4-BIT ARITHMETIC LOGIC UNIT

The SN54/74LS181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic, operations on two variables and a variety of arithmetic operations.

- Provides 16 Arithmetic Operations Add, Subtract, Compare, Double, Plus Twelve Other Arithmetic Operations
- Provides all 16 Logic Operations of Two Variables Exclusive - OR, Compare, AND, NAND, OR, NOR, Plus Ten other Logic Operations
- Full Lookahead for High Speed Arithmetic Operation on Long Words
- Input Clamp Diodes

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package

PIN NAMES		LOADING (Note a)	
		HIGH	LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}$	Operand (Active LOW) Inputs	1.5 U.L.	0.75 U.L.
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Function - Select Inputs	2.0 U.L.	1.0 U.L.
M	Mode Control Input	0.5 U.L.	0.25 U.L.
$\underline{C}_{\text {n }}$	Carry Input	2.5 U.L.	1.25 U.L.
$\mathrm{F}_{0}-\mathrm{F}_{3}$	Function (Active LOW) Outputs	10 U.L.	5 (2.5) U.L.
$\underline{A}=B$	Comparator Output	Open Collector	5 (2.5) U.L.
G	Carry Generator (Active LOW)	10 U.L.	10 U.L.
	Output		
P	Carry Propagate (Active LOW)	10 U.L.	5 U.L.
	Output		
$\mathrm{C}_{\mathrm{n}+4}$	Carry Output	10 U.L.	5 (2.5) U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/ 1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS181

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The SN54/74LS181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select Inputs ($\mathrm{S}_{0} \ldots \mathrm{~S}_{3}$) and the Mode Control Input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations.

When the Mode Control Input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control Input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4 -bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the C_{n+4} output, or for carry lookahead between packages using the signals P (Carry Propagate) and G (Carry Generate), P and G are not affected by carry in. When speed requirements are not stringent, the LS181 can be used in a simple ripple carry mode by connecting the Carry Output $\left(C_{n+4}\right)$ signal to the Carry Input $\left(C_{n}\right)$ of the next unit. For high speed operation the LS181 is used in conjunction with the 9342 or 93 S42 carry lookahead circuit. One carry lookahead package is required for each group of the four LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability
over extremely long word lengths.
The A = B output from the LS181 goes HIGH when all four \bar{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The $A=B$ output is open collector and can be wired-AND with other $\mathrm{A}=\mathrm{B}$ outputs to give a comparison for more then four bits. The $A=B$ signal can also be used with the C_{n+4} signal to indicate $A>B$ and $A<B$.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow.

As indicated, the LS181 can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

FUNCTION TABLE

MODE SELECT INPUTS				ACTIVE LOW INPUTS \& OUTPUTS		ACTIVE HIGH INPUTS \& OUTPUTS	
S_{3}	S_{2}	S_{1}	S_{0}	$\begin{aligned} & \text { LOGIC } \\ & (M=H) \end{aligned}$	ARITHMETIC** $(M=L)\left(C_{n}=L\right)$	LOGIC $(M=H)$	ARITHMETIC** $(M=L)\left(C_{n}=H\right)$
L	L	L	L	A	A minus 1	A	A
L	L	L	H	AB	AB minus 1	$\underline{A}+B$	A $+\underline{B}$
L	L	H	L	$A+B$	$A B$ minus 1	AB	$A+B$
L	L	H	H	Logical 1	inus 1	Logical 0	nus 1
L	H	L	L	$\underline{A}+B$	A plus ($\mathrm{A}+\mathrm{B}$)	$\underline{A B}$	A plus $\overline{A B}$
L	H	L	H	B	$A B$ plus ($A+B$)	B	$(\mathrm{A}+\mathrm{B})$ plus AB
L	H	H	L	$A \oplus \underline{B}$	A minus B minus 1	$\mathrm{A} \oplus \mathrm{B}$	A minus B minus 1
L	H	H	H	$\underline{A}+\mathrm{B}$	A + B	$\underline{A B}$	$A B$ minus 1
H	L	L	L	AB	A plus ($\mathrm{A}+\mathrm{B}$)	$\underline{A+B}$	A plus $A B$
H	L	L	H	$A \oplus B$	A plus B	$A \oplus B$	A plus B
H	L	H	L	B	AB plus ($\mathrm{A}+\mathrm{B}$)	B	$(A+B)$ plus $A B$
H	L	H	H	A + B	$A+B$	AB	$A B$ minus 1
H	H	L	L	Logical 0	plus A^{*}	Logical 1	plus A^{*}
H	H	L	H	AB	AB plus A	A + B	$(A+\underline{B})$ plus A
H	H	H	L	$A B$	AB plus A	$A+B$	$(A+B)$ Plus A
H	H	H	H	A	A	A	A minus 1

