

Copyright (c) 2023 Rob Bailey

The International Morse Code Unicode Extension (IMCUE)1

Introduction

 On the May 13, 2005, episode of the “Tonight Show,” host Jay Leno pitted two high-speed CW
operators (Chip Margelli, K7JA, and Ken Miller, K6CTW), armed with their trusty paddles and a
combined eighty-one years of experience with CW, against then world text-messaging champions Ben
Cook and Jason Miller, armed with flip phones and youth.2 As any amateur radio operator could have
predicted, the CW operators crushed the texters.

 In 2023, however, modern smartphones sport full-featured, on-screen alphanumeric keyboards.
Relevant here, they offer access to many if not all of the roughly one hundred fifty thousand currently

defined Unicode characters, including the roughly two thousand “emojis” (Japanese 絵文字 for

“pictograph”), like (officially known as “face with tears of joy”) or (officially “party popper”).3

 The current International Morse code, on the other hand, is not nearly as rich. It defines just
over fifty characters: the twenty-six Latin letters, the letter é, the ten numeric digits, and a handful of
punctuation symbols and procedural signs (“prosigns”).4 Popular extensions for non-Latin-based
languages add another roughly twenty letters.5 Consequently, if a 2023 rematch of the 2005 showdown
included anything but those seventy or so characters, the CW operators would be unable to even
complete the challenge. Enter the International Morse code Unicode Extension (“IMCUE”).

Morse code

 Morse code encodes letters, numbers, punctuation, and prosigns into a combination of the two
available symbols: dit (·) and dah (−). Timing typically relies on the duration of a dit:6 A dah is as long
as three dits; the space between dits and dahs within a character is one dit long; the space between
letters of a word is three dits long; and the space between words is seven dits long.

 Morse code then assigns sequences of dits and dahs to each character, with the shortest
sequences going to the most common characters. For example, the shortest possible Morse code
character, a single dit (·), represents the letter E. The comparatively uncommon letter Z, on the other

hand, is represented as dah dah di dit (−−··).7

1 I’d like to thank Martin Kauppinen for his invaluable consultation. I came across Martin’s blog post
https://markau.dev/posts/morse-unicode/ while doing research for this article, and he was kind enough to give me some
great ideas.

2 See http://www.arrl.org/arrlletter?issue=2005-05-20. It is unknown whether the texters were using a non-predictive
multitap system or a predictive system (like T9). See https://en.wikipedia.org/wiki/T9_(predictive_text).

3 See https://unicode-table.com/en/sets/top-emoji/.

4 See Recommendation ITU-R M.1677-1 (10/2009); https://en.wikipedia.org/wiki/Morse_code.

5 See https://en.wikipedia.org/wiki/Morse_code_for_non-Latin_alphabets. In this article, I’ll use “Morse code” to refer
to the International Morse Code and all similar telegraph codes.

6 Jon Bloom (KE3Z), of the ARRL Laboratory, wrote a great article on Morse code timing in the April 1990 QEX.

7 To send prosigns, Morse code uses special characters made up of two or three letters sent without any intervening
space (i.e., digraphs and trigraphs), commonly represented as an overbar over the characters. So, for example, the “WAIT”

procedural word (“proword”) is sent as A plus S with no intervening space—(·−···)— represented as AS. The Morse code

equivalent of the proword “MAY DAY” is SOS (···−−−···). See https://en.wikipedia.org/wiki/Prosigns_for_Morse_code.

Copyright (c) 2023 Rob Bailey

Unicode

 Unicode describes (among other things) a set of characters that can be used to consistently
represent written documents.8 It is maintained by the Unicode Consortium.9 The set of all characters
is called the “codespace.”10 Each Unicode character is called a “code point,” identified as U+0000

through U+10FFFF, where everything after the U+ is the code point’s numeric value in hexadecimal,

padded on the left with zeroes to at least four digits.11 After eliminating some reserved ones, there are
about a million possible code points in the entire codespace. The current version of Unicode—version
15.0—defines about one hundred fifty thousand code points.12

Encoding New Characters in Morse code

 Because Morse code’s earliest predecessors (c. 1830s) came along about a hundred and fifty
years before Unicode (c. 1980s), Morse code lacks a mechanism to encode anything like Unicode
characters. Furthermore, most of the reasonable-length combinations of dits and dahs have already
been assigned. Attempting to add even dozens or hundreds, much less millions, of new individual
characters would thus require the use of unreasonably long Morse code characters (perhaps as long
as twenty symbols).

