

NCR 5380 SCSI

Interface Chip

Design Manual

Copyright © 1985, by NCR Corporation Dayton, Ohio All Rights Reserved Printed in U.S.A.

This document contains the latest information available at the time of publication. However, NCR reserves the right to modify the contents of this material at any time. Also, all features, functions and operations described herein may not be marketed by NCR in all parts of the world. Therefore, before using this document, consult your NCR representative or NCR office for the information that is applicable and current.

TABLE OF CONTENTS

SECTION			PAG	λE		
1.	Genera	I Description	(3		
2.	SCSI B	ackground	4	4		
3.		ck Diagram				
4.	Pin Des	scription				
	4.1	Microprocessor Interface Signals	(6		
	4.2	SCSI Interface Signals				
5.	Electric	al Characteristics				
6.	Internal	Registers				
	6.0	General				
	6.1	Data Registers	'	10		
	6.1.1	Current SCSI Data Register	'	10		
	6.1.2	Output Data Register	'	10		
	6.1.3	Input Data Register				
	6.2	Initiator Command Register	'	11		
	6.3	Mode Register	'	13		
	6.4	Target Command Register	'	14		
	6.5	Current SCSI Bus Status Register	'	15		
	6.6	Select Enable Register		15		
	6.7	Bus and Status Register	'	15		
	6.8	DMA Registers	'	16		
	6.8.1	Start DMA Send	'	16		
	6.8.2	Start DMA Target Receive		17		
	6.8.3	Start DMA Initiator Receive	'	17		
	6.9	Reset Parity/Interrupt	'	17		
7.	On-Chi	p SCSI Hardware Support	'	18		
8.	Interrup	bts				
	8.1	Selection/Reselection		19		
	8.2	End of Process (EOP) Interrupt	:	20		
	8.3	SCSI Bus Reset	:	21		
	8.4	Parity Error	:	21		
	8.5	Bus Phase Mismatch		22		
	8.6	Loss of BSY	:	22		

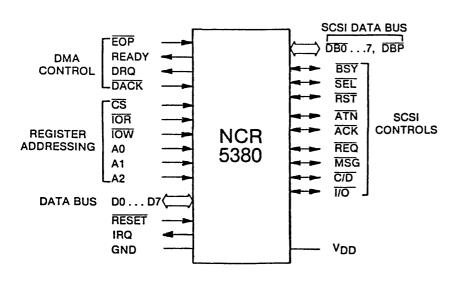
9.	Reset C	Conditions
	9.1	Hardware Chip Reset
	9.2	SCSI Bus Reset Received
	9.3	SCSI Bus Reset Issued
10.	Data Tr	ansfers
	10.1	Programmed I/O Transfers
	10.2	Normal DMA Mode
	10.3	Block Mode DMA
	10.4	Pseudo DMA Mode
	10.5	Halting a DMA Operation
	10.5.1	Using the EOP Signal
	10.5.2	
	10.5.3	Resetting the DMA MODE Bit
11.	Externa	I Timing Diagrams
	11.1	CPU Write
	11.2	CPU Read
	11.3	DMA Write (Non-block Mode) Target Send
	11.4	DMA Write (Non-block Mode) Initiator Send
	11.5	DMA Read (Non-block Mode) Target Receive
	11.6	DMA Read (Non-block Mode) Initiator Receive
	11.7	DMA Write (Block Mode) Target Send
	11.8	DMA Read (Block Mode) Target Receive
	11.9	Reset
	11.10	Arbitration

APPENDICES

A1.	NCR 5380 vs. NCR 5385/86	. 34
	Flowcharts/Software	. 35
A3.	65C02 Interface Diagram	. 50
A4.	NCR 5381 Differential Pair Option	. 51
A5.	SCSI/Plus	. 54
A6.	Register Reference Chart	. 56

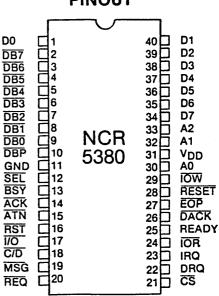
SECTION 1 GENERAL DESCRIPTION

The NCR 5380 SCSI interface device is a 40 pin NMOS device designed to accommodate the Small Computer Systems Interface (SCSI) as defined by the ANSI X3T9.2 committee. The NCR 5380 operates in both the initiator and target roles and can therefore be used in host adapter, host port and formatter designs. This device supports arbitration, including reselection. Special high-current open collector output drivers, capable of sinking 48mA at 0.5V, allow for direct connection to the SCSI bus. Differential pair operation is supported using a 48 pin version of this part, designated the NCR 5381 (refer to Appendix A4).


The NCR 5380 communicates with the system microprocessor as a peripheral device. The chip is controlled by reading and writing several internal registers which may be addressed as standard or memory mapped I/O. Minimal processor intervention is required for DMA transfers because the 5380 controls the necessary handshake signals. The NCR 5380 interrupts the MPU when it detects a bus condition that requires attention. Normal and block mode DMA is provided to match many popular DMA controllers.

SCSI INTERFACE

- * Asynchronous, interface to 1.5 MBPS
- * Supports initiator and target roles
- * Parity generation w/optional checking
- * Supports arbitration
- * Direct control of all bus signals
- * High current outputs drive SCSI bus directly


MPU INTERFACE

- * Memory or I/O mapped interface
- * DMA or programmed I/O
- * Normal or block mode DMA
- * Optional MPU interrupts

FUNCTIONAL PIN GROUPING

PINOUT

SECTION 2 SCSI BACKGROUND

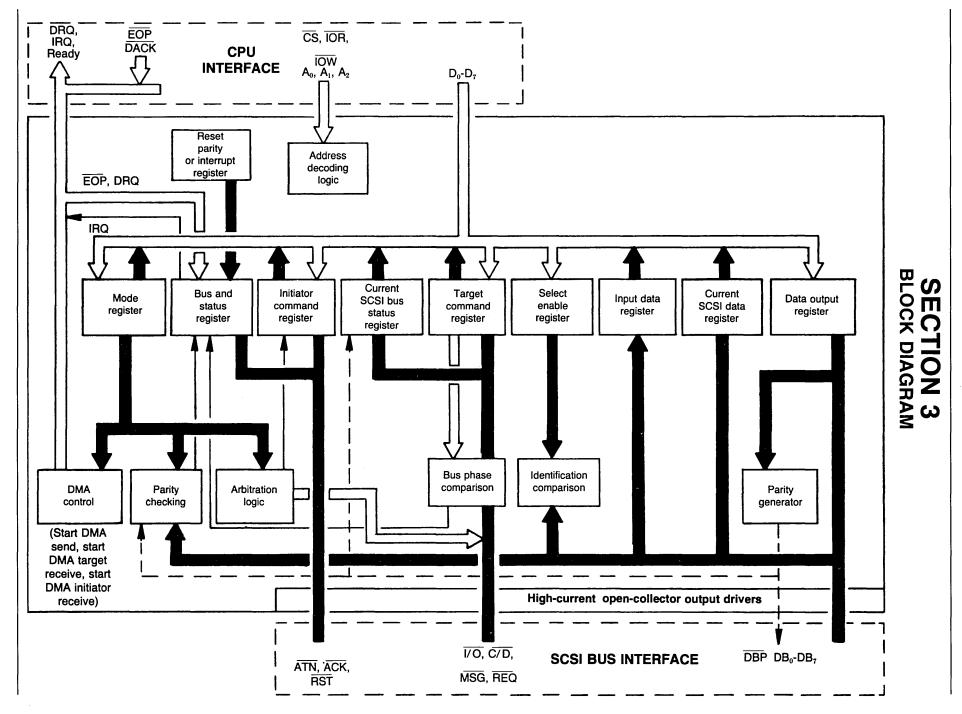
SCSI (Small Computer Systems Interface) has evolved from the SASI (Shugart Associates Systems Interface) disk controller interface standard developed by Shugart Associates in the late 1970's. NCR and Shugart jointly approached the ANSC X3T9.3 subcommittee in December of 1981 and proposed that a committee be formed to develop an intelligent interface standard based on SASI. The ANSC X3T9.3 subcommittee divided into two groups so that SASI could be pursued. In February of 1982, NCR and Shugart Associates presented SASI as a working document. It was agreed that a separate group should develop the standard and the ANSC X3T9.2 subcommittee was established. This group met in April of that year and formally changed the name to the Small Computer Systems Interface (SCSI).

The proposed standard has since been forwarded from the subcommittee and is becoming a major industry standard. It is expected that other standards organizations such as ECMA (European Computer Manufactures Association) and ISO (International Standards Organization) will adopt the proposed standard as well.

NCR Microelectronics announced the NCR 5385, the first SCSI protocol controller, in April of 1983. This product family includes the NCR 5386 and the soon-to-be-announced NCR 5386S. The NCR 5380 and 5381 were designed to compliment this initial offering. Differences between the product families are described in Appendix A1.

This design manual is not an SCSI specification and assumes some prior knowledge of the SCSI proposed standard. Copies of the proposed standard may be obtained, with pre-payment of \$20, from:

X3 Secretariat, Computer and Business Equipment Manufacturers Association 311 First Street, NW, Suite 500 Washington, D.C. 20001


Please include a self-addressed mailing label.

Other documents which may be useful are:

- NCR 5385 SCSI Protocol Controller Data Sheet (MC-704)
- NCR 5385 SCSI Protocol Controller User's Guide (MC-903)
- SCSI Engineering Notebook

These documents may be obtained by contacting your local NCR Microelectronics sales representative or by writing/ calling:

NCR Microelectronics Logic Products Marketing 1635 Aeroplaza Drive Colorado Springs, CO 80916 PH# 1-800-525-2252

σı

SECTION 4 PIN DESCRIPTION

4.1 Microprocessor Interface Signals

Pin Name	Pin #	Description
A0, A1, A2	30, 32, 33	INPUTS These signals are used with $\overline{\text{CS}}$, $\overline{\text{IOR}}$ or $\overline{\text{IOW}}$ to address all internal registers.
CS	21	INPUT Chip Select enables a read or write of the internal register selected by A0, A1 and A2. \overline{CS} is an active low signal.
DACK	26	INPUT DMA Acknowledge resets DRQ and selects the data register for input or output data transfers. DACK is an active low signal.
DRQ	22	OUTPUT DMA Request indicates that the data register is ready to be read or written. DRQ occurs only if DMA mode is true in the Command Register. It is cleared by DACK.
D0 D7	1,40 34	BI-DIRECTIONAL, TRI-STATE Microprocessor data bus active high
EOP	27	INPUT The End of Process signal is used to terminate a DMA transfer. If asserted during a DMA cycle, the current byte will be transferred but no additional bytes will be requested.
ĪOR	24	INPUT I/ O Read is used to read an internal register selected by \overline{CS} and A0, A1 and A2. It also selects the Input Data Register when used with \overline{DACK} . \overline{IOR} is active low.

Pin Name	Pin #	Description
ĪOW	29	INPUT I/ O Write is used to write an internal register selected by \overline{CS} and A0, A1 and A2. It also selects the Output Data Register when used with \overline{DACK} . \overline{IOW} is active low.
IRQ	23	OUTPUT Interrupt Request alerts a microprocessor of an error condition or an event completion.
READY	25	OUTPUT Ready can be used to control the speed of block mode DMA transfers. This signal goes active to indi- cate the chip is ready to send/receive data and re- mains false after a transfer until the last byte is sent or until the DMA Mode bit is reset.
RESET	28	INPUT Reset clears all registers. It does not force the SCSI signal RST to the active state. RESET is an active low signal.
Power Signals		
Pin Name	Pin #	Description

Pin Name	Pin #	Description	
VDD	31	+5 VOLTS	
GND	11	GROUND	

4.2 SCSI Interface Signals

The following signals are all bi-directional, active low, open collector signals. With 48 mA sink capability, all pins interface directly with the SCSI bus.

Pin Name	Pin #	Description
ACK	14	Driven by an initiator, \overline{ACK} indicates an acknow- ledgment for a REQ/ACK data transfer handshake. In the target role, \overline{ACK} is received as a response to the \overline{REQ} signal.
ATN	15	Driven by an initiator, $\overline{\text{ATN}}$ indicates an attention condition. This signal is received in the target role.
BSY	13	This signal indicates that the SCSI bus is being used and can be driven by both the initiator and the target device.
C/D	18	A signal driven by the target, $\overline{C/D}$ indicates Control or Data information is on the data bus. This signal is received by the initiator.
1/0	17	$\overline{I/O}$ is a signal driven by a target which controls the direction of data movement on the SCSI bus. True indicates input to the initiator. This signal is also used to distinguish between Selection and Reselection phases.
MSG	19	$\overline{\text{MSG}}$ is a signal driven by the target during the Message phase. This signal is received by the initiator.
REQ	20	Driven by a target, $\overrightarrow{\text{REQ}}$ indicates a request for a REQ/ACK data transfer handshake. This signal is received by the initiator.
RST	16	The \overrightarrow{RST} signal indicates an SCSI bus RESET condition.
DB0 DBP	92 10	These eight data bits ($\overline{DB0}$ - $\overline{DB7}$) plus a parity bit (\overline{DBP}) form the data bus. $\overline{DB7}$ is the most significant bit and has the highest priority during the Arbitration phase. Data parity is odd. Parity is always generated and optionally checked. Parity is not valid during arbitration.
SEL	12	$\overline{\text{SEL}}$ is used by an initiator to select a target or by a target to reselect an initiator.

SECTION 5 ELECTRICAL CHARACTERISTICS OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	MAX	UNITS
Supply Voltage Supply Current Ambient Temperature	V _{DD} I _{DD} TA	4.75 0	5.25 145 70	Volts mA. °C

INPUT SIGNAL REQUIREMENTS

PARAMETER	CONDITIONS	MIN	MAX	UNITS
High-level, Input VIH Low-level, Input VIL		2.0 -0.3	5.25 0.8	Volts Volts
SCSI BUS pins 2 20 High-level Input Current, I _{IH} Low-level Input Current, I _{IL}			50 -50	<i>ц</i> а. <i>ц</i> а.
All other pins High-level Input Current, IIH Low-level Input Current, IIL			10 -10	да. да.

OUTPUT SIGNAL REQUIREMENTS

PARAMETER	CONDITIONS	MIN	MAX	UNITS
SCSI BUS pins 2 20 Low-level Output VOL	V _{DD} = 4.75 V I _{OL} = 48.0mA.		0.5	Volts
All other pins High-level Output VOH Low-level Output VOL	V _{DD} = 4.75 V I _{OH} = -3.0mA. V _{DD} = 4.75 V I _{OL} = 7.0 mA.	2.4	0.5	Volts Volts

PRELIMINARY

Notice: This is not a final specification. Some parametric limits are subject to change.

SECTION 6 INTERNAL REGISTERS

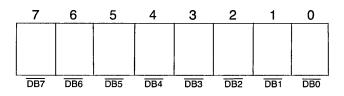
6.0 General

The NCR 5380 SCSI Interface Device appears as a set of eight registers to the controlling CPU. By reading and writing the appropriate registers, the CPU may initiate any SCSI bus activity or may sample and assert any signal on the SCSI bus. This allows the user to implement all or portions of the SCSI protocol in software. These registers are read (written) by activating \overline{CS} with an address on A2-A0 and then issuing an \overline{IOR} (\overline{IOW}) pulse. This section describes the operation of the internal registers.

