

Prometheus

Notes on Converting the UCSD Pascal Compiler to C++

While Creating a New type of Compiler for AI – Neural

Applications by giving them Digital DNA

Copyright 2022

Gerold Lee Gorman

Sources available on GitHub: GNU/MIT.

Notes on Converting the UCSD Pascal Compiler to C++.

1

DESCRIPTION:

What if we could add a kind of "digital
DNA", to a classic language like UCSD
Pascal, with an eye toward developing an
efficient platform that will facilitate the
creation of projects that integrate feature sets
from several other programming languages
and styles within a single unified framework
that integrates the functionality of multiple
devices within a cohesive environment. In
effect, such a framework might allow an
aspiring robot designer to write an
application in a high-level language such as
PASCAL, and then cross-compile that
application to another intermediate language
such as a specialized variant of LISP, which
could then either be implemented in the form
of a C++ library which provides some of the
features of LISP or else another meta-
compiler might be used to convert the
intermediate representation to run on a
microcontroller such as a Propeller 2 using
the built-in FORTH interpreter or else into
the native assembly, or even traditional
UCSD p-code.

DETAILS:

Several approaches are frequently taken
when developing projects that involve some
type of AI. In the traditional approach,
interaction with a simulated intelligence can
be produced by combining simple pattern
matching techniques with some type of
scripting language which in turn provides a
seemingly life-like experience, which within
some contexts can be highly effective, even
if only up to a certain point. "This is the
approach taken by classic chatbots such as
ELIZA, PARRY, MEGAHAL, SHURDLU,
and so on." Whether this type of AI is truly
intelligent might be some subject for debate,
and arguments can be made both in favor of,
as well as against claims that such systems
are in some way intelligent, on the one hand

- even though nobody can reasonably make
any sort of claim that such systems might in
any way be sentient - yet WHEN they work,
they tend to work extremely well.

Most modern attempts at developing AI as of
late seem to be focused on efforts to develop
applications that more accurately model
some of the types of behaviors associated
with the types of neural networks found in
actual biological systems. Such systems
tend to be computationally intensive, often
requiring massively parallel computing
architectures which are capable of executing
billions of concurrent, as well as pipelined
non-linear matrix transformations so as to
perform even the simplest simulated
neuronal operations. Yet this approach gives
rise to so-called learning models that might
not only have the potential to recognize
puppies, etc. but why not build networks that
can try to solve more esoteric problems like
certain issues in bio-molecular research, and
mathematical theorem proving, etc.

Thus, the first approach seems to work best
for problems that we know how to solve, and
this method, therefore, leads to solutions,
that - when they work - are both highly
efficient, as well as provable, with the main
issues being the amount of work that goes
into content creation, as well as debugging
and testing.

The second approach seems to offer the
prospect of allowing for the creation of
systems that are arguably crash-proof, at
least in the sense that it should be possible to
build simulations of large neural networks,
that are just massively parallelized as well as
pipelined matrix algebraic data flow engines,
which from a certain point of view, is
simplicity in and of itself. So that would of
course seem to imply that from at least one
point of view, the hardware can be made
crash-proof, that is within reasonable limits,

Notes on Converting the UCSD Pascal Compiler to C++.

2

even if an AI application running on such a
system might hang from the point of view of
the case where the proposed matrix
formulation according to some problem of
interest fails to settle on a valid eigenstate.

So, let's invent a third approach, according to
the possible introduction of some type of
neural network of the second type that can
hopefully be conditioned to create script
engines of the first type. Not that others
haven't tried doing this with so-called hidden
Markov models which concordantly will just
as often introduce some kind of Bayesian
inference to some hierarchical model. Thus,
there have been many attempts at this sort of
thing, often with interesting, even if
somewhat, at times nebulous results, i.e.,
WATSON, OMELETTE. So, obviously -
something critical is still missing!

Now as it turns out, the human genome
consists of about 3 billion base pairs of
DNA, each of which encodes up to two bits
of information - which might therefore fit
nicely in about 750 megabytes for a single
set of up to 23 chromosomes, if it can be
stored that is, in a reasonably efficient, but
uncompressed form. Now if it should turn
out that 99% of this does not code for any
actual proteins, then it might very well be
that all of the actual information needed to
encode the proteins that go into every cell in
the human body, well that information might
only need a maximum of about 7.5
megabytes - and that is for the entire body,
not just for the part that encodes how the
brain is wired.

O.K. so we haven't quite reduced the design
problem of creating a seemingly sentient A.I.
to a few lines of APL, but we are getting
closer. So how about digital DNA?
Whatever that might be?

