement your own drawing com­
mands using these data-transfer com­
mands as basic building blocks.

Drawing Commands
These commands cause the ACRTC to
automatically draw a number of common
figures (like lines, circles, arcs, and rect­
angles) and to perform operations like fill­
ing and painting. The commands provide
absolute and relative address versions.
Absolute versions specify an address (like
the endpoints of a line) as x,y dis­
placements from an "origin" whose loca­
tion in the frame buffer is set with the
ORG command. Relative versions specify
addresses as an x,y displacement from a
"current pointer" location. You can
change the current pointer location with

'!' HWS

UPPER SCREEN

BASE SCREEN

LOWER SCREEN

SPO- U PPER BASE SCREEN
SP1 - B ASE SCREEN W I DT H
S P 2 - LOWER SCREEN W I DTH

CIRCUIT CELLAR

HWW 'I t _]s
1---

W I NDOW
SCREEN

1----

HWS - H OR IZONTAL WI NDOW START
HWW- HORI ZONTAL WINDOW WIDTH
VWS- VERTICAL WINDOW START
VWW- VERTICAL WIN DOW WIDTH

vww

BASE SCREEN M EMORY W I DTH (MWR1) = 512 WORDS
= 2048 PIXELS

BASE SCREEN
START ADDRES
(SAR1)

s
BASE
SCREEN FRAME BUFFER

' I
512

PIX ELS !
BASE SCREEN MEMORY WIDTH (MWR1) = 256 WORDS

= 1024 PIX ELS

BASE SCREEN
START ADDRE
(SAR1)

� I"'.
BASE l S C R E E N

1024
P I X E L S

F R A M E BUFFER _l
a MOVE command or as a result of a
previous drawing command (see figure 4) .

High-Level-Language Graphics
By using detailed knowledge of ACRTC
registers and commands, you can write an
assembly language program to initialize
the ACRTC and draw some figures. How­
ever, for more complex applications,

many programmers prefer to use a high­
level language, preferably with graphics
extensions available.

When I considered which popular,
high-performance, low-cost language to
choose, Borland International's Turbo
Pascal emerged as the best possibility. In
contacting Borland, I made two fortuitous
discoveries. First, an 8-bit version of a

Figure 1: Besides establishing basic
CRT timing, the timing control
registers partition the screen into the
upper, base, lower, and window
portions. The upper, lower, and base
screens are all background screens
that are overlapped by the foreground
window. The vertical specifications
(SPO, SPJ, SP2, VWS, and VWW) are
in units of rasters, while horizontal
specifications (HWS, HWW) are in
units of display cycles. Usually, only
the base (covering the entire CRT
screen) need be defined.

Figure 2: The display control RAM's
registers associate each CRT screen
partition (upper, base, lower, and
window) with a physical location in the
frame buffer. In th.ese examples, a 640
by 480 base screen is mapped into the
frame buffer using two different
memory-width values. (The memory­
width parameter tells the ACRTC how
many pixels in the x direction are
associated with a single raster.) The
number of pixels is equal to the
memory width times 4, since the
standard GilBO defines 4 bits per pixel
and memory width is in units of words.
The start address associates the top
left corner of the screen with a
particular pixel in the frame buffer. By
changing the start address, the
contents of the screen can appear to
scroll smoothly in the horizontal
and/or vertical direction.

new language, Turbo Modula-2, was
almost ready and looking for a beta test
site. Second, key people at Borland, in­
cluding R&D engineer Mike Weisert, the
compiler writers, and even Philippe Kahn
himself, had an interest in exploring the
limits of this new hardware and software
technology . . Above all , Philippe wanted

continued

JANUARY 1987 • B Y T E 87

Figure 3: 111e ACRTC 's graphics­
drawing commands (in this example,
MOVE and CI RCLE) use a logical x,y
coordinated pixel map independent of
a pixel 's physical frame-buffer address.
1l1e ACRTC uses the drawing pointer
to make the translation from x,y
coordinates to physical address. 1l1e
drawing pointer specifies a screen
(upper, base, lower, or window) , a
frame-buffer physical word address,
and a dot offset within the word.
Given the specified screen 's MW and
the physical address in the frame
buffer associated with coordinates
(0,0) , the ACRTC can automatically
translate an x,y address to a frame­
buffer address. The two examples here
show the origin in the bottom Left
corner and the origin in the center of
the screen.