Address

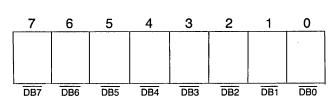
A2	A1	A 0	R/W	Register Name
0	0	0	R	Current SCSI Data
0	0	0	W	Output Data
0	0	1	R/W	Initiator Command
0	1	0	R/W	Mode
0	1	1	R/W	Target Command
1	0	0	R	Current SCSI Bus Status
1	0	0	W	Select Enable
1	0	1	R	Bus and Status
1	0	1	W	Start DMA Send
1	1	0	R	Input Data
1	1	0	W	Start DMA Target Receive
1	1	1	R	Reset Parity/Interrupts
1	1	1	W	Start DMA Initiator Receive

Register Summary

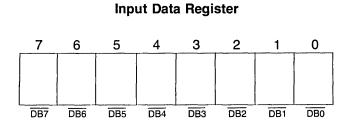

6.1 Data Registers

The data registers are used to transfer SCSI commands, data, status, and message bytes between the microprocessor data bus and the SCSI bus. The NCR 5380 does not interpret any information that passes through the data registers. The data registers consist of the transparent Current SCSI Data Register, the Output Data Register, and the Input Data Register.

6.1.1 Current SCSI Data Register— Address 0 (Read-only)

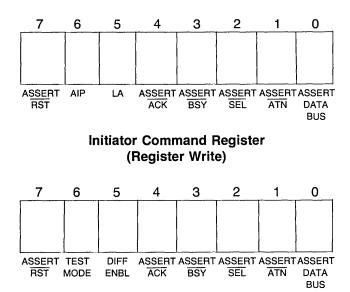

The Current SCSI Data Register is a read-only register which allows the microprocessor to read the active SCSI data bus. This is accomplished by activating \overline{CS} with an address on A2-A0 of 000 and issuing an \overline{IOR} pulse. If parity checking is enabled, the SCSI bus parity is checked at the beginning of the read cycle. This register is used during a programmed I/O data read or during arbitration to check for higher priority arbitrating devices. Parity is not guaranteed valid during arbitration.

6.1.2 Output Data Register— Address 0 (write-only)


The Output Data Register is a write-only register that is used to send data to the SCSI bus. This is accomplished by either using a normal MPU write, or under DMA control, by using IOW and DACK. This register is also used to assert the proper ID bits or the SCSI bus during the arbitration and selection phases.

Output Data Register

6.1.3 Input Data Register— Address 6 (Read-only)


The Input Data Register is a read-only register that is used to read latched data from the SCSI bus. Data is latched either during a DMA Target receive operation when ACK (pin 14) goes active or during a DMA Initiator receive when REQ (pin 20) goes active. The DMA Mode bit (port 2, bit 1) must be set before data can be latched in the Input Data Register. This register may be read under DMA control using IOR and DACK. Parity is optionally checked when the Input Data Register is loaded.

6.2 Initiator Command Register— Address 1 (Read/Write)

The Initiator Command Register is a read/write register which is used to assert certain SCSI bus signals, to monitor those signals, and to monitor the progress of bus arbitration. Many of these bits are significant only when being used as an Initiator; however, most can be used during Target role operation.

Initiator Command Register (Register Read)

The following describes the operation of all bits in the Initiator Command Register.

BIT 7—ASSERT RST

Whenever a one (1) is written to bit 7 of the Initiator Command Register, the RST signal (pin 16) is asserted on the SCSI bus. The RST signal will remain asserted until this bit is reset or until an external RESET (pin 28) occurs. After this bit is set (1), IRQ (pin 23) goes active and all internal logic and control registers are reset (except for the interrupt latch and the ASSERT RST bit). Writing a zero (0) to bit 7 of the Initiator Command Register de-asserts the RST signal. Reading this register simply reflects the status of this bit.

BIT 6—AIP (Arbitration in Progress—read bit)

This bit is used to determine if arbitration is in progress. For this bit to be active, the ARBITRATE bit (port 2, bit 0) must have been set previously. It indicates that a bus free condition has been detected and that the chip has asserted \overrightarrow{BSY} (pin 13) and the contents of the Output Data Register (port 0) onto the SCSI bus. AIP will remain active until the ARBITRATE bit is reset.

BIT 6—TEST MODE (write bit)

This bit may be written during a test environment to disable all output drivers, effectively removing the NCR 5380 from the circuit. Resetting this bit returns the part to normal operation.

BIT 5—LA (Lost Arbitration—read bit)

This bit, when active, indicates that the NCR 5380 detected a bus free condition, arbitrated for use of the bus by asserting $\overrightarrow{\text{BSY}}$ (pin 13) and its ID on the data bus and lost arbitration due to $\overrightarrow{\text{SEL}}$ (pin 12) being asserted by another bus device. For this bit to be active the ARBITRATE bit (port 2, bit 0) must be active.

BIT 5—DIFF ENBL (Differential Enable—write bit)

This bit is not used in the NCR 5380 and is only meaningful in the NCR 5381, a 48 pin device which supports external differential pair transceivers. DIFF ENBL should only be asserted if the device is physically connected as either an Initiator or as a Target. If enabled, the signal TGS (pin 14—NCR 5381) is asserted if the TARGETMODE bit (port 2, bit 6) is set (1) or the signal IGS (pin 12—NCR 5381) is asserted if the TARGETMODE bit is reset (0).

BIT 4-ASSERT ACK

This bit is used by the bus initiator to assert \overrightarrow{ACK} (pin 14) on the SCSI bus. In order to assert \overrightarrow{ACK} the TARGETMODE bit (port 2, bit 6) must be false. Writing a zero to this bit resets \overrightarrow{ACK} on the SCSI bus. Reading this register simply reflects the status of this bit.

BIT 3-ASSERT BSY

Writing a one (1) into this bit position asserts \overline{BSY} (pin 13) onto the SCSI bus. Conversely, a zero (0) resets the \overline{BSY} signal. Asserting \overline{BSY} indicates a successful selection or reselection and resetting this bit creates a bus disconnect condition. Reading this register simply reflects the status of this bit.

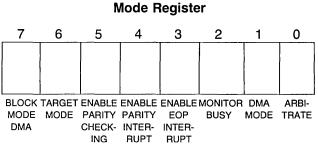
BIT 2-ASSERT SEL

Writing a one (1) into this bit position asserts SEL (pin 12) onto the SCSI bus. SEL is normally asserted after arbitration has been successfully completed. SEL may be de-asserted by resetting this bit to a zero. A read of this register simply reflects the status of this bit.

BIT 1—ASSERT ATN

ATN (pin 15) may be asserted on the SCSI bus by setting this bit to a one (1) if the TARGETMODE bit (port 2, bit 6) is false. ATN is normally asserted by the initiator to request a Message Out bus phase. Note that since ASSERT SEL and ASSERT ATN are in the same register, a select with ATN may be implemented with one MPU write. ATN may be de-asserted by resetting this bit to a zero (0). A read of this register simply reflects the status of this bit.

BIT 0-ASSERT DATA BUS


The ASSERT DATA BUS bit, when set, allows the contents of the Output Data Register to be enabled as chip outputs on the signals DB0-DB7. Parity is also generated and asserted on DBP. In the NCR 5381, this bit asserts the DBEN signal (pin 36). Resetting this bit disables the output data bus or the DBEN signal.

When connected as an Initiator, the outputs are only enabled if the TARGETMODE bit (port 2, bit 6) is false, the received signal $\overline{I/O}$ (pin 17) is false, and the phase signals (C/D, I/O, and MSG) match the contents of the ASSERT $\overline{C/D}$, ASSERT $\overline{I/O}$, and ASSERT \overline{MSG} in the Target Command Register.

This bit should also be set during DMA send operations.

6.3 Mode Register—Address 2 (Read/Write)

The Mode Register is used to control the operation of the chip. This register determines whether the NCR 5380 operates as an initiator or a target, whether DMA transfers are being used, whether parity is checked, and whether interrupts are generated on various external conditions. This register may be read to check the value of these internal control bits. The following describes the operation of these control bits.

BIT 7—BLOCK MODE DMA

The BLOCK MODE DMA bit controls the characteristics of the DMA DRQ-DACK handshake. When this bit is reset (0) and the DMA MODE bit is active (1), the DMA handshake uses the normal interlocked handshake and the rising edge of DACK (pin 26) indicates the end of each byte being transferred. In block mode operation, BLOCK MODE DMA bit set (1) and DMA MODE bit set (1), the end of IOR (pin 24) or IOW (pin 29) signifies the end of each byte transferred and DACK is allowed to remain active throughout the DMA operation. READY (pin 25) can then be used to request the next transfer.

BIT 6—TARGETMODE

The TARGETMODE bit allows the NCR 5380 to operate as either an SCSI bus initiator, bit reset (0), or as an SCSI bus target device, bit set (1). In order for the signals $\overline{\text{ATN}}$ (pin 15) and $\overline{\text{ACK}}$ (pin 14) to be asserted on the SCSI bus, the TARGETMODE bit must be reset (0). In order for the signals $\overline{\text{C/D}}$, $\overline{\text{I/O}}$, $\overline{\text{MSG}}$ and $\overline{\text{REQ}}$ to be asserted on the SCSI bus, the SCSI bus, the TARGETMODE bit must be reset (1).

BIT 5—ENABLE PARITY CHECKING

The ENABLE PARITY CHECKING bit determines whether parity errors will be ignored or saved in the parity error latch. If this bit is reset (0), parity will be ignored. Conversely, if this bit is set (1) parity errors will be saved.

BIT 4—ENABLE PARITY INTERRUPT

The ENABLE PARITY INTERRUPT bit, when set (1), will cause an interrupt (IRQ) to occur if a parity error is detected. A parity interrupt will only be generated if the ENABLE PARITY CHECKING bit (bit 5) is also enabled (1).

BIT 3-ENABLE EOP INTERRUPT

The ENABLE EOP INTERRUPT, when set (1), causes an interrupt to occur when an $\overline{\text{EOP}}$ (End of Process) signal (pin 27) is received from the DMA controller logic.

BIT 2-MONITOR BUSY

The MONITOR BUSY bit, when true (1), causes an interrupt to be generated for an unexpected loss of $\overline{\text{BSY}}$ (pin 13). When the interrupt is generated due to loss of $\overline{\text{BSY}}$, the lower 6 bits of the Initiator Command Register are reset (0) and all signals are removed from the SCSI bus.

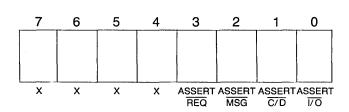
BIT 1-DMA MODE

The DMA MODE bit is normally used to enable a DMA transfer and must be set (1) prior to writing ports 5 through 7. Ports 5 through 7 are used to start DMA transfers. The TARGETMODE bit (port 2, bit 6) must be consistent with writes to port 6 and 7 [i.e. set (1) for a write to port 6 and reset (0) for a write to port 7]. The control bit ASSERT DATA BUS (port 1, bit 0) must be true (1) for all DMA send operations. In the DMA mode, REQ (pin 20) and ACK (pin 14) are automatically controlled.

The DMA MODE bit is not reset upon the receipt of an \overline{EOP} signal. Any DMA transfer may be stopped by writing a zero into this bit location, however care must be taken not to cause \overline{CS} and \overline{DACK} to be active simultaneously.

BIT 0—ARBITRATE

The ARBITRATE bit is set (1) to start the arbitration process. Prior to setting this bit the Output Data Register should contain the proper SCSI device ID value. Only one data bit should be active for SCSI bus arbitration. The NCR 5380 will wait for a bus free condition before entering the arbitration phase. The results of the arbitration phase may be determined by reading the status bits LA and AIP (port 1, bits 5 & 6 respectively).

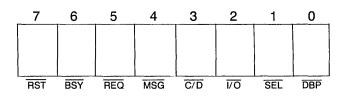

6.4 Target Command Register— Address 3 (Read/Write)

When connected as a target device, the Target Command Register allows the MPU to control the SCSI bus information transfer phase and/or to assert $\overline{\text{REQ}}$ (pin 20) simply by writing this register. The TARGETMODE bit (port 2, bit 6) must be true (1) for bus assertion to occur. The SCSI bus phases are described in the following table.

SCSI Information Transfer Phases

Bus Phase	ASSERT	ASSERT	ASSERT
Data Out	0	0	0
Unspecified	0	0	1
Command	0	1	0
Message Out	0	1	1
Data In	1	0	0
Unspecified	1	0	1
Status	1	1	0
Message In	1	1	1

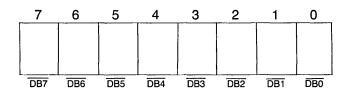
When connected as an Initiator with DMA Mode true, if the phase lines (I/O, C/D, and MSG) do not match the phase bits in the Target Command Register, a phase mismatch interrupt is generated when \overline{REQ} (pin 20) goes active. In order to send data as an Initiator, the ASSERT I/O, ASSERT C/D, and ASSERT MSG bits must match the corresponding bits in the Current SCSI Bus Status Register (port 4). The ASSERT \overline{REQ} bit (bit 3) has no meaning when operating as an Initiator.



Target Command Register

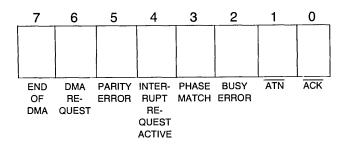
6.5 Current SCSI Bus Status Register—Address 4 (Read-only)

The Current SCSI Bus Status register is a read-only register which is used to monitor seven SCSI bus control signals plus the data bus parity bit. For example, an Initiator device can use this register to determine the current bus phase and to poll REQ for pending data transfers. This register may also be used to determine why a particular interrupt occurred. The following describes the Current SCSI Bus Status Register.


Current SCSI Bus Status Register

6.6 Select Enable Register—Address 4 (Write-only)

The Select Enable Register is a write-only register which is used as a mask to monitor a single ID during a selection attempt. The simultaneous occurrence of the correct ID bit, \overline{BSY} false, and \overline{SEL} true will cause an interrupt. This interrupt can be disabled by resetting all bits in this register. If the ENABLE PARITY CHECK-ING bit (port 2, bit 5) is active (1), parity will be checked during selection.



6.7 Bus and Status Register—Address 5 (Read-only)

The Bus and Status Register is a read-only register which can be used to monitor the remaining SCSI control signals not found in the Current SCSI Bus Status Register (ATN & ACK) as well as six other status bits. The following describes each bit of the Bus and Status Register individually.

BIT 7—END OF DMA TRANSFER

The END OF DMA TRANSFER bit is set if EOP (pin 27), DACK (pin 26), and either IOR (pin 24), or IOW (pin 29) are simultaneously active for at least 100 nsec. Since the EOP signal can occur during the last byte sent to the Output Data Register (port 0), the REQ and ACK signals should be monitored to insure that the last byte has been transferred. This bit is reset when the DMA MODE bit is reset (0) in the Mode Register (port 2).

BIT 6-DMA REQUEST

The DMA REQUEST bit allows the MPU to sample the output pin DRQ (pin 22). DRQ can be cleared by asserting DACK (pin 26) or by resetting the DMA MODE bit (bit 1) in the Mode Register (port 2). The DRQ signal does not reset when a phase mismatch interrupt occurs.

BIT 5—PARITY ERROR

This bit is set if a parity error occurs during a data receive or a device selection. The PARITY ERROR bit can only be set (1) if the ENABLE PARITY CHECK bit (port 2, bit 5) is active (1). This bit may be cleared by reading the Reset Parity/Interrupt Register (port 7).

