
VALIDATION OF NSSC-I SOFTWARE FOR THE
HUBBLE SPACE TELESCOPE - .

, 58

Glenn Foley and Jan Owings

NASA, Goddard Space Flight Center, Greenbelt, Maryland

Abstract

The Hubble Space Telescope, to be launched in March,
1990, contains two primary onboard computers. The
spacecraft support systems computer, the DF-224,
performs attitude determination and control and
manages spacecraft structures and mechanical systems.
The payload computer, the NSSC-I (NASA Standard
Spacecraft Computer, Model I), is dedicated to the
command and data handling of the five scientific
instruments.

This paper describes the simulation and test methods
used to ensure that the NSSC-I flight software
properly carries out its requirements for control of
scientific observations and for monitoring the health
and safety of the payload. The hardware and software
test environment is discussed. The different kinds of
tests (unit, special real time, and stress tests) that are
performed before the software is incorporated into the
flight system are described, and the kinds of errors that
each test category is best suited to find are listed.
Finally, the limitations of the tests are discussed, and
current plans for enhancing the test environment are
outlined.

Background

When the astronauts of STS-31 launch the Hubble
Space Telescope (HST) from the orbiter Atlantis, years
of work by NASA and its contractors will be brought
to fruition, and the astronomers of the world will see
further into space and time than ever before. The first
of NASA's great observatories to be launched, the
HST consists of a 2.4-meter aperture Ritchey-Chretien
telescope with five scientific instruments. Two
cameras, two spectrographs, and a photometer will be
used to observe both stars and extended objects with a
precision never before achieved.

the lead NASA center for the mission, has directed the
development and integration of the spacecraft. Two
principal contractors, the Perkin-Elmer Corporation
and the Lockheed Missiles and Space Company report
to MSFC. The Goddard Space Flight Center (GSFC)
is responsible for managing the development of the
scientific instruments and for operation of the HST
after launch. The view of the HST mission presented
here will focus on a part of the GSFC responsibilities,
and will discuss other elements of the project only as
necessary for an understanding of the onboard software
that controls the payload.

The HST has three major components: the optical
telescope assembly (OTA), built by Perkin-Elmer; the
support systems module (SSM) from Lockheed; and
the payload, managed by the GSFC with sensors
developed by several universities and aerospace firms,
and the payload control system provided by the
International Business Machines Corporation. Figure
1 shows the relationship among these subsystems.

Figure 1. HST Major Subsystems

The HST program is a cooperative effort by NASA,
the European Space Agency, and the Association of
Universities for Research in Astronomy. This paper
only addresses the roles of a few of these conmbutors.
The Marshall Space Flight Center (MSFC), which is

In addition to the primary and secondary mirrors, the
OTA includes thermal and optics control electronics
and the fine guidance sensors (FGS). The FGS allow
the telescope's pointing control system to lock onto a

Copyright @ 1989 by the American Institute of Aeronautics
and Astronautics, Inc. No copyright is asserted in the

United States under Title 17, U.S. Code. The U.S. Govern-
ment has a royalty-free license to exercise all rights under 82
the copyright claimed herein for Governmental purposes.

All other rights are reserved by the copyright owner.

target with a pointing accuracy of about 100th of an
arc second and with a stability of about seven 1000th~
of an arc second. There are three FGS, but since only
two at a time are necessary for guiding the telescope,
the third will serve as a sixth scientific instrument for
astrometry.

The SSM contains the data management system,
including the central computer for the spacecraft, the
DF-224. The structures and mechanical systems,
pointing control, power, and thermal systems are
within the SSM as well. The SSM data management
system interfaces to the payload's Scientific Instrument
Control and Data Handling (SI C&DH) module. In
addition, the payload includes the five scientific
instruments (SI). Within the SI C&DH, the Control
Unit/Science Data Formatter (CUISDF) and the NASA
Standard Spacecraft Computer, Model I (NSSC-I)
manage commands and telemetry within the payload.