Figure 4: Absolute-addressing drawing
commands specify a displacement from
the origin, while relative-addressing
commands specify offsets from the
current pointer (CP). The CP is set
directly by the MOVE command and
indirectly as the result of other
drawing commands (for instance, it is
set to the endpoint of a drawn line).
These examples illustrate the virtue of
using the relative mode. The intention
is to draw the same figure at a
different location by changing the first
AMOVE command. Notice how the
absolute version requires every
instruction 's coordinates to be
chdnged, while the relative version
works correctly.

8-bit users to know that he had not aban­
doned them.

Modula-2 bears a very strong resem­
blance to PascaL This is not a coin­
cidence, since both were authored by
Niklaus Wirth . Modula-2's primary dif­
ference (and improvement) is its inclusion
of powerful facilities to allow modular
program development. Modula-2 is close­
ly aligned with the concept of structured
programming, in which an application is
dissected into functional modules. In fact,
the details of the implementation of a par­
ticular module can be hidden or encap­
sulated-you need only know the interface
definition in order to use the module. Fur-

88 B Y T E • JANUARY 1987

CIRCUIT CELLAR

r-- MEMORY WIOTH (M W) ------,

0
�DRAWING POINTER

A BSOLUTE

110,201

L
1 10,101 1 20 , 1 0 1

1 0,01

AMOVE (10,10)
ALINE (20,10); HOR IZONTAL

AMOVE (10,10) ; BACK TO INTERSECTION

A L I N E (10,20) ; VERTICAL

1 10,201 I
1 10.� 1 20,101

I 5 , 5 1 I

1 0 , 0 1

AMOVE (5.5)
ALINE (20,10) ; HORI ZONTAL

AMOVE (10,10) ; BACK TO INTERSECTION

ALINE (1 0 , 2 0) ; VERTICAL

thermore, you can fix or change individual
modules without having to recompile the
entire application.

Turbo Modula-2 closely follows the
standard defined in Wirth's Programming
in Modula-2 . Extensions are provided to
handle I/0, string and exception handling,
and other low-level system functions.

Turbo Modula-2 is a complete develop­
ment environment, including integrated
compiler, linker, editor, l ibrary manager,
and more. It is quite similar in use to
Turbo Pascal, including its menu-driven
interface and WordStar-compatible editor.

For those of you unfamiliar with Turbo
Pascal , you're in for a treat with Turbo

r--M EMORY WIDTH (MW)_____,

DRAW I N G /
POI NTER __/

RELA TIVE

1 10 . 2 0 1

L
110,101 1 20 . 1 0 1

10,0 1

AMOVE (10,10)

0

R L I N E (10 , 0) ; HORI ZONTAL

RMOVE (-10,0): BACK TO INTERSECTION

R U N E (0,10) ; VE R T I C A L

1 5 . 1 5 1 L
I 5 . 5 1 1 1 5 , 5 1

1 0, 0 1

AMOV E (5.5)
RUNE (10,0) ; HORIZONTAL

R M OVE (-10,0); BACK TO INTERSECTION

R U N E (0,10); VERTICAL

Modula-2. Transitions in the edit�compile­
run sequence are quick and easy. When
a compile error is encountered, not only
can you automatically enter the. editor with
the cursor positioned at the error point,
but the compile automatically continues
after you edit the flawed statement!
Though a compiler, Turbo Modula-2
allows the free-flowing interactive style of
programming normally associated with in­
terpretive languages.

To boost performance and ease of use
further, Borland has added special features
to the SB180/SB180FX version of
Modula-2 above and beyond those of the
standard Z80 CP/M version. These in-

elude the use of new HD64180 op codes
(like I NO, OUTO to access on-chip 110 and
MLT to speed up multiply routines) . Also,
the package uses the DU: (drive, user
number) scheme for naming files (this
worked so well , it was retrofitted to the
CP/M version as well) . However, the most
important feature specific to the SB180
version is its ability to handle programs
larger than 64K bytes. Whenever a module
is called, Modula-2 reprograms the
HD64180 memory management unit as re­
quired to access modules located in ex­
tended memory.