BIT 4—INTERRUPT REQUEST ACTIVE

This bit is set if an enabled interrupt condition occurs. It reflects the current state of the IRQ (pin 23) output and can be cleared by reading the Reset Parity/Interrupt Register (port 7).

BIT 3—PHASE MATCH

The SCSI signals $\overline{\text{MSG}}$, $\overline{\text{C/D}}$, and $\overline{\text{I/O}}$ (pins 19, 18, and 17) represent the current information transfer phase. The PHASE MATCH bit indicates whether the current SCSI bus phase matches the lower 3 bits of the Target Command Register. PHASE MATCH is continuously updated and is only significant when operating as a bus initiator. A Phase Match is required for data transfers to occur on the SCSI bus.

BIT 2—BUSY ERROR

The BUSY ERROR bit is active if an unexpected loss of the BSY signal (pin 13) has occurred. This latch is set whenever the MONITOR BUSY bit (port 2, bit 2) is true and BSY is false. An unexpected loss of BSY will disable any SCSI outputs and will reset the DMA MODE bit (port 2, bit 1).

BIT 1—ATN

This bit reflects the condition of the SCSI bus control signal $\overline{\text{ATN}}$ (pin 15). This signal is normally monitored by the target device.

BIT 0-ACK

This bit reflects the condition of the SCSI bus control signal ACK (pin 14). This signal is normally monitored by the target device.

6.8 DMA Registers

Three write-only registers are used to initiate all DMA activity. They are Start DMA Send (port 5), Start DMA Target Receive (port 6) and Start DMA Initiator Receive (port 7). Simply writing these registers starts the DMA transfers. Data presented to the NCR 5380 on signals D0-D7 during the register write is meaningless and has no effect on the operation. Prior to writing these registers the BLOCK MODE DMA bit (bit 7), the DMA MODE bit (bit 1) and the TARGETMODE bit (bit 6) in the Mode Register (port 2) must be appropriately set. The individual registers are briefly described below.

6.8.1 Start DMA Send—Address 5 (Write-only)

This register is written to initiate a DMA send, from the DMA to the SCSI bus, for either initiator or target role operations. The DMA MODE bit (port 2, bit 1) must be set prior to writing this register.

6.8.2 Start DMA Target Receive—Address 6 (Write-only)

This register is written to initiate a DMA receive, from the SCSI bus to the DMA, for target operation only. The DMA MODE bit (bit 1) and the TARGETMODE bit (bit 6) in the Mode Register (port 2) must both be set (1) prior to writing this register.

6.8.3 Start DMA Initiator Receive—Address 7 (Write-only)

This register is written to initiate a DMA receive, from the SCSI bus to the DMA, for initiator operation only. The DMA MODE bit (bit 1) must be true (1) and the TARGETMODE bit (bit 6) must be false (0) in the Mode Register (port 2) prior to writing this register.

6.9 Reset Parity/Interrupt—Address 7 (Read-only)

Reading this register resets the PARITY ERROR bit (bit 5), the INTERRUPT REQUEST bit (bit 4) and the BUSY ERROR bit (bit 2) in the Bus and Status Register (port 5).

SECTION 7 ON-CHIP SCSI HARDWARE SUPPORT

The NCR 5380 is easy to use because of its simple architecture. The chip allows direct control and monitoring of the SCSI bus by providing a latch for each signal. However, portions of the protocol define timings which are much too quick for traditional microprocessors to control. Therefore, hardware support has been provided for DMA transfers, bus arbitration, phase change monitoring, bus disconnection, bus reset, parity generation, parity checking, and device selection/reselection.

Arbitration is accomplished using a bus-free filter to continuously monitor $\overline{\text{BSY}}$. If $\overline{\text{BSY}}$ remains inactive for at least 400 nsec then the SCSI bus is considered free

and arbitration may begin. Arbitration will begin if the bus is free, SEL is inactive and the ARBITRATION bit (port 2, bit 0) is active. Once arbitration has begun (BSY asserted), an arbitration delay of 2.2 μ sec must elapse before the data bus can be examined to determine if arbitration has been won. This delay must be implemented in the controlling software driver.

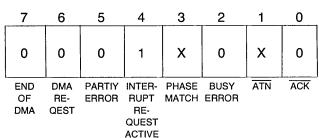
The NCR 5380 is a clockless device. Delays such as bus free delay, bus set delay and bus settle delay are implemented using gate delays. These delays may differ between devices because of inherent process variations, but are well within the proposed ANSI X3T9.2 specification (Revision 14B).

SECTION 8 INTERRUPTS

The NCR 5380 provides an interrupt output (IRQ) to indicate a task completion or an abnormal bus occurrence. The use of interrupts is optional and may be disabled by resetting the appropriate bits in the Mode Register (port 2) or the Select Enable Register (port 4).

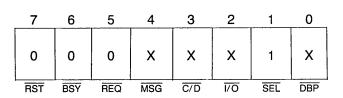
When an interrupt occurs, the Bus and Status Register and the Current SCSI Bus Status Register must be read to determine which condition created the interrupt. IRQ (pin 23) can be reset simply by reading the Reset Parity/Interrupt Register (port 7) or by an external chip reset (RESET active for 200 nsec).

Assuming the NCR 5380 has been properly initialized, an interrupt will be generated if the chip is selected or reselected, if an EOP signal occurs during a DMA transfer, if an SCSI bus reset occurs, if a parity error occurs during a data transfer, if a bus phase mismatch occurs, or if an SCSI bus disconnection occurs.


8.1 Selection/Reselection

The NCR 5380 can generate a select interrupt if \overline{SEL} (pin 12) is true (1), its device ID is true (1) and \overline{BSY} (pin 13) is false for at least a bus settle delay (400 ns). If $\overline{I/O}$ (pin 17) is active this should be considered a reselect interrupt. The correct ID bit is determined by a match in the Select Enable Register (port 4). Only a single bit match is required to generate an interrupt. This interrupt may be disabled by writing zeros into all bits of the Select Enable Register.

If parity is supported, parity should also be good during the selection phase. Therefore, if the ENABLE PAR-ITY BIT (port 2, bit 5) is active, then the PARITY ERROR bit should be checked to insure that a proper selection has occurred. The ENABLE PARITY INTERRUPT bit need not be set for this interrupt to be generated.


The proposed SCSI specification also requires that no more than two device IDs be active during the selection process. To insure this, the Current SCSI Data Register (port 0) should be read.

The proper values for the Bus and Status Register (port 5) and the Current SCSI Bus Status Register (port 4) are displayed below.

Bus and Status Register

8.2 End of Process (EOP) Interrupt

An End of Process signal (EOP, pin 27) which occurs during a DMA transfer (DMAMODE true) will set the END OF DMA status bit (port 5, bit 7) and will optionally generate an interrupt if ENABLE EOP INTERRUPT bit (port 2, bit 3) is true. The EOP pulse will not be recognized (END OF DMA bit set) unless EOP, DACK and either IOR or IOW are concurrently active for at least 100 nsec. DMA transfers can still occur if EOP/ was not asserted at the correct time. This interrupt can be disabled by resetting the ENABLE EOP INTERRUPT bit.

The proper values for the Bus and Status Register (port 5) and the Current SCSI Bus Status Register (port 4) for this interrupt are displayed below.

7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	x
END OF DMA	DMA RE- QUEST			PHASE MATCH		ATN	ACK

Bus and Status Register

Current SCSI Bus Status Register

7	6	5	4	3	2	1	0
0	1	X	X	X	X	0	X
RST	BSY	REQ	MSG	C/D	1/0	SEL	DBP

The END OF DMA bit is used to determine when a block transfer is complete. Receive operations are complete when there is no data left in the chip and no additional handshakes occurring. The only exception to this is receiving data as an initiator and the target opts to send additional data for the same phase. In this case, REQ goes active and the new data is present in the Input Data Register. Since a phase mismatch interrupt will not occur, REQ and ACK need to be sampled to determine that the Target is attempting to send more data.

For send operations, the END OF DMA bit is set when the DMA finishes its transfer, but the SCSI transfer may still be in progress. If connected as a Target, $\overline{\text{REQ}}$ and $\overline{\text{ACK}}$ should be sampled until both are false. If connected as an Initiator, a phase change interrupt can be used to signal the completion of the previous phase. It is possible for the Target to request additional data for the same phase. In this case, a phase change will not occur and both $\overline{\text{REQ}}$ and $\overline{\text{ACK}}$ must be sampled to determine when the last byte was transferred.

8.3 SCSI Bus Reset

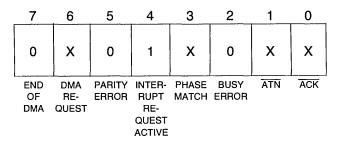
The NCR 5380 generates an interrupt when the \overrightarrow{RST} signal (pin 16) transitions to true. The device releases all bus signals within a bus clear delay (800 nsec) of this transition. This interrupt also occurs after setting the ASSERT \overrightarrow{RST} bit (port 1, bit 7). This interrupt cannot be disabled. (Note: The \overrightarrow{RST} signal is not latched in bit 7 of the Current SCSI Bus Status Register and may not be active when this port is read. For this case, the Bus Reset interrupt may be determined by default.)

The proper values for the Bus and Status Register (port 5) and the Current SCSI Bus Status Register (port 4) are displayed below.

8.4 Parity Error

An interrupt is generated for a received parity error if the ENABLE PARITY CHECK (bit 5) and the ENABLE PARITY INTERRUPT (bit 4) bits are set (1) in the Mode Register (port 2). Parity is checked during a read of the Current SCSI Data Register (port 0) and during a DMA receive operation. A parity error can be detected without generating an interrupt by disabling the ENA-BLE PARITY INTERRUPT bit and checking the PAR-ITY ERROR flag (port 5, bit 5).

The proper values for the Bus and Status Register (port 5) and the Current SCSI Bus Status Register (port 4) are displayed below.


_	7	6	5	4	3	2	1	0
	0	х	1	1	1	0	x	x
	END OF DMA	DMA RE- QUEST	PARITY ERROR		PHASE MATCH		ATN	ACK

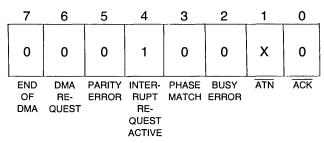
Bus and Status Register

Current SCSI Bus Status Register

	7	6	5	4	3	_2	1	0	1
	x	x	x	x	x	x	x	х	
•	RST	BSY	REQ	MSG	C/D	1/0	SEL	DBP	

Bus and Status Register

Current SCSI Bus Status Register


7	6	5	4	3	2	1	0	
0	1	1	x	x	x	0	х	
RST	BSY	REQ	MSG	C/D	1/0	SEL	DBP	•

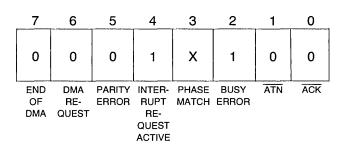
8.5 Bus Phase Mismatch

The SCSI phase lines are comprised of the signals $\overline{I/O}$, $\overline{C/D}$ and \overline{MSG} . These signals are compared with the corresponding bits in the Target Command Register: ASSERT $\overline{I/O}$ (bit 0), ASSERT $\overline{C/D}$ (bit 1) and ASSERT \overline{MSG} (bit 2). The comparison occurs continually and is reflected in the PHASE MATCH bit (bit 3) of the Bus and Status Register (port 5). If the DMA MODE bit (port 2, bit 1) is active and a phase mismatch occurs when \overline{REQ} (pin 20) transitions from false to true, an interrupt (IRQ) is generated.

A phase mismatch prevents the recognition of REQ and removes the chip from the bus during an initiator send operation. (DB0-DB7, DBP will not be driven even though the ASSERT DATA BUS bit (port 1, bit 0) is active.) This interrupt is only significant when connected as an Initiator and may be disabled by resetting the DMA MODE bit. (Note: It is possible for this interrupt to occur when connected as a Target if another device is driving the phase lines to a different state.)

The proper values for the Bus and Status Register (port 5) and the Current SCSI Bus Status Register (port 4) are displayed below.

Bus and Status Register


Current SCSI Bus Status Register

7	6	5	4	3	2	1	0	
0	1	х	x	х	х	0	х	
RST	BSY	REQ	MSG	C/D	1/0	SEL	DBP	•

8.6 Loss of BSY

If the MONITOR BUSY bit (bit 2) in the Mode Register (port 2) is active, an interrupt will be generated if the BSY signal (pin 13) goes false for at least a bus settle delay (400 nsec). This interrupt may be disabled by resetting the MONITOR BUSY bit. Register values are as follows.

Current SCSI Bus Status Register

7	6	5	4	3	2	1	0
0	0	0	x	x	x	0	0
RST	BSY	REQ	MSG	C/D	1/0	SEL	DBP

SECTION 9 RESET CONDITIONS

Three possible reset situations exist with the NCR 5380, as follows:

9.1 Hardware Chip Reset

When the signal RESET/ (pin 28) is active for at least 200 nsec, the NCR 5380 device is re-initialized and all internal logic and control registers are cleared. This is a chip reset only and does not create an SCSI bus reset condition.

9.2 SCSI Bus Reset (RST) Received

When an SCSI RST signal (pin 16) is received, an IRQ interrupt is generated and a chip reset is performed. All internal logic and registers are cleared, except for the IRQ interrupt latch and the ASSERT RST bit (bit 7) in

the Initiator Command Register (port 1). (Note: The RST signal may be sampled by reading the Current SCSI Bus Status Register (port 4); however, this signal is not latched and may not be present when this port is read.)

9.3 SCSI Bus Reset (RST) Issued

If the CPU sets the ASSERT RST bit (bit 7) in the Initiator Command Register (port 1), the RST signal (pin 16) goes active on the SCSI bus and an internal reset is performed. Again, all internal logic and registers are cleared except for the IRQ interrupt latch and the ASSERT RST bit (bit 7) in the Initiator Command Register (port 1). The RST signal will continue to be active until the ASSERT RST bit is reset or until a hardware reset occurs.

SECTION 10 DATA TRANSFERS

Data may be transferred between SCSI bus devices in one of four modes: Programmed I/O; Normal DMA; Block Mode DMA; or Pseudo DMA. The following sections describe these modes in detail. (Note: For all data transfers operations DACK and CS should never be active simultaneously.)

10.1 Programmed I/O Transfers

Programmed I/O is the most primitive form of data transfer. The \overline{REQ} (pin 20) and \overline{ACK} (pin 14) hand-shake signals are individually monitored and asserted by reading and writing the appropriate register bits. This type of transfer is normally used when transferring small blocks of data such as command blocks or message and status bytes.

An Initiator send operation would begin by setting the $\overline{C/D}$, $\overline{I/O}$, and \overline{MSG} bits in the Target Command Register to the correct state so that a phase match exists. In addition to the phase match condition, it is necessary for the ASSERT DATA BUS bit (port 1, bit 0) to be true and the received $\overline{I/O}$ signal to be false for the 5380 to send data.

For each transfer, the data is loaded into the Output Data Register (port 0). The MPU then waits for the REQ bit (port 4, bit 5) to become active. Once REQ goes active the PHASE MATCH bit (port 5, bit 3) is checked and the ASSERT ACK bit (port 1, bit 4) is set. The REQ bit is sampled until it becomes false and the MPU resets the ASSERT ACK bit to complete the transfer.