YSSC-I Fun- for the HST Mission

The NSSC-I computer architecture, based on a 1974
design described in "Development and Application of
NASA's First Standard Spacecraft Computer," *
includes a fixed-point arithmetic central processing
module (CPM) and 64K words of random access
memory. HST real time flight software residing in the
NSSC-I includes two basic components, the flight
executive (Exec) and SI application software. All of
the NSSC-I flight software is written in NSSC-I
assembly language. A preprocessor written
specifically for the HST mission allows specification
of some higher level selection and repetition logic in
the code, thus automating syntax for frequently used
constructs.

The Exec software is described in detail in the
Multimission Modular Spacecraft Onboard Computer
Flight Executive Technical ~ e s c r i ~ t i o n . ~ It was
developed for the Solar Maximum Mission and
Landsat programs and modified for use on HST. A
major responsibility of the Exec is the processing of
commands to the HST payload. Commands may be
initiated from spacecraft operators on the ground,
stored command sequences loaded into NSSC-I
memory, or other software residing in the YSSC-I.
Commands may be directed to HST's science
instruments ("turn on high voltage" or "open shutter,"
for example), to the CUISDF (such as "enable
communications interface"), or they may be software
commands to the NSSC-I Exec itself ("dump an SI
data log").

The Exec is also responsible for schedliling the
execution of the other software processors in the
NSSC-I. Software may be activated periodically,
asynchronously by request, or asynchronously by
event (such as arrival of science data from an SI).

The NSSC-I communicates with HST's other main
flight computer, the DF-224, via processor interface
tables PITS) exchanged every half second. Each
computer's PIT includes a toggling "I'm OK" bit used
to monitor the health of the other. The Exec also uses
the PIT to request science data tape recorder usage and
spacecraft pointing offsets on behalf of SI application
software.

Exec software reports science and engineering data
from the SI C&DH to the SSM for transmission to
the ground or staging in onboard tape recorders. Every
half second, the Exec samples SI remote interface units
or areas of NSSC-I memory for values to be reported,
and it calculates some critical values itself for
inclusion in the engineering data stream. Telemetq
values collected can be checked against selectable high
and low limits, and if the limits are violated, the Exec
can request other software actions (such as
commanding an SI to a "safe" state when a hazardous
condition is detected). The Exec can also initiate
transmission of processed SI science data, NSSC-I
memory dumps, or ancillary science data.

Finally, the Exec periodically performs diagnostic self-
tests to ensure the integrity of the NSSC-I and its
software. These tests include a memory checksum
calculation on code to assure software has not been
overwritten or corrupted, software processor "infinite
loop" detection, an NSSC-I instruction set test, and
the ability to detect overloading of the CPM.

The NSSC-I SI application software is tailored to the
requirements of each instrument. Generally speaking,
this software performs functions such as configuring
the SI mechanisms and optics for use, acquisition of
astronomical targets, observations with the
instrument, health and safety monitoring (power
consumption, temperature, bright object protection,
etc.), and processing and quality checking science data
from the instrument.

Modification of the Exec for use on HST and
implementation of the SI application software was
done by IBM. In January 1986, responsibility for
maintenance of all the NSSC-I software transitioned to
the Flight Software Systems Branch (FSSB) of the
Goddard Space Flight Center. The FSSB role includes
enhancement of the flight software, correcting errors,

and implementing changes to meet the evolving
requirements of the spacecraft. Modifications to the
software are grouped into baselined releases, and it is
the process of validation of each of these new releases
to which the rest of this paper is dedicated.

Life Cvcle

A request for a modification to the NSSC-I flight
software begins by submission of a program trouble
report (PTR) form to the Configuration Management
Office (CMO) of the HST Project at the Goddard Space
Flight Center (HSTP-G). The PTR documents the
problem or reason for enhancement and assesses the
criticality of the change. Before the development of
each release begins, the flight software manager of the
HSTP-G directs the FSSB to assemble a list of
prospective flight software changes. The FSSB
responds with a document which summarizes all active
PTRs and includes an analysis of the need for each
change, estimates of the resources which would be
required to implement and validate each change
(computer and manpower), an assessment of impacts
each change would have to other ground and flight
subsystems in the project, and a recommendation for
the inclusion or deferral of each proposed change.
Creation of this PTR summary document involves
interaction with the initiator of the PTR, the SI
development teams, and the spacecraft user/operations
community, as well as experimentation with possible
software design modifications. A major focus during
this phase is to assure well-defined and agreed upon
requirements, including coordination with all affected
flight and ground elements. After this analysis is
provided to the HSTP-G, a configuration control board
(CCB) meeting is held. It is at this time that the
HSTP-G reviews the proposed modifications and
directs the FSSB whether to include or defer each
change in the next software release. This decision is
based upon the PTR summary status sheets and input
from project managers, spacecraft engineers,
instrument development teams, spacecraft operators,
science planners, and the science user community.
The new baseline is composed of the previcus release
and those changes which are approved at the CCB
meeting.

