
USB arcade joystick x4 plus Simon says game

David Guerrero Martos

January 17, 2023

1 Introduction

1.1 Motivation

Thanks to the emulators available nowadays I was able to make my own arcade cabinet. Although
I employed genuine arcade joysticks and a vintage CRT display I didn't get the same feeling that
playing the original arcades. When playing the original, death was dramatic: if you �died� in the
game and you wanted to continue playing you had to spend a valuable coin. Since emulators let
you simulate the insertion of a coin just by pressing a key, in practical terms you have unlimited
lives and the feeling is lost. To solve this I devised a joystick set system with an integrated credit
counter. The system disables the insert coin buttons unless credits are available and includes a
little challenge that must be won in order to obtain them.

1.2 The challenge

It is the Simon says electronic game created by Ralph Baer and Howard J. Morrison in 1978.
The following description of the game has bee taken from wikipedia (https://en.wikipedia.org/
wiki/Simon_%28game%29):

The device has four colored buttons, each producing a particular tone when it is
pressed or activated by the device. A round in the game consists of the device lighting
up one or more buttons in a random order, after which the player must reproduce that
order by pressing the buttons. As the game progresses, the number of buttons to be
pressed increases.

As in the original Simon says game there are several skill levels. The number of credits obtained
when the game is won will depend on the selected skill level.

1.3 Features

� Includes four arcade joysticks using just an USB connector.

� No special drivers are needed.

� Each joystick has till twelve generic buttons and a backlighted insert coin button.

� The insert coin buttons are also employed in an integrated Simon says game in order to obtain
credits.

1

https://en.wikipedia.org/wiki/Simon_%28game%29
https://en.wikipedia.org/wiki/Simon_%28game%29


� The insert coin buttons are disabled when there are no credits available.

2 What is needed

2.1 Hardware

� Four arcade joysticks and, for each of them, twelve generic buttons

� Four backlighted arcade colored buttons (yellow, blue, red and green)

� Four buttons to select the di�cult level of the Simon Says game and start it

� Six buttons to control the emulator

� A little speaker or buzzer

� At least a resistor of about 1000 ohms. The lights of the backlighted buttons may require
additional series resistors.

� 72 Schottky diodes

� A Teensy++ 2.0 board (available at https://www.pjrc.com/teensy)

� A HD44780 liquid-crystal display

� Interconnection wires

2.2 Firmware

The compiled �rmware and the source code is available at https://hackaday.io/project/189223-enhanced-arcade-joystick-x4-simon-says-game/
files.

2.3 Software

In order to program the board you will need the Teensy Loader application available at https:

//www.pjrc.com/teensy/loader.html. If you also want to recompile the �rmware you will need
the avr-gcc compiler (http://www.nongnu.org/avr-libc/) as well as the GNU Make tool (http:
//www.gnu.org/software/make/).

Of course, in order to enjoy playing you will need games and/or emulators, for example the
MAME emulator (http://mamedev.org/).

3 Building

3.1 Hardware

The components must be wired as shown in the following schematic:

2

https://www.pjrc.com/teensy
https://hackaday.io/project/189223-enhanced-arcade-joystick-x4-simon-says-game/files
https://hackaday.io/project/189223-enhanced-arcade-joystick-x4-simon-says-game/files
https://www.pjrc.com/teensy/loader.html
https://www.pjrc.com/teensy/loader.html
http://www.nongnu.org/avr-libc/
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://mamedev.org/


3



The blue, yellow, green and red backlighted insert coin buttons must be connected to the
lines vgnd1, vgnd2, vgnd3 and vgnd4 respectively. The lights of some backlighted buttons can
be connected directly to a voltage of 5V like the one generated by the board. Other models may
require additional series resistors in order to limit the current through the LEDs. In case of doubt
look at its data sheet.

3.2 Firmware

3.2.1 Compiling

This step is not required unless you want to modify the source code. From a terminal/command
line go to the folder/directory containing the source code and execute the following:

� make clean

� make all

This will generate a .hex �le containing the compiled �rmware. After connectig the teensy board
you can program it as shown in the next section or, if you have installed the command line version
of the teensy loader application, program it directly by executing this:

� make program

You will be requested to push the button of the teensy board. Do so and the �rmware will be
downloaded.