10.2 Normal DMA Mode

DMA transfers are normally used for large block transfers. The SCSI chip outputs a DMA request (DRQ - pin 22) whenever it is ready for a byte transfer. External DMA logic uses this DRQ signal to generate DACK and an IOR or an IOW pulse to the NCR 5380. DRQ goes inactive when DACK is asserted and DACK goes inactive sometime after the minimum read or write pulse width. This process is repeated for every byte. For this mode, DACK should not be allowed to cycle unless a transfer is taking place.

Refer to Section 10.5 for information on halting a DMA transfer.

10.3 Block Mode DMA

Some popular DMA controllers such as the Intel 8237 provide a block mode DMA transfer. This type of transfer allows the DMA controller to transfer blocks of data without relinquishing the use of the data bus to the MPU after each byte is transferred. Thus, faster transfer rates are achieved by eliminating the repetitive access and release of the MPU bus.

If the BLOCK MODE DMA bit (port 2, bit 7) is active, the NCR 5380 will begin the transfer by asserting DRQ. The DMA controller then asserts \overrightarrow{DACK} for the remainder of the block transfer. DRQ goes inactive after detecting \overrightarrow{DACK} and also remains inactive for the duration of the transfer. The READY output (pin 25) is used to control the transfer rate.

Non-block mode DMA transfers end when DACK goes false, whereas block mode transfers end when IOR or IOW becomes inactive. Since this is the case, DMA transfers may be started sooner in a block mode transfer. To obtain optimum performance in block mode operation, the DMA logic may optionally use the normal DMA mode interlocking handshake. READY is still available to throttle the DMA transfer, but DRQ is 30 to 40 nsec faster than READY and may be used to start the cycle sooner.

The methods described in Section 10.5 "Halting A DMA Operation" apply for all DMA operations.

10.4 Pseudo DMA Mode

To avoid the tedium of monitoring and asserting the request/ acknowledge handshake signals for programmed I/O transfers, the system may be designed to implement a pseudo DMA mode. This mode is implemented by programming the NCR 5380 to operate in the DMA mode, but using the MPU to emulate the DMA handshake. DRQ (pin 22) may be detected by polling the DMA REQ bit (bit 6) in the Bus and Status Register (port 5), by sampling the signal through an external port or by using it to generate an MPU interrupt. Once DRQ is detected, the MPU can perform a DMA port read or write data transfer. This MPU read/write is externally decoded to generate the appropriate DACK and IOR or IOW signals.

Often, external decoding logic is necessary to generate the NCR 5380 \overline{CS} signal. This same logic may be used to generate DACK at no extra system cost and provide an increased performance in programmed IO transfers.

10.5 Halting A DMA Operation

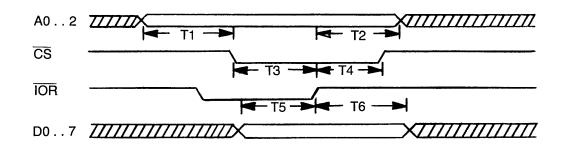
The $\overrightarrow{\text{EOP}}$ signal is not the only way to halt a DMA transfer. A bus phase mismatch or a reset of the DMA MODE bit (port 2, bit 1) can also terminate a DMA cycle for the current bus phase.

10.5.1 Using the EOP Signal

If $\overline{\text{EOP}}$ is used, it should be asserted for at least 100 nsec while DACK and $\overline{\text{IOR}}$ or $\overline{\text{IOW}}$ are simultaneously active. Note, however, that if $\overline{\text{IOR}}$ or $\overline{\text{IOW}}$ is not active an interrupt will be generated, but the DMA activity will continue. The $\overline{\text{EOP}}$ signal does not reset the DMA MODE bit. Since the $\overline{\text{EOP}}$ signal can occur during the last byte sent to the Output Data Register (port 0), the $\overline{\text{REQ}}$ and $\overline{\text{ACK}}$ signals should be monitored to insure that the last byte has transferred.

10.5.2 Bus Phase Mismatch Interrupt

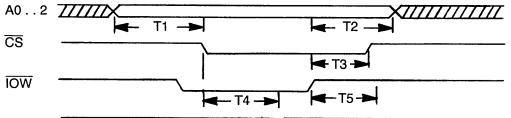
A bus phase mismatch interrupt may be used to halt the transfer if operating as an Initiator. Using this method frees the host from maintaining a data length counter and frees the DMA logic from providing the EOP signal. If performing an initiator send operation, the NCR 5380 requires DACK to cycle before ACK goes inactive. Since phase changes cannot occur if ACK is active, either DACK must be cycled after the last byte is sent or the DMA MODE bit must be reset in order to receive the phase mismatch interrupt.


10.5.3 Resetting the DMA MODE Bit

A DMA operation may be halted at any time simply by resetting the DMA MODE bit. It is recommended that the DMA MODE bit be reset after receiving an EOP or bus phase mismatch interrupt. The DMA MODE bit must then be set before writing any of the start DMA registers for subsequent bus phases.

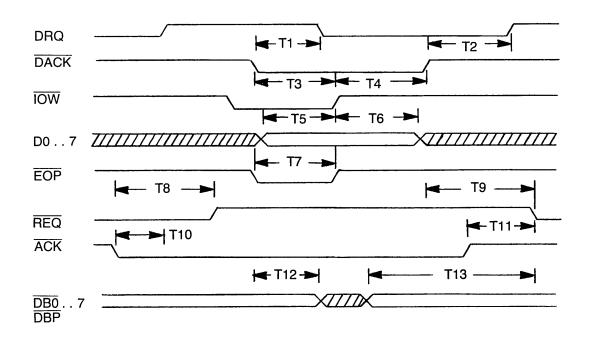
If resetting the DMA MODE bit is used instead of $\overline{\text{EOP}}$ for Target role operation, then care must be taken to reset this bit at the proper time. If receiving data as a target device, the DMA MODE bit must be reset once the last DRQ is received and before DACK is asserted to prevent an additional $\overline{\text{REQ}}$ from occurring. Resetting this bit causes DRQ to go inactive. However, the last byte received remains in the Input Data Register and may be obtained either by performing a normal MPU read or by cycling DACK and IOR. In most cases $\overline{\text{EOP}}$ is easier to use when operating as a Target device.

SECTION 11 EXTERNAL TIMING DIAGRAMS


11.1 CPU WRITE

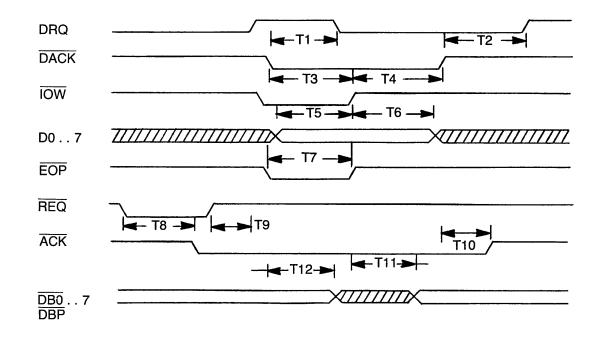
NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	Address setup to write enable *	20			ns.
T2	Address hold from end write enable *	20			ns.
Т3	Write enable width *	70			ns.
T4	Chip select hold from end of IOW	0			ns.
T5	Data setup to end of write enable *	50			ns.
Т6	Data hold time from end of IOW	30			ns.

 * Write enable is the occurrence of $\overline{\text{IOW}}$ and $\overline{\text{CS}}$


11.2 CPU READ

D0..7

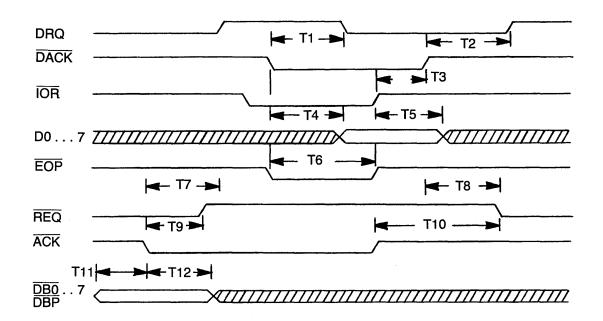
NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	Address setup to read enable *	20			ns.
T2	Address hold from end read enable *	20			ns.
T3	Chip select hold from end of IOR	0			ns.
T4	Data access time from read enable *			130	ns.
T5	Data hold time from end of IOR	20			ns.


* Read enable is the occurrence of $\overline{\text{IOR}}$ and $\overline{\text{CS}}$

NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	DRQ false from DACK true			130	ns.
T2	DACK false to DRQ true	30			ns.
Т3	Write enable width *	100			ns.
T4	DACK hold from end of IOW	0			ns.
T5	Data setup to end of write enable *	50			ns.
Т6	Data hold time from end of IOW	40			ns.
T7	Width of EOP pulse (note 1)	100			ns.
Т8	ACK true to REQ false	25	110	125	ns.
Т9	REQ from end of DACK (ACK false)	30	140	150	ns.
T10	ACK true to DRQ true (target)	15	100	110	ns.
T11	REQ from end of ACK (DACK false)	20	140	150	ns.
T12	DATA hold from write enable	15			ns.
T13	Data setup to REQ true (target)	60			ns.

 \ast Write enable is the occurrence of $\overline{\text{IOW}}$ and $\overline{\text{DACK}}$

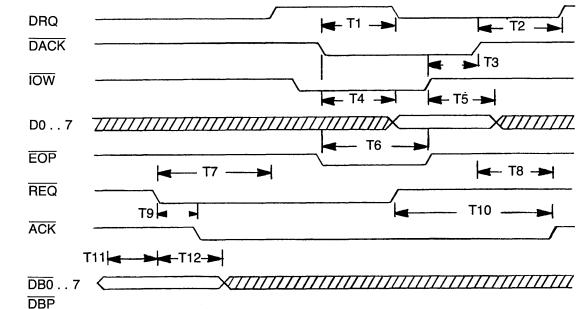
Note 1: $\overline{\text{EOP}}$, $\overline{\text{IOW}}$, and $\overline{\text{DACK}}$ must be concurrently true for at least T7 for proper recognition of the $\overline{\text{EOP}}$ pulse.


11.4 DMA WRITE (NON-BLOCK MODE) INITIATOR SEND

NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	DRQ false from DACK true			130	ns.
T2	DACK false to DRQ true	30			ns.
Т3	Write enable width *	100			ns.
T4	DACK hold from end of IOW	0			ns.
T5	Data setup to end of write enable *	50			ns.
T6	Data hold time from end of IOW	40			ns.
T7	Width of $\overline{\text{EOP}}$ pulse (note 1)	100			ns.
Т8	REQ true to ACK true	20	150	160	ns.
Т9	REQ false to DRQ true	20	100	110	ns.
T10	DACK false to ACK false	25	140	150	ns.
T11	IOW false to valid SCSI data			100	ns.
T12	DATA hold from write enable	15			ns.

 \ast Write enable is the occurrence of $\overline{\text{IOW}}$ and $\overline{\text{DACK}}$

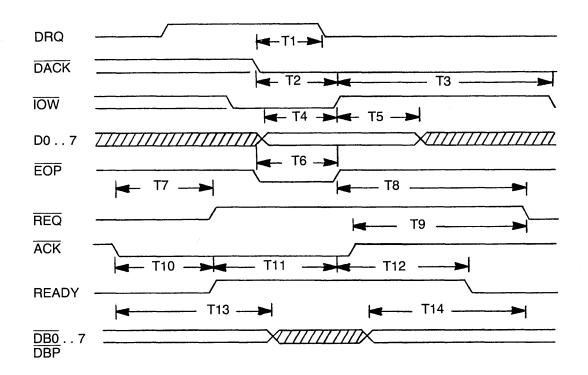
Note 1: \overline{EOP} , \overline{IOW} , and \overline{DACK} must be concurrently true for at least T7 for proper recognition of the \overline{EOP} pulse.


11.5 DMA READ (NON-BLOCK MODE) TARGET RECEIVE

NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	DRQ false from DACK true			130	ns.
T2	DACK false to DRQ true	30			ns.
Т3	DACK hold time from end of IOR	0			ns.
T4	Data access time from read enable *			115	ns.
T5	Data hold time from end of IOR	20			ns.
T6	Width of EOP pulse (note 1)	100			ns.
T7	ACK true to DRQ true	15	100	110	ns.
T8	DACK false to REQ true (ACK false)	30		150	ns.
Т9	ACK true to REQ false	25	110	125	ns.
T10	ACK false to REQ true (DACK false)	20	140	150	ns.
T11	DATA setup time to ACK	20			ns.
T12	DATA hold time from ACK	50			ns.

* Read enable is the occurrence of $\overline{\text{IOR}}$ and $\overline{\text{DACK}}$

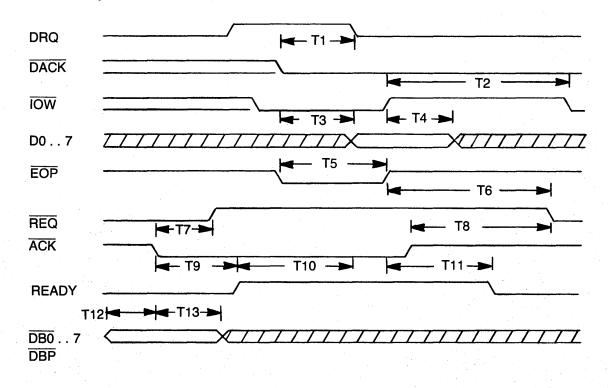
Note 1: \overline{EOP} , \overline{IOR} , and \overline{DACK} must be concurrently true for at least T6 for proper recognition of the \overline{EOP} pulse.


_	DB07 < DBP	×1111111111111111111111111111111111111		/////	1111	//////
	NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
	T1_	DRQ false from DACK true			130	ns.
	T2	DACK false to DRQ true	30			ns.
	Т3	DACK hold time from end of IOR	0			ns.
	T4	Data access time from read enable *			115	ns.
	T5	Data hold time from end of IOR	20		-	ns.

T4	Data access time from read enable *			115	ns.
T5	T5 Data hold time from end of IOR				ns.
T6	Width of EOP pulse (note 1)	100			ns.
T7	REQ true to DRQ true	20	140	150	ns.
T8	DACK false to ACK false (REQ false)	25	140	160	ns.
Т9	REQ true to ACK true	20	150	160	ns.
T10	REQ false to ACK false (DACK false)	15	120	140	ns.
T11	DATA setup time to REQ	20			ns.
T12	DATA hold time from REQ	50			ns.

*Read enable is the occurrence of $\overline{\text{IOR}}$ and $\overline{\text{DACK}}$

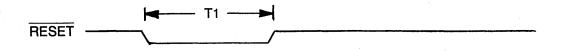
Note 1: \overline{EOP} , \overline{IOR} , and \overline{DACK} must be concurrently true for at least T6 for proper recognition of the \overline{EOP} pulse.


11.6 DMA READ (NON-BLOCK MODE) INITIATOR RECEIVE

NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	DRQ false from DACK true			130	ns.
T2	Write enable width *	100			ns.
Т3	Write recovery time	120			ns.
T4	Data setup to end of write enable *	50			ns.
T5	Data hold time from end of IOW	40			ns.
Т6	Width of EOP pulse (note 1)	100			ns.
T7	ACK true to REQ false	25	110	125	ns.
Т8	REQ from end of IOW (ACK false)	40		180	ns.
Т9	REQ from end of ACK (IOW false)	20	160	170	ns.
T10	ACK true to READY true	20	130	140	ns.
T11	READY true to IOW false	70			ns.
T12	IOW false to READY false	20	130	140	ns.
T13	DATA hold from ACK true	40			ns.
T14	Data setup to REQ true	60			ns.