The approach of the FSSB HST NSSC-I team is to
assure product quality through many activities
performed at each intermediate phase in the software
development process. The events involved in each

phase will now be deaibed to illustrate the methods
employed for detection of problems as early as
possible in the life cycle.

Design

Because it is necessary to understand the motivation
for and implication of each change in order to create
the PTR summary document, requirements are
generally well understood and documented by the time
the CCB meets. Thus, the next action is to determine
the final design or design modification for each change.
This involves further iteration between the NSSC-I
software team, the PTR originator, and interested
project managers and engineers. When an agreement is
reached, a final design review is held in which the
designer of the modification leads a line-by-line
walkthrough of the FORTRAN-like program design
language (PDL) for the affected software. PDL is the
main tool used to communicate and preserve the
NSSC-I flight software design. It is maintained for
the Exec code and each SI's application software and is
included as part of every delivery. This design tool
formats the logic expressed, validates the syntax of
control structures present, and provides cross references
for data items and logic segments. The forum that the
walkthrough provides allows all persons involved in
the change a final opportunity to scrutinize the
approach taken. Re-examination of the new design in
this arena with the emphasis on "the big picture" often
uncovers details overlooked in previous design
iterations.

The developer modifies the appropriate NSSC-I source
modules and generates a unit test plan for verifying the
logical correctness of the affected code. The developer
makes a copy of the existing source code (stored in
controlled libraries for each baseline) in his or her user
account and performs all modifications to this version.
The implementation phase culminates at a code
inspection in which the implementor's peers review
and comment on the work being done. The inspection
aids in detection of errors by introducing the fresh
perspective of others on the development team.
Inspections are not only the easiest way to detect
simple logic and syntax errors, but they also act as a
way to enforce coding standards and practices, ensuring
consistency with existing code and software efficiency.
The developer must distribute a unit inspection
package to the team (and any invited special interest
guests) at least two days prior to a scheduled

inspection. The package contains a summary of the
change, new source code, differences between the
existing and modified source, new PDL, differences
between the old and new PDL, and a unit test plan.
The developer must also present a listing of the
assembler output for any modified code. Assembling
the affected modules provides a syntax check as well as
providing memory requirements for the change.

The formal inspection requires a reader, moderator, and
the author (implementor). Remaining members of the
team participate as inspectors. The reader walks the
inspection team through the change and provides
background where necessary. The moderator records
statistics of preparation time spent by participants and
also records comments given by the team during the
inspection. The author is present to answer specific
questions only -- the idea being that the inspection
materials should allow the audience to comprehend the
content without intervention. After the inspection, the
implementor has one week to disposition each item
recorded by the moderator. The implementor is then
ready to perform unit testing.

The purpose of unit testing is to exercise every path in
the software which has been created or modified as part
of a change. This implies that multiple test cases are
required to exercise all possibilities in selective and
repetitive branching, as well as exercising boundary
and mid-range values on calculations. Unit testing
may be performed with either an NSSC-I software code
simulator development tool or on an actual
engineering model NSSC-I with special driver software
as the developer prefers. The unit test plan specifies
required preset memory and register values, range of
logic to execute (with intermediate results needing
verification), and post-test memory and register values
to validate. Unit testing is best suited for detecting
simple logic errors, with the NSSC-I enforcing greater
discrimination than is afforded at code inspections.
Failures at the unit test level may require a code
reinspection if deemed severe enough by the baseline
development task leader. After each module has been
successfully unit tested, it is promoted to a
configuration controlled "test" account where it is
available to other developers for integration with the
rest of the flight software.