Of course, if we proceed based on the
concept that a real physical brain is typically
thought of as being a highly connected
network of neurons that exist according to
some topology that in turn exists in what is
usually thought of as three-dimensional
space, then a successful A.I., therefore will
need to incorporate some of the features of
common CAD packages, for model
generation, yet this will need to work
according to some concept of geometrization
of spacetime by hierarchal representation,
and not merely according to some pre-
suppositions concerning the principles of
low-level symbol manipulation.

This issue has undoubtedly led many down
the primrose path of failure, either because
they fail to understand the issue at hand, at
all - or else they want to prematurely invoke
some kind of holographic principle, which
might turn out to be necessary for the long
run because of certain issues concerning
symbolic processing vs. geometrization may
very well require some kind of priority
inversion. Yet from the point of view of
computational memes, one cannot directly
infer how such hierarchical refactorings
might work, that is, by merely invoking
some holistic principle.

Therefore, a new type of compiler is
required. So now we are back to square one.

Notes on Converting the UCSD Pascal Compiler to C++.

3

LOG ENTRY:
Art Official Intelligence

And in other news, I am continuing to work
on porting the UCSD Pascal compiler to
C++, so that I will eventually be able to
compile Pascal programs to native Propeller
assembly, or else I will implement P-code
for the Propeller, or Arduino, or both, or
perhaps for a NOR computer.
Approximately 4000 lines out of the nearly
6000 lines of the original Pascal code have
been converted to C++, that is to the point
that it compiles, and is for the most part
operational, but in need of further
debugging. As was discussed in a previous
project, I had to implement some functions
that are essential to the operation of the
compiler, such as an undocumented, and also
missing TREESEARCH function, as well as
another function which is referred to as
being "magic" but which is also missing
from the official distribution - and which is
referred to as IDSEARCH. Likewise, I had
to implement Pascal-style SETS, as well as
some form of the WRITELN and WRITE
functions, and so on - amounting to several
thousand additional lines of code that will
also need to be compiled to run in any
eventual Arduino or Propeller runtime
library. Then let's not forget the p-machine
itself, which I have started on, at least to the
point of having some functionality of
floating point for the Propeller or Arduino,
or NOR machine, etc.

Here we can see that the compiler, which is
being converted to C++, is now - finally
starting to be able to compile itself. The
procedure INSYMBOL is mostly correct
and the compiler is getting far enough into
the procedures COMPINIT and
COMPILERMAIN so as to be able to
perform the first stages of lexical analysis.

Now, as far as AI goes, where I think that
this is headed is that it is going to eventually
turn out to be useful to be able to express
complex types of grammar that might be
associated with specialized command
languages according to some kind of
representational form that works sort of like
BNF, or JSON, but ideally which is neither -
and that is where the magic comes in - like
suppose we have this simple struct
definition:

struct key_info
{
 ALPHA ID;
 SYMBOL SY;
 OPERATOR OP;
 key_info() { };
 key_info(char *STR, SYMBOL _SY,
 OPERATOR _OP)
 {
 strcpy_s(ID,16,STR);
 SY = _SY;
 OP = _OP;
 }
};

Then we can try to define some of
the grammar of Pascal like this:

key_info key_map[] =
{
 key_info("DO",DOSY,NOOP),
 key_info("WITH",WITHSY,NOOP),
 key_info("IN",SETSY,INOP),
 key_info("TO",TOSY,NOOP),
 key_info("GOTO",GOTOSY,NOOP),
 key_info("SET",SETSY,NOOP),
 key_info("DOWNTO",DOWNTOSY,NOOP),
 key_info("LABEL",LABELSY,NOOP),
 key_info("PACKED",PACKEDSY,NOOP),
 key_info("END",ENDSY,NOOP),
 key_info("CONST",CONSTSY,NOOP),
 key_info("ARRAY",ARRAYSY,NOOP),
 key_info("UNTIL",UNTILSY,NOOP),
 key_info("TYPE",TYPESY,NOOP),
 key_info("RECORD",RECORDSY,NOOP),
 key_info("OF",OFSY,NOOP),
 key_info("VAR",VARSY,NOOP),
 key_info("FILE",FILESY,NOOP),
 key_info("THEN",THENSY,NOOP),
 key_info("PROCEDURE",PROCSY,NOOP),
 key_info("USES",USESSY,NOOP),
 key_info("ELSE",ELSESY,NOOP),
 key_info("FUNCTION",FUNCSY,NOOP),
 key_info("UNIT",UNITSY,NOOP),
 key_info("BEGIN",BEGINSY,NOOP),
 key_info("PROGRAM",PROGSY,NOOP),
 key_info("INTERFACE",INTERSY,NOOP),
 key_info("IF",IFSY,NOOP),
 key_info("SEGMENT",SEPARATSY,NOOP),
 key_info("IMPLEMENTATION",IMPLESY,NOOP),
 key_info("CASE",CASESY,NOOP),
 key_info("FORWARD",FORWARDSY,NOOP),

Notes on Converting the UCSD Pascal Compiler to C++.