Turbo Graphix Tools
With Modula-2 in hand, Borland's next
step was to create a series of tools
(modules and procedures) that provide a
simple, high-level interface to the raw
power of the ACRTC. Modules are pro­
vided at different levels of abstraction.
The various procedure modules are
layered; higher-level modules use lower­
level modules as primitive building
blocks.

There are three layers of modules. The
bottom layer provides simplified access to
the most basic hardware resources con­
tained in the ACRTC and the palette D/A
converter. The next layer maps the

Listing 1: A simple bar-chart program.

MODULE bar ;
FROM ACRTC IMPORT Xres , Yres ;

CIRCUIT CELLAR

ACRTC instruction set to Modula-2 pro­
cedures. In most cases, the ACRTC in­
struction format is directly mapped. In
others, some preprocessing is done so that
the instructions are more straightforward
to use. The h ighest layer provides some
enhanced graphics services like loading
bit-map images and handling bit-mapped
text .

Using these lower layers, you can write
your graphics application as one or more
higher layers. Examples might include
routines to draw a specific image (like a
bar or pie chart) , a paint or draw program,
or a multiwindow visual interface.

Toolbox Modules
Like the ACRTC registers, it is a bit much
to try to explain all the Graphix Toolbox
modules here. Instead, I'll briefly describe
some of the more significant procedures.

ACRTC Module
Procedures within the ACRTC module ini­
tialize a myriad of ACRTC registers and ·

set up a default palette. Typically, you
should compile this module and include
it in your system START alias to initialize
the graphics system automatically when
the Z-System is booted . The module
defines key graphics parameters, including

FROM Gr aph i cs IMPORT aMove , rMove , r L i n e , r F i I l edRec , Pat te r n ;

The GT180 can use up

to a 32-M H� crystal

for greater than 780 by

520 resolution.

CRT timing and resolution. Thus, by
changing the contents of ACRTC (and in
some cases the timing crystal) , you can
accommodate different monitors. As­
sorted initialization files for a 25-mega­
hertz crystal are included with the Graphix
Toolbox. (The GT180 board can use up to
a 32-MHz crystal for greater than 780 by
520 resolution .)

REGISTERS Module
These routines access the ACRTC FIFO,
control registers, drawing parameter reg­
isters, and the pattern RAM . The FIFO
is accessed constantly to issue commands
and transfer bit maps. The ACRTC con­
trol registers, l ike those contained in the
display and timing processors, can be
directly accessed for special-purpose
routines. The drawing parameter registers

continued

FROM Reg i s t e r s IMPORT ReadPa r amReg , Wr i t ePar amReg , Pa r amReg , Wr i t ePatRAM ;
FROM Fon t s IMPORT FONT , LoadFon t ;
FROM B i tTexts IMPORT g r aph i c , GotoRC ;
FROM Pat t e rns IMPORT S e l ectPat t e r n , Pat t e r nName ;

PROCEDURE l abe l ax i s ;
TYPE

mon th = ARRAY [0 . . 8] OF CHAR ;
VAR

months : ARRAY [0 . . 1 1] OF mon t h ;
cu r fon t : FONT ;
i : CARDI NAL ;

BEGIN
months [0] : = ' January ' ;
months [1] : = ' Fe b r u a ry ' ;
mon ths [2] : = ' Ma r ch ' ;
months [3] : = ' Ap r i I ' ;
months [4] : = ' May ' ;
months [5] : = ' June ' ;
(* l oad a font *)
I F LoadFon t (cu r fon t , ' M : 1 4X8 . FNT ' , Xres+ 1 6*8 , 0 , 0FFFFH , 0) THEN END ;
Got oRC (3 , 20) ;
WRITE (g r a ph i c , ' XYZ Company Sa l es - 1 s t Ha l f 1 986 ') ;
Go toRC (7 , 0) ;
WR I TELN (g r aph i c , ' Sa l es ') ; WRI TE (g r a ph i c , ' $000s ') ;
Got oRC (33 , 1 0) ;
FOR i : =0 TO 5 DO
WR ITE (g r a ph i c , months [i] , ' ') ;
END ;
Got oRC (0 , 0) ;