All of the NSSC-I code -- the Exec and the SI
application software -- form one bootable load module.
Thus, integration test development can be more

challenging than in the conventional software
environment where one can assume the operating
system will support the development process. As
usual, however, the purpose of the integration test
period is to demonstrate that the requirements levied by
the approved changes have been met without
perturbing the existing system. Integration tests may
be special tests composed solely for validating the
subject change, or they may be existing test procedures
modified to exercise and stress the area of interest.
Formal acceptance testing (AT), performed prior to
delivery, consists of successful execution of the
integration tests together with baseline functional and
system regression tests. When a change is significant
enough to impact a large portion of NSSC-I activities,
a system regression test will be updated to incorporate
use of the modified code. This assures that the new
capability will be validated with every future release.

r--------.
I PAY LOAD

PDP 11170

SSM Sim

CONTROL
CENTER

SOFTWARE

SYSTEMS
MODULE

SIMULATOR

INSTRUMENTI
PAYLOAD I I SIMUUTOR (

L , ,,,,-- J
Figure 2. STlF

The environment used for system level testing is the
Software Test and Integration Facility (STIF), shown
in Figure 2, which consists of a general purpose
computer and special spacecraft simulation hardware.
The general purpose computer hosts a user interface
similar to a spacecraft operations control center,
science and engineering data collection and analysis
software, simulation software for selected spacecraft
functions, and driver software for communication with
the special hardware. The special hardware includes
engineering models of the NSSC-I and CUISDF, a

science instrument/payload simulator, and a minimal
simulation for the SSM subsystem of the spacecraft.
System level tests are written as operational procedures
executed at the STIF's command console. The STIF
simulation hardware and software closely resemble the
actual spacecraft in orbit from the perspective of the SI
C&DH. Thus, the NSSC-I software can be exercised
in a test environment faithful in timing and interface
behavior to that present on HST.

The harsh and remote environment in which the
NSSC-I flight software performs its critical real time
role motivates the extensive effort expended during
AT. First and foremost, one wants to avoid
introducing potential safety hazards to the health of the
payload of the $1.5 billion HST spacecraft. Many of
the SIs have optics and detectors which can be damaged
by exposure to bright light sources or extreme
temperatures, thus reducing the success of the mission.
Another need for added confidence in the software arises
from the limited access available to a spacecraft
system. Troubleshooting an anomaly in flight is
subject to many more constraints than in a ground-
based system. Because of the nature of the spacecraft,
one must rely solely on engineering and memory
dump data reported by the HST to ascertain the
symptoms and cause of a problem. This is further
complicated by the fact that communication contacts
for receiving telemetq from and issuing commands to
the spacecraft are limited to only a fraction of each
orbit. This effectively reduces the visibility of the
spacecraft.

Performance of formal AT takes about 60 hours for a
typical release. Two people are required at all times to
conduct AT (though quality assurance observers and
other interested parties are frequently present during
testing) -- the test operator (TO) and the test conductor
(TC). Shifts of TCs and TOs are selected from the
members of the development team; however, one may
not be a TC for a test that he or she authored. It is the
duty of the TO to make all entries at the STIF
command console, and to configure all necessary
switches and selectors on the special hardware. The
TC directs the TO in actions to perform and assures
that they are done properly. The TC is also
responsible for performing all data validations required
during and after a test. Any deviations from planned
procedures or results are recorded by the TC on a
deviation report form and must be resolved before
formal delivery may occur. Another function of the
TC is to assure that the proper version of the flight

software load module is being tested. A load module
is identified primarily by its checksum -- a value
(unique to approximately 1 in 218) computed by
logically exclusive or-ing together all NSSC-I
memory words which represent machine language code
(this is also the value used by the Exec in its memory
checksum diagnostic self-test described earlier). This
precaution assures that one does not inadvertently test
a previously released baseline load module or an
intermediate one generated during the development
process.

As stated, tests run during formal AT are of three
varieties. Special integration tests are written
specifically to functionally validate changes being
incorporated into the new baseline release. System
regression tests are performed to assure that none of
the existing requirements and capabilities of the
NSSC-I flight software have been compromised by the
new additions and to assure that prescribed CPM
margins are not exceeded. Baseline functional tests
also act as regression tests, but concentrate on
stressing the NSSC-1's hardware interfaces. The
baseline functionals also act to demonstrate the
soundness of the special hardware and test system.