4

 key_info("EXTERNAL",EXTERNLSY,NOOP),
 key_info("REPEAT",REPEATSY,NOOP),
 key_info("NOT",NOTSY,NOOP),
 key_info("OTHERWISE",OTHERSY,NOOP),
 key_info("WHILE",WHILESY,NOOP),
 key_info("AND",RELOP,ANDOP),
 key_info("DIV",MULOP,IDIV),
 key_info("MOD",MULOP,IMOD),
 key_info("FOR",FORSY,NOOP),
 key_info("OR",RELOP,OROP),
};

And as if, isn't this all of a sudden - who
needs BNF, or regex, or JSON? Thus, that
is where this train is headed - hopefully! The
idea is, of course, to extend this concept so
that the entire specification of any
programming language (or command
language) can be expressed as a set of magic
data structures that might contain lists of
keywords, function pointers, and special
parameters associated therewith, such as
additional parsing information, type id, etc.

Elsewhere, of course - I did this - just to get
a Lisp-like feel to some things:

void SEARCH::RESET_SYMBOLS()
{
 frame &f = SEARCH::m_pFrame;
 symbol_table *t=NULL;
 t = f.cons(keywords)->sort();
 m_keywords = t;
}

Essentially constructing a symbol table for
the keywords that are to be recognized by the
lexer, as well as sorting them with what is in
effect, just as if we only needed to write only
one line of code! Naturally, I expect that
parsing out the AST will eventually turn out
to be quite similar and that this is going to
work out quite nicely for any language -
whether it is Pascal, C++, LISP, assembly,
COBOL, or whatever.

Notes on Converting the UCSD Pascal Compiler to C++.

5

LOG ENTRY:
Oh Lazarus, where 'art thou?

The Art Officials never commented about
my last post, and it is going to be a while
before I actually get any version of Pascal,
whether it is Lazarus, or some other version
of FreePascal or UCSD actually up and
running on the Parallax Propeller P2. So I
figure that this might be just as good of a
time as any for a quick conversation with
Eliza.

Now as it turns out, in an earlier project I was
discussing how I have been working on a
library called Frame-Lisp, which is sort of a
frames-based library of Lisp-like functions
that I would like to eventually get running as
a back end for ports of ELIZA, and
SHURDLU and PARRY and MEGAHAL
and pretty much any compiler that I would
like to be able to create, invent, or just simply
port to other interesting and fun platforms,
like Propeller, or Arduino, or FPGA, or pure
retro TTL based systems Well, you get the
idea. Yet, well then - guess what? It also
turns out that I did ELIZA something like 25
years ago, and I recently somehow managed
to find the archive of that build and get it
running again, sort of. Which of course
gives me an idea - since what the original
Eliza lacked, like many attempts at creating
chat 'bots, is some kind of internal object
compiler that could in principle give a
language like C/C++ some capacity for new
object type creation at run time, which
according to some, is considered a form of
reflection - which is, of course, going to be
necessary, that is if we are going to try to
simulate any kind of sentience.

Getting back to the idea therefore of how a
compiler should be able to recompile itself
is, I think, important. Even while there is
also this idea that if the human genome
actually consists of only around 20,000

coding genes, of which only about 30% of
which are directly involved in affecting the
major function of the brain and how it is
wired; then I am thinking that the complexity
of a successful A.I. that is capable of actual
learning might not be as complicated as
others are trying to make it. It is simply
going to be a matter of trying to build upon
the concepts of how compilers work, on the
one hand, with an idea toward developing
data flow concepts based on the
contemporary neural network approach.

Interestingly enough, this particular ELIZA
only needs about 150 lines of code to
implement, along with about 225 lines for
the hard-coded script, i.e., canned dialog and
keywords. That is in addition to a few
thousand or so lines that are needed to run
the back-end lisp-like stuff. So, is it possible
that that is where others are failing, that is
because they are failing to include essential
concepts of compiler design in their
approach to A.I.?

Along another line of reasoning, I have never
been a particular fan of Maslow's hierarchy
of needs, which I won't get into quite yet,
other than that I think that Ericson's stages of
conflicts throughout life work out much
better in sense of how the effects of the
critical period notion affect psycho-social
development.