END l abe l ax i s ; continued

JANUARY 1987 • B Y T E 89

PROCEDURE d r owax i s ;
BEGI N

CIRCUIT CELLAR

Wr i t ePar omReg (Co 1 Reg0 , 0H) ; W r i t ePo romReg (Co 1 Reg 1 , 0FFFFH) ;
Se l ectPat t e r n (Empty) ; (* b l ock & wh i te - so l i d pat t e r n *)
oMove (60 , 30) ;
r F i I l edRec (2 , 360) ; (* Y ax i s *)
oMove (60 , 30) ;
r F i I l edRec (490 , 2) ; (* X ax i s *)
Se l ectPo t t e r n (Ar row) ; (* a r rowhead *)
aMove (53 , 390) ;
Pat t e r n (1 6 , 1 1 , 0) ; (* a r r owhead y ax i s) ;
aMove (550 , 39) ;
Pat t e r n (1 6 , 1 1 , 6) ; (* a r rowhead x ax i s) ;
aMove (85 , 33) ;
Wr i t ePor omReg (Co i Reg 1 , 0FFFFH) ; (* setup co l o r for d r awbo r *)

END d r awox i s ;

PROCEDURE d r owbo r (co l o r : CARD INAL ; Pot : Pot te rnName ; dat avo l u e : I NTEGER) ;
VAR

cpx , cpy : CARD INAL ;
BEGIN

Se l ectPo t t e r n (Pat) ; (* do l l a r s i gn p a t t e r n *)
co l o r : = co l o r *4096 + co l o r *256 + co l o r * 1 6 + co l o r ; (* b a r co l o r *)
Wr i t eP o r omReg (Co i Reg0 , co l o r) ;
ReodPar omReg (Cu rPt r 1 , cpx) ; ReodPor omReg(Cu r Pt r 2 , cpy) ; (* s ave CP *)
r F i l l edRec (45 , do tovo l ue) ; (* d r aw the bar *)
rMove (- 1 2 , 4) ;
WR ITE (g r o ph i c , do tovo l u e) ; (* l abe l bar va l u e *)
aMove (cpx , cpy) ; (* r es t o r e CP *)
rMove (80 , 0) ; (* pos i t i on fo r n ext bar *)

END d r owb·a r ;

BEG IN
Se l ectPo t t e r n (So l i d) ; (* do l l o r s i gn p a t t e r n *)
l abe l ox i s ;
d r owox i s ;
dr owbo r (1 0 ,C rossHo t ch , 208) ; d r awbo r (1 2 ,Ar row, 1 1 0) ; d r owbo r (8 , Hond , 220) ;
d r owbar (9 , Tr i ong l e , 240) ; d r owba r. (3 , Hatch , 296) ; d r owbo r (2 , Ho l fTon e , 3 1 8) ;

END bar .

Photo 1: This display is generated by the program shown in listing J:

90 B Y T E • JANUARY 1987

and pattern RAM affect the basic opera­
tion of figure-drawing commands and
should be set appropriately before a draw­
ing command is issued.

PALETTE Module
These routines are used to access the
BT450 palette D/ A converter. Single
colors or the entire palette can be read or
written, either immediately or at the next
vertical retrace. Since changing the color
of an object is simply a matter of chang­
ing the corresponding palette entry, you
can produce interesting effects like "flow­
ing" water by dynamically reloading the
palette.

GRAPHICS Module
This module contains all the ACRTC
figure-drawing commands. Each com­
mand has a separate version for absolute
and relative addressing, and they all use
logical pixel x,y addressing; you don't have
to translate to a physical address in the
frame buffer.

Besides simply mapping directly to the

associated ACRTC command, some pro­
cedures perform useful error checking and
pre/postprocessing. For example, the
ACRTC on-chip PAI NT command cannot
handle overly complex figures, while the
Turbo Graphix Toolbox PAI NT command
can.