Though the types of tests run during AT emphasize
different concerns, the composition and methods used
by the tests are similar. Test procedures consist of real
time sequences of directives to the ground system
(which may in turn result in commands to the
spacecraft). These are run in conjunction with stored
command sequences loaded into NSSC-I memory. A
typical test may simulate a science observation, target
acquisition, or SI turn-on against the background
operational activities of the NSSC-I. One test is
dedicated to the detection of hazardous conditions with
the various SIs, protective actions taken ("safing"), and
recovery of the hardware and software to operational
modes.

The procedures can validate some NSSC-I activities in
real time, and may also specify logged data items to be
verified by the TC after a test has executed.
Commands generated by the flight software are
captured in the STIF and are verified against
predictions. Elements of science and engineering data
logged during the execution of a test are also compared
to predicted values as part of test validation.

In general, tests are designed to provide CPM loading
that is heavier than the actual operational worst case.
A special background processor installed in the NSSC-
I flight software during system testing counts and
records unused CPM cycles. These data are analyzed U,

assure the CPM loading profile does not exceed
prescribed margins.

Complete sets of system level tests, such as those
used in AT, executed in an environment with a faithful
spacecraft simulation help assure the robustness of the
product software. This is essential in minimizing the
possibility of invalid or harmful commands being
issued to SIs, lost observing time, and lost science
dm.

Upon successful completion of formal AT, the new
versions of all modules modified for the baseline
release are promoted from the "test" account and
replace the old versions in a configuration controlled
"ship" account from which a delivery is prepared and
the current version of the flight software is maintained.
Though the magnitude of the NSSC-I software
development is not small, the development
environment is sufficiently intimate and contained to
successfully allow computer account protection to be
the sole method of configuration control -- no
commercial configuration management tool is
employed.

The FSSB delivers several products to the HSTP-G
including the baseline description document, the new
executable flight software load module and symbol
table, all current NSSC-I source code and intermediate
assembler and loader products, PDL for all of the flight
software, and copies of the unit and system tests used
to validate the release. The HSTP-G has the
responsibility of archiving the new software and
distributing it to the spacecraft developers at Lockheed
and the HST operations control center at GSFC.

Within 30 days of delivery, the FSSB must deliver an
Engineering Test Report (ETR) to the HSTP-G. The
ETR includes an inventory of all hardware and software
used during AT, those changes included in the new
baseline, the log maintained during AT by the TCs,
and all deviation reports generated during AT with their
resolutions. The ETR contains more detailed
information than the baseline description presented at
delivery, and serves as a permanent record of the details
of formal AT.

Finally, the FSSB supports testing of the new
baseline on the HST at the Lockheed spacecraft
integration and test facility. Operating the new
software on flight hardware allows the highest fidelity
testing without HST actually being in orbit. In

general, the instrument development teams and SI
C&DH hardware teams compose real time tests which
execute through the integration and test ground system
at Lockheed to exercise new regions of code in their
respective areas of responsibility. This is very similar
to integration testing on the STIF with the added
confidence of operating against the real SI and
spacecraft hardware. The FSSB role is to aid in
development of the spacecraft tests as well as assisting
in data and anomaly analysis.

of the

While the flight software is always tested in a real
time environment, some elements of the simulation
are not entirely faithful. For example, the NSSC-I
performs turn-on for SI power supplies and monitors
the telemetry to verify that power and voltage
constraints are not violated during the process. The
flight software developer writes a test in which his or
her code issues the proper turn-on commands in
sequence. The hardware used in the simulation,
however, can only output static telemetry values.
This forces the developer to generate a synchronized
update procedure for the payload simulator data store to
modify the telemetry so it appears that the commands
effected a hardware change. Otherwise, the flight
software will "safe" the instrument being monitored,
effectively ending the simulation.