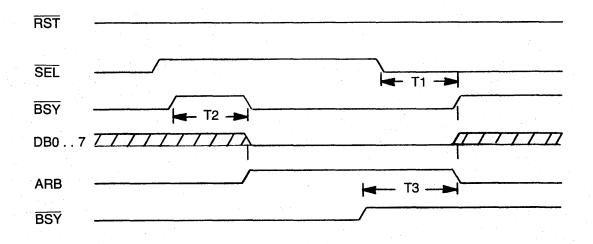
 \ast Write enable is the occurrence of $\overline{\text{IOW}}$ and $\overline{\text{DACK}}$

Note 1: \overline{EOP} , \overline{IOW} , and \overline{DACK} must be concurrently true for at least T6 for proper recognition of the \overline{EOP} pulse.


11.8 DMA READ (BLOCK MODE) TARGET RECEIVE

NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	DRQ false from DACK true			130	ns.
T2	IOR recovery time	120			ns.
Т3	Data access time from read enable *		100	110	ns.
T4	Data hold time from end of IOR	20			ns.
T5	Width of EOP pulse (note 1)	100			ns.
T6	IOR false to REQ true (ACK false)	30	180	190	ns.
T7	ACK true to REQ false	25	110	125	ns.
T8	ACK false to REQ true (IOR false)	20	160	170	ns.
Т9	ACK true to READY true	20	130	140	ns.
T10	READY true to valid data			50	ns.
T11	IOR false to READY false	20	125	140	ns.
T12	DATA setup time to ACK	20			ns.
T13	DATA hold time from ACK	50			ns.

* Read enable is the occurrence of IOR and DACK


Note 1: \overline{EOP} , \overline{IOR} , and \overline{DACK} must be concurrently true for at least T5 for proper recognition of the \overline{EOP} pulse.

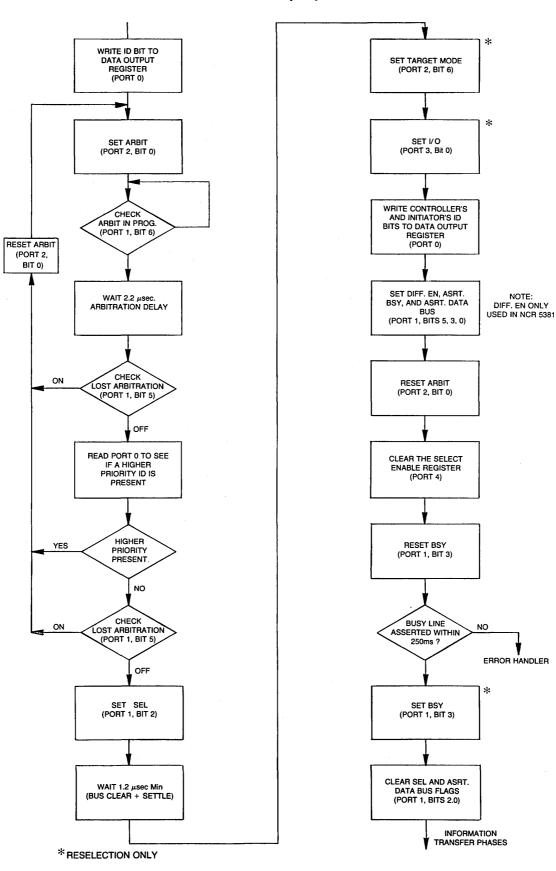
11.9 RESET

NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	Minimum width of reset	200			ns.

11.10 ARBITRATION

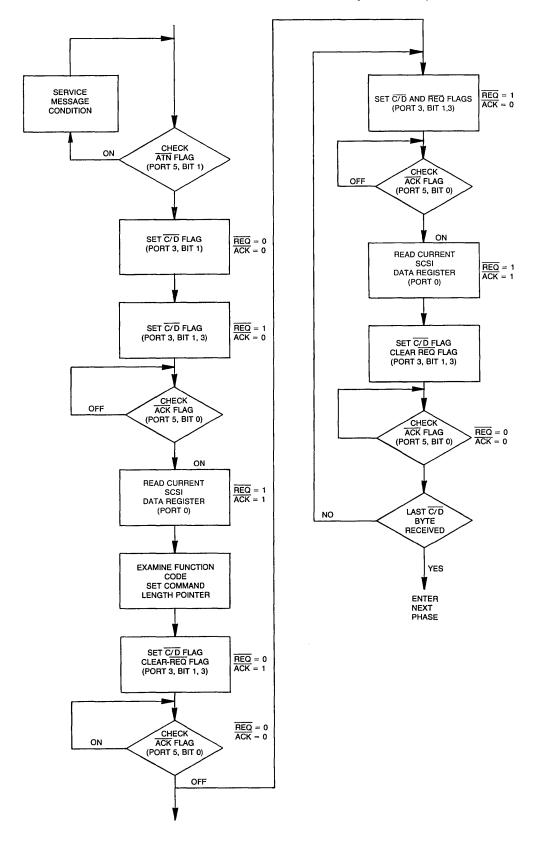
NAME	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
T1	Bus clear from SEL true			600	ns.
T2	ARBITRATE start from BSY false	1200		2200	ns.
Т3	Bus clear from BSY false			1100	ns.

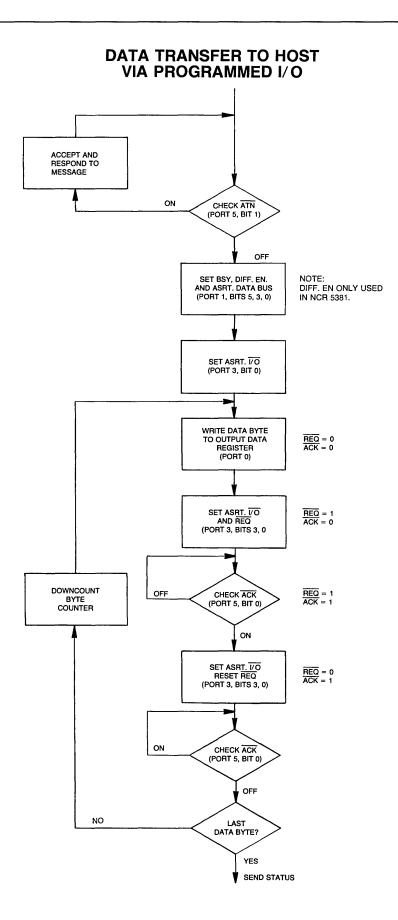
APPENDICES A1. NCR 5380 vs. NCR 5385/86

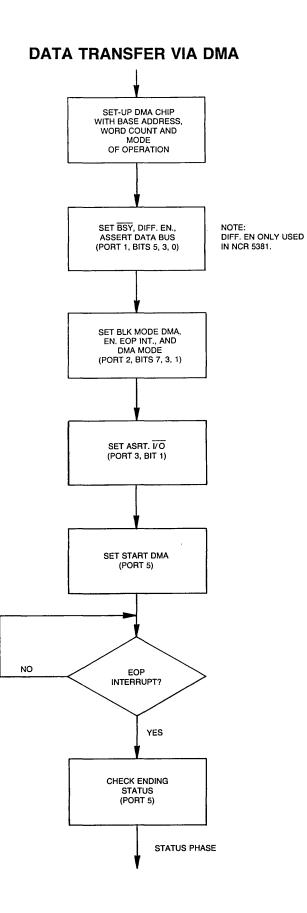

The NCR 5380 was designed to provide a low-cost SCSI interface using a minimum number of parts. Much of the intelligence and some of the features included in the NCR 5385/86 have been removed. In some instances, such as arbitration, this causes the controlling CPU to provide more of the protocol control. The NCR 5385/86 remains appropriate for many applications and will continue to be strongly supported.

The main differences between the NCR 5380 and the NCR 5385/86 are shown in the following table.

Functional Areas	5380	5385/86
Arbitration	Optional, Firmware Dependant	Automatically Invoked
Maximum Transfer Rate	1.5 MBPS	2.5 MBPS
Transfer Counter	None	24 bits
Data Buffering	Single	Double
Clock Circuitry	None Req'd	5-10 MHz
O.C. Transceivers	On-chip	External
Differential Pair	External (NCR 5381)	External
Synchronous Mode	No Firm Plans	NCR 5386s


A2. FLOWCHARTS/SOFTWARE


Flowcharts and sample software drivers are provided as a guideline to facilitate your firmware development. Firmware will vary depending on the application and the level of the SCSI protocol being supported.



ARBITRATION AND (RE) SELECTION

COMMAND TRANSFER PHASE (TARGET)

LINE#	LOC	CODE	LINE						
00001	ଌଌଌଌ		:	NCR	5380	SCSI	PROTOC	ю	
00002	ଉଉଉଭ								
00003				SUPE	ORTS	вотн	INITIA	277	OR AND TARGET ROLES
00004	0000		7		w				
00005	0000				IMCC -	гыдт -		мс	AND BLOCK (CDB),
00006	0000								THE EXPECTED PHASE
	0000								
00007			,	IHBL		VE BE	IN SPEL	. 1 6	FIED IN MEMORY
00008	0000		;						
00009	0000				=\$Ø1			•	SELECTION FAILED STATUS
00010	0000				=\$02				DISCONNECTED STATUS
00011	0000				*\$03				PARITY ERROR STATUS
00012	0000		BUS	RST=	=\$Ø4			-	SCSI BUS RESET STATUS
00013	0000		CHI	PFL=	=\$05				CHIP FAILURE STATUS
00014	0000		MES	SAG=	=\$06			ş	MESSAGE IN BYTE BEING RETND
00015	ଡ଼ଡ଼ଡ଼ଡ଼		DIF	FPH=	=\$Ø7			ş	UNEXPECTED PHASE REQUESTED
00016	0000		ş						
00017	0000		CMD	CPL=	\$00			ş	COMMAND COMPLETE MESSAGE
00018	ଉଉଉଭ		;						
00019	ଉଡଡଡ		DAT	- 1ØI=4	i di di			÷	DATA OUT PHASE
00020	0000		CMD	=\$Ø8	3				COMMAND PHASE
00021	୦ଡଡଡ		STA	เประ	•\$ØC				STATUS PHASE
00022	0000				5Ø4				DATA IN PHASE
00023	0000				18				MESSAGE OUT PHASE
00024	0000				51C				MESSAGE IN PHASE
00025	ଉଉଉଡ				\$8Ø				FLAG TO DISCONNECT
00026	0000				≠02 =\$4Ø				FLAG TOWAIT FOR SELECTION
00027	ଅଅଅଅ				- 4/ 7 42/			*	TERO SOWAIT FOR DELECTION
00028	0000		•	¢=∈	DEØØ				5380 ADDRESS SPACE
00029	0000)EØC				PSEUDO DMA ADDRESS
00030	0000		IID:						INIT. ID EXT. LATCH
00031	0000				.00)FØØ				NCR5380 DEVICE RESET
00032	0000				FB				DATA BLOCK POINTER
00033	0000			I I I I I I I I I I I I I I I I I I I	ים יי			9	DHIH BLOCK POINTER
00033	0000		5 5	3PN1	· ന				
00035	0000		,	21-141	п				;
			;	~~~		5 15 1 4 1	,		
00036	0000		'	нв	. WORL	DBLH	^		;
00037	0000		7						
00038	0000		;						
00039	ଅଅଅଅ ଜନସନ୍ତ		*=\$(JUILIE				Ę.	PROGRAM SPACE ORIGIN
00040	C000		TID		*=*+1				; TARGET ID SPACE
00041	CØØ1					L			; INIT. CMD REG. STORAGE
00042					*=*+1				; INITIATOR FLAG
00043					*=*+]				; OPEN COLL. FLAG
00044					*=*+]				; PARITY FLAG
00045			ATN	FLG	*=*+]				; ATN FLAG
00046			;						
00047	C006				*=*+1				; EXPECTED PHASE INDEX
	CØØ7		XPTI	PHS	*=*+3	30			; EXPECTED PHASE TABLE
00049			;						
	CØ25				*=*+]				; BYTE COUNT
00051	CØ56		XCN	Г	*=*+)	1			; BYTE COUNT MULTIPLIER
	CØ27		;						
00053			CDB		*=*+1	12			; CMD BLOCK STORAGE
00054					*=*+5				; DATA BLOCK
00055	C233		STA	٢	*=*+2	2			; STATUS BYTES

.

LINE#	LOC	CODE	LINE		
00056	C235	27 CØ	CDBS	.WORD CDB, DBLK,	STAT
00056	C237	33 CØ			
00056	C239	33 C2			
00057	CESB		;		
00058	C23B		; INI	TIALIZATION	
00059	C23B		;		
22262	C23B	A9 00	START	LDA #00	; ZERO ACCUM
00061	C23D	8D 06 C0			; INITIALIZE PHASE INDEX
00062	C24Ø	AD ØØ DF		LDA SRST	; RESET 5380NUMBER
00063	C243	A9 04		LDA #%00000100	; ENABLE MONITOR BSY INT.
00064	C245	AE 04 C0		LDX PTYFLG	; LOAD PARITY FLAG
00065	C248	FØ Ø2		BEQ NOPTY ORA #%00110000 STA 55380+2	, IF ZERO, NO PARITY
00066	C24A	Ø9 30		0RA #%00110000	; OR IN CHECK PARITY BITS
00067	C24C	8D Ø2 DE	NOPTY	STA 55380+2	STORE IN MODE REGISTER
00068	C24F		;		
Øଥାୟନେ ୨	C24F	AE 06 C0		LDX PHSIDX	; LOAD VALUE OF PHASE INDEX
00070	C252	A9 40		LDA #SELECT	; LOAD VALUE OF PHASE INDEX ; GET VALUE OF SEL CMD ; COMPARE W/CURRENT PHASE
00071	C254	DD Ø7 CØ		CMP XPTPHS, X	COMPARE W/CURRENT PHASE
00072	C257	DØ 03		BNE INIT	; IF NOT = BEGIN ARBITRATION
00073	C259	4C 8D C3		JMP TARSEL	; ELSE, WAIT FOR TARGET SELECT
00074	C25C		:		,
00075	C25C		BEGI	IN SCSI BUS ARBIT	RATION
00076	C25C		÷		
00077	C25C	AD 02 DE	ÍNIT	LDA 55380+2	; READ MODE REG.
00078	C25F	29 FE			, MASK ARB BIT
00079	C261	8D Ø2 DE			RESET ARBITRATION BIT
00080	C264	AD Ø8 DE	ARB		
00081	C267	8D ØØ DE		STA 55380+0	;LOAD ID INTO ODR
00082	C26A	AD 02 DE		LDA 55380+2	READ MODE REG.
00083	C26D	Ø9 Ø1		0RA #%000000001	SET ARBITRATION BIT
00084	C26F	8D 82 53		STA \$5380+2	•
00085	C272		:		
00086	C272		; HAS	BUS GONE FREE?	
00087	C272		;		
00088	C272	2C Ø1 DE	NFREE	BIT 55380+1	:BUS FREE?
00089	C275	50 FB		BVC NFREE	;NO LOOP UNTIL FREE
00090	C277		ş		,
00091	C277	EA	,	NOP	YES, WAIT AN ARB DELAY (2.2USE)
00092	C278	AD Ø1 DE		LDA S5380+1	
00093	C27B	29 20		AND #%00100000	MASK ALL BUT LA BIT
00094	C27D	ם שם		BNE INIT	IF LOST ARB, RESTART
00095	C27F				
00096	C27F		; CHEC	K FOR HIGHER PRI	DRITY ID?
00097	C27F		;		
00098	C27F	AD 00 DE	,	LDA 55380+0	LOAD CURRENT DATA REG.
00099	C282	38		SEC	SET CARRY BIT
00100	C283	ED 08 DE		SBC 11D	SUB YOUR ID FROM DATA REG.
00101	C286	FØ Ø8		BEQ WIN	; IF EQUAL TO ZERO, WIN ARB
00102	C288	38		SEC	NOT=, SOMEONE ELSE IS ARB-ING
00103	C289	ED Ø8 DE		SBC IID	SUBTRACT YOUR ID AGAIN
00104	0850	30 02		BMI WIN	; IF NEG, YOUR ID WAS HIGHER
00105	C28E	DØ CC		BNE INIT	OTHERWISE, RESTART
00106	C29Ø		:		
00107	C29Ø		; RECH	ECK LOST ARBITRA	ITION
00108	C290		;		