Two parameters apply to specific com­
mands. When drawing circles, ellipses,
and arcs, you set the circular motion
parameter to indicate the drawing direc­
tion as clockwise or counterclockwise.
For the pattern and graphic copy com­
mands, which move rectangular blocks of
pixels, the CPScan parameter defines the
scan direction during the block transfer.
This allows you to slant or rotate an ob­
ject during the transfer.

GRAPHMODES Module
Figure drawing is subject to various
modes, which include operation, color,
area, and edge modes. Like the drawing
parameter registers and pattern RAM, you
need to set up the drawing modes prior
to issuing most commands. In simple ap­
plications, once you initial ize the modes,
you rarely need to modify them.

DATATRANSFER Module
Besides drawing figures , the other
primary way to create a display is by mov­
ing bit-map images between host main
memory and the frame buffer. (Since the
frame buffer holds more memory than can
be displayed on one screen, you can also
"draw" pictures by moving them around
within the frame buffer.) This module im­
plements the ACRTC data-transfer com­
mands designed for this purpose. Unlike
the figure-drawing commands, the data­
transfer commands use physical, instead
of logical x,y, frame-buffer addresses.

The basic functions (read , write, clear,
copy, and modify) are available, with or
without DMA and "on the fly" masking
and logical operations. The DMA option
is used for large bit-map transfers (for ex­
ample, loading an entire screen image) ,
while the non-DMA versions are best for
handling the transfer of a single word . A
complete screen (640 by 480) DMA trans­
fer between SB180 RAM and the frame
buffer takes only a fraction of a second.

BITTEXT Module
One important requirement is to handle
bit-mapped alphanumerics. Sometimes a
word is worth a thousand pictures. The
BITTEXT module makes writing text on
the graphics screen as easy as writing it
to a terminal .

FONTS Module
In conjunction with BITTEXT, the
FONTS module lets you select multiple
disk-based fonts. The fonts are loaded into

CIRCUIT CELLAR

an undisplayed area of the frame buffer.
Font size and color are programmable,
and you can add your own fonts as wel l .

PATTERNS Module
The ACRTC pattern RAM stores patterns
(up to 16 by 16 dots) , which are useful in
two ways. First, all the figure-drawing
commands refer to the pattern RAM when
drawing. As each dot is drawn, pattern­
RAM pointers are updated to point to the
next dot in the pattern. This allows effects
like dashed lines and tiling. Essentially,
the "pen" can become a multidot pattern
instead of just a single dot. Second, the
pattern command simply moves the con­
tents of the pattern RAM into the frame
buffer, with optional rotation and slanting.
This is useful for commonly used patterns
like characters, cursors, and arrowheads.

BITMAPS Module
BITMAPS contains routines that let you
transfer large bit-map images between the
frame buffer and disk (floppy, hard, or
RAM) . Of course, it is quite possible to
convert other machines' bit maps (like the
Macintosh, Amiga, and Atari 520ST) for
use on the GT180.

SCREENS Module
SCREENS eases the interface to the
ACRTC display controller that manages
the ACRTC split screens and window. It
is easy to specify the screen's size and
position as well as the display address of
the contents. These routines can be used
as the basis for a window manager, pull­
down menus, status lines, and other visual
interface techniques.

Using the Turbo Graphix Toolbox
The best way to get up to speed is to run
through an application example. Let's use
Modula-2 and the Turbo Graphix Toolbox
to build a simple bar-chart program (see
listing 1) . The program accepts data
values, legends, and bar color information
and constructs a bar chart on the graphics
screen. In this simplified example, the
data values and legends are hard-wired
into the program to keep the focus on the
graphics routines. Obviously, your own
chart program could adopt much more so­
phisticated data capture and scaling
routines.