Even if Eliza doesn't actually learn, there is
still some appeal to writing an AI that can re-
compile itself. Hidden Markov models do
pretty well up to a point with learning, and
then there was M5 of course, in the classic
Star Trek, which was programmed by
Daystrom with engrams, or so we were told,
including the one "this unit must survive."

Notes on Converting the UCSD Pascal Compiler to C++.

6

LOG ENTRY:
Life on Square One - Part II

In an earlier project, I was looking at how It
might be possible to get the C/C++ -
processor to chow down on Pascal programs,
that is if the preprocessor would allow us to
do things like temporarily redefining things
like the semicolon or equals symbols, and so
on - with nested #ifdef's, #undef's and the
like. Sort of like this - which doesn't actually
work with all of the macros, but it does work
with some so that you can at least partially
convert a Pascal program to C/C++ by
creating some kind of "pascal.h" file and
then add #include "pascal.h" in your Pascal
code, and then grab the preprocessor output,
right? Well, no - but almost, very very
almost like this:

#define { /*
#define } */
#define PROCUEDURE void
#define BEGIN {
#define END }
#define := ASSIGN_EQ
#define = COMPARE_EQ
#define IF if (
#define ASSIGN_EQ =
#define COMPARE_EQ ==
#define THEN)
#define REPEAT do {
#define UNTIL } UNTIL_CAPTURE
#define UNTIL_CAPTURE (!\
#define ;);\
#undef UNTIL_CAPTURE
#define ;);
#define = [= SET(\
#define])\
#define) \
#undef = [\
#undef]
// so far so good
#define WITH ????????

I mean, if someone else once figured out
how to get the GNU C/C++ preprocessor to
play TETRIS ... then it should be possible to
do whatever else we want it to do, even if
some other powers claim that strictly
speaking the preprocessor isn't fully Turing
complete in and of itself, but that it is
actually only just some kind of push-down-
automation, because of some issues like
having a 4096 byte limit on the length of

string literals, and so on. Yeah, right - I think
I can live with that one if what they are
saying, is in effect is that it is probably as
Turing complete as anyone might actually
need to be.

Still, this gives me an idea that seems worth
pursuing, like what does ELIZA have in
common with the preprocessor or a full-
blown compiler for that matter? Well, the
Eliza code from the previous log entry used
the following static string tables, arrays, or
whatever you want to call them, based on a
C++ port of an old C version that was
converted from an example that was written
in BASIC and which most likely appeared in
some computer magazine, most likely,
Creative Computing, back in the '70s.

char *wordin[] =
{

"ARE", "WERE", "YOUR", "I'VE", "I'M",
"ME", "AM", "WAS", "I",
"MY","YOU'VE","YOU'RE","YOU",NULL

};

char *wordout[] =
{

"AM", "WAS", "MY", "YOU'VE", "YOU'RE",
"YOU","ARE", "WERE", "YOU", "YOUR",
"I'VE", "I'M", "ME",NULL

};

This could probably be fixed up a bit - to be
more consistent with the methods that I am
using in my port of the UCSD Pascal
compiler to solve the problem of keyword
and identifier recognition, as was also
discussed earlier, and for which in turn I had
to write my own TREESEARCH and
IDSEARCH functions.

struct subst
{
 char *wordin;
 char *wordout;
 subst();
 subst (char *str1, char *str2)
 {
 wordin = str1;
 wordout = str2;
 }
};

Notes on Converting the UCSD Pascal Compiler to C++.

7

Which should allow us to do something like
this - even if this is, as of right now -
untested.

subst conjugates [] =
{
 subst("ARE","AM"),
 subst("WERE","WAS"),
 subst("YOUR","MY"),
 subst("I'VE","YOU'VE"),
 subst("I'M","YOU'RE"),
 subst("ME","YOU"),
 subst("AM","ARE"),
 subst("WAS","WERE"),
 subst("I","YOU"),
 subst("MY","YOUR"),
 subst("YOU'VE","I'VE"),
 subst("YOU'RE","I'M"),
 subst("YOU","I"),
 subst(NULL,NULL),
};

So, I searched Google for Eliza source code,
and among other things, I found variations of
Weizenbaum's original paper on the subject
are now available, as well as variations of
things like some kind of language called
GNU SLIP, which is a C++ implementation
of the symmetric list processing language
that the original Eliza was originally written
in since it seems that Eliza wasn't actually
written in pure Lisp at all, contrary to
popular belief! Yet, documentation for the
SLIP language looks impossibly bloated,
and it just as well warns about having a steep
learning curve. So, I won't venture down
that rabbit hole, at least not yet, and will
prefer instead to continue on the path that I
am currently following:

Of course, it should become obvious that
Pascal to C conversion might start to look
like this:

subst pascal2c [] =
{
 subst("{","/*"),
 subst("}","*/"),
 subst("PROCEDURE","void"),
 subst("BEGIN","{"),
 subst("END","}"),
 subst(":=","ASSIGN_EQ"),
 subst("=","COMPARE_EQ"),
 subst("IF","if ("),
 subst("ASSIGN_EQ","="),
 subst("COMPARE_EQ","=="),
 subst("THEN",")"),
 subst("REPEAT","do {"),

 subst("UNTIL","}
UNTIL_CAPTURE"),

 subst("UNTIL_CAPTURE","(!"),
 subst("= [","= SET("),
 subst("]",")"),
 subst(NULL,NULL),
};

With some work to be done with rules so as
to implement #ifdef and #undef, or other
means for providing context sensitivity,
since for now a weird hack is still required
that might temporarily require redefining the
semicolon so as to property close out UNTIL
statements, as well as rules for capturing the
parameters to FOR statements, with the
WITH statement still being an interesting
nightmare in and of itself.

WITH (provided ingredients)
BEGIN
 make(deluxe pizza);
 serve(deluxe pizza);
END;

Of course, that isn't proper Pascal. Neither
is it proper C, but maybe it could be if the
variable ingredients was a member of some
class which in turn had member functions
called make and serve. Welcome to free-
form, natural language software
development! Well, not quite yet. Still, is
too much to ask if the preprocessor can
somehow transmogrify the former into
something like this:

void make_pizza (provided ingredients)
{
 Ingredients->make (deluxe,pizza);
 Ingredients->serve (deluxe,pizza);
}

Maybe provided is an object type, and
ingredients is the variable name or
specialization so that we can in the style of
the Pascal language tell the C/C++
preprocessor to find a way to call the make
function, which is a member of the provided
ingredients class hierarchy, and which in
turn can find the appropriate specializations
for making not just a pizza, but a deluxe
pizza, just as we might call the Pascal
WRITELN function with a mixture of

Notes on Converting the UCSD Pascal Compiler to C++.

8

integers, floats, and strings, and then it is the
job of a preprocessor, or compiler to resolve
the object types, so the WRITELN function
will know which sub-specialization to
invoke on a per object basis, which I figured
out how to do, elsewhere in C++, by using
an intermediate s_node constructor to
capture the object type in C++ via
polymorphism, thus allowing the C style
var_args to capture type information, which
it can't do, as far as I know in pure C, but as
I have shown elsewhere, it can be done in
C++, via a hack!

And thus, we inch ever so slowly toward
figuring out how to accomplish free-form
natural language programming. Obviously,
if the meanings of words can be deduced,
and therefrom intentions can be ascribed,
then it should follow that from the ascribed
intentions there can be associated the
appropriate objects and methods, if
proceeding algorithmically, or else there
should also be a way of programmatically
generating a corresponding data-flow based
approach which can be embodied in the form
of some kind of neural network.

I think that the Pascal compiler source might
be making an appointment to have a
conversation with Eliza sometime in the near
future.

Notes on Converting the UCSD Pascal Compiler to C++.

9

LOG ENTRY:
Eliza meets C, whether this is to be,
or not to be - we shall see.

Further integration of my 25-year-old C++
port of the '70s vintage Eliza program into
the Pascal compiler is moving along nicely.
The original code had an important step,
referred to as conjugation - wherein words
like myself and yourself, or you and I would
be swapped. Yet, after realizing there are
similarities to this process, and what goes on
in the C/C++ preprocessor, I decided to
rename the function pre_process, for
obvious reasons - since that is one of the
directions that I want this project to be
headed. So even though I have no desire to
learn APL, there is still some appeal to the
notion that perhaps an even better ELIZA
can be done in just one line of something that
conveys the same concepts as APL, as if
there is any concept to APL at all.

void ELIZA::pre_process (const subst
*defines)
{
 int word;
 bool endofline = false;
 char *wordIn, *wordOut, *str;
 node<char*> *marker;
 process.rewind();
 while (endofline==false)
 {
 word = 0;
 marker = process.m_nPos;
 process.get (str);
 endofline = process.m_bEnd;
 for (word=0;;word++) {
 wordIn = (defines[word]).wordin;
 wordOut = (defines[word]).wordout;
 if (wordIn==NULL)
 break;
 if (compare (wordIn,str)==0) {
 marker->m_pData = wordOut;
 break; }
 }
 }
}