LINE#	LOC	CODE	LINE		
00109	C290	AD Ø1 DE	WIN	LDA 55380+1	;LOAD INIT. CMD REG. ;MASK ALL BUT LA BIT
		29 20		AND #%00100000	MASK ALL BUT LA BIT
00111	C295	DØ C5		BNE INIT	IF LOST ARB, RESTART
00112	C297		;		
00113	C297	A9 ØC		LDA #%00001100	;LOAD VALUE TO SET SEL SIGNAL ;LOAD ATN FLAG ; IF ZERO, SEL W/O ATN ; OR IN ATN BIT ;TURN ON SEL LINE
	C299	AE 05 C0		LDX ATNFLG	LOAD ATN FLAG
	C29C	FØ Ø2		BEQ WOATN	; IF ZERO, SEL W/D ATN
	C29E	09 02 55	1.400.00.006.	URA #%00000010	; UR IN AIN BIT
	C2A0	BD ØI DE	WUHIN	51H 50380+1	; TURN UN SEL LINE
00118 00119	C2A3		; • (40)	IT 1.2 USEC	
	C2A3		, wrs.	11.2 0320	;LOAD IN A SOFTWARE FLAG ;IF FLAG SET, PERFORM INIT. SEL ION
00121	C2A3	FA	7	NOP	
	C2A4	AD 02 CO		LDA INT(F)	:LOAD IN A SOFTWARE FLAG
	C2A7	DØ ØD		BNE SEL	IF FLAG SET. PERFORM INIT. SEL
00124	CSU		;		,
00125	C2A9		; ELSE	E, TARGET RESELECT	ION
00126	CEAP		:		
00127	C2A9		;		
	C2A9	ad øs de		LDA 55380+2	READ MODE REG.
	C2AC	0940		ORA #%01000000	;ENABLE TARGET MODE
	CSUE	8D 02 DE		STA 55380+2	;SET TARGET MODE
	C2B1	A9 01		LDA #\$Ø1	READ MODE REG. ENABLE TARGET MODE SET TARGET MODE ENABLE ASSERT I/O SET ASSERT I/O
	C2B3	8D Ø3 DE		STA 55380+3	;SET ASSERT 1/0
	LEBD		2		
00134 00135	C2B6 C2B9	AD 08 DE	SEL		, LUHD INITIATUR ID
	C2BC	80 00 00		STA 55240+0	; LOAD INITIATOR ID ; OR IN TARGET ID ;LOAD INT & TAR ID'S INTO ODR
	C2BF			31A 3336070	COND INT & TAK ID S INTO ODK
	C2BF		, TES	FOR DIFFERENTIAL	PATR
	C2BF		1		, 1121
	C2BF	A9 05	7	LDA #%00000101	SEL & DATA BUS BITS
00141	C2C1	AE Ø3 CØ		LDX OCFLAG	LOAD IN A SOFTWARE FLAG
00142	C2C4	DØ Ø2		BNE OPNCOL	PAIR ;SEL & DATA BUS BITS ;LOAD IN A SOFTWARE FLAG ;IF FLAG SET, OPEN COLLECTOR
00143	CSC9		;		
	C5C6			FERENTIAL PAIR	
00145	C2C6	09 20 8D 01 DE 8D 01 C0	Ŧ		
00146	C5C6	09 20		ORA #%00100000	; OR IN DIFF. ENBL BITS ;SET SEL, DATA BUS, & (DIFF. PAI ; RETAIN VALUE OF INIT CMD REG.
00147	C2C8	8D Ø1 DE	OPNCOL	_ STA S5380+1	;SET SEL, DATA BUS, & (DIFF. PAI
00148	CSCB	8D Ø1 CØ		STA ICRVAL	; RETAIN VALUE OF INIT CMD REG.
00149	C2CE		;		
00150	CSCE		•	ET ARBITRATION BIT	
00151 00152	CSCE	AD Ø2 DE	;	100 0520040	- ACOD MODE RECIETER
	C2D1	29 FE		LDA 55380+2 AND #%11111110	READ MODE REGISTER
00154	C2D3	80 02 DE		STA 55380+2	RESET ARB BIT
00155	C2D6			014 0000£.E	
00156	CSDe		; DIS	ABLE THE SEL EN RE	GISTER TO AVOID A SEL INT.
	C2D6		;		
00158	CSDe	A9 00	•	LDA #\$00	; ZERO ACCUM.
00159	C2D8	8D Ø4 DE		STA 55380+4	; ZERO SELECT ENABLE REG.
00160	CSDB		;		
00161	CSDB		; RELI	EASE BUSY	
	CSDB		;		
00163	CSDB	AD 01 C0		LDA ICRVAL	; GET INIT CMD REG VALUE

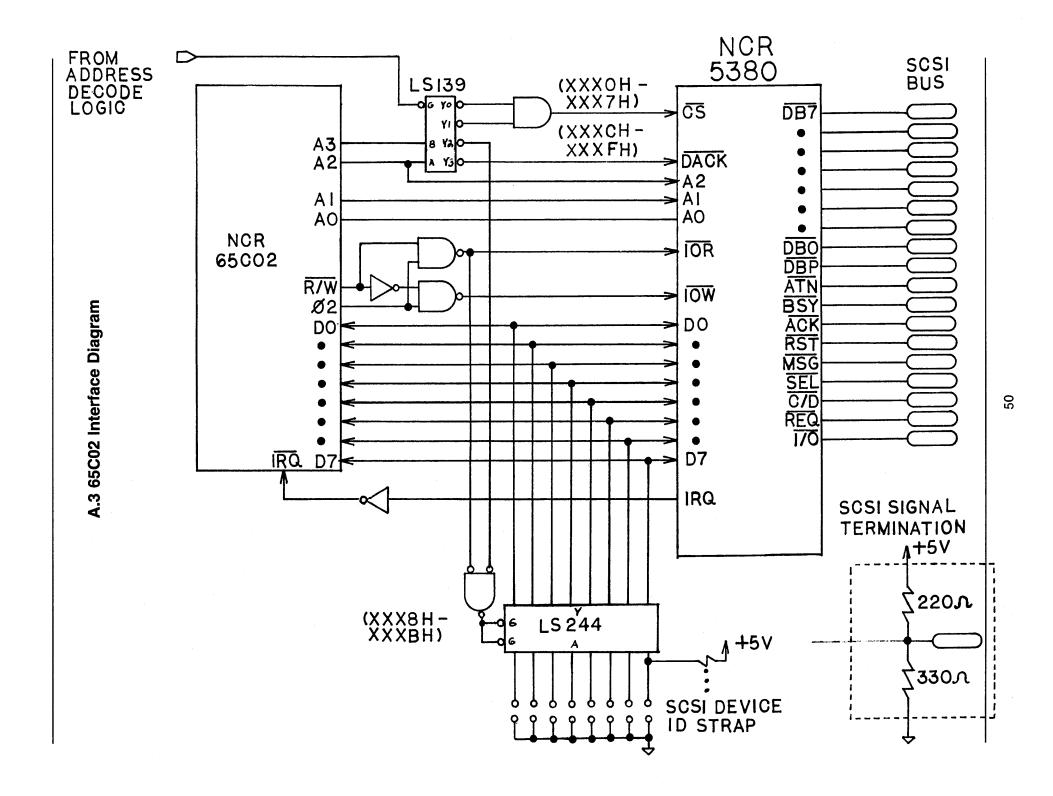
LINE#	LOC	CODE	LINE		
00164	CSDE	29 F7	AN:	D #%11110111	; MASK OUT BSY BIT
00165	CSEØ	8D Ø1 DE		A 55380+1	RESET BSY
00166	C2E3	8D Ø1 CØ	ST	A ICRVAL	; RETAIN ICR VALUE
00167	C2E6		;		
00168	CSE6			T 400NSEC AND) BEGIN LOOKING FOR BSY
00169	C2E6		;		
00170	CSE6	AØ 60		Y #\$60	; LOAD UP X REG FOR COUNTER
00171	C5E8	A2 FF	RELD LD	X #\$FF	; LOAD UP Y REG FOR COUNTER
00172	C2EA	2C Ø4 DE	STIM BI	T 55380+4	; SAMPLE BSY BIT
00173	C2ED	70 18	BV	S SLECT	; IF BSY ACTIVE, SELECTED
00174	C2EF		;		
	C2EF		; WAIT 2	50 MSEC	
	CSEL		;		
	C2EF	CA	DE		; DELAY
	C2FØ	DØ F8		E STIM	; IF NOT ZERO LOOP
	C2F2	88	DE		
	C2F3	DØ F3	BN	E RELD	; IF Y NOT ZERO RELOAD X
00181	C2F5		;		-
	C2F5		-	CTION TIMEOUT	
	C2F5	00.00	;	0 4400	
	C2F5	A9 00 AD 00 DE		A #\$00	TAR. DID NOT RESPOND TO SEL
00185	C2F7	8D 00 DE A2 20		A 55380+0	; RESET ID BITS ; LOAD 200 USEC COUNTER
00186 00187	C2FA	2C 04 DE		X #\$20 T S5380+4	; CHECK BSY AGAIN
00188	C2FF	70 06		S SLECT	; IF SET SELECTION OK
00189	C3Ø1	CA	DE		
	C302	DØ F8		A E CHK	7
00191	C304	2010	;		9
	C304		; SELECTI	ON FAILED	
00193	C304		;		
	C3Ø4	A9 01		A #SLFAIL	: LUAD STATUS IN ACCUM.
00195	C306	60	RT	S	RETURN TO CALLING PRGM
00196	C307		;		
00197	C307			FUL (RE)SELEC	CTION
00198	C307		;		
00199	C307	AD 01 C0	SLECT LD	A ICRVAL	; GET VALUE OF INIT CMD REG.
00200	C30A	AE 02 C0		X INITFL	; GET INIT FLAG
00201	C30D	DØ Ø8		E IF	; IF INITIATOR JUMP
00202	C30F	09 08		A #%00001000	
00203	C311	8D Ø1 DE		A 55380+1	; WRITE TO ICR
00204	C314	8D 01 C0		A ICRVAL	; UPDATE PRESENT ICR VALUE
00205	C317	A9 28		A #%00101000	•
00206	C319	2D 01 C0		D ICRVAL	; AND WITH ICR VALUE
00207 00208	C31C C31F	8D 01 DE 8D 01 C0		A 55380+1	; RESET SEL & DATA BUS ; UPDATE NEW ICR VALUE
00203	C322	60 ØI CØ		A ICRVAL	; OPDHIE NEW ICK VHLUE
00209	C322		; • BEGIN	TRANSFERS	
00210	C322		; BEGIN ;		
00212	C322	CA	, DE	x	; DEC INITIATOR FLAG
	C323	FØ 03		Q PDMA	; IF ZERO, INITIATOR ROLE
00214	C325	4C 2D C4		P RES	: ELSE. TARGET ROLE
00215	C328		3		
00216	C328			TIATOR ROLE	
00217	C358		;		
00218	C328		; USE PSE	UDO DMA MODE	

LINE#	LOC	CODE	LINE		
00219	C328		÷		
00220	C328	A9 00 8D 03 DE	ODMO	LDA #DATAØ	; LOAD TCR W/DATA OUT PHASE ;
00221	C32A	8D Ø3 DE		STA 55380+3	
00222				1 00 0520010	. <u>eet mode dectetea</u>
00223	C33Ø	09 02		ORA #%00000010:	OR IN DMA MODE BIT
00224	C332	8D Ø2 DE		STA 55380+2	; SET DMA MODE BIT
00225	C335	AE 06 C0		LDX PHSIDX	; GET MODE REGISTER ;OR IN DMA MODE BIT ; SET DMA MODE BIT ; LOAD X W/PHASE INDEX ; GET PHASE COUNT ; STORE IN PHASE COUNT BYTE ; STORE IN MULTIPLIER ; STORE IN MULTIPLIER
00226	C338	BD Ø8 CØ		LDA XPTPHS+1, X:	GET PHASE COUNT
00227	C33B	8D 25 CØ		STA COUNT	; STORE IN PHASE COUNT BYTE
00228	C33E	BD Ø9 CØ		LDA XPTPHS+2, X;	GET COUNT MULTIPLIER
00229	C341	BD 09 C0 8D 26 C0		STA XCNT	; STORE IN MULTIPLIER
00230	C344		Ţ		
00231	C344		; WAI	(T FOR PHASE MIS	SMATCH INT.
00232	C344		;		
00233	C344	AD 05 DE	WAIT	LDA 55380+5	; SAMPLE BUS&STATUS REG.
00234	C347	29 10 F0 F9		AND #%00010000	; LOOK FOR INT. REQ.
00235	C349	FØ F9		BEQ WAIT	; IF NOT SET, WAIT
	C34B	1015	;		
00237	C34B		; IRQ I	IS ACTIVE	
00238	C34B		7		; GET MODE REG. ; RESET DMA MASK ; RESET DMA MODE BIT ; GET BUS & STATUS REG ; SHIFT RIGHT 3 TIMES ;
00239	C34B	AD Ø2 DE		LDA 55380+2	; GET MODE REG.
00240	C34E	29 FD		AND #%11111101	; RESEI DMA MASK
00241	C350	80 02 DE		STA 55380+2	; RESEI DMA MUDE BII
00242	6353	AD 05 DE		LDA 55380+5	; GET BUS & STATUS REG
00243	0300	HU VO DE		LSR	SHIFT RIGHT 3 TIMES
	0359	HD 05 DE		LSR	
00245 00246	C355	HU 00 UE		LSK FRUEV	; SHIFT RIGHT 3 TIMES ; ; LOSS OF BUSY ERROR ; SHIFT ; IF CARRY CLEAR, MISMATCH ; SHIFT TWICE ; ; IF SET, PARITY ERROR ; GET CURRENT SCSI BUS STATUS
00246		50 15 50 15 55			; LUSS OF BUSY ERROR
00247 00248	C364	90 76		LOK DCC DUCMM	; DHIFT . TE CORDV CLEAR MICMATCH
00240		90 76 DE		100 PHONIN	, IF CHART CLEAR, MISMAICH
00250		90 76 DE			; onir) Iwice
00251	C36C	BØ ØB		BCG CORTV	• TE SET DORITY ERROR
	CREE	2C 04 DE		BIT 55380+4	; GET CURRENT SCSI BUS STATUS
00253	C371	30 14		BMI BRST	; IF BIT 7 SET, BUS RESET DOCURED ; SHOULD NOT GET HERE
00254	0373	40 88 03		IMP FATI	SHOULD NOT GET HERE
	C376		Ŧ		
	C376			IRN ERROR STATUS	S TO CALLING PROGRAM
00257	C376		:		
	C376	A9 02	ÉBUSY	LDA #DISCNT	; SET DISCONNECT FLAG
00259	C378	60		RTS	,
00260	C379	AD Ø1 CØ	EPRTY		; GET INIT. CMD REG. VALUE
00261	C37C	09 02			; TURN ON ATN SIGNAL
00262	C37E	8D Ø1 DE		STA 55380+1	SET ATN
00263	C381	8D Ø1 CØ		STA ICRVAL	
00264	C384	A9 Ø3		LDA #PRTYER	; SET PARITY ERROR
00265	C386	60		RTS	
00266	C387	A9 04	BRST	LDA #BUSRST	; SET BUS RESET ERROR
00267	C389	60		RTS	
00268	C38A	A9 Ø5	FAIL	LDA #CHIPFL	; SET CHIP FAIL ERROR
00269	C38C	60		RTS	; RETURN TO CALLING PRGM
00270			Ţ		
00271	C38D		; WAIT	FOR TARGET SELE	CTION
00272			;		
00273	C38D	AD 02 DE	TARSEL	LDA 55380+2	; GET MODE REG.