Since we are writing a program rather
than a group of procedures, we don't need
a definition module. After telling the com­
piler the name of the main module (bar) ,
we use a series of FROM statements to
specify which modules we are planning
to use. I M PORT is used in conjunction
with FROM to load specific functions and
procedures from each module. ·We'll use
a variety of Turbo.Graphix Tools to com­
plete the chart: text, patterns, filled rec-

H i g h-performance

g raph ics hardware

now avai lab le w i l l let

the SB1 80 and 8-bit

software evolve

to i n c l u d e g raph ics

app l i cations.

tangles, and others.
First, the labelaxis routine uses the bit­

mapped text modules to label the graph ,
axis, and bar representing each month.
Note the use of a disk-based font and the
similarity of the bit-mapped text routines
to the conventional terminal text routines.
For instance, GotoRC locates the cursor
at the correct line on the screen (depend­
ing on font size). Also, I extended the con­
ventional WRITE ('text) statement-which
prints text on the terminal-with the
WRITE (graphic,'text) function that prints
text on the graphics screen .

Next, the drawaxis routine draws the
x and y axes. I used filled rectangles to
make thick (three pixels wide) lines. This
is easier than drawing three lines next to
each other, which would achieve the same
effect. However, unlike multiple lines, the
filled rectangle approach works only for
thick lines parallel to the x or y axis. The
arrows at the end of each axis are a nice
touch obtained by selecting the arrowhead
pattern (with selectpattern) and then
drawing · it with the pattern command.
Note how the same arrow pattern is used
for both axes by changing the scan direc­
tion parameter of the pattern command.

Finally, each bar is drawn by calling
drawbar with a data value and a color.
Besides solid colors, you could use select­
pattern to spruce up each bar with an il­
lustrative pattern (see photo 1) .

In Conclusion
As a stand-alone computer, the SB180/
SB180FX, l ike most 8-bit systems, has
traditionally been l imited to alphanumer­
ics. When 8-bit systems were introduced,
a good graphics subsystem cost thousands
of dollars, often more than the computer
itself. Now that high-performance, low­
cost graphics hardware is available, the
SB180 and 8-bit software can evolve to in­
clude graph ics applications. Using
Modula-2 and the Graphix Tools, you can
write software to tailor the SB180/GT180
for a variety of different graphics
applications.

CO!IIilllled

JANUARY 1987 • B Y T E 91

Inquiry 325

Try lt.
Then Buy lt.

PC-Wrife.·m
A fast, full-featured word
processing package for only $16. Complete. You get a
quick reference guide and
tutorial on disk, 45 help
screens, choice of function
keys or menus, mail merge,
spelling check, advanced
formatting, and SU{>port for
over 350 printers mcluding
the HP LaserJet Plus.

Try PC-Write for only $16.
Then register for $89 to get:

o Latest diskette pair
o Hardbound manual
o Two updates
o Phone support
o Newsletter

Plus, your registration · fee
supports our development
of new PC-Write features.

Shareware means you can .
freely copy and share the
PC-Write diskette:

Register only if you decide
to use it. No risk!

Byte
Magazine
Jan 1987

Version
2. 7 Features
50,000 word Spelling Checker.
Clip text from other screens.
supports Laserjet+ fonts. Site
Licenses now available to
companies and schools.
(This ad was created with PC-Write)

Order PC-Write Today.
Satisfaction Guaranteed.

9?h;;;2:�452 fie!IP1. 2 1 9 Fi rst N . #224y
__. Seattle, WA 981 09
92 B Y T E • JANUARY 1987

CIRCUIT CELLAR

Finally, a project as big as the GT180
could have been accomplished only with
the help of many people. Foremost among
them, I would like to personally thank
Philippe Kahn of Borland International .
His unwavering support for this project
and 8-bit users in general demonstrates
that he is a man of his word .

Experimenters
As with the the majority of Circuit Cellar
projects, I encourage you to build them.
To aid you in that endeavor, the Circuit
Cellar BBS, (203) 871-1988, has been set
up as an interchange for communication
among builders and as a source for the
various free software routines that com­
plement these projects. With regard to the
GT180, assorted graphics utilities are
available for downloading.

Also, if you have been a supporter of
the SB180 and are now interested in know­
ing more about the SB180FX, contact me
and I'll send you a schematic and spec
sheet. Finally, even though the SB180FX
is not a BYTE project, I will offer sup­
port to BYTE readers who wish to build
it. The object code of the monitor boot
ROMs for the SBI80FX and the original
SB180 are posted on my BBS, and the
BIOS will be sent in exchange for a pic­
ture of your handiwork. As with all the
software supplied in this manner, it is
completely free but limited to noncom­
mercial personal use.