The need to perform such "open loop" simulations as
described above inevitably requires sacrificing fidelity
of timing or data quality in a test. It is desirable to
have an enhanced payload simulator able to update the
simulated telemetry in response to commands it detects
from the NSSC-I. Such is the purpose of the Monitor
and Science Instrument Simulator (MASIS) currently
being developed by the FSSB. MASIS will replace
the payload simulator in the STIF configuration and
will allow more faithful "closed loop" simulation of
engineering and science data content and timing.
MASIS will also have sophisticated "sky map"
modelling capabilities to faithfully simulate SI
acquisition of astrr.nomica1 targets in a closed loop
fashion.

Another disadvantage of the STIF test environment is
its general purpose computer and control center user
interface. The technology of the general purpose
computer is more than 15 years old. The machine
may be considered "temperamental" by the most
lenient of standards. For example, temperatures which
exceed a relatively moderate limit often cause the
computer to halt. The simple fact that the computer is
old makes it difficult to maintain system software, find

replacement hardware, and locate experienced
maintenance personnel. Furthermore, the user
interface employed on the STIF is a modified version
of a 1975-vintage standard control center software
system used for spacecraft operations at GSFC. Since
the HST operations control center software was not yet
available at the time the STIF was developed, using an
existing product was an e x w e n t approach to getting
an NSSC-I flight software test environment on-line.
However, in the ensuing years the actual HST control
center software has matured and been validated for
controlling the spacecraft. Flight software developers
are thus required to be familiar with both test and
operational ground systems, each a formidable entity.
In addition, if one wanted to recreate a scenario for
troubleshooting an anomaly that occurred in
operations, any procedures or command loads used
would need to be translated between the syntax of each
system's user interface.

These problems are addressed in the design of the
Extended Software Test and Integration Facility
(ESTIF) under development by the FSSB. When
complete, ESTIF will host a modified version of the
actual HST real time ground system software on a
newer general purpose computer. The HST ground
system software will be adapted to include versions of
the special hardware'communications and science and
engineering data analysis software rehosted from the
STIF. ESTIF will allow NSSC-I flight software
development and testing as well as anomaly
troubleshooting in a more reliable, operations
compatible environment to effectively support the 15
year mission of the HST.

Ultimately, test capability is limited by the fidelity of
the simulation that can be run, the knowledge of the
test team, and the investment that one is prepared to
make in the test process.

The HST payload is complex. As we have seen, it
contains several quite different hardware components
which operate in a semi-autonomous manner under
control of the NSSC-I. The test system itself reflects
the inmcacy of the spacecraft. The level of detail that
must be assimilated is daunting to the novice. Thus, a
programmer may erroneously assume that the test
hardware has malfunctioned (as noted above, the
equipment is unreliable) when in fact, a code error that
is data or timing dependent has appeared.

Of these, 28,000 are non-comment lines. The
executive software has been used for several NASA
missions using the Multimission Modular Spacecraft;
however, the MMS executive code was substantially
modified for HST. The remainder of the code is new.
From the first delivery that included SI support in
May, 1983, through the present, 279 PTRs have been
closed in twelve releases of the flight software. Some
of these are enhancement requests, but the majority
were written to document errors or new requirements.
Since January, 1986, when the FSSB assumed
responsibility for the NSSC-I software from IBM, 135
PTRs have been received by the Configuration
Management Office. Of these, the CCB accepted 97 to
be incorporated in the flight software. Figure 3 shows
the number of errors and total changes in the last four
software releases.

Release 9 10 11 12

Figure 3. Error Trend

The process used for developing and testing code as
described is a sound one, but the effort is intense and
there has never been a delivery that was allowed
"enough" time. One must inevitably make a
judgement as to how much regression testing is
sufficient. The investment in preparation, execution,
and analysis of test results is substantial, but the test
of its adequacy finally will be in the successful
operation of the complete system on orbit.

The HST NSSC-I software has almost 70,000 lines of
code produced at a cost of about 50 man years effort.

1 NASA, Goddard Space Flight Center. Multimis-
sion Modular Spacecraft Onboard Computer Flight
Executive Technical Description, S-700-56, July
1982.

2 Trevathan, Charles E., et al. "Development and
Application of NASA's First Standard Spacecraft
Computer," Communications of the ACM, Volume
27 Number 9 (September 1984), 902-9 13.

