

Ruediger F. Loeckenhoff – private research Ermanno Antonelli – Volt4

Presented at the CPV-18 conference Miyazaki / online 25.04.2022

VOLT4 Europe Limited

Doing more with Less

Frugal Innovation

Good enough

- No Frills!
 - → Reduce to the functionality that is really required.

More for less

Use the latest technology to achieve superior performance with minimal hardware and cost.

Frugal CPV Tracker Controller

Good enough

- Track the sun be precise
- Fail Safe Go to stow
- RS485 communication
- Report motor currents
 → predictive maintenance
- Autonomous or Remote control

More for less

- Integrated state of the art magnetic field and acceleration sensors
- Integrated, highly precise AZUR SPACE sun sensor
- No external sensors
- Minimal hardware → maximum reliability @ optimized cost

Our mission and vision

Mission

Our mission is to bring together disruptive new technologies to enable efficiencies, that will contribute towards an energy efficient zero carbon future

Vision

We believe in making the world a better place, by pursuing innovation, based on strong scientific principles

No Expertise without a Learning Curve

(private research R. Loeckenhoff)

How it started - First attempts with end switches

Outdoor Tests with Hermetic Box → CPV-17

Aug. 7th 2021 Open Source Go Live

- Github.com/Solhunter
- Compass, tilt and sun sensors
- No external sensors (except for wind)
- Simple platform: Arduino
- Easy to build: Breakout boards
- Serial communication
- For desktop or full size trackers

3D-Printed Desktop Tracker

- Fast
- Safe
- Comfortable
- Cost-effective
- Representative

Clean Design with Breakout Boards

Pictures: Github.com/Solhunter

Shading beam with LEDs as sensors

A tripod tracker

Fraunhofer ISE Flatcon modules

Pictures: Github.com/Solhunter

1st iteration all in one board

- VOLT4 becomes involved to create a professional board design.
- Using the proven components of the "breakout board design"

Issues:

- Proven compass chip is outdated.
- New version is out of stock for >1 year.
- Too many options and small errors.
- → Cleanup and redesign
- → Readily available sensor chips
- **→** Dramatic cost reduction

2nd iteration all in one board

Surge protection & current monitoring

Board & Sensor on a Mounting Plate **VOLT4**

Spring loaded bolt

Encapsulation Concept

Field Layout Consideration

24 DC Supply and Communication Nodes

Next steps

- Optimize firmware with new sensors
- Outdoor testing
- Establish RS485 field communication scheme

How to serve the CPV community

- Open source design <u>github.com/solhunter</u> for the evaluation of the compass approach,
- Assembled hardware prototypes for field testing,
- Design suitable for mass production,
- Looking for partners.

Thank you for your kind attention

Special thanks go to

- AZUR SPACE Solar Power GmbH for providing the sun sensor and supporting an earlier stage of this project,
- Fraunhofer ISE for providing FlatCon modules for the demonstrator on loan.