LINE#	LOC	CODE	LINE		
00275 00276 00277 00278 00279 00280 00281	C39B C39E C3A0 C3A2	09 40 8D 02 DE AD 08 DE 8D 04 DE AD 05 DE 29 10 F0 F9	LOOK ;	LDA S5380+5	; SET TARGET MODE MASK ; SET TARGET MODE BIT ; GET TARGET ID ; STORE IN SELECT ENABLE REG. ; SAMPLE BUS&STATUS REG. ; LOOK FOR INT REQ ; KEEP WAITING
00282 00283	C3A2 C3A2		; ; CHE	CK FOR MORE THE	N TWO ID'S ACTIVE
00284 00285 00286 00287 00288	C3A2 C3A2 C3A5 C3A7 C3A9	AD 00 DE A2 09 A0 00 A0 00 DE		LDA S5380+0 LDX #\$09 LDY #\$00 LSR	; READ SCSI DATA BUS ; SHIFT COUNT ; INITIALIZE BIT COUNT ; SHIFT BIT INTO CARRY BIT
00289 00290	C3AC	CA FØ Ø5 90 F8		DEX BEQ OUT	; DECR. SHIFT COUNT ; IF ZERO, DONE COUNTING ; IF CARRY NOT SET, DO NEXT
00291 00292 00293 00294	C3B1 C3B2	90 F8 C8 B0 F5 38		INY BCS UP SEC	; IF CARRY NOT SET, DO NEXT ; IF CARRY SET BUMP BIT CNT ; GET NEXT BIT ; SET CARRY BIT
00295 00295 00296 00297	C3B5 C3B6	38 98 E9 Ø3 30 Ø6		TYA SBC #\$03	; PUT Y IN ACCUM ; SUBTRACT 3 FROM BIT COUNT
00298 00298 00299 00300	C3BA C3BA C3BD C3CØ	AD 07 DE 4C 9B C3		LDA S5380+7 JMP LOOK	; IF MINUS, DR ; NOT MINUS, RESET IRQ. ; WAIT FOR GOOD SELECTION
00301 00302	C3CØ C3CØ		;	INTERRUPT	
00303 00304 00305 00306	C3CØ C3C3 C3C5 C3C7	AD 05 DE 29 20 F0 B2 AD 04 DE		LDA S5380+5 AND #%00100000 BEQ EPRTY LDA S5380+4	; SAMPLE AGAIN ; MASK PARITY BIT ; PARITY SELECTION ERROR ; GET CURRENT SCSI BUS ST.
00307 00308 00309	C3CA C3CC C3CE	29 02 F0 BC A9 08		AND #%00000010 BEQ FAIL	·
	C3DØ C3D3 C3D6	8D 01 DE 8D 01 C0 AD 07 DE		STA ICRVAL LDA S5380+7	; SET BSY SEL COMPLETE ; RETAIN ICR VALUE ; RESET INTERRUPT
00313 00314 00315	C3DC	4C 2D C4	;	JMP RES MISMATCH CONDI	; TION
00316 00317 00318 00319 00320	C3DC C3DF	AE 06 C0 AD 04 DE 29 1C DD 07 C0		LDX PHSIDX LDA S5380+4 AND #%00011100 CMP XPTPHS,X	; LOAD X WITH PHASE POINTER : LOAD CURRENT SCSI BUS STATUS ; MASK ALL BUT PHASE BITS ; COMPARE TO XPTED PHASE
00321 00322 00323	C3E7 C3E9 C3EC	DD 07 C0 F0 03 4C B4 C4	ş	BEQ PHSMTH JMP DP	; YES, PHASE MATCHES ; ELSE, DIFFERENT PHASE
	C3EC C3EC C3EC	4C B4 C4	; PHASE ; PHSMTH	MATCHES EXPECT	ED PHASE ; SHIFT TO TCR REG. FORMAT
00327 00328	C3EF	4C B4 C4 8D 03 DE		LSR STA 55380+3	;

00329	C3F5	AD Ø7	DE		LDA	S538Ø+7	Ę	RESET INTERRUPT
00330	C3F8	00 10			1 50			LOAD MECCOUT UNLIE
00331	C3FA	DD Ø7	CØ		CMP	XPTPHS, X	;	WAS PHASE MATCH MESS. OUT
00332	C3FD	DØ ØB			BNE	GMR		LOAD MESSOUT VALUE Was phase match mess. Out IF not mess. Out, continue
00333	C3FF			:		AMESSU XPTPHS,X GMR DUT, RESET	•	·
00334	C3FF			, MESS	AGE (OUT, RESET	A	TN
00335	C3FF			;		,		
00336	C3FF	AD Ø1						GET INITIATOR CMD. REG
00337	C402	29 FD						MASK OFF ATN
00338	C404	8D Ø1	DE					TURN OFF ATN
00339	C4Ø7	8D Ø1	CØ		STA	ICRVAL	÷	UPDATE ICR VALUE
00340	C40A	AD 02	DE	GMR	LDA	S5380+2		UPDATE ICR VALUE GET MODE REG
00341	C40D	09 02			ORA	#%00000010	:	SET DMA MODE BIT
00342	C40F	8D Ø2	DE		STA	S5380+2		STORE IN TOR
00343	C412	AD Ø3	DE		LDA	S538Ø+3	í	GET PHASE AGAIN
00344	C415	29 01			AND	#%000000001		SET I/O MASK
00345	C417	FØ ØB			BEQ	IDMAO	÷	IF ZERO, DMA OUTPUT
00346	C419			;			7	
00347	C419			INIT	IATO	R DMA INPUT		GET PHASE AGAIN SET I/O MASK IF ZERO, DMA OUTPUT
00348	C419							
00349	C419	8D Ø7	DE	ÍDMAI	STA	S5380+7	;	START INIT. RCV.
00350	C41C	AØ ØØ						INITIALIZE Y
00351	C41E	AØ ØØ 20 FE	C4		JSR	DMAIN	:	PERFORM DMA INPUT
00352	C421	4C 2D	C3		JMP	NXT	;	PERFORM DMA INPUT PREPARE FOR NEXT PHASE
00353				;			•	
00354	C424				IATO	R DMA OUTPUT		
00355	C424							
00356	C424	20 27	C5	ÍDMAD	JSR	DMAOUT	;	PERFORM DMA OUTPUT EXTRA WRITE FOR ACK TO GO OFF
00357		8D ØC			STA	SDMA	:	EXTRA WRITE FOR ACK TO GO OFF
	C42A	4C 2D			JME	NXT	:	PREPARE FOR NEXT PHASE
	C42D			:			,	
	C42D			TARG	ет о	PERATION		
	C42D			:				
00362	C42D	AD Ø2	DE	RES	LDA	S538Ø+2	:	GET MODE REGISTER
	C430	09 02						IN DMA MODE BIT
00364		8D 02	DE		STA	55380+2		SET DMA MODE BIT
	C435	AE Ø6			LDX	PHSIDX		SET DMA MODE BIT LOAD X W/PHASE INDEX
00366		BD 08			I DA	XPTPHS+1.X:	Ġ	ET PHASE COUNT
00367		8D 25	CØ		STA	COUNT	:	STORE IN PHASE COUNT BYTE
00368		BD 09	CØ		LDA	XPTPHS+2.X:	G	ET COUNT MULTIPLIER
00369		8D 26			STA	XCNT		STORE IN MULTIPLIER
00370				;			. 7	
		AD 05		,	LDA	55380+5	:	GET BUS & STATUS REG.
00372						#%00000010		MASK ATN BIT
00373		DØ 4D				MESSOT		ATN ACTIVE DO MESS OUT PHASE
	C44B	AE Ø6	CØ			PHSIDX		GET CURRENT PHASE INDEX
00375	C44E	A9 80				#DISCON	-	GET DISCONNECTED VALUE
	C450	DD 07	CØ			XPTPHS, X		COMPARE W/PHASE VALUE
00377	C453	FØ 38				DISCTD		IF =, TIME TO DISCONNECT
00378	C455	BD Ø7	CØ			XPTPHS, X		GET PHASE
00379	C458	BD 07			LSR			SHIFT TO TCR FORMAT
	C45B	BD 07			LSR			
00381	C45E	8D Ø3				55380+3	:	STORE IN TARGET COMMAND REG.
00382		29 01						SAVE I/O BIT
00383		FØ 1D				TDMAD		IF ZERO, DMA OUTPUT
							7	· · · · · · · · · · · · · · · · · · ·

00384	C465		;	
00385	C465		TARGET DMA INPUT	
ØØ386	C465			
00387	C465	8D Ø6 DE	TDMAI STA S5380+6 ; START DMA TARGET RCV	
00388	C468	AØ Ø1	TDMAI STA S5380+6 ; START DMA TARGET RCV LDY #01 ; SET Y TO ONE,SO NO EXTRA REQ	
00389	C46A	20 FE C4		
00390	C46D		;	
00391	C46D		HANDLE LAST BYTE TO PREVENT EXTRA REQ	
00392				
00393		2C Ø5 DE	LSTDRO BIT S5380+5 ; LOOK FOR DRO	
00394		50 FB	BVC LSTDRQ ; LOOP TILL ON	
	C472	AD Ø2 DE	LDA 55380+2 : GET MODE REG.	
	C475	29 FD	LDA 55380+2 ; GET MODE REG. And #%1111101 ; MASK DMA MODE BIT	
00397		80 Ø2 DE	STA S5380+2 ; RESET DMA MODE BIT	
,	C47A	AD ØC DE		
		91 FB	STA (BENTR).Y : STORE LAST BYTE	
		4C 2D C4	STA (BENTR),Y ; STORE LAST BYTE JMP RES ; DO NEXT PHASE	
00401	C482		;	
00402			; TARGET DMA OUTPUT	
	C482			
		20 27 05	TDMAD JSR DMADUT ; PERFORM DMA OUTPUT	
00405		AD Ø2 DE	LDA S5380+2 ; GET DMA MODE	
	C488	29 FD	AND #%11111101 ; MASK DMA MODE BIT	
00407		80 02 DE		
		4C 2D C4	JMP RES ; DO NEXT PHASE	
00409				
	C490		TARGET DISCONNECT	
	C490			
00412		A9 00	, DISCID LDA #00 : LOAD ACCUM W/ ZERO	
00413		8D Ø1 DE	DISCTD LDA #00 ; LOAD ACCUM W/ ZERO STA 55380+1 ; RESET BSY & OTHER SIGNALS	
	C495	A9 02	LDA #DISCNT ; DISCONNECTED STATUS	
	C497	60	RTS ; RETURN TO CALLING PRGM	
00416		00		
00417			, MESSOUT PHASE (TARGET)	
	C498			
	C498	A9 18	, MESSOT LDA #MESSO ; GET VALUE OF MESSAGE OUT	
00420		A9 18 DE	LSR ; SHIFT TO TCR FORMAT	
00421	C49D	A9 18 DE	LSR ; SHIFT TO TCR FORMAT LSR ;	
00422		8D Ø3 DE	STA S5380+3 ; MESSOUT PHASE	
00423	C4A3	A9 Ø1	LDA #1 ; LOAD MULTPLIER/COUNTER VALUE	
		CA	DEX : MOVE POINTER	
00425	C4A6	9D 07 C0	STA XPTPHS, X ; STORE MULTIPLIER	
00426	C4A9	CA	DEX ; MOVE POINTER TO COUNT VALUE	
00427	C4AA	9D 07 C0	STA XPTPHS, X ; STORE COUNT	
00428	C4AD	CA	DEX ; MOVE TO PHASE	
00429	C4AE	8E Ø6 CØ	STX PHSIDX ; UPDATE MOVED PHASE INDEX	
00430	C4B1	40 82 04	JMP TDMAD ; DO DMA OUT	
00431	C4B1			
	C4B4		; ; DIFFERENT PHASE	
00433	C4B4		y	
00434	C484	A9 1C	DP LDA #MESSI : LOAD VALUE OF MESSAGE IN PHASE	-
00435	C486	DD 07 C0	CMP XPTPHS,X ; IS THIS A MESSAGE IN PHASE	-
00436	C4B9	FØ Ø3	BEQ MESSIN ; IF=, READ MESSAGE	
00437		A9 07	LDA #DIFFPH ; LOAD DIFFERENT PHASE ST.	
00438	C4BD	60	RTS ; RETN W/UNEXPECTED PHASE STATUS	3
			is in the second s	-