Thus, with further debugging, I can see how
a function like this should most likely be
moved into the FrameLisp::text_object class
library, since in addition to being generally
useful for other purposes, it also helps to try
to eliminate as many references to objects of

char* type in the main body of the program
as possible, with an eye toward having an
eventual UNICODE version that can do
other languages, emojis etc. Which certainly
should be doable, but it can turn into a
debugging nightmare if it turns out to be
necessary to hunt down thousands of char
and char* objects. Thus, I have created my
own node<char*>, node_list<char*> and
text_object classes using templates, for
future extensions and modifications. Thus,
even though ELIZA is kind of broken right
now, and is being debugged, this pretty
much embodies the simplicity of the
algorithm:

text_object ELIZA::response ()
{
 int sentenceNum;
 text_object result, tail;
 char *str = NULL;
 node<char*> *keyword,
 *tail_word, *last_word;

 process = textIn;
 pre_process (conjugates);
 return process;

 keyword = find_keyword ();
 sentenceNum = currentReply [key];
 currentReply [key]++;

if (currentReply[key]>lastReply[key])
currentReply[key] = firstReply [key];
result = replies[sentenceNum];
node<char*> *marker = process.m_nPos;

 if (keyword!=NULL)
 tail.m_nList.m_nBegin =
marker;

 else
 tail = "?";

 tail_word = result.findPenultimate (str);
 result.get (str);
 result.peek (str);
 if (strcmp(str,"*")==0) {
 last_word = tail_word->m_pNext;
 delete last_word;
 tail_word->m_pNext = NULL;
 result.m_nList.m_nEnd = tail_word;
 result.append (tail);
 result.append ("?");
 }
 result.m_nPos = result.begin();
 return result;
}

Yep, maybe the ELIZA algorithm, with the
right text processing libraries just might only
take about 40 lines or so of code, with no
APL needed or desired. Now testing just the

Notes on Converting the UCSD Pascal Compiler to C++.

10

pre-processing part yields some interesting
results. Making me wonder if at least for that
part of English grammar analysis, that part
of natural language processing is completely
solvable.

Interesting stuff. Plenty of stuff to do as of
yet. Yet converting Pascal to C, or C to
LISP, or LISP to FORTH might turn out to
be much easier than it sounds at first blush -
even if I meant to say - converting Pascal to
C, and C to LISP, and LISP to FORTH, and
so on.

Notes on Converting the UCSD Pascal Compiler to C++.

11

LOG ENTRY:
The Road Much Less Travelled.

I cooked up an Eliza-based Pascal source
tokenizer and tried using it to see how good
it was (is) at doing some of the initial steps
in converting the Pascal compiler to C++.
Although the initial results seem a bit cringe-
worthy, they are not a complete disaster
either. So, I got really aggressive in creating
a debugging environment for the Eliza-based
tokenizer, as well as the original and these
results together are looking quite promising.
First, a glimpse of the Eliza-based method.

void PASCALCOMPILER::SOURCE_DUMP ()
{
 ELIZA eliza;
 text_object source;
 char *buff1, *buf2;
 int line;
 line = 0;
 if (SYSCOMM::m_source==NULL)
 {

WRITELN(OUTPUT,"NULL source file");
 return;
 }
 else

if ((*SYSCOMM::m_source).size()==0)
 {

WRITELN(OUTPUT,"Empty source file");
 return;
 }
 else do
 {

buff1 = (*SYSCOMM::m_source)[line];
 source = buff1;
 buf2;
 eliza.process = source;

eliza.pre_process (pascal2c);
 eliza.process >> buf2;
 WRITE(OUTPUT,buf2);
 delete buf2;
 line++;
 }
 while (buff1!=NULL);
}

The mostly complete source for this mess
can be found of course in the GitHub
repositories for this project and will be
updated regularly. Be very afraid. Use at
your own risk. Guaranteed to contain LOTS
of bugs. On the other hand - creating a bunch
of debugging code that inspects each symbol
as it is parsed, and which selects for things
like whatever is found starting with every

occurrence of the keyword PROCEDURE
and continuing until the first SEMICOLON
encountered thereafter - yields a very
promising result - which looks (in part) like
this.

12762: PROCEDURE
12763: "ASSIGN"
12764: (
12765: "EXTPROC"
12766: :
12767: "NONRESIDENT"
12768:)
12769: ;

12859: PROCEDURE
12860: "GENJMP"
12861: (
12862: "FOP"
12863: :
12864: "OPRANGE"
12865: ;

13012: PROCEDURE
13013: "LOAD"
13014: ;

13017: PROCEDURE
13018: "GENFJP"
13019: (
13020: "FLBP"
13021: :
13022: "LBP"
13023:)
13024: ;

13048: PROCEDURE
13049: "GENLABEL"
13050: (
13051: VAR
13052: "FLBP"
13053: :
13054: "LBP"
13055:)
13056: ;

13078: PROCEDURE
13079: "PUTLABEL"
13080: (
13081: "FLBP"
13082: :
13083: "LBP"
13084:)
13085: ;

13175: PROCEDURE
13176: "LOAD"
13177: ;

13469: PROCEDURE
13470: "STORE"
13471: (
13472: VAR
13473: "FATTR"
13474: :
13475: "ATTR"
13476:)
13477: ;

Notes on Converting the UCSD Pascal Compiler to C++.