L = LOW Voltage Level
H = HIGH Voltage Level
*Each bit is shifted to the next more significant position
**Arithmetic operations expressed in 2s complement notation

LOGIC SYMBOLS

ACTIVE LOW OPERANDS

ACTIVE HIGH OPERANDS

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	
$\mathrm{~V}_{\mathrm{OH}}$	Output Voltage - High (A = B only)	54,74			5.5	V

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter			Limits		Unit	Test Conditions		
			Min	Typ	Max				
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		74			0.8				
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}=-18 \mathrm{~mA}$		
	Output HIGH Voltage	54	2.5	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{-}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		
Voh		74	2.7	3.5		V			
VOL	Output LOW Voltage Except G and P Output \bar{G} Output \bar{P}	54, 74		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\mathrm{H}} \\ & \text { per Truth Table } \end{aligned}$	
		74		0.35	0.5	V	$\mathrm{IOL}=8.0 \mathrm{~mA}$		
		54, 74			0.7	V	$\mathrm{IOL}=16 \mathrm{~mA}$		
		54 74			$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	V	$\mathrm{l} \mathrm{OL}=8.0 \mathrm{~mA}$		
${ }^{\mathrm{IOH}}$	Output HIGH Current	54, 74			100	$\mu \mathrm{A}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I} \mathrm{IOH}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{array}$		
${ }^{\text {IH }}$	Input HIGH Current Mode Input Any A or B Input Any S Input C_{n} Input				$\begin{gathered} 20 \\ 60 \\ 80 \\ 100 \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
	Mode Input Any A or B Input Any S Input C_{n} Input				0.1 0.3 0.4 0.5	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current Mode Input Any A or B Input Any S Input C_{n} Input				$\begin{aligned} & -0.4 \\ & -1.2 \\ & -1.6 \\ & -2.0 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		
Ios	Short Circuit Current (Note 2)		-20		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		
${ }^{\text {ICC }}$	Power Supply Current See Note 1A	54			32	mA	$V_{C C}=$ MAX		
		74			34				
	See Note 1B	54			35				
		74			37				

Note 1.
With outputs open, I_{CC} is measured for the following conditions:
A. S0 through S3, M, and A inputs are at 4.5 V , all other inputs are grounded.
B. S 0 through S 3 and M are at 4.5 V , all other inputs are grounded.