3.2.2 Programming

You can �nd a detailed description of the following stelps at https://www.pjrc.com/teensy/

loader.html.

� Connect the teensy board to your computer.

� Execute the teensy loader application.

� Push the botton of the teensy board.

� From the File name, choose "Open HEX File" and open the .hex �le containing the �rmware
to be programmed.

� Select "Program" from the "Operations" menu, or click the Program button on the tool bar.
You should see the "Download Complete" message.

� Choose "Reboot" from the "Operations" menu, or click the Reboot button on the tool bar.

3.3 Software con�guration

When connecting the system to your computer it will recognize a set of joysticks. No special drivers
should be needed. However, if the system is going to be used with arcade emulation software you
will need to con�gure the emulator properly. First you will need to set the �rst four detected
interfaces as the joysticks for the players 1, 2, 3 and 4. The �fth interface is used for interacting

4

https://www.pjrc.com/teensy/loader.html
https://www.pjrc.com/teensy/loader.html


with emulators. From now on we will call it control interface. Although the operating system will
detect the control interface as 12 buttons joystick, just the buttons in the ranges 1-6 and 9-12 are
implemented. Those in the range 9-12 are intended to be used for coin-op game emulators and
should be con�gured as the insert coin button for the player 1, 2, 3 and 4 respectively. The six
remaining buttons of the control interface can be con�gured for tasks such as pausing the emulation,
resetting the emulated system, etc.

4 Usage with coin-op game emulators

The joystick set has a counter of credits to be used in coin-op game emulators. The number of
available credits is shown in the liquid crystal display. If there are available credits and a coin-
op game emulator is running, a player can simulate a coin insertion by following the following
instructions:

1. If a Simon Says game is running (see bellow), wait till it �nishes.

2. Make sure a coin-op game emulator is running. Otherwise you will lose a credit.

3. Make sure the emulated game support your player number. Otherwise you will lose a credit.

4. Push the insert coin button of your player.

After this, the credit counter will decrease. In order to increase it you will have to play the Simon
Says game embedded in the joystick set by following these steps:

1. Push the Simon Says start button corresponding to the desired di�cult level.

2. The system will generate sequences of lights and sounds. Reproduce those sequences by
pressing the colored insert coin buttons till the liquid crystal display �ashes.

The maximum length of the sequence and the number of credits obtained when winning a Simon
Says game depend on the selected di�cult level as shown in the following table:

di�cult level 1 2 3 4
maximum length of the sequence 8 14 20 31

credits obtained when winning the game 5 50 500 unlimited
Alternatively, if an insert coin button is pressed when there are no available credits then a Simon

says game will start in a extra-easy non canonical mode. This mode provides an only credit and
its maximum length sequence is four.

5 Service mode

The system includes a switch that sets the embedded Simon Says game in a special service mode
when closed. The behavior described above corresponds to the normal mode. In service mode the
Simon Says game is won as soon as it is started. This makes it possible to increase the credit
counter by just pushing a button.

5



Acknowledgments

The �rmware is based on the Teensy Gamepad project by Josh Kropf (josh@slashdev.ca) which in
turn is based on the keyboard example for the Teensy board (http://www.pjrc.com/teensy/usb_
keyboard.html , Copyright (c) 2008 PJRC.COM, LLC).

The LCD library was developed by Efthymios Koktsidis (https://github.com/efthymios-ks/AVR-
HD44780, Copyright (c) 2016 Efthymios Koktsidis ).

The Simon game replication was possible thanks to the reverse engineering carried out by Simon
Inns (http://www.waitingforfriday.com/index.php/Reverse_engineering_an_MB_Electronic_
Simon_game).

6

http://www.pjrc.com/teensy/usb_keyboard.html
http://www.pjrc.com/teensy/usb_keyboard.html
https://github.com/efthymios-ks/AVR-HD44780
https://github.com/efthymios-ks/AVR-HD44780
http://www.waitingforfriday.com/index.php/Reverse_engineering_an_MB_Electronic_Simon_game
http://www.waitingforfriday.com/index.php/Reverse_engineering_an_MB_Electronic_Simon_game

	Introduction
	Motivation
	The challenge
	Features

	What is needed
	Hardware
	Firmware
	Software

	Building
	Hardware
	Firmware
	Compiling
	Programming

	Software configuration

	Usage with coin-op game emulators
	Service mode