12

Now without taking another digression into
a discussion of the meaning of the word
SELECT, and what might mean in the
context of relational databases, it should be
easy to see how if all we were to do is to
tokenize the input and the select sub-sections
according to certain properties, then
obviously - this leads to something that looks
like it might be handled quite easily by some
kind of #define TYPEGLOB_REORDER
(A, B, C, ...) macro. Even if I am not
proceeding at this point with trying to do a
pure preprocessor macro-based language
scheme. Somewhere, over the rainbow,
maybe someday?

Well, sort of - this is going to be a LONG
journey - but things are starting to move very
quickly as of late. Writing code is like that -
months go by and NOTHING gets done -
then in a couple of weekends I write a few
thousand lines of code. This should be fun
after all.

As if figuring out how to write a completely
independent lexer, that works as good as, or
better than the original wasn't enough work
to do - then there is the notion of how to
create ASTs (abstract syntax trees) that not
only work with PASCAL, with C/C++, and
yet also with standard English grammar,
which might contain dialog, or it might
contain commands like "KILL ALL
TROLLS!", or "Build me a time machine".
Oh, what fun.

Int PASCALSOURCE::SYMBOL_DUMP (LPVOID)
{
 size_t i;
 CREATE_SYMLIST(NULL);
 size_t sz = m_symbols.size();
 for (i=0;i<sz;i++)
 {
 DEBUG_SY(m_symbols[i],
 FORSY,DOSY);
 }
 WRITELN(OUTPUT);
 WRITELN(OUTPUT,(int)sz,
 " decoded");
 return 0;

}

Yet isn't it nice to contemplate being able to
search a project for every FOR statement or
every IF-THEN, or to make a list of all of the
procedures in the source, to be better able to
make sure the conversion is going correctly?
Yet why not search "The Adventures of Tom
Sawyer" for every reference to whitewash
preceded by or followed by fence, or
paragraphs that contain the name Injun Joe,
and cave or caves in either same, the
preceding or the following sentence,
paragraph, or context? Seems like a
daunting task, but is it? Maybe, or maybe
not.

So, let's throw another log on the fire, and do
it not with string manipulating functions like
strcmp, strcpy, etc., but with abstract
functions that can operate on, and transform
text objects, whether they are in the form of
pure ASCII strings, or tables, or linked lists,
or vectors connection maps that link tree
structures where the individual nodes of the
subtrees point to linked lists or vectors of
tokenized, and possibly compressed input
which might in turn reference tables of
dictionary pointers.

Writing, or re-writing a compiler is quite a
chore. Having some interesting code
analysis tools makes things a LOT more
interesting.

Now, back to killing trolls, and inventing
time travel?

Not, quite yet. Let's suppose that we are
analyzing real DNA, then one way of doing
THAT involves lab techniques that involve
things like restriction enzymes, centrifuges,
HPLC, CRISPR, DNA chip technology, etc.
All so that we can later look at a genome,
among other things, and have some way of
doing something like "Find sequences that
have CATTAGGTCTGA followed by

Notes on Converting the UCSD Pascal Compiler to C++.

13

ATCTACATCTAC or something like that,
with whatever else might be in the middle.
Like if we had a partial analysis of some
fragments of a real protein that we want to
learn more about, and we need to find out
where in some three billion base pairs that
might be encoded, even if that is also in
fragments, which might be subjected to later
post-translation editing.

Something like this looks VERY doable.

DEBUG_GENE (genome, "CATTAGGTCTGA" ,

"ATCTACATCTAC");

Just in case that sort of thing might be useful
to someone.

Suffice to mention, also, that if you have
been programming long enough, then you
know what it is like to sprinkle your code
with 1000's of TRACE statements, or trying
to pipe debugging information to a logfile
with fprintf statements, and all of the hassle
that goes into creating the format strings,
setting up and cleaning up buffers for all of
that, and so on. When PASCAL does it so
nicely - like this --

WRITE (OUTPUT,' ',SYMBOL_NAMES2[p.SY]);
WRITE (OUTPUT,'(',p.VAL.IVAL,')');

Letting us use the PASCAL-style WRITE
and WRITELN functions, which are
perfectly happy to accept strings, characters,
integers, floats, etc., and without needing all
of the Sanskrit.