LINE# LOC

CODE

LINE

LINE#	LOC	CODE	LINE				
	C4BE C4BE		; ; MESSAG	SE I	N PHASE		
00441 00442	C4BE C4BE	60 07 C		.SR		ţ	SHIFT TO TCR FORMAT
	C4C1 C4C4	60 07 C 8D 03 D		_SR STA	55380+3	; ;	LOAD TCR
	C4C7 C4CA	ad 07 di Ad 04 di			S5380+7 S5380+4		RESET INT. READ CURRENT BUS STATUS
00447	C4CD	29 20	A	AND	#%00100000	ŧ	LOOK FOR REQ.
	C4CF C4D1	FØ F9 AD Ø1 C			POLL ICRVAL		IF ZERO, NO REQ. Get current icr value
00450 00451	C4D4 C4D6	09 10 80 01 D			#%00010000 S5380+1	•	OR IN ASSERT ACK ASSERT ACK
00452	C4D9	8D Ø1 C	S	ATA	ICRVAL	;	UPDATE ICR
	C4DC C4DF		A	ND	#%00100000	ş	READ CURRENT BUS STATUS LOOK FOR NOT REQ
	C4E1 C4E3	DØ F9 A9 ØØ			STILON #CMDCFL		IF NOT ZERO, STILL ON LOAD COMMAND COMPLETE
	C4E5 C4E5		; ; LEAVE	סרא		dE)	SSAGE CAN BE REJECTED
00459	C4E5		ţ				
ØØ461	C4E5 C4E8	DØ ØE	B	3NE	S5380+6 DIFMES	ţ	COMPARE W/MESSAGE IF NOT CMD COMPLTE, DIFF.
	C4EA C4ED	AD 01 CU 29 EF			ICRVAL #%11101111		GET ICR VA∟ MASK ACK BIT
	C4EF C4F2		S	STA	S5380+1	ţ	RESET ACK UPDATE ICR
00466	C4F5				NXT		GO TO NEXT PHASE
	C4F8 C4F8		; , NOT ME	ISSA	GE COMPLETE,	, .	RETURN FOR EVALUATION
	C4F8 C4F8	AE Ø6 D	; DIFMES L	DX	S5380+6	:	GET MESSAGE VALUE
00471	C4FB C4FD		L		#MESSAG	Ŧ	LOAD MESSAGE RETN STATUS RETURN FOR MESSAGE EVALUATION
00473	C4FE	60	;	(13		7	REFORM FOR MESSAGE EVALUATION
00474 00475	C4FE C4FE		; ; DMA IN	PUT	• ·		
00476 00477	C4FE C4FE	A9 00	I DMAIN L	DA	#00		ZERO ACCUM.
00478	C500			FAX			ZERO X
00480	C501 C501		; RESET	ASS	ERT DATA BUS	3	
00481 00482	C501 C501	AD Ø1 C	;	.DA	ICRVAL	Ţ	GET ICR VALUE
00483 00484	C504 C506						MASK ASSERT DATA BUS RESET ASSERT DATA BUS BIT
00485	C509		S	ата	ICRVAL	Ţ	UPDATE ICR
00486 00487	C50C C50C		; WAIT F	FOR	DRQ		
00488 00489	C50C C50C		; REPT1 B	31'T	S538Ø+5	Ę	TEST FOR DRQ
	C50F C511		E		REPT1		IF NOT THERE, LOOP
00492	C511	AD ØC DI	; GO1 L	DA	SDMA	ş	READ DMA PORT STORE DATA IN BUFFER
00493	C514	91 FB	9	STA	(BPNTR),Y	ţ	STORE DATA IN BUFFER

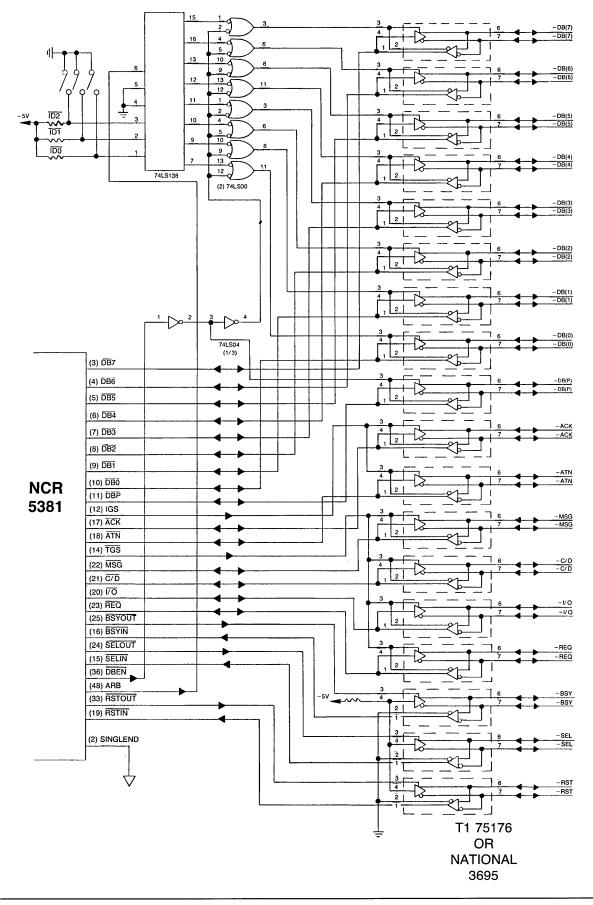
LINE#	LOC	CODE	LINE
00494 00495 00496 00497 00498 00498	C516 C517 C51A C51C C51C C51D C520	C8 CC 25 C0 D0 F0 E8 EC 26 C0	INY ; INCR. POINTER CPY COUNT ; DONE? BNE REPT1 ; IF NOT ZERO, REPEAT INX ; ZERO, CHECK MULTIPLIER CPX XCNT ; COMPARE X WITH MULTIPLIER BEQ NXTPHS ; IF EQUAL, COUNT DONE BUMP INC BPNTR+1 ; GREATER THAN 256 BYTES BUMP MSB JMP GO1 ; GET MORE BYTES
00500 00501 00502	C522 C524 C527 C527		BUMP INC BPNTR+1 ; GREATER THAN 256 BYTES BUMP MSB JMP GO1 ; GET MORE BYTES ; ; DMA OUTPUT
00504 00505 00506 00507 00508 00508	C527 C529 C529 C52C C52F C532 C532	A9 Ø1 ØD Ø1 CØ 8D Ø1 DE	
00514 00515	C535 C535 C535 C537 C538 C539 C530	A9 ØØ A8	; LOOK FOR DMA REQ (DRQ) ; LDA #00 ; ZERO ACCUM TAY ; ZERO Y
00518 00519 00520 00521 00522 00523	C53E C540 C543 C544 C547 C549	B1 FB BD 0C DE C8 CC 25 C0 D0 F0 E8	TAX ; ZERO X REPT BIT S5380+5 ; SAMPLE DRQ BVC REPT ; IF NOT SET, REPEAT GO LDA (BPNTR),Y ; GET BYTE FROM BLOCK STA SDMA ; WRITE BYTE TO CHIP INY ; INC Y POINTER CPY COUNT ; COMPARE WITH BYTE CNT BNE REPT ; IF Y NOT EQ. SEND MORE INX ; IF EQUAL INCR. X CPX XCNT ; COMPARE W/ MULTIPLIER BEQ NXTPHS ; IF EQ, NEXT PHASE INC BPNTR+1 ; MORE THAN 256 BUMP MSB JMP GO ; SEND MORE DATA
00524 00525 00526 00527 00528 00528	C54A C54D C54F C551 C554 C554	EC 26 C0 F0 05 E6 FC 4C 3E C5	CPX XCNT ; COMPARE W/ MULTIPLIER BEQ NXTPHS ; IF EQ, NEXT PHASE INC BPNTR+1 ; MORE THAN 256 BUMP MSB JMP GO ; SEND MORE DATA ; NEXT PHASE
00530 00531 00532 00533 00533	C554 C554 C557 C55A C55D	EE Ø6 CØ EE Ø6 CØ EE Ø6 CØ 6Ø	INC PHSIDX ;

A4. NCR 5381—Differential Pair Option

The NCR 5381 is a 48 pin version of the NCR 5380 device, designed to support external differential pair transceivers. These external transceivers are controlled with the additional signals provided in the higher pinout package. The NCR 5381 may still operate as a single-ended device if the SINGLEND signal (pin 2) is active. In single-ended operation, the signals provided for differential support remain functional.

The use of the DIFFERENTIAL ENABLE bit (bit 5) in the Initiator Command Register reflects the only

software difference between the two parts. When active, this bit is used to assert the signals IGS (pin 18) or TGS (pin 14) depending on the status of the TARGETMODE bit (port 2, bit 6). (IGS is active if TARGETMODE is false and TGS is active if TARGETMODE is true.) As in the NCR 5385/86, IGS is used to enable the external drivers for the signals ACK (pin 17) and ATN (pin 18) and TGS is used to enable the external drivers for the signals I/O (pin 20), C/D (pin 21), MSG (pin 22) and REQ (pin 23).


The signal differences between the NCR 5380 and the NCR 5381 are as follows:

Pin	SIGNAL NAME	DESCRIPTION		
2	SINGLEND	mode of operat	n active (1) selects ion. When inactiv differential pair me	
		-	vill change from in if the SINGLEND :	put/output pins to signal is false.
			SINGLEND = 1	SINGLEND $= 0$
		PIN #16	BSY	BSYIN
		PIN #15 PIN #19	SEL RST	SELIN RSTIN
36	DBEN	BUS bit (port 1, set (1). It is also and PHASE M MODE and I/O	bit 0) and the TAR asserted when AS ATCH are true ar	ne ASSERT DATA GETMODE bit are SERT DATA BUS nd both TARGET- nal is used to ena- rive the data bus.

Pin	SIGNAL NAME	DESCRIPTION
14	TGS	This signal is active when the TARGETMODE bit and the DIFFERENTIAL ENABLE bit are true. It is used to enable the external transceivers to drive $\overline{I/O}$, $\overline{C/D}$, \overline{MSG} , and \overline{REQ} .
12	IGS	This signal is active when the TARGETMODE bit is false and the DIFFERENTIAL ENABLE bit is true. It is used to enable the external transceivers to drive ACK and ATN.
48	ARB	The NCR 5380 chip asserts this signal when the ARBITRATION bit is set and the device has detected a bus free condition. It is used to assert the proper device ID on the bus during the arbitration phase.
35	BSYOUT	This signal is active whenever $\overrightarrow{\text{BSY}}$ is asserted. This signal will be inactive at all other times.
24	SELOUT	This signal is active if the ASSERT \overline{SEL} bit is true. Conversely, this signal is inactive if the ASSERT \overline{SEL} bit is reset.
38	RSTOUT	This signal is active if the ASSERT $\overrightarrow{\text{RST}}$ bit is true. Conversely, this signal is inactive if the ASSERT $\overrightarrow{\text{RST}}$ bit is reset.
	D0 [1 SINGLEND [2 DB7 [3 4 5 6 6 7 8 9 DB0 [10 DBP [11 IGS [12 GND [13 TGS [14 SELIN [15 BSYIN [16 ACK [17 ATN [18 RSTIN [19 I/O [20 C/D [21 MSG [22 REQ [23 SELOUT [24	48 ARB 47 D1 46 • 45 • 44 • 43 • 42 • 41 D7 40 A2 39 A1 38 RSTOUT 37 VDD 36 DBEN 35 A0 34 IOW 33 RESET 32 EOP 31 DACK 30 READY 29 IOR 28 IRQ 27 DRQ 26 CS 25 BSYOUT

NCR 5381 PINOUT

A5. SCSI/PLUS *

AMPRO Computers, Inc. is proposing a general enhancement to the SCSI specification which allows the bus to operate as either a single or multi-master high speed parallel bus, capable of accessing up to 64 modules. This new bus structure is referred to as SCSI/PLUS. The table below describes the types of devices that may now be added due to the enhanced SCSI specification.

SCSI/PLUS	
DEVICE TYPES	EXAMPLES
Operating System Processors and Co-processors	UNIX MS-DOS CP/M FORTH Lisp Prolog
Communication Servers	Modems Arcnet Ethernet SDLC Mainframe links
Display Controllers	Graphics Text Touch
System Resources	Printer Spooler Time-of-day clock Speech I/O Protocol Converter DBMS Processor Array Processor
Real World Interfaces	A/D D/A AC & DC Control

Examples of SCSI/PLUS Devices

* SCSI/PLUS is a trademark of AMPRO Computers. Inc.

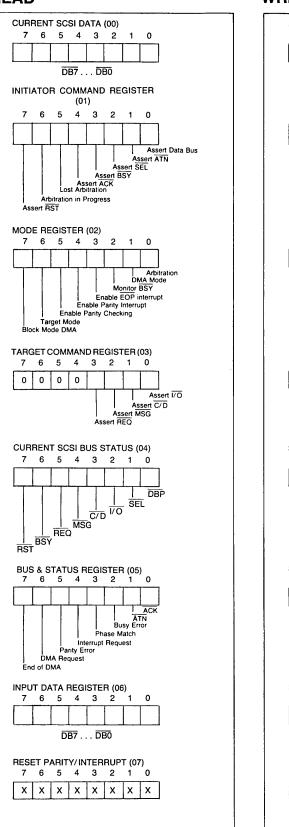
SCSI/PLUS provides three functional additions to the SCSI specification which allow the bus to operate as either a loosely coupled distributed system bus or a low-cost single master I/O bus. As proposed, SCSI/ PLUS is a superset of the original specification, and its operation will not interfere with any existing SCSI implementation.

To allow for more complex system configurations, SCSI/PLUS provides Binary Arbitration and Binary Selection phases. The data bus represents a binary address and accommodates 64 physical bus devices, compared to eight in the current specification. In addition, four logical units may be associated with each bus device for a total of 256 logical bus devices. As in the SCSI specification, the arbitration phase is optional.

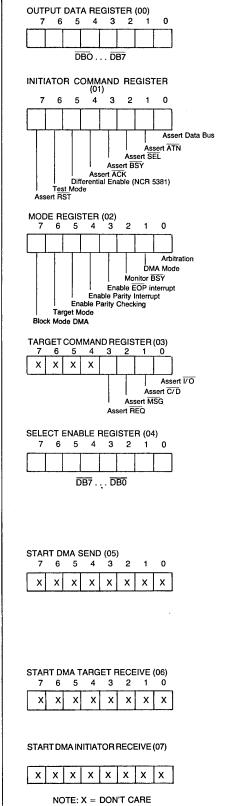
The addition of a master/slave mode to the specification provides for a cost-effective single-master/multislave configuration. This mode allows the design of SCSI/PLUS Targets which have no on-board intelligence. An optional interrupt protocol allows these "dumb" targets to asynchronously notify the bus master that they desire service.

To encourage board-level interchangability, a recommended board size and interface connector is defined. The preferred board size is the single-wide Eurocard format with the double-wide card used as an option. The proposed interface connector is the DIN 41612—Type C connector. By using this form-factor and connector specification, bussed backplane or ribbon cable systems may be implemented.

The SCSI/PLUS architectural concept has inherent advantages over traditional microprocessor backplane architectures. SCSI/PLUS is CPU-independent, provides flexibility of form factor, operates across a ribbon cable bus, and allows both high-performance multi-master and low-cost single-master operation. The NCR 5380 is an ideal part for designing an interface to connect to SCSI/PLUS. Its simplicity provides the flexibility needed to support the defined protocol modifications, and its popularity with SCSI users guarantees plug compatibility with existing host adapters.


The NCR 5380 uses the Output Data Register to assert the proper device ID onto the SCSI bus during the Arbitration and Selection phases. Since the user is not restricted by the number of bits he is allowed to assert on the SCSI data bus, the Binary Arbitration and Binary Selection phases can be easily supported. In a Target role the Select Enable Register may be used to generate an interrupt if any bit in this register matches the binary address on the SCSI bus. Here again the NCR 5380 does not restrict this implementation.

The ability to support the master/slave operation requires independent control over the SCSI control signals by the bus slave devices and recognition by the bus master of the newly defined bus phase. The NCR 5380 provides independent signal control during Target operation and can be configured to generate an interrupt when a bus phase mismatch occurs if operating as an Initiator.


As in normal SCSI implementations, the use of on-chip bus transceivers significantly reduces parts count and provides for a highly reliable, cost effective SCSI/ PLUS design. An additional advantage of on-chip MOS transceivers is the low leakage current. The NCR 5380 maximum leakage current of 50 uA meets the SCSI/PLUS bus load requirements. Up to 64 devices may occupy SCSI/PLUS bus positions if low-leakage integrated circuits such as the NCR 5380 are used.

A6. REGISTER REFERENCE CHART

READ

WRITE

NCR Microelectronics Division 1635 Aeroplaza Drive Logic Products Marketing Colorado Springs, CO 80916 (303) 596-5612 or (800) 525-2252 TELEX 45-2457 A H I

.