Note 2: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$, Pin $\left.12=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tpLH tpHL	Propagation Delay, (C_{n} to C_{n+4})		$\begin{aligned} & \hline 18 \\ & 13 \end{aligned}$	$\begin{aligned} & 27 \\ & 20 \end{aligned}$	ns	$\mathrm{M}=0 \mathrm{~V}$, (Sum or Diff Mode) See Fig. 4 and Tables I and II
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	(C_{n} to F Outputs)		$\begin{aligned} & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & 26 \\ & 20 \end{aligned}$	ns	M = 0 V , (Sum Mode) See Fig. 4 and Table I
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	(\bar{A} or \bar{B} Inputs to $\overline{\mathrm{G}}$ Output)		$\begin{aligned} & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & 29 \\ & 23 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Fig. 4 and Table I
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	(\bar{A} or \bar{B} Inputs to $\overline{\mathrm{G}}$ Output)		$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ $\text { (Diff Mode) See Fig. } 5 \text { and Table II }$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	($\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ Inputs to $\overline{\mathrm{P}}$ Output)		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Fig. 4 and Table I
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	(\bar{A} or \bar{B} Inputs to \bar{P} Output)		$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & 30 \\ & 33 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ (Diff Mode) See Fig. 5 and Table II
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	($\overline{\mathrm{A}}_{X}$ or $\overline{\mathrm{B}}_{\mathrm{X}}$ Inputs to $\overline{\mathrm{F}}_{X}$ Output)		$\begin{aligned} & 21 \\ & 13 \end{aligned}$	$\begin{aligned} & 32 \\ & 20 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Fig. 4 and Table I
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	(AX or BX Inputs to FX Output)		$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ (Diff Mode) See Fig. 5 and Table II
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	(A_{X} or BX Inputs to F_{XH} Outputs)			$\begin{aligned} & 38 \\ & 26 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ (Sum Mode) See Fig. 4 and Table I
tpLH tpHL	($\mathrm{A}^{\text {X or }}$ BX Inputs to F XH Outputs)			$\begin{aligned} & 38 \\ & 38 \end{aligned}$	ns	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ (Diff Mode) See Fig. 5 and Table II
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	(\bar{A} or \bar{B} Inputs to $\overline{\mathrm{F}}$ Outputs)		$\begin{aligned} & 22 \\ & 26 \end{aligned}$	$\begin{aligned} & 33 \\ & 38 \end{aligned}$	ns	M = 4.5 V (Logic Mode) See Fig. 4 and Table III
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	(A or B Inputs to $\mathrm{C}_{\mathrm{n}+4}$ Output)		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	ns	$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}$ (Sum Mode) See Fig. 6 and Table I
tpLH tpHL	(A or \bar{B} Inputs to $\mathrm{C}_{\mathrm{n}+4}$ Output)		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 41 \\ & 41 \end{aligned}$	ns	$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ (Diff Mode)
tpLH tPHL	(\bar{A} or \bar{B} Inputs to $\mathrm{A}=\mathrm{B}$ Output)		$\begin{aligned} & 33 \\ & 41 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \end{aligned}$	ns	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \text { (Diff Mode) See Fig. } 5 \text { and Table II } \end{aligned}$

AC WAVEFORMS

Figure 4

Figure 5

Figure 6

SUM MODE TEST TABLE I
FUNCTION INPUTS: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test
		$\begin{gathered} \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND	$\begin{aligned} & \text { Apply } \\ & 4.5 \mathrm{~V} \end{aligned}$	Apply GND	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A_{1}	B_{1}	None	Remaining A and B	C_{n}	F_{1}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B_{1}	A_{1}	None	Remaining A and B	C_{n}	FI
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A_{1}	B_{1}	None	C_{n}	Remaining A and B	F_{1+1}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B_{1}	A_{1}	None	C_{n}	Remaining A and B	F_{+1}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	B	None	None	Remaining A and B, C_{n}	P
$\begin{aligned} & \text { tPLH } \\ & \text { tply } \end{aligned}$	B	A	None	None	Remaining A and B, C_{n}	P
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	A	None	B	$\operatorname{Remaining}_{B}$	$\begin{gathered} \text { Remaining } \\ \mathrm{A}, \mathrm{C}_{\mathrm{n}} \end{gathered}$	G
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B	None	A	${\underset{B}{B}}_{\text {Remaining }}$	Remaining A, C_{n}	G
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	None	B	$\operatorname{Remaining~}_{B}$	$\begin{aligned} & \text { Remaining } \\ & \mathrm{A}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	C_{n+4}
$\begin{aligned} & \text { tPLH } \\ & \text { tpLH } \end{aligned}$	B	None	A	Remaining B	Remaining A, C_{n}	$\mathrm{C}_{\mathrm{n}+4}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	C_{n}	None	None	$\frac{\mathrm{All}}{\mathrm{~A}}$	$\frac{\mathrm{All}}{\mathrm{~B}}$	Any F or $\mathrm{C}_{\mathrm{n}+4}$