This brings me back to LISP since it is so
easy to imagine something like this:

for_statemtns =
CONS(MAPCAR(DEBUG_SY(m_symbols,FORSY,DOSY)))
;

That is to say, instead of simply writing out
the debugging information, we could re-
capture the snippets from the token stream
and then construct the new meta-objects in

such a fashion, to make them more suitable
for additional processing, as if wanted to re-
parameterize the FOR statements from a
Pascal program, to be able to convert them
to C/C++ style for statements, just not with a
statement converter that is written explicitly
to convert for statements. but which works
more like regex in PERL, where if we could
find snippets that need conversion, then we
could more easily offer regex snippets that
are appropriately sanitized (where was I
reading out that?), on the one hand, yet while
remaining perfectly capable of working with
other data types, like actual DNA sequences,
that is to say - without loss of generality.

Thus, when contemplating how digital DNA
might work, in the context of so-called deep
learning neural network models, it should
now become more clear how the interaction
between traditional programming and deep
learning might result in several orders of
magnitude improvement in the
computational effectiveness, that is so as to
address not just the inefficiency of
contemporary efforts at A.I.

Now for whatever it's worth, let's take a look
at how well ELIZA does, at least at first
blush at converting the definition of the
pascal RECORD type contained in the
original compiler source code to C or C++.
Obviously, this is neither C or C++, nor is it
Pascal, but it does look interesting.
Obviously, some kind of
TYPEGLOB_REORDER(A,B,C,...) might
come in use here if we wanted to figure out
how to convert this nightmare, entirely
within the framework of the C/C++
preprocessor, i.e., with nothing more than
#defines and the other stuff that the pre-
processor allows. Yet, I don't think that that
is necessary, and I am not trying to turn the
preprocessor into a standalone compiler,
translator, bot engine, or whatever. Suffice
to say that it is sufficient for me to know if

Notes on Converting the UCSD Pascal Compiler to C++.

14

someone else could get Conway's game of
life to run in one line of APL and if yet
someone else could get a Turing complete
deterministic finite automata to run within
Conway, and if Tetris will run in the C++
preprocessor using ANSI graphic character
codes, etc., then it pretty much follows that
someone could probably shoe-horn Conway
into the pre-processor, and then write a
program that runs under Conway, that
accepts a collection of statements according
to some grammar, which we might call "A",
and transmogrifies it according to some set
of rules, such as might be referenced
according to some set ["Q","R","S"...], and
so on, so as to transform "A"->"B". Yeah,
Yeah, Yeah, Yeah. Or so the theory goes,
insofar as context-free grammars go.

struct STRUCTURE
{
 ADDRRANGE SIZE;
 FORM STRUCTFORM;
 union
 {
 SCALAR : (union (SCALKIND : DECLKIND
)
 DECLARED : (FCONST : CTP));
 SUBRANGE : (RANGETYPE : STP ;
 MIN , MAX : VALU);
 POINTER : (ELTYPE : STP);
 POWER : (ELSET : STP);
 ARRAYS : (AELTYPE , INXTYPE : STP ;

 union (AISPACKD : bool)
 TRUE : (ELSPERWD , ELWIDTH : BITRANGE
;

 union (AISSTRNG : bool)
 TRUE :(MAXLENG :
 1 .. STRGLGTH)));
 RECORDS : (FSTFLD : CTP ;
 RECVAR : STP);
 FILES : (FILTYPE : STP);
 TAGFLD : (TAGFIELDP : CTP ;
 FSTVAR : STP);
 VARIANT : (NXTVAR , SUBVAR : STP ;
 VARVAL : VALU;
)
};

Actually, now that I think about it, I don't
think that I particularly like context-free
grammars. Contextuality is actually good!
We need contextuality. Yet, as was
discussed earlier, one way to try to trick the
pre-processor into capturing parameters to

function and procedure declarations might
be to sometimes redefine the semicolon at
the end of a line or statement, temporarily as
in "#define ;));" so as to in effect add a
closing parenthesis to other substitutions,
like "#define UNTIL } while (|(" which does
some of the work for converting REPEAT...
UNTIL blocks, but it needs help with
captures and closures. Yet with code and not
a lot of code, we can do this:

Now we are running our DEBUB_SY
function with variables, instead of const
parameters. - and we have specified that we
are interested in capturing globs or whatever
might be found in between sets of
parentheses. With LOTS of work yet to be
done. Yet here we have a potentially very
interesting, and yet very simple solution to
the problem of providing principles of
capture and contextuality within the same
method, even while providing a method that
should work, or be easily extensible to work
in even more general cases.

	prometheus
	prometheus3