 Other encoding systems have dealt with the problem of limited code space by reusing existing
character assignments and then bracketing them with special “modified characters on” and “modified
characters off” metacharacters. The ITA standards used for radioteletype (“RTTY”), for example, have
characters made up of only five bits, limiting the total possible characters to thirty-two. That is obviously
not enough to encode even the twenty-six Latin letters and ten numbers, much less international
characters, punctuation marks, etc. To overcome this limitation, RTTY uses a base set of characters
for the letters. Then, if the operator wants to send figures (or punctuation), he first sends the FIGURES

(i.e., “figures on”) metacharacter. All characters sent after that are interpreted as being from the
alternate character set. When the operator is finished sending figures or punctuation, he sends the
LETTERS (i.e., “figures off”) metacharacter, instructing the terminal to return to interpreting characters

as letters.

 The Wabun code solved a similar problem faced by anyone wanting to encode Japanese words
spelled with kana letters. Wabun assigns each kana letter its own Morse code character. In order to
avoid a lot of new, unwieldy Morse code characters, Wabun largely reuses existing Latin and non-Latin
Morse code characters. To avoid ambiguity, sequences of Wabun characters are prefixed with the

“Wabun on” prosign (DO (−··−−−)) and followed by the “Wabun off” prosign (SN (···−·)).

 I decided to adopt a similar method for IMCUE. Because emojis are most often sent one at a
time, however, I only needed to find a single IMCUE “prefix” prosign (as opposed to separate “IMCUE
on” and “IMCUE off” prosigns). Using this optimization, in order to send a Unicode character in Morse

8 See https://en.wikipedia.org/wiki/Unicode.

9 See https://home.unicode.org/.

10 The codespace is divided into seventeen “code planes” (numbered 0 through 16), which are then subdivided into
“code point blocks.” Each code point has exactly one General Category—Letter, Mark, Number, Punctuation, Symbol,
Separator, or Other—and those seven General Categories are themselves subdivided into many helpful subdivisions.

11 Some code points require multiple hex codes because of character modifiers, etc.

12 See https://www.unicode.org/versions/Unicode15.0.0/.

Copyright (c) 2023 Rob Bailey

code, an operator only needs to send <prefix><cp-code>, where <prefix> is the IMCUE prefix

prosign, and <cp-code> is a special (new) code for the desired code point (discussed below). (That

is, a word space terminates an IMCUE character, allowing for <cp-code> to be any number of

consecutive, uninterrupted characters.)

 The next step was to find the shortest Morse code character not already claimed by either the
ITU standard or the most popular non-Latin extensions. Compiling a list of all of the characters currently
in use revealed that between the Latin, non-Latin, and Wabun characters, all of the one-, two-, three-,
four-, and five-element characters are already assigned. Fortunately, most of the six-element
characters remain available. I rejected the shortest possible six-element character—i.e., six dits
[······]—as being too easy to confuse with the error correction character (eight dits (········)). And

because the <prefix> prosign is going to have to be seven elements long anyway, UC (··−−·−·) (for

“UniCode”) seemed the most obvious choice.

Assigning Code point Codes

 The last step was to assign a <cp-code> to each desired code point. I consulted the Unicode

Consortium’s blog to find a list of the most commonly used emojis,13 and, in the spirit of Morse code, I
assigned a one- or two-character short code to the most common one hundred emojis (with the
commonest emojis getting one-character codes). In the following table, Hex ID is the code point’s
identification without the U+. (Note that some emojis use multiple codes (e.g., a four-digit code followed

by the modifier code U+FE0F). E is the emoji. Name is the emoji’s official name. And CPC is the

emoji’s new IMCUE <cp-code>:

Hex ID E Name CPC

1F602 face with tears of joy J

2764 FE0F red heart H

1F923 rolling on the floor laughing R

1F44D thumbs up U

1F62D loudly crying face C

1F64F folded hands P

1F618 face blowing a kiss K

1F970 smiling face with hearts SH

1F60D smiling face with heart-eyes E

1F60A smiling face with smiling eyes SS

1F389 party popper PY

1F601
beaming face with smiling
eyes B

1F495 two hearts H2

1F97A pleading face LF

1F605 grinning face with sweat G

1F525 fire F

263A FE0F smiling face S

1F926 person facepalming FP

2665 FE0F heart suit HS

13 See https://home.unicode.org/the-most-frequent-emoji/.

Hex ID E Name CPC

1F937 person shrugging PS

1F644 face with rolling eyes RE

1F606 grinning squinting face Q

1F917 hugging face HF

1F609 winking face W

1F382 birthday cake BC

1F914 thinking face TF

1F44F clapping hands CH

1F642 slightly smiling face LS

1F633 flushed face FF

1F973 partying face PF

1F60E smiling face with sunglasses FG

1F44C OK hand OK

1F49C purple heart PH

1F614 pensive face PN

1F4AA flexed biceps FB

2728 sparkles SP

1F496 sparkling heart SR

1F440 eyes EY

Copyright (c) 2023 Rob Bailey

Hex ID E Name CPC

1F60B face savoring food MM

1F60F smirking face SM

1F622 crying face C1

1F449 backhand index pointing right FR

1F497 growing heart GT

1F629 weary face WY

1F4AF hundred points ATT

1F339 rose RS

1F49E revolving hearts RV

1F388 balloon BL

1F499 blue heart BH

1F603 grinning face with big eyes GR

1F621 pouting face PT

1F490 bouquet BQ

1F61C winking face with tongue WF

1F648 see-no-evil monkey SE

1F91E crossed fingers CF

1F604 grinning face with smiling eyes GS

1F924 drooling face DF

1F64C raising hands RH

1F92A zany face ZF

2763 FE0F heart exclamation HX

1F600 grinning face GF

1F48B kiss mark KS

1F480 skull SK

1F447 backhand index pointing down FD

1F494 broken heart BR

1F60C relieved face RL

1F493 beating heart BG

1F929 star-struck ST

1F643 upside-down face UF

Hex ID E Name CPC

1F62C grimacing face GM

1F631 face screaming in fear FS

1F634 sleeping face SF

1F92D face with hand over mouth HM

1F610 neutral face NF

1F31E sun with face SU

1F612 unamused face UA

1F607 smiling face with halo HL

1F338 cherry blossom CY

1F608 smiling face with horns SD

1F3B6 musical notes M2

270C FE0F victory hand VH

1F38A confetti ball CB

1F975 hot face HT

1F61E disappointed face DP

1F49A green heart GH

2600 FE0F sun SN

1F5A4 black heart BK

1F4B0 money bag MB

1F61A kissing face with closed eyes KC

1F451 crown CN

1F381 wrapped gift WG

1F4A5 collision CO

1F64B person raising hand PR

2639 FE0F frowning face FN

1F611 expressionless face XF

1F974 woozy face WZ

1F448 backhand index pointing left FL

1F4A9 pile of poo PP

2705 check mark button CM

1F44B waving hand WV

For example, to send the popular “face with tears of joy” emoji , one would send UCJ.

 If the desired code point isn’t in this table, the operator can send
<prefix><cp-hexID>, where <cp-hexID> is the hexadecimal identification of the code

point, without the U+.14 For example, the code point identification for the “high voltage”

14 When sending hexadecimal code point identifications, operators should avoid using the common
Morse code truncations for the numbers (e.g., T for 0, N for 9, and so on). Four of them (A for 1, E for 5, B

Copyright (c) 2023 Rob Bailey

code point is U+26A1, so one would send UC26A1. The ground symbol ⏚ is U+23DA,

and the fuse symbol ⏛ is U+23DB, so one could send both by transmitting UC23DA

UC23DB. To send multi-code code points, one repeats the <prefix> prosign before each

code point identification. For example, the code point identification for the “eye” emoji

is U+1F441 U+FE0F, so one would send UC1F441 UCFE0F.

 In order for the table to be extended as emoji popularity changes, I intentionally
did not assign all of the available 1- and 2-character <cp-code> combinations.

Furthermore, there is no reason why non-emoji Unicode code points (like the fuse
Unicode character) cannot be assigned their own, perhaps longer <cp-code> (like

“FUSE”).

for 7, and D for 8) overlap with the letters used to represent hexadecimal numbers (i.e., A through F) and

would therefore be ambiguous when sending a hexadecimal number.