DIFF MODE TEST TABLE II
FUNCTION INPUTS: $\mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=\mathrm{M}=0 \mathrm{~V}$

Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test
		$\begin{aligned} & \text { Apply } \\ & \text { 4.5 V } \end{aligned}$	Apply GND	$\begin{gathered} \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	A	None	B	Remaining A	Remaining B, C_{n}	F_{1}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B	A	None	$\operatorname{Remaining}_{\mathrm{A}}$	Remaining B, C_{n}	FI
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A_{1}	None	B_{1}	Remaining B, C_{n}	Remaining A	F_{1+1}
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	B_{1}	A_{1}	None	Remaining B, C_{n}	Remaining A	F_{1+1}
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	None	B	None	Remaining A and B, C_{n}	P
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B	A	None	None	Remaining A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	P
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	B	None	None	Remaining A and $\mathrm{B}_{\mathrm{l}}, \mathrm{C}_{\mathrm{n}}$	G
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	B	None	A	None	Remaining A and B, C_{n}	G
$\begin{aligned} & \text { tpLH } \\ & \text { tpHI } \end{aligned}$	A	None	B	$\operatorname{Remaining~}_{\mathrm{A}}$	$\begin{gathered} \text { Remaining } \\ B, C_{n} \end{gathered}$	$A=B$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B	A	None	$\text { Remaining }_{A}$	Remaining B, C_{n}	$A=B$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	B	None	None	Remaining A and B, C_{n}	c_{n+4}
$\begin{aligned} & \text { tpLH } \\ & \text { tpHI } \end{aligned}$	B	None	A	None	Remaining A and B, C_{n}	C_{n+4}
tpLH tpHL	C_{n}	None	None	$\overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}$	None	C_{n+4}

LOGIC MODE TEST TABLE III

Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test	Function Inputs
		Apply $4.5 \mathrm{~V}$	Apply GND	Apply 4.5 V	Apply GND		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	A	None	B	None	Remaining A and B, C_{n}	Any F	$\begin{gathered} S_{1}=S_{2}=M=4.5 \mathrm{~V} \\ S_{0}=S_{3}=0 \mathrm{~V} \end{gathered}$
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	B	None	A	None	Remaining A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	Any F	$\begin{gathered} \mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V} \\ \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} \end{gathered}$

Case 623-05 J Suffix
24-Pin Ceramic Dual In-Line (WIDE BODY)

NOTES:

1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
2. LEADS WITHIN $0.13 \mathrm{~mm}(0.005)$ RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLEL).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	31.24	32.77	1.230	1.290
B	12.70	15.49	0.500	0.610
C	4.06	5.59	0.160	0.220
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54 BSC		0.100 BSC	
J	0.20	0.30	0.008	0.012
K	3.18	4.06	0.125	0.160
L	15.24 BSC		0.600 BSC	
M	0°	15°	0°	15°
N	0.51	1.27	0.020	0.050

NOTES:

1. LEADS WITHIN $0.13 \mathrm{~mm}(0.005)$ RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL
3. 649-02 OBSOLETE, NEW STD 649-03 SEE ISSUE "C" FOR REFERENCE

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	31.50	32.13	1.240	1.265
B	13.21	13.72	0.520	0.540
C	4.70	5.21	0.185	0.205
D	0.38	0.51	0.015	0.020
F	1.02	1.52	0.040	
G	2.060			
H	1.65	2.16	0.065	
J	0.20	0.30	0.008	0.085
K	2.92	3.43	0.115	0.135
L	14.99	15.49	0.590	0.610
M	-	10°	-	10°
N	0.51	1.02	0.020	0.040
P	0.13	0.38	0.005	0.015
Q	0.51	0.76	0.020	0.030

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ${ }^{\boldsymbol{N} / \boldsymbol{l}}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