Circuit Cellar Feedback
This month's feedback begins on page 58.

Next Month
Next month's project features an infrared
remote controller. •

Special thanks to Tom Cantrell, Ken
Davidson , and Mike J#?isert for their
contributions to this project.

Editor's Note: Steve often refers to previous
Circuit Cellar articles. Most of these past
articles are available in book form from BYTE
Books, McGraw-Hill Book Company, P.O. Box
400, Hightstown, NJ 08250.

Ciarcia 's Circuit Cellar, Volume J covers
articles in BYTE from September 1977 through _

I . GT180 graphics board: RGBI version less
palette D/A converter. Comes with demo disk
and user's manual .

board alone . $395
board with Modula-2 and GTI80

Graphix Toolbox $449
2. GTI80 graphics board: RGBI and analog
version with palette D/A converter. Comes with
demo disk and user's manua l .

board alone . $449
board with Modula-2 and GT180

Graphix Toolbox $499
3. Borland International's Turbo Modula-2 and
GTI80 Graphix Toolbox software for the SB180
and SB180FX computers, optimized for the
64180 processor. Supplied on 5 'A-inch DS/DD
SBI80 format disks with 552-page manual.

SBI80 Modula-2 alone $69
SBI80 Modula-2 w ith Graphix

Toolbox alone $89
4. SBI80FX 5.75- by 8-inch single-board
computer, accommodates 512K bytes of mem­
ory, two serial ports, three parallel ports,
parallel printer port, floppy disk controller,
SCSI controller, ROM monitor, 6-MHz 64180.
Comes with ZRDOS, ZCPR3, hard disk BIOS,
and user's manuals. Populated with 256K-byte
memory, less 53C80 SCSI controller chip.

SBI80FX board alone $409
SBI80FX board with software $499
SB180FX board fully populated with

512K bytes, SCSI chip, and .
software . $599

9.216-MHz 64180 processor upgrade
(SBI80FX only) $50

GMIC, GVAC, ACRTC, and palette D/A
converter chip sets are available for experi­
menters who wish to hand-assemble the GTI80.
Call for price and availability information.
Borland's Turbo Modula-2 is also available for
most CP/M Z80 machines. Contact Echelon
Inc. , 885 North San Antonio Rd. , Los Altos,
CA 94022, (415) 948-3820. The SBI80FX is
hardware- and software-compatible with the
SBI80.

Surface del ivery (U.S. and Canada only): add ·
$5 for U.S. , $10 for Canada. For delivery to
Europe via U.S. airmail, add $20. Three-day
air freight devlivery: add $8 for U.S. (UPS
Blue), $25 for Canada (Puroiator overnight),
$45 for Europe (Federal Express), or $60
(Federal Express) for Asia and elsewhere in the
world . Connecticut residents please add 7.5
percent sales tax .

November 1978. Volume J/ covers December There is an on-line Circuit Cellar bulletin board
1978 through June 1980. 11Jlume JJJ covers July system that supports past and p resent projects.
1980 through December 1981 . Volume IV covers You are invited to call and exchange ideas and
January 1982 through June 1983. Volume V comments with other Circuit Cellar supporters.
covers July 1983 through December 1984. The 300/1200/2400-bps BBS is on-line 24 hours

a day at (203) 871-1988.
The following items are available from

The Micromini Inc.
4 Park St.
Vernon, CT 06066
(800) 635-3355
(203) 871-6170
Telex: 643331

To be included on the Circuit Cellar mailing
list and receive periodic project updates and
support materials, please circle 100 on the
Reader Service inquiry card at the back of
the magazine.

	2012_11_06_16_59_58
	2012_11_06_17_00_00
	2012_11_06_17_00_01
	2012_11_06_17_00_02
	2012_11_06_17_00_04
	2012_11_06_17_00_05
	2012_11_06_17_00_06
	2012_11_06_17_00_07